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ABSTRACT. A basic question in any computational model is how to reliably compute a
given function when the inputs or intermediate computations are subject to noise at a con-
stant rate. Ideally, one would like to use at most a constant factor more resources compared
to the noise-free case. This question has been studied for decision trees, circuits, automata,
data structures, broadcast networks, communication protocols, and other models.

Buhrman et al. (2003) posed the noisy computation problem for real polynomials. We
give a complete solution to this problem. For any polynomial pW f0; 1gn ! Œ�1; 1�; we
construct a polynomial probustWRn! R of degreeO.degpC log 1

�
/ that �-approximates

p and is additionally robust to noise in the inputs: jp.x/ � probust.x C ı/j < � for
all x 2 f0; 1gn and all ı 2 Œ�1=3; 1=3�n: This result is optimal with respect to all
parameters. We construct probust explicitly for each p: Previously, it was open to give
such a construction even for p D x1 ˚ x2 ˚ � � � ˚ xn (Buhrman et al., 2003). The
proof contributes a technique of independent interest, which allows one to force partial
cancellation of error terms in a polynomial.

1. INTRODUCTION

Noise is a well studied phenomenon in the computing literature. It arises naturally in
several ways. Most obviously, the input to a computation can be noisy due to imprecise
measurement or human error. In addition, both the input and the intermediate results of
a computation can be corrupted to some extent by a malicious third party. Finally, even
in a setting with correct input and no third-party interference, errors can be introduced by
using a randomized algorithm as a subroutine in the computation. In all these settings,
one would like to compute the correct answer with high probability despite the presence of
noise. A matter of both theoretical and practical interest is how many additional resources
are necessary to combat the noise. Research has shown that the answer depends crucially
on the computational model in question. Models studied in this context include decision
trees [25, 49, 23, 20, 43], circuits [46, 26, 21, 34, 59, 60], broadcast networks [27, 40,
24, 43, 29, 17, 18], and communication protocols [51, 52, 10, 28]. Some computational
models exhibit a surprising degree of robustness to noise, in that one can compute the
correct answer with probability 99% with only a constant-factor increase in cost relative to
the noise-free setting. In other models, even the most benign forms of noise increase the
computational complexity by a superconstant factor.

In most cases, one can overcome the noise by brute force, with a logarithmic-factor
increase in computational complexity. In a noisy decision tree, for example, one can re-
peat each query a logarithmic number of times and use the majority answer. Assuming
independent corruption of the queries, this strategy results in a correct computation with
high probability. Similarly, in a noisy broadcast network one can repeat each broadcast
a logarithmic number of times and take the majority of the received bits. It may seem,
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then, that noise is an issue of minor numerical interest. This impression is incorrect on
several counts. First, in some settings such as communication protocols [51, 52, 10, 28],
it is nontrivial to perform any computation at all in the presence of noise. Second, even a
logarithmic-factor increase in complexity can be too costly for some applications; see, e.g.,
the analysis in [48]. Third and most important, the question at hand is a qualitative one:
is it possible to arrange the steps in a computation so as to cause the intermediate errors
to almost always cancel? Put differently, in studying the robustness of a computational
model to noise, one aims first and foremost to understand a fundamental property of the
model rather than make numerical improvements. This study frequently reveals aspects of
the model that would otherwise be overlooked.

This last point is nicely illustrated by noisy broadcast networks, in which n processors
have bits x1; x2; : : : ; xn; respectively, and communicate in broadcast mode to compute
some function f .x1; x2; : : : ; xn/: A bit transmitted from one processor to another arrives
corrupted with a small constant probability, independent of any other bit transmissions. In
a surprising 1988 paper, Gallager [27] proved that O.n log logn/ broadcasts are enough
for all processors to learn the string .x1; x2; : : : ; xn/ with constant probability and thus to
compute any function f: Despite sustained efforts, it was unknown until recently whether
Gallager’s result is optimal. Goyal, Kindler, and Saks [29] solved this problem, showing
that ˝.n log logn/ broadcasts are necessary for all processors to learn .x1; x2; : : : ; xn/
with constant probability. The work in [29] contributed a novel entropy-based view of
broadcast networks and related them to an intermediate model of interest in its own right,
the generalized noisy decision tree, which may not have been discovered otherwise. Re-
markably, it is open to this day whether Gallager’s upper bound is tight for computing any
function f .x1; : : : ; xn/ with Boolean range.

Our problem. The computational model of interest to us is the real polynomial. In
this model, the complexity measure of a Boolean function f W f�1;C1gn ! f�1;C1g
is the least degree of a real polynomial that approximates f pointwise. Formally, the ap-
proximate degree of f; denoted dege.f /; is the least degree of a real polynomial p with
jf .x/ � p.x/j 6 1=3 for every x 2 f�1;C1gn: The constant 1=3 is chosen for aesthetic
reasons and can be replaced by any other in .0; 1/ without changing the model. The contri-
bution of this paper is to show that as a computational model, real polynomials are highly
robust to noise.

The formal study of the approximate degree and of polynomial representations in gen-
eral began in 1969 with the seminal work of Minsky and Papert [42], who famously proved
that the parity function on n variables has approximate degree n: Since then, the approxi-
mate degree has been used to solve a vast array of problems in algorithm design and com-
plexity theory. In this line of research, upper bounds on the approximate degree are used
to obtain efficient algorithms, and lower bounds are used to prove hardness and impossi-
bility results. For example, the approximate degree and its variants have yielded a variety
of lower bounds in circuit complexity [45, 58, 9, 5, 38, 39, 56, 8]. Following the semi-
nal work of Beals et al. [6], the approximate degree has been used many times to prove
tight lower bounds on quantum query complexity [6, 12, 2, 1, 33]. Starting in the early
2000s, the approximate degree has enabled dramatic progress in communication complex-
ity on problems that were previously thought to be beyond reach; see [15, 47, 14, 48] and
the survey [53]. In computational learning theory, the approximate degree has played a
central role in various lower bounds [36, 37, 55, 57] as well as algorithmic results, such
as the fastest known algorithms for PAC-learning DNF formulas [61, 35] and agnosti-
cally learning disjunctions [32]. Earlier algorithmic applications include approximating
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the inclusion-exclusion formula [41, 31, 54, 62]. Most recently, the approximate degree
has been used to prove lower bounds in proof complexity [7].

Despite these motivating applications, there has been little progress in understanding
real polynomials on the Boolean hypercube, i.e., understanding the approximate degree
itself as a complexity measure. This may be surprising given that approximation theory
has existed in its modern form for over 150 years and is a very mature branch of anal-
ysis. However, approximation on the Boolean hypercube is rooted mostly in theoretical
computer science and remains a relatively new topic. The only truly general result on the
approximate degree, due to Nisan and Szegedy [44], is that it is polynomially related to
decision tree complexity and block sensitivity. When a more precise estimate is needed, a
common way to construct an approximating polynomial is to design a quantum query al-
gorithm for the corresponding function, e.g., [30, 62, 22, 4]. However, the quantum query
approach gives only upper bounds on the approximate degree, and even there its appli-
cability is limited because quantum query algorithms are a less powerful computational
model than real polynomials [3].

In this paper, we answer a question about real polynomials posed nine years ago by
Buhrman et al. [13]. These authors asked whether real polynomials, as a computational
model, are robust to noise. Robustness to noise becomes necessary when one wants to
do anything nontrivial with approximating polynomials, e.g., compose them. To use a
motivating example from [13], suppose that we have approximating polynomials p and
q for Boolean functions f W f�1;C1gn ! f�1;C1g and gW f�1;C1gm ! f�1;C1g; re-
spectively. Having these two polynomials gives us no way whatsoever to approximate
the composed function f .g; g; : : : ; g/ on nm variables. In particular, the natural con-
struction p.q; q; : : : ; q/ does not work for this purpose because q can range anywhere in
Œ�4=3;�2=3� [ Œ2=3; 4=3� and the behavior of p on non-Boolean inputs can be arbitrary.
In other words, the problem is that the output of q is inherently noisy, and the original
polynomial p is not designed to handle that noise. What we need is a robust approximat-
ing polynomial for f; to use the term introduced by Buhrman et al. [13]. Formally, a robust
approximating polynomial for f is a real polynomial probustWRn ! R such that for every
x 2 f�1;C1gn;

jf .x/ � probust.x C ı/j <
1

3

whenever ı D .ı1; : : : ; ın/ 2 Œ�1=3; 1=3�
n: Put differently, a robust polynomial is one

that approximates f not only on Boolean inputs but also on the much larger domain
Œ�4=3;�2=3� [ Œ2=3; 4=3�: Robust polynomials compose in the natural way: to use the
notations of this paragraph, the polynomial probust.q; q; : : : ; q/ is a valid approximating
polynomial for f .g; g; : : : ; g/:

The obvious question is whether robustness comes at a cost. Ideally, one would like to
make an approximating polynomial robust with only a constant-factor increase in degree,
so that every Boolean function f would have a robust polynomial of degree �.dege.f //:

Similar to the setting of noisy decision trees and broadcast networks, a fairly direct calcu-
lation shows that every Boolean function f W f�1;C1gn ! f�1;C1g has a robust polyno-
mial of degree O.dege.f / logn/: Buhrman et al. [13] improved this bound to minfO.n/;
O.dege.f / log dege.f //g using combinatorial arguments and quantum query complexity. In
particular, the work of Buhrman et al. shows that parity, majority, and random functions—
all of which have approximate degree�.n/—also have robust approximating polynomials
of degree�.n/: It was posed as an open problem in [13] whether an analogous result holds
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for every Boolean function, i.e., whether every Boolean function has a robust approximat-
ing polynomial of degree �.dege.f //:

Our result. We give a complete solution to the problem of Buhrman et al. [13]. To be pre-
cise, we study a more general problem. Buhrman et al. [13] asked whether a polynomial p
can be made robust with only a constant-factor increase in degree, provided that p approx-
imates a Boolean function. We prove that every polynomial pW f�1;C1gn ! Œ�1; 1� can
be made robust, regardless of whether p approximates a Boolean function.

THEOREM 1. Let pW f�1;C1gn ! Œ�1; 1� be a given polynomial. Then for every � > 0;

there is a polynomial probust of degree O.degp C log 1
�
/ such that for all x 2 f�1;C1gn

and ı 2 Œ�1=3; 1=3�n;

jp.x/ � probust.x C ı/j < �:

Furthermore, probust has an explicit, closed-form description.

Theorem 1 shows that real polynomials are robust to noise. In this regard, they behave
differently from other computational models such as decision trees [25] and broadcast net-
works [29], where handling noise provably increases the computational complexity by a
superconstant factor. In fact, Theorem 1 reveals a very high degree of robustness to noise:
the degree of an �-error robust polynomial grows additively rather than multiplicatively
with the error parameter �; and the actual dependence on � is only logarithmic. Theo-
rem 1 is easily seen to be tight with respect to all parameters; see Remark 6.2. Theorem 1
has the following consequence, which the reader may find counterintuitive: high-degree
polynomials are more easily made robust than low-degree polynomials, in the sense that a
degree-d polynomial can be made robust within error 2��.d/ with only a constant-factor
increase in degree.

A final point of interest is that Theorem 1 gives an explicit, formulaic construction
of a robust polynomial probust in terms of the original polynomial p: Prior to this work, no
explicit robust construction was known even for the parity polynomial p.x/ D x1x2 � � � xn:
To quote Buhrman et al. [13], “We are not aware of a direct ‘closed form’ or other natural
way to describe a robust degree-O.n/ polynomial for the parity of n bits, but can only infer
its existence from the existence of a robust quantum algorithm. Given the simplicity of the
non-robust representing polynomial for parity, one would hope for a simple closed form
for robust polynomials for parity as well.”

As a consequence of Theorem 1, we conclude that the approximate degree behaves
nicely under function composition:

COROLLARY. For all Boolean functions f and g;

dege.f .g; g; : : : ; g// D O.dege.f / dege.g//:

Prior to this paper, this conclusion was known to hold only for several special functions,
e.g., [11, 30, 13], and required quantum query arguments.

Our techniques. We will now overview the techniques of previous work and contrast
them with the approach of this paper. Buhrman et al. [13] gave a remarkable quantum al-
gorithm that recovers an n-bit string with constant probability from O.n/ noisy queries to
the bits of the string. As an immediate corollary, the authors of [13] concluded that every
Boolean function has a robust polynomial of degree O.n/: Unfortunately, there does not
seem to be a way to modify this argument to obtain a degree-o.n/ robust polynomial for
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functions with sublinear approximate degree. With an unrelated, combinatorial argument,
the authors of [13] obtained an upper bound of O.dege.f / log dege.f // on the degree of
a robust polynomial for any given Boolean function f: This combinatorial argument also
seems to be of no use in proving Theorem 1. For one thing, it is unclear how to save a
logarithmic factor in the combinatorial analysis, and more fundamentally, the combinato-
rial argument only works for approximating Boolean functions rather than arbitrary real
functions f�1;C1gn ! Œ�1; 1�:

We approach the problem of robust approximation differently, with a direct analytic
treatment rather than combinatorics or quantum query complexity. Our solution comprises
three steps, corresponding to functions of increasing generality:

(i) robust approximation of the parity polynomial, p.x/ D x1x2 � � � xn;
(ii) robust approximation of homogeneous polynomials, p.x/ D

P
jS jDd aS

Q
i2S xi ;

(iii) robust approximation of arbitrary polynomials.

For step (i), we construct an exact representation of the sign function on the domain
Œ�4=3;�2=3�[ Œ2=3; 4=3� as an analytic series whose coefficients decrease exponentially
with degree. Multiplying n such series, we show that the resulting coefficients still decay
rapidly enough to allow truncation at degree O.n/:

For step (iii), we write a general polynomial pW f�1;C1gn ! Œ�1; 1� as the sum of its
homogeneous parts p D p0 C p1 C p2 C � � � C pd ; where d is the degree of p: Using
approximation theory and a convexity argument, we show that kpik1 6 2O.d/ for all i:
For our purposes, all this means is that a robust polynomial for p can be obtained by
summing the robust polynomials for all pi with sufficiently small error, 2�˝.d/: Obtaining
such a polynomial for each pi is the content of step (ii).

Step (ii) is the most difficult part of the proof. A natural approach to the robust ap-
proximation of a homogeneous polynomial p is to robustly approximate every monomial
in p to within a suitable error �; using the construction from step (i). Since we want
the robust polynomial for p to have degree O.d/; the smallest setting that we can af-
ford is � D 2��.d/: Unfortunately, there is no reason to believe that with this �; the pro-
posed robust polynomial will have small error in approximating p: As a matter of fact,
a direct calculation even suggests that this approach is doomed: it is straightforward to
verify that a homogeneous polynomial pW f�1;C1gn ! Œ�1; 1� of degree d can have�
n
d

�
monomials, each equal to˙

�
2n
�
n
d

��
�1=2; which suggests that the proposed approxi-

mant for p could have error as large as

�

 
n

d

!(
2n

 
n

d

!)�1=2
� 1:

Surprisingly, we are able to show that the proposed robust approximant for p does work
and furthermore has excellent error, 2��.d/:

We now describe step (ii) in more detail. The naı̈ve, term-by-term error analysis above
ignores key aspects of the problem, such as the convexity of the unit cube Œ�1; 1�n; the
metric structure of the hypercube f�1;C1gn; and the multilinearity of p: We contribute a
novel technique that exploits these considerations. In particular, we are able to express the
error in the proposed approximant at any given point ´ 2 .Œ�4=3;�2=3�[ Œ2=3; 4=3�/n as
an infinite series

1X
iD1

aip.´i /;
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where each ´i D ´i .´/ is a suitable point in Œ�1; 1�n; and the coefficients in the series
are small and decay rapidly:

P1
iD1 jai j 6 2��.d/: Since p is bounded by 1 in absolute

value on the hypercube f�1;C1gn; it is also bounded by 1 inside the convex cube Œ�1; 1�n;
leading to the desired error estimate. In words, even though the error in the approximation
of an individual monomial is relatively large, we show that the errors across the monomials
behave in a coordinated way and essentially cancel each other out.

2. NOTATION AND PRELIMINARIES

Throughout this manuscript, we represent the Boolean values “true” and “false” by �1
and C1; respectively. In particular, Boolean functions are mappings f WX ! f�1;C1g
for some finite set X such as X D f�1;C1gn: The natural numbers are denoted N D
f0; 1; 2; 3; : : : g: The symbol log x denotes the logarithm of x to base 2: For a string x 2 Rn
and a set S � f1; 2; : : : ; ng; we adopt the shorthand xjS D .xi1 ; xi2 ; : : : ; xijSj/ 2 RjS j;
where i1 < i2 < � � � < ijS j are the elements of S: The family of all subsets of a given set X
is denoted P.X/: The symbol Sn stands for the group of permutations � W f1; 2; : : : ; ng !
f1; 2; : : : ; ng: A function �WRn ! R is called symmetric if � is invariant under permuta-
tions of the variables, i.e., �.x/ � �.x�.1/; x�.2/; : : : ; x�.n// for all � 2 Sn: We adopt the
standard definition of the sign function:

sgn t D

�
�1 if t < 0;
0 if t D 0;
1 if t > 0:

For a set X; we let RX denote the real vector space of functions X ! R: For � 2 RX ; we
write

k�k1 D sup
x2X

j�.x/j; k�k1 D
X
x2X

j�.x/j;

where the symbol k�k1 is reserved for finiteX: By the degree of a multivariate polynomial
p on Rn; denoted degp; we shall always mean the total degree of p; i.e., the greatest total
degree of any monomial of p: The symbol Pd stands for the family of all univariate real
polynomials of degree up to d:

Fourier transform. Consider the real vector space of functions f�1;C1gn ! R: For
S � f1; 2; : : : ; ng; define �S W f�1;C1gn ! f�1;C1g by �S .x/ D

Q
i2S xi : Then the

functions �S ; S � f1; 2; : : : ; ng; form an orthogonal basis for the vector space in question.
In particular, every function �W f�1;C1gn ! R has a unique representation as a linear
combination of the characters �S :

� D
X

S�f1;2;:::;ng

O�.S/ �S ;

where O�.S/ D 2�n
P
x2f�1;C1gn �.x/�S .x/ is the Fourier coefficient of � that corre-

sponds to the character �S : Note that

deg� D maxfjS j W O�.S/ ¤ 0g:

Formally, the Fourier transform is the linear transformation � 7! O�; where O� is viewed as
a function P.f1; 2; : : : ; ng/! R: In particular, we have the shorthand

k O�k1 D
X

S�f1;2;:::;ng

j O�.S/j:
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Multilinear extensions and convexity. As the previous paragraph shows, associated to
every mapping �W f�1;C1gn ! R is a unique multilinear polynomial Q�WRn ! R such
that � � Q� on f�1;C1gn: In discussing the Fourier transform, we identified � with its
multilinear extension Q� to Rn; and will continue to do so throughout this paper. Among
other things, this convention allows one to evaluate � everywhere in Œ�1; 1�n as opposed
to just f�1;C1gn: It is a simple but important fact that for every �W f�1;C1gn ! R;

max
x2Œ�1;1�n

j�.x/j D max
x2f�1;C1gn

j�.x/j D k�k1:

To see this, fix � 2 Œ�1; 1�n arbitrarily and consider the probability distribution on strings
x 2 f�1;C1gn whereby x1; : : : ; xn are distributed independently and EŒxi � D �i for all i:
Then �.�/ D EŒ�.x/� by multilinearity, so that j�.�/j 6 maxx2f�1;C1gn j�.x/j:

3. A ROBUST POLYNOMIAL FOR PARITY

The objective of this section is to construct a low-degree robust polynomial for the par-
ity function. In other words, we will construct a polynomial pWRn ! R of degree O.n/
such that p.x1; x2; : : : ; xn/ �

Q
sgn xi whenever the input variables are close to Boolean:

x1; x2; : : : ; xn 2 Œ�4=3;�2=3�[ Œ2=3; 4=3�: Recall that our eventual goal is a robust poly-
nomial for every bounded real function. To this end, the parity approximant p that we are
to construct needs to possess a key additional property: the error p.x/ �

Q
sgn xi ; apart

from being small, needs to be expressible as a multivariate series in which the coefficients
decay rapidly with monomial order.

To obtain this coefficient behavior, we use a carefully chosen approximant for the uni-
variate function sgn t: The simplest candidate is the following ingenious construction due
to Buhrman et al. [13]:

Bn.t/ D 2
�n

nX
iDdn=2e

 
n

i

!
t i .1 � t /n�i :

In words, Bn.t/ is the probability of observing more heads than tails in a sequence of n
independent coin flips, each coming up heads with probability t: By the Chernoff bound,
Bn sends Œ0; 1=4�! Œ0; 2�˝.n/� and similarly Œ3=4; 1�! Œ1 � 2�˝.n/; 1�: As Buhrman et
al. [13] point out, this immediately gives a degree-n approximant for the sign function with
exponentially small error on Œ�4=3;�2=3�[ Œ2=3; 4=3�: Unfortunately, the coefficients of
this approximating polynomial do not exhibit the kind of rapid decay that we require.
Instead, in what follows we use a purely analytic construction based on the Maclaurin
series for 1=

p
1C t :

LEMMA 3.1. For x1; x2; : : : ; xn 2 .�
p
2; 0/ [ .0;

p
2/;

sgn.x1x2 � � � xn/ D x1x2 � � � xn
X

i1;i2;:::;in2N

nY
jD1

�
�
1

4

�ij 2ij
ij

!
.x2j � 1/

ij :(3.1)

Proof. Recall the binomial series

.1C t /˛ D

1X
iD0

 
˛

i

!
t i ;(3.2)

with the usual notation
�
˛
i

�
D ˛.˛ � 1/ � � � .˛ � i C 1/=iŠ for the generalized binomial

coefficient. The series (3.2) is valid for all �1 < t < 1 and all real ˛: In particular, setting
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˛ D �1=2 gives

1
p
1C t

D

1X
iD0

 
�1=2

i

!
t i

D

1X
iD0

�
�
1

4

�i 
2i

i

!
t i ; � 1 < t < 1:(3.3)

One easily verifies that this absolutely convergent series is the Maclaurin expansion for
1=
p
1C t : For all real t with 0 < jt j <

p
2; we have

sgn t D
tp

1C .t2 � 1/

D t

1X
iD0

�
�
1

4

�i 
2i

i

!
.t2 � 1/i ;(3.4)

where the second step holds by (3.3). For x1; x2; : : : ; xn 2 .�
p
2; 0/[ .0;

p
2/; it follows

that

sgn.x1x2 : : : xn/ D x1x2 � � � xn
nY

jD1

(
1X
iD0

�
�
1

4

�i 
2i

i

!
.x2j � 1/

i

)

D x1x2 � � � xn
X

i1;i2;:::;in2N

nY
jD1

�
�
1

4

�ij 2ij
ij

!
.x2j � 1/

ij :

We have reached the main result of this section.

THEOREM 3.2 (Robust polynomial for the parity function). Fix � 2 Œ0; 1/ and let

X D Œ�
p
1C �;�

p
1 � �� [ Œ

p
1 � �;

p
1C ��:

Then for every natural number N; there is an .explicitly given/ polynomial pWRn ! R of
degree at most 2N C n such that

max
Xn
j sgn.x1x2 � � � xn/ � p.x/j 6 �N .1C �/n=2

 
N C n

N

!
N:(3.5)

Setting � D 7=9 in this result, we infer that the function sgn.x1x2 � � � xn/ with inputs
x1; x2; : : : ; xn 2 Œ�4=3;�2=3� [ Œ2=3; 4=3� can be approximated to within 2�˝.n/ every-
where by a polynomial of degree O.n/: This is the desired robust polynomial for parity.

Proof of Theorem 3.2. For a natural number d; let Id stand for the family of n-tuples
.i1; : : : ; in/ of nonnegative integers such that i1 C � � � C in D d: Clearly,

jId j D

 
d C n � 1

d

!
:

One can restate (3.1) in the form

sgn.x1x2 � � � xn/ D x1x2 � � � xn
1X
dD0

�d .x1; x2; : : : ; xn/;(3.6)
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where

�d .x1; x2; : : : ; xn/ D
X

.i1;:::;in/2Id

nY
jD1

�
�
1

4

�ij 2ij
ij

!
.x2j � 1/

ij :

On Xn;

k�dk1 6 �d jId j D �
d

 
d C n � 1

d

!
:

As a result, dropping the terms �NC1; �NC2; : : : from the infinite series (3.6) results in a
uniform approximant of degree 2N C n with pointwise error at most

.1C �/n=2
1X

dDNC1

�d

 
d C n � 1

d

!

6 .1C �/n=2 �NC1

 
N C n

N C 1

!
1X
dD0

�
� �
N C nC 1

N C 2

�d
:

This gives (3.5) provided that � 6 N=.N Cn/: For larger �; the bound (3.5) exceeds 1 and
thus holds trivially with p D 0:

4. REDUCTION TO HOMOGENEOUS POLYNOMIALS

We now turn to the construction of a robust polynomial for any real function on the
Boolean cube. Real functions given by homogeneous polynomials on f�1;C1gn are par-
ticularly convenient to work with, and the proof is greatly simplified by first reducing the
problem to the homogeneous case.

To obtain this reduction, we need to bound the coefficients of a univariate polynomial
in terms of its degree d and maximum value on Œ0; 1�: In general, the coefficients can grow
quite rapidly with degree. For example, the Chebyshev polynomial of degree d is bounded
by 1 in absolute value throughout Œ�1; 1� and nevertheless has leading coefficient 2d�1I see
Cheney [16] and Rivlin [50] for an exposition. The following first-principles calculation
shows that this rate of growth is the highest possible, up to an asymptotic constant in the
exponent. In fact, the proof below works even if the polynomial is known to bounded by 1
on a small finite set of equispaced points in Œ�1; 1�; as opposed to all of Œ�1; 1�:

LEMMA 4.1 (Coefficients of bounded polynomials). Let p.t/ D
Pd
iD0 ai t

i be a given
polynomial. Then

jai j 6 .4e/d max
jD0;1;:::;d

ˇ̌̌̌
p

�
j

d

�ˇ̌̌̌
; i D 0; 1; : : : ; d:(4.1)

Proof. The first step is to express p as a linear combination of more structured polynomi-
als, by means of Lagrange interpolation with nodes fi=d W i D 0; 1; 2; : : : ; dg: For this,
define q0; q1; : : : ; qd 2 Pd by

qj .t/ D
.�1/d�jdd

dŠ

 
d

j

!
dY
iD0
i¤j

�
t �

i

d

�
; j D 0; 1; : : : ; d:
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One easily verifies that these polynomials behave like delta functions, in the sense that for
i; j D 0; 1; 2; : : : ; d;

qj

�
i

d

�
D

(
1 if i D j;
0 otherwise.

Therefore,

p D

dX
jD0

p

�
j

d

�
qj :

By linearity, it suffices to bound the coefficients of the qj : The closed form for these poly-
nomials reveals the following rough estimate: if qj .t/ D

Pd
iD0 bij t

i ; then

jbij j 6
dd

dŠ

 
d

i

! 
d

j

!
6 .2e/d

 
d

j

!
:

As a result,

jai j 6

�
dX
jD0

jbij j

�
max

jD0;1;:::;d

ˇ̌̌̌
p

�
j

d

�ˇ̌̌̌
6 .4e/d max

jD0;1;:::;d

ˇ̌̌̌
p

�
j

d

�ˇ̌̌̌
:

We are now prepared to give the desired reduction to the homogeneous case.

THEOREM 4.2. Let �W f�1;C1gn ! R be a given function, deg� D d: Write � D
�0 C �1 C � � � C �d ; where �i W f�1;C1gn ! R is given by �i D

P
jS jDi

O�.S/�S : Then

k�ik1 6 .4e/dk�k1; i D 0; 1; : : : ; d:

The above result gives an upper bound on the infinity norm of the homogeneous parts
of a polynomial � in terms of the infinity norm of � itself. Note that the bound is en-
tirely independent of the number of variables. For our purposes, Theorem 4.2 has the
following consequence: a robust polynomial for � can be obtained by constructing robust
polynomials with error 2�˝.d/k�k1 separately for each of the homogeneous parts. The
homogeneous problem will be studied in the next section.

Proof of Theorem 4.2. Pick a point x 2 f�1;C1gn arbitrarily and fix it for the remainder
of the proof. Consider the univariate polynomial p 2 Pd given by

p.t/ D

dX
iD0

�i .x/t
i :
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For �1 6 t 6 1; consider the probability distribution �t on the Boolean cube f�1;C1gn

whereby each bit is independent and has expected value t: Then

k�k1 >

ˇ̌̌̌
E

´��t
Œ�.x1´1; : : : ; xn´n/�

ˇ̌̌̌
D

ˇ̌̌̌
ˇ̌ X
jS j6d

O�.S/ E
´��t

"Y
i2S

xi´i

#ˇ̌̌̌
ˇ̌

D

ˇ̌̌̌
ˇ̌ X
jS j6d

O�.S/t jS j
Y
i2S

xi

ˇ̌̌̌
ˇ̌

D jp.t/j:

Hence, p is bounded on Œ�1; 1� in absolute value by k�k1: By Lemma 4.1, it follows that
the coefficients of p do not exceed .4e/dk�k1:

j�i .x/j 6 .4e/dk�k1:

Since the choice of x 2 f�1;C1gn was arbitrary, the theorem follows.

5. ERROR CANCELLATION IN HOMOGENEOUS POLYNOMIALS

In Section 3, we constructed a robust polynomial for the parity function. Recall that the
goal of this paper is to construct a degree-O.d/ robust polynomial for any degree-d real
function �W f�1;C1gn ! Œ�1; 1�: By the results of Section 4, we may now assume that �
is homogeneous:

� D
X
jS jDd

O�.S/�S :

A naı̈ve approach would be to use the construction of Section 3 and robustly approximate
each parity �S to within 2��.d/ by a degree-O.d/ polynomial. Unfortunately, it is unclear
whether the resulting polynomial would be a good approximant for �: Indeed, as explained
in the introduction, the cumulative error in this approximation could conceivably be as
large as n˝.d/2��.d/ � 1: The purpose of this section is to prove that, for a careful
choice of approximants for the �S ; the errors do not compound but instead partially cancel,
resulting in a cumulative error of 2��.d/. The proof is rather technical. To simplify the
exposition, we first illustrate our technique in the simpler setting of f�1;C1gn and then
adapt it to our setting of interest, Rn:

Error cancellation on the Boolean hypercube. Let �W f�1;C1gn ! R be a degree-d
homogeneous polynomial. Our goal is to show that perturbing the Fourier characters of �
in a suitable, coordinated manner results in partial cancellation of the errors and does not
change the value of � by much relative to the norm k�k1: A precise statement follows.

THEOREM 5.1. Let �W f�1;C1gn ! R be given such that O�.S/ D 0 whenever jS j ¤ d:

Fix an arbitrary symmetric function ıW f�1;C1gd ! R and define �W f�1;C1gn ! R by

�.x/ D
X
jS jDd

O�.S/ı.xjS /:
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Then

k�k1 6
dd

dŠ
k�k1kOık1:

In the above result, ı should be thought of as the error in approximating individual
characters �S ; whereas � is the cumulative error so incurred. The theorem states that the
cumulative error exceeds the norm of � and ı by a factor of only ed ; which is substantially
smaller than the factor of n˝.d/ growth that one could expect a priori.

Proof of Theorem 5.1. We adopt the convention that a0 D 1 for all real a: For a given
vector v 2 f0; 1gd ; consider the operator Av that takes a function f W f�1;C1gn ! R into
another function Avf W f�1;C1gn ! R where

.Avf /.x/ D E
´2f�1;C1gd

"
´1´2 � � � ´df

 
1

d

dX
iD1

´ix
vi
1 ; : : : ;

1

d

dX
iD1

´ix
vi
n

!#
:

It is important to note that Av is a linear transformation in the vector space Rf�1;C1gn : This
somewhat magical operator is the key to the proof; the remainder of the proof will provide
insight into how this definition could have been arrived at in the first place. To start with,

kAv�k1 6 max
x2Œ�1;1�n

j�.x/j D max
x2f�1;C1gn

j�.x/j D k�k1;(5.1)

where the second step holds by convexity. The strategy of the proof is to express � as
a linear combination of the Av� with small coefficients. Since the infinity norm of each
individual Av� is small, this will give the desired bound on the infinity norm of �:

To find what suitable coefficients would be, we need to understand the transformation
Av in terms of the Fourier spectrum. SinceAv is linear and the nonzero Fourier coefficients
of � have order d; it suffices to determine the action of Av on the characters of order d:
For every S � f1; 2; : : : ; ng with jS j D d;

.Av�S /.x/ D E
´2f�1;C1gd

24´1´2 � � � ´d Y
j2S

 
1

d

dX
iD1

´ix
vi
j

!35
D E
� WS!f1;:::;dg

24 E
´2f�1;C1gd

24´1´2 � � � ´d Y
j2S

´�.j /

35 Y
j2S

x
v�.j/
j

35 ;
where the outer expectation is over a uniformly random mapping � WS ! f1; 2; : : : ; dg:
The inner expectation over ´ acts like the indicator random variable for the event that � is
a bijection, i.e., it evaluates to 1 when � is a bijection and vanishes otherwise. As a result,

.Av�S /.x/ D P
�
Œ� is a bijection� E

�

24Y
j2S

x
v�.j/
j j � is a bijection

35
D
dŠ

dd
E

T�S;
jT jDv1C���Cvd

Œ�T .x/�:(5.2)
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By the symmetry of ı;

ı.xjS / D

dX
kD0

Oı.f1; 2; : : : ; kg/
X
T�S;
jT jDk

�T .x/

D
dd

dŠ

dX
kD0

Oı.f1; 2; : : : ; kg/

 
d

k

!
.A1k0d�k�S /.x/;

where the second step uses (5.2). Taking a weighted sum over S and using the linearity of
Av; X

S�f1;2;:::;ng
jS jDd

O�.S/ı.xjS /

D
dd

dŠ

dX
kD0

Oı.f1; 2; : : : ; kg/

 
d

k

!�
A1k0d�k

X
S�f1;2;:::;ng
jS jDd

O�.S/�S

˘

.x/;

or equivalently

� D
dd

dŠ

dX
kD0

Oı.f1; 2; : : : ; kg/

 
d

k

!
A1k0d�k�:

In light of (5.1), this representation gives the sought upper bound on the norm of �:

k�k1 6
dd

dŠ

dX
kD0

j Oı.f1; 2; : : : ; kg/j

 
d

k

!
k�k1 D

dd

dŠ
k�k1kOık1:

Error cancellation with real variables. We now consider the error cancellation problem
in its full generality. Again, our goal will be to show that replacing individual characters
with suitable approximants results in moderate cumulative error. This time, however, the
input variables are no longer restricted to be Boolean, and can take on arbitrary values in
Œ�1 � �;�1C �� [ Œ1 � �; 1C �� for 0 < � < 1: This in turn means that the error term
will be given by an infinite series. Another difference is that the coefficients of the error
series will not converge to zero rapidly enough, requiring additional ideas to bound the
cumulative error.

THEOREM 5.2. Let �W f�1;C1gn ! R be given such that O�.S/ D 0 whenever jS j ¤ d:

Fix � 2 Œ0; 1/ and let

X D Œ�
p
1C �;�

p
1 � �� [ Œ

p
1 � �;

p
1C ��:

Then for every natural number D; there is an .explicitly given/ polynomial pWRd ! R of
degree at most 2D C d such that

P.x/ D
X

S�f1;2;:::;ng
jS jDd

O�.S/p.xjS /
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obeys

(5.3) max
Xn
j�.sgn x1; : : : ; sgn xn/ � P.x/j

6 .1C �/d=2
dd

dŠ
�D

 
D C d

D

!
D k�k1:

Proof. As before, we adopt the notational convention that a0 D 1 for all real a: We will
follow the proof of Theorem 5.1 as closely as possible, pointing out key differences as we
go along.

If � > D=.DCd/; then the right member of (5.3) exceeds k�k1 and hence the theorem
holds trivially with p D 0: We may therefore assume that � 6 D=.D C d/; which means
in particular that

X
v2Nd W

v1C���Cvd>DC1

�v1C���Cvd
dY
jD1

�
1

4

�vj 2vj
vj

!
6

1X
iDDC1

 
i C d � 1

i

!
�i

6 �D

 
D C d

D

!
D:(5.4)

Define p by

p.x1; : : : ; xd / D
X
v2Nd W

v1C���Cvd6D

dY
jD1

�
�
1

4

�vj 2vj
vj

!
xj .x

2
j � 1/

vj :

Analogous to the Boolean setting, we will define functions to capture the error in ap-
proximating an individual character as well as the cumulative error. Let ıWXd ! R and
�WXn ! R be given by

ı.x1; : : : ; xd / D
X
v2Nd W

v1C���Cvd>DC1

dY
jD1

�
�
1

4

�vj 2vj
vj

!
xj .x

2
j � 1/

vj ;

�.x1; : : : ; xn/ D
X

S�f1;2;:::;ng
jS jDd

O�.S/ı.xjS /:

Lemma 3.1 implies that ı is the error incurred in approximating a single character by p;
in other words, ı.x1; : : : ; xd / D sgn.x1 � � � xd / � p.x1; : : : ; xd /: Hence, � captures the
cumulative error:

�.x/ D �.sgn x1; : : : ; sgn xn/ � P.x/:(5.5)

Recall that our goal is to place an upper bound on k�k1: For v 2 Nd ; consider the
operator Av that takes a function f W f�1;C1gn ! R into a function Avf WXn ! R
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where

.Avf /.x/ D E
´2f�1;C1gd

"
´1´2 � � � ´df

 
: : : ;

1

d

dX
iD1

´ixj .x
2
j � 1/

vi

�vi
p
1C ��

j th coordinate

; : : :

! #
:

This definition departs from the earlier one in Theorem 5.1, where v was restricted to
0=1 entries. Perhaps the most essential difference is the presence of scaling factors in the
denominator—it is what ultimately allows one to bound the cumulative error in the setting
of an infinite series. Note that Av is a linear transformation sending Rf�1;C1gn into RXn :
We further have

kAv�k1 6 max
x2Œ�1;1�n

j�.x/j D max
x2f�1;C1gn

j�.x/j D k�k1;(5.6)

where the first step uses the fact that Av� has domain Xn rather than all of Rn; and the
second step holds by convexity.

We proceed to examine the action of Av on the characters of order d: Since the def-
inition of Av is symmetric with respect to the n coordinates, it suffices to consider S D
f1; 2; : : : ; dg:

.Av�f1;:::;dg/.x/ D E
´2f�1;C1gd

24´1´2 � � � ´d dY
jD1

 
1

d

dX
iD1

´ixj .x
2
j � 1/

vi

�vi
p
1C �

!35
D

1

.1C �/d=2
E
�

24É

24 dY
jD1

j́´�.j /

35 dY
jD1

xj .x
2
j � 1/

v�.j/

�v�.j/

35 ;
where the first expectation is taken over a uniformly random mapping � W f1; 2; : : : ; dg !
f1; 2; : : : ; dg: Let B stand for the event that � is a bijection. The expectation over ´ acts
like the indicator random variable for B; i.e., it evaluates to 1 when B occurs and vanishes
otherwise. Thus,

.Av�f1;:::;dg/.x/ D
1

.1C �/d=2
P
�
ŒB� E

�

24 dY
jD1

xj .x
2
j � 1/

v�.j/

�v�.j/
j B

35
D

1

.1C �/d=2�v1C���Cvd
�
dŠ

dd
� E
�2Sd

24 dY
jD1

xj .x
2
j � 1/

v�.j/

35 :(5.7)

Now, consider the operator

A D .1C �/d=2
dd

dŠ

X
v2Nd W

v1C���Cvd>DC1

˚
�v1C���Cvd

dY
jD1

�
�
1

4

�vj 2vj
vj

!	
Av:

This operator is well-defined because by (5.4), the infinite series in question converges
absolutely. By (5.7), the symmetry of ı; and linearity, .A�f1;:::;dg/.x/ D ı.x1; : : : ; xd /:

Since the definition of A is symmetric with respect to the n coordinates, we conclude that

.A�S /.x/ D ı.xjS /
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for all subsets S � f1; 2; : : : ; ng of cardinality d: As an immediate consequence,

� D
X

S�f1;2;:::;ng
jS jDd

O�.S/ � .A�S / D A

� X
S�f1;2;:::;ng
jS jDd

O�.S/�S

˘

D A�;

where the second step uses the linearity of A: In particular,

k�k1 D kA�k1

6 .1C �/d=2
dd

dŠ

X
v2Nd W

v1C���Cvd>DC1

�v1C���Cvd kAv�k1

dY
jD1

�
1

4

�vj 2vj
vj

!

6 .1C �/d=2
dd

dŠ
�D

 
D C d

D

!
D k�k1;

where the final step follows by (5.4) and (5.6). In light of (5.5), the proof is complete.

6. MAIN RESULT

We are now in a position to prove the main result of this paper, which states that ev-
ery bounded real polynomial can be made robust with only a constant-factor increase in
degree. Recall that we have already proved this fact for homogeneous polynomials (see
Theorems 5.1 and 5.2). It remains to remove the homogeneity assumption, which we will
do using the technique of Section 4. For the purposes of exposition, we will first show
how to remove the homogeneity assumption in the much simpler context of Theorem 5.1.
Essentially the same technique will then allow us to prove the main result.

THEOREM 6.1. Let �W f�1;C1gn ! R be given, deg� D d: Fix symmetric functions
ıi W f�1;C1g

i ! R; i D 0; 1; 2; : : : ; d; and define �W f�1;C1gn ! R by

�.x/ D
X
jS j6d

O�.S/ıjS j.xjS /:

Then

k�k1 6 30d k�k1

dX
iD0

kOıik1:

The functions ı0; ı1; : : : ; ıd in this result are to be thought of as perturbations of char-
acters of orders 0; 1; : : : ; d; respectively, and � is the cumulative error incurred as a result
of these perturbations. As the theorem shows, the cumulative error exceeds the norms of
the functions involved by a factor of only 2O.d/; which is independent of the number of
variables.

Proof of Theorem 6.1. We have

k�k1 6
dX
iD0

k�ik1;(6.1)
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where�i W f�1;C1gn ! R is given by�i .x/ D
P
jS jDi

O�.S/ıi .xjS /: For i D 0; 1; : : : ; d;
consider �i D

P
jS jDi

O�.S/�S ; the degree-i homogeneous part of �: By Theorem 5.1,

k�ik1 6 eik�ik1 kOıik1:(6.2)

By Theorem 4.2,

k�ik1 6 .4e/dk�k1; i D 0; 1; : : : ; d:(6.3)

Combining (6.1)–(6.3) completes the proof.

We will now apply a similar argument in the setting of real variables. For convenience
of notation, we will work with the domain Œ�1;���[ Œ�; 1� rather than Œ�1� �;�1C ��[
Œ1� �; 1C ��: Since � ranges freely in .0; 1/ in both cases, these two choices are equivalent
(simply scale the input variables by an appropriate absolute constant).

MAIN THEOREM. Let X D Œ�1;��� [ Œ�; 1�: Let �W f�1;C1gn ! Œ�1; 1� be given,
deg� D d: Then for each ı > 0; there is a polynomial P of degreeO

�
1
�
d C 1

�
log 1

ı

�
such

that

max
Xn
j�.sgn x1; : : : ; sgn xn/ � P.x/j < ı:(6.4)

Furthermore, P is given explicitly in terms of the Fourier spectrum of �:

Letting � D 1=2 immediately implies the main result of this paper, stated as Theorem 1
in the introduction.

Proof. We first consider the case 7=8 6 � 6 1: LetD D D.d; ı/ be a parameter to be cho-
sen later. For i D 0; 1; : : : ; d; consider �i D

P
jS jDi

O�.S/�S ; the degree-i homogeneous
part of �: By Theorem 4.2,

k�ik1 6 .4e/d ; i D 0; 1; : : : ; d:(6.5)

Theorem 5.2 gives explicit polynomials pi WRi ! R; i D 0; 1; 2; : : : ; d; each of degree at
most 2D C d; such that

max
Xn

ˇ̌̌̌
ˇ̌̌̌�i .sgn x1; : : : ; sgn xn/ �

X
S�f1;2;:::;ng
jS jDi

O�.S/pi .xjS /

ˇ̌̌̌
ˇ̌̌̌ 6 KdD

2D
k�ik1

for some absolute constant K > 1: Letting

P.x/ D
X
jS j6d

O�.S/pjS j.xjS /;

we infer that

max
Xn
j�.sgn x1; : : : ; sgn xn/ � P.x/j 6

KdD

2D

dX
iD0

k�ik1 6
.d C 1/.4eK/dD

2D
;

where the last step uses (6.5). Therefore, (6.4) holds with D D O.d C log 1
ı
/:

To handle the case � < 7=8; basic approximation theory [50] gives an explicit univariate
polynomial r of degree O.1=�/ that sends Œ�1;��� ! Œ�1;�7=8� and Œ�; 1� ! Œ7=8; 1�:

In particular, we have j�.sgn x1; : : : ; sgn xn/ � P.r.x1/; : : : ; r.xn//j < ı everywhere on
Xn; where P is the approximant constructed in the previous paragraph.
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REMARK 6.2. As stated in the introduction, Theorem 1 gives the best possible upper
bound on the degree of a robust polynomial probust in terms of the degree of the origi-
nal polynomial p and the error parameter �: To see this, we may assume that p takes on
�1 andC1 on the hypercube f�1;C1gn; this can be achieved by appropriately translating
and scaling p; without increasing its infinity norm beyond 1: Without loss of generality,
p.1; 1; : : : ; 1/ D 1 and p.�1;�1; : : : ;�1/ D �1: As a result, the univariate polyno-
mial probust.t; t; : : : ; t / would need to approximate the sign function on Œ�4=3;�2=3� [
Œ2=3; 4=3� to within �; which forces deg.probust/ > ˝

�
log 1

�

�
by basic approximation the-

ory [19]. Finally, degp is a trivial lower bound on the degree of probust:
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