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Abstract

We show that almost all known lower bound methods for communication complexity are also lower
bounds for the information complexity. In particular, we define a relaxed version of the partition bound
of Jain and Klauck [JK10] and prove that it lower bounds the information complexity of any function.
Our relaxed partition bound subsumes all norm based methods (e.g. the γ2 method) and rectangle-based
methods (e.g. the rectangle/corruption bound, the smooth rectangle bound, and the discrepancy bound),
except the partition bound.

Our result uses a new connection between rectangles and zero-communication protocols where the
players can either output a value or abort. We prove the following compression lemma: given a protocol
for a function f with information complexity I , one can construct a zero-communication protocol that
has non-abort probability at least 2−O(I) and that computes f correctly with high probability conditioned
on not aborting. Then, we show how such a zero-communication protocol relates to the relaxed partition
bound.

We use our main theorem to resolve three of the open questions raised by Braverman [Bra12]. First,
we show that the information complexity of the Vector in Subspace Problem [KR11] is Ω(n1/3), which,
in turn, implies that there exists an exponential separation between quantum communication complexity
and classical information complexity. Moreover, we provide an Ω(n) lower bound on the information
complexity of the Gap Hamming Distance Problem.
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1 Introduction
Information complexity is a way of measuring the amount of information Alice and Bob must reveal to

each other in order to solve a distributed problem. The importance of this notion has been made apparent in
recent years through a flurry of results that relate the information complexity of a function and its commu-
nication complexity. The first definition of the information cost was given by Chakrabarti, Shi, Wirth and
Yao [CSWY01], where it was used to prove a direct sum theorem for simultaneous messages protocols (their
notion is now usually called the external information cost). Then, Bar-Yossef et al. [BYJKS04], used the in-
formation cost in order to prove a linear lower bound on the two-way randomized communication complexity
of Disjointness. More recently, information-theoretic techniques enabled the proof of the first direct sum re-
sult for general two-way randomized communication complexity: the randomized communication complexity
of n copies of a function f is at least

√
n times the randomized communication complexity of f [BBCR10].

Then, Braverman and Rao [BR11], showed a tight relation between the amortized distributional communi-
cation complexity of a function and its internal information cost. Braverman [Bra12], defined interactive
information complexity, a notion which is independent of the prior distribution of the inputs and proved that
it is equal to the amortized communication complexity of the function. Braverman and Weinstein [BW11]
showed that the information complexity is lower bounded by discrepancy.

The main question pertaining to information complexity is its relation to communication complexity.
On the one hand, the information complexity provides a lower bound on the communication complexity
of the function, since there cannot be more information leaked than the length of the messages exchanged.
However, it is still open, whether the information complexity of a function can be much smaller than its
communication complexity or whether the two notions are basically equivalent. In order to make progress
towards this question, it is imperative to provide strong lower bounds for information complexity, and more
specifically to see whether the lower bound methods for communication complexity can be compared to the
model of information complexity.

Lower bound methods in communication complexity can be seen to fall into three main categories: the
norm based methods, such as the γ2 method of Linial and Shraibman [LS09b] (see Lee and Shraibman’s
survey for an overview [LS09a]); the rectangle based methods, such as discrepancy and the rectangle bound;
and, of course, the information theoretic methods, among which, information complexity. Recently, Jain and
Klauck [JK10] introduced the smooth rectangle bound, as well as the stronger partition bound, and showed
that they subsume both γ2 and the rectangle bound [JK10].

The first lower bound on information complexity was proved by Braverman [Bra12], who showed that
it is lower bounded by the logarithm of the communication complexity. Recently, Braverman and Weinstein
showed that the discrepancy method lower bounds the information complexity [BW11]. Their result follows
from a compression lemma for protocols: a protocol for a function f that leaks I bits of information implies
the existence of a protocol with communication complexity O(I) and advantage on computing f (over a
random guess) of 2−O(I).

1.1 Our results
In this paper, we show that all known lower bound methods for communication complexity, with the

notable exception of the partition bound, generalize to information complexity. More precisely, we introduce
the relaxed partition bound (in Definition 3.2) denoted by p̄rtµε (f), which depends on the function to be
computed f , the input distribution µ, and the error parameter ε, and such that the distributional communication
complexity Dµ

ε (f) ≥ log(p̄rtµε (f)) for any f . We prove that the information complexity of a function f is
bounded below by the relaxed partition bound:

Theorem 1.1. There is a positive constant C such that for all functions f : I → Z , all ε, δ ∈ (0, 1
2 ], and all

distributions µ, we have ICµ(f, ε) ≥ δ2

C ·
(
log p̄rtµε+3δ(f)− log |Z|

)
− δ.

Since we show in Lemma 3.3 that the relaxed partition bound subsumes the norm based methods (e.g.
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the γ2 method) and the rectangle-based methods (e.g. the rectangle/corruption bound, the smooth rectangle
bound, and the discrepancy bound), all of these bounds are also lower bounds on the information complexity.

Technique. The key idea of our result is a new connection between communication rectangles and zero-
communication protocols, where the players can either output a value or abort but without communicating. A
priori, it is surprising that protocols with no communication can actually provide some insight on the commu-
nication or information complexity of a function. However, this model, which has been extensively used in
quantum information for the study of non-local games and Bell inequalities, turns out to be a very powerful
tool for the study of classical communication and information complexity. The communication complexity
of simulating distributions is known to be related to the probability of not aborting in zero-communication
protocols that can abort [GG99, Mas02, BHMR03, BHMR06]. More recently connections have been shown
for specific lower bound methods. It has been shown that zero-communication protocols with error give
rise to the factorization norm method [DKLR11], and the connection between the partition bound and zero-
communication protocols with abort was studied in [LLR12].

In a deterministic zero-communication protocol with abort, each of the two players looks at their input and
decides either to abort the protocol or to output some value z. The output of the protocol is z if both players
agree on z, or it aborts otherwise. It is easy to see that for any deterministic zero-communication protocol
with abort, the set of inputs where both players choose to output z forms a rectangle, and so the protocol is
characterized by a set of rectangles each labeled by an output. In a randomized protocol, we have instead a
distribution over labeled rectangles.

This connection between rectangles and zero-communication protocols with abort allows us to obtain
our lower bound for information complexity from a new compression lemma for protocols (Lemma 3.4):
a protocol for a function f that leaks I bits of information implies the existence of a zero-communication
protocol that has non-abort probability at least 2−O(I) and that computes f correctly with high probability
when not aborting. Our main theorem follows from this new compression.

The technical tools we use are drawn from Braverman [Bra12] and in particular Braverman and Weinstein
[BW11]. We describe the difference between our compression and that of [BW11]. There, they take a protocol
for computing a function f that has information cost I and compress it to a protocol with communication
O(I) and advantage of computing f of 2−O(I) (i.e. the error increases considerably). Then, they apply the
discrepancy method, which can handle such small advantage.

In our compression, we suppress the communication entirely, and, moreover, we only introduce an arbi-
trarily small error since the compressed protocol aborts when it does not believe it can correctly compute the
output. This compression enables us to provide much sharper lower bounds on the information complexity
and in particular, the lower bound in terms of the relaxed partition bound.

Applications. Our lower bound implies that for most functions for which there exists a lower bound on
their communication complexity, the same bound extends to their information complexity. Specifically, we
can apply our lower bound in order to resolve three of the open questions in [Bra12].

First, we show that there exists a function f , such that the quantum communication complexity of f is
exponentially smaller than the information complexity of f (Open Problem 3 in [Bra12]).

Theorem 1.2. There exists a function f , s.t. for all ε ∈ (0, 1
2), Q(f, ε) = O(log(IC(f, ε))).

In order to prove the above separation, we show that the proof of the lower bound on the randomized
communication complexity of the Vector in Subspace Problem (ṼSP) [KR11] provides, in fact, a lower
bound on the relaxed partition bound. By our lower bound, this implies that IC(ṼSPθ,n, 1/3) = n1/3 (Open
Problem 7 in [Bra12]). Since the quantum communication complexity of ṼSPθ,n is O(log n), we have the
above theorem. Moreover, this implies an exponential separation between classical and quantum information
complexity. We refrain from defining quantum information cost in this paper (see [JN10] for a definition),
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but since the quantum information cost is always smaller than the quantum communication complexity, the
separation follows trivially from the above theorem.

In addition, we resolve the question of the information complexity of the Gap Hamming Distance Problem
(GHD) (Open Problem 6 in [Bra12]), since the lower bounds on the randomized communication complexity
of this problem go through the rectangle/corruption bound [She11] or smooth rectangle bound [CR11, Vid11].

Theorem 1.3. IC(GHDn, 1/3) = Ω(n).

Finally, regarding the central open question of whether or not it is possible to compress communication
down to the information complexity, we note that our result says that if one hopes to prove a negative result and
separate information complexity from communication complexity, then one must use a lower bound technique
that is stronger than the relaxed partition bound. To the best of our knowledge, the only such technique in the
literature is the (standard) partition bound. We note, however, that to the best of our knowledge there are no
known problems whose communication complexity can be lower-bounded by the partition bound but not by
the relaxed partition bound.

2 Preliminaries
2.1 Notation and information theory facts

Let µ be a probability distribution over a (finite) universe U . We will often treat µ as a function µ : 2U →
[0, 1]. For T, S ⊆ U , we let µ(T | S) = Pru←µ[u ∈ T | S]. For singletons u ∈ U , we write interchangeably
µu = µ(u) = µ({u}). Random variables are written in uppercase and fixed values in lowercase. We
sometimes abuse notation and write a random variable in place of the distribution followed by that random
variable.

For two distributions µ, ν, we let |µ− ν| denote their statistical distance, i.e. |µ− ν| = maxT⊆U (µ(T )−
ν(T )). We let D(µ ‖ ν) = EU∼µ[log µ(U)

ν(U) ] be the relative entropy (i.e. KL-divergence). For two random
variables X,Y , the mutual information is defined as I(X : Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X),
where H(·) is the Shannon entropy.

A rectangle of X × Y is a product set A × B where A ⊆ X and B ⊆ Y . We let R denote a rectangle
in X × Y . We let (x, y) ∈ X × Y denote a fixed input, and (X,Y ) be random inputs sampled according to
some distribution (specified from context and usually denoted by µ).

2.2 Information complexity
We study 2-player communication protocols for calculating a function f : I → Z , where I ⊆ X ×Y . Let

π be a randomized protocol (allowing both public and private coins, unless otherwise specified). We denote
the randomness used by the protocol π by rπ. Let π(x, y) denote its output, i.e. the value in Z the two parties
wish to compute.

The transcript of a protocol includes all messages exchanged, the output of the protocol (in fact we just
need that both players can compute the output of the protocol from the transcript), as well as any public coins
(but no private coins). The complexity of π is the maximum (over all random coins) of the number of bits
exchanged.

Let µ be a distribution over X × Y . Define errf (π;x, y) = Prrπ [f(x, y) 6= π(x, y)] if (x, y) ∈ I and 0
otherwise and errf (π;µ) = E(X,Y )∼µerrf (π;X,Y ) = Prrπ ,(X,Y )∼µ[(X,Y ) ∈ I ∧ f(X,Y ) 6= π(X,Y )].

Definition 2.1. Fix f, µ, ε. Let (X,Y,Π) be the tuple distributed according to (X,Y ) sampled from µ and
then Π being the transcript of the protocol π applied to X,Y . Then define:

1. ICµ(π) = I(X; Π | Y ) + I(Y ; Π | X)

2. ICµ(f, ε) = infπ:errf (π;µ)≤ε ICµ(π)
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3. ICD(f, ε) = maxµ ICµ(f, ε)

Braverman [Bra12] also defined the non-distributional information cost IC, and all of our results extend to
it trivially by the inequality ICD ≤ IC. (We do not require the reverse inequality IC ≤ O(ICD), whose proof
is non-trivial and was given in [Bra12]).

3 Zero-communication protocols and the relaxed partition bound
3.1 The zero-communication model and rectangles

Let us consider a (possibly partial) function f . We say that (x, y) is a valid input if (x, y) ∈ I, that is,
(x, y) satisfies the promise. In the zero-communication model with abort, the players either output a value
z ∈ Z (they accept the run) or output ⊥ (they abort).

Definition 3.1. The zero-communication model with abort is defined as follows:

Inputs Alice and Bob receive inputs x and y respectively.
Output Alice outputs a ∈ Z ∪ {⊥} and Bob outputs b ∈ Z ∪ {⊥}. If both Alice and Bob output the same

z ∈ Z , then the output is z. Otherwise, the output is ⊥.

We will study (public-coin) randomized zero-communication protocols for computing functions in this
model.

3.2 Relaxed partition bound
The relaxed partition bound with error ε and input distribution µ, denoted by p̄rtµε (f), is defined as follows.

Definition 3.2. The distributional relaxed partition bound p̄rtµε (f) is the value of the following linear program.
(The values of z ranges over Z and R over all rectangles, including the empty rectangle.)

p̄rtµε (f) = min
η,pR,z≥0

1

η
subject to:∑

(x,y)∈I

µx,y
∑

R:(x,y)∈R

pR,f(x,y) +
∑

(x,y)/∈I

µx,y
∑

z,R:(x,y)∈R

pR,z ≥ (1− ε)η (1)

∀(x, y) ∈ X × Y,
∑

z,R:(x,y)∈R

pR,z ≤ η (2)

∑
R,z

pR,z = 1, (3)

The relaxed partition bound is defined as p̄rtε(f) = maxµ p̄rt
µ
ε (f).

We can identify feasible solutions to the program in Definition 3.2 as a particular type of randomized
zero-communication protocol: Alice and Bob sample (R, z) according to the distribution given by the pR,z ,
and each individually sees if their inputs are in R and if so they output z, otherwise they abort. The parameter
η is the efficiency of the protocol [LLR12], that is, the probability that the protocol does not abort, and ideally
we want it to be as large as possible.

There is also a natural way to convert any zero-communication protocol π into a distribution over (R, z):
sample z uniformly from Z , sample random coins rπ for π, and let R = A × B be such that A is the set of
inputs on which Alice outputs z in the protocol π using random coins rπ, and similarly for B. (The sampling
of a random z incurs a loss of |Z| in the efficiency, which is why our bounds have a loss depending on |Z|.
See Section 3.4 for details.)
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Relation to other bounds. The relaxed partition bound is, as its name implies, a relaxation of the partition
bound prtε(f) [JK10]. We also show that the relaxed partition bound is stronger than the smooth rectangle
bound sreczε (f) (the proof is provided in Appendix A).

Lemma 3.3. For all f, ε and z ∈ Z , we have sreczε (f) ≤ p̄rtε(f) ≤ prtε(f).

Since Jain and Klauck have shown in [JK10] that the smooth rectangle bound is stronger than the rectan-
gle/corruption bound, the γ2 method and the discrepancy method, this implies that the relaxed partition bound
subsumes all these bounds as well. Therefore, our result implies that all these bounds are also lower bounds
for information complexity.

We briefly explain the difference between the relaxed partition bound and the partition bound (more details
appear in Appendix A). The partition bound includes two types of constraints. The first is a correctness
constraint: on every input, the output of the protocol should be correct with probability at least (1− ε)η. The
second is a completeness constraint: on every input, the efficiency of the protocol (i.e. the probability it does
not abort) should be exactly η. In the relaxed partition bound, we keep the same correctness constraint. Since
in certain applications the function is partial (such as the Vector in Subspace Problem [KR11]), one also has
to handle the inputs where the function is not defined. We make this explicit in our correctness constraint. On
the other hand, we relax the completeness constraint so that the efficiency may lie anywhere between (1− ε)η
and η. This relaxation seems to be crucial for our proof of the lower bound on information complexity, since
we are unable to achieve efficiency exactly η.

3.3 Compression lemma
Lemma 3.4 (Main compression lemma). There exists a universal constant C such that for all distributions µ,
communication protocols π and δ ∈ (0, 1), there exists a zero-communication protocol π′ and a real number
λ ≥ 2−C(ICµ(π)/δ2+1/δ) such that∣∣(X,Y, π(X,Y ))− (X,Y, π′(X,Y )|π′(X,Y ) 6= ⊥)

∣∣ ≤ δ (4)

(in statistical distance) and

∀(x, y) Pr
rπ′

[π′(x, y) 6= ⊥] ≤ (1 + δ)λ (5)

Pr
rπ′ ,(X,Y )∼µ

[π′(X,Y ) 6= ⊥] ≥ (1− δ)λ (6)

Our compression π′ extends the strategy outlined by [BW11]. At a high level, the protocol π′ does the
following:

Sample transcripts Alice and Bob use their shared randomness to repeat T independent executions of an
experiment to sample transcripts (Algorithm 4.1). Alice and Bob each decide whether the experiment
is accepted (they may differ in their opinions).

Find common transcript Let A be the set of accepted experiments for Alice, and B the set of accepted
experiments for Bob. They try to guess an element of A∩ B. If they find one, they output according to
the transcript from this experiment.

We prove our compression lemma in Section 4.

3.4 Information cost is lower bounded by the relaxed partition bound
We show how our compression lemma implies the main theorem.

Proof of Theorem 1.1. Let π be a randomized communication protocol achieving ICµ(f, ε) and let R be the
following relation that naturally arises from the function f

R = {(x, y, f(x, y)) : (x, y) ∈ I} ∪ {(x, y, z) : (x, y) /∈ I, z ∈ Z}.
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Let us now consider the zero-communication protocol π′ from Lemma 3.4. As mentioned in Section 3.2,
there is a natural way to identify π′ with a distribution over labeled rectangles (R, z): sample z uniformly
from Z , sample rπ and let R = A × B where A is the set of inputs on which Alice outputs z, and similarly
for B. The sampling of z incurs a loss of |Z| in the efficiency.

We make this formal: for any fixed randomness r occurring with probability pr, we define the rectangle
R(z, r) as the set of (x, y) such that the protocol outputs z, and we let pR,z =

∑
r:R=R(z,r) pr/|Z|.

We check the normalization constraint∑
R,z

pR,z =
1

|Z|
∑
R,z

∑
r:R=R(z,r)

pr =
1

|Z|
∑
r

pr
∑

R,z:R=R(z,r)

1 =
∑
r

pr = 1.

To see that Equation 2 is satisfied, we have by definition of pR,z that for any (x, y):

∑
z,R:(x,y)∈R

pR,z =
1

|Z|
Pr
rπ′

[π′(x, y) 6= ⊥] ≤ (1 + δ)λ

|Z|

Finally, to see that Equation 1 is satisfied, we have∑
(x,y)∈I

µx,y
∑

R:(x,y)∈R

pR,f(x,y) +
∑

(x,y)/∈I

µx,y
∑

z,R:(x,y)∈R

pR,z

=
1

|Z|
Pr

rπ′ ,(X,Y )∼µ
[(X,Y, π′(X,Y )) ∈ R]

=
1

|Z|
Pr

rπ′ ,(X,Y )∼µ
[π′(X,Y ) 6= ⊥] Pr

rπ′ ,(X,Y )∼µ
[(X,Y, π′(X,Y )) ∈ R | π′(X,Y ) 6= ⊥]

≥ 1

|Z|
(1− δ)λ

(
Pr

rπ′ ,(X,Y )∼µ
[(X,Y, π(X,Y )) ∈ R]− δ

)
≥ 1

|Z|
(1− δ)λ (1− ε− δ) ≥ 1

|Z| λ (1− ε− 2δ) ≥ λ(1+δ)
|Z| (1− ε− 3δ)

where for the last line we used the fact that π has error ε, and so Prrπ ,(X,Y )∼µ[(X,Y, π(X,Y )) ∈ R] ≥ 1− ε.
This satisfies the constraints in the linear program (Definition 3.2) for p̄rtµε+3δ(f) with objective value η =

(1 + δ)λ/|Z| ≥ 2−C(ICµ(π)/δ2+1/δ)/|Z|.

By the definitions of the information complexity and the relaxed partition bound, we have immediately

Corollary 3.5. There exists a universal constant C such that for all functions f : I → Z , all ε, δ ∈ (0, 1/2),
we have ICD(f, ε) ≥ δ2

C [log p̄rtε+3δ(f)− log |Z|]− δ.

4 The zero-communication protocol
The zero-communication protocol consists of two stages. First, Alice and Bob use their shared random-

ness to come up with candidate transcripts, based on the a priori information they have on the distribution of
the transcripts given by the information cost of the protocol. To do this, they run some sampling experiments
and decide which ones to accept. Second, they use their shared randomness in order to choose an experiment
that they have both accepted. If anything fails in the course of the protocol, they abort by outputting ⊥.

4.1 Single sampling experiment
The single sampling experiment is described in Algorithm 4.1 and appeared first in [BW11] (variants also

appeared in [Bra12] and [BR11]). Roughly, Algorithm 4.1 takes a distribution τ and two distributions νA, νB
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Fix a finite universe U . Let pA, qA, pB, qB : U → [0, 1] such that τ = pApB, νA = pAqA, νB = pBqB are all
probability distributions.
Alice’s input: pA, qA. Bob’s input: pB, qB. Common input: parameter ∆ > 0.

1. Using public coins, sample u← U , α, β ← [0, 2∆].
2. Alice accepts the run if α ≤ pA(u) and β ≤ 2∆qA(u).
3. Bob accepts the run if α ≤ 2∆qB(u) and β ≤ pB(u).
4. If both Alice and Bob accept, then we say that the experiment is accepted and the output is u. Otherwise, the

output is ⊥.

Algorithm 4.1. Single sampling experiment

over a universe U such that νA, νB are not too far from τ and tries to sample an element of U that is close to
being distributed according to τ .

Let us informally describe the goal of this sampling experiment in our context. Alice knowing x and Bob
y want to sample transcripts according to Πx,y which is the distribution over the transcripts of the protocol π
applied to (x, y). When inputs x, y are fixed, the probability of a transcript u occurring is the product of the
probabilities of each bit in the transcript. The product of the probabilities for Alice’s bits is some function
pA(u) which depends on x and the product of the probabilities for Bob’s bits is some function pB(u) which
depends on y and Πx,y(u) = pA(u)pB(u). Alice can also estimate pB(u) by taking the average over y of
Πy(u). Call this estimate qA(u); similarly for Bob’s estimate qB(u). Set νA = pAqA and νB = qBpB.

The challenge is that Alice and Bob know only (pA, qA) and (pB, qB) respectively and do not know τ (in
our setting, τ = Πx,y). They use a variant of rejection sampling, in which Alice will overestimate qA by a
factor 2∆; likewise for Bob. Let us define the set of ∆-bad elements with respect to τ, ν as follows:

B∆(τ, ν) = {u ∈ U | 2∆ν(u) < τ(u)}

Intuitively, u is bad if τ gives much more weight to it than ν. Observe that if τ = pApB, νA = pAqA, then
u /∈ B∆(τ, νA) implies that 2∆qA(u) ≥ pB(u).

To prove our compression lemma, we use the following claim about the single sampling experiment.

Claim 4.2. Let B = B∆(τ, νA) ∪B∆(τ, νB). Let γ = τ(B). Then the following holds about Algorithm 4.1:

1. The probability that Alice accepts equals 1
|U|2∆ and the same for Bob.

2. The probability that the experiment is accepted is at most 1
|U|22∆ and at least 1−γ

|U|22∆ .
3. Let τ ′ denote the distribution of the output of the experiment, conditioned on it being accepted. Then
|τ − τ ′| ≤ γ.

Intuitively, this claim says that Alice accepts each single experiment with probability 1
|U|2∆ , and also

implies that conditioned on Alice accepting the i’th experiment, it is relatively likely that Bob accepts it.
Therefore, by repeating this experiment enough times, there is reasonable probability of Alice and Bob both
accepting the same execution of the experiment. Conditioned on the experiment accepting, the output of the
experiment is distributed close to the original distribution τ . In the next section, we show how to use a hash
function to select a common accepting execution of the experiment out of many executions.

We will use the following lemma that appears in [Bra12].

Lemma 4.3 ([Bra12]). For all τ, ν,∆, ε, it holds that τ(B∆(τ, ν)) ≤ D(τ‖ν)+1
∆ .

Proof of Claim 4.2. We use the arguments first given in [BW11] and prove the items in order.
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1. Probability Alice/Bob accepts. We do the analysis for Alice; the case for Bob is entirely symmetric.
We may write:

Pr[Alice accepts] =
∑
u∈U

1

|U|
pA(u)

2∆
qA(u) =

1

|U|2∆

∑
u∈U

νA(u) =
1

|U|2∆

2. Probability of accepting. First consider u /∈ B. For such u, if α ≤ pA(u) then α ≤ 2∆qB(u) and also
if β ≤ pB(u) then β ≤ 2∆qA(u). Therefore we may write

Pr[Experiment outputs u] =
1

|U|
pA(u)pB(u)

22∆
=

τ(u)

|U|22∆
(7)

Furthermore, for any u ∈ U , we may write

Pr[Experiment outputs u] =
1

|U|22∆
·min

{
pA(u), qB(u)2∆

}
·min

{
pB(u), qA(u)2∆

}
≤ τ(u)

|U|22∆

For the upper bound we have:

Pr[∃u ∈ U , Experiment outputs u] =
∑
u∈U

Pr[Experiment outputs u] ≤
∑
u∈U

τ(u)

|U|22∆
=

1

|U|22∆

For the lower bound we have∑
u∈U

Pr[Experiment outputs u] ≥
∑
u/∈B

Pr[Experiment outputs u]

=
∑
u/∈B

τ(u)

|U|22∆
=

1− τ(B)

|U|22∆
=

1− γ
|U|22∆

3. Statistical closeness of τ and τ ′. Let η denote the probability that the experiment is accepted. From
the previous point, we have that η ∈ [ 1−γ

|U|22∆ ,
1

|U|22∆ ]. By the definition of statistical distance, it suffices
to prove that:

∀S ⊆ U , τ(S)− τ ′(S) ≤ γ

We proceed by splitting the elements of S based on whether they intersect B.

τ(S)− τ ′(S) = τ(S ∩B)− τ ′(S ∩B) + τ(S ∩B)− τ ′(S ∩B)

≤ γ + τ(S ∩B)− τ ′(S ∩B)

From Equation 7 we can deduce that τ ′(S ∩B) = τ(S∩B)
|U|22∆η

. Therefore:

τ(S ∩B)− τ ′(S ∩B) = τ(S ∩B)(1− 1
|U|22∆η

)

Since η ≤ 1
|U|22∆ , we have that (1− 1

|U|22∆η
) ≤ 0, which concludes the proof.
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Alice’s input: x. Bob’s input: y. Common inputs: δ > 0, I > 0.
Set parameters: ∆ = 4

δ · (
8·I
δ + 1) and T = |U|2∆ ln(8/δ) and k = ∆ + log( 64

δ ln(8/δ)2).

1. Alice constructs functions pA, qA : U → [0, 1] and Bob constructs functions pB, qB : U → [0, 1], such that
for all transcripts u ∈ U , Πx,y(u) = pA(u)pB(u), Πx(u) = pA(u)qA(u), and Πy(u) = pB(u)qB(u).

2. (Run experiments.) Using public coins, Alice and Bob run Algorithm 4.1 T independent times with inputs
pA, qA, pB, qB and ∆.

3. Let A = {i ∈ [T ] : Alice accepts experiment i} and similarly B for Bob. If either set is empty, that party
outputs the abort symbol ⊥.

4. (Find intersection.) Using public coins, Alice and Bob choose a random function h : [T ] → {0, 1}k and a
random string r ∈ {0, 1}k.

(a) Alice finds the smallest i ∈ A. If h(i) 6= r then Alice outputs ⊥. Otherwise, Alice outputs in
accordance with the transcript of experiment i.

(b) Bob finds the smallest j ∈ B such that h(j) = r. If no such j exists, he outputs ⊥. Otherwise, Bob
outputs in accordance with the transcript of experiment j.

Algorithm 4.4. Zero-communication protocol derived from π

4.2 Description and analysis of the zero-communication protocol
Let µ be any distribution on inputs and π be any protocol with information complexity I = ICµ(π). Let

(X,Y,Π) be the joint random variables where X,Y are distributed according to µ and Π is the distribution
of the transcript of the protocol π applied to X,Y (by slight abuse of notation we use the letter Π for both the
transcript and its distribution). Let Πx,y be Π conditioned on X = x, Y = y, Πx be Π conditioned X = x,
and Πy likewise.

Let U be the space of all possible transcripts. We assume that each transcript contains the output of
the protocol. As shown in [Bra12] and described above, Alice can construct functions pA, qA : U → [0, 1]
and Bob can construct functions pB, qB : U → [0, 1], such that for all u ∈ U , Πx,y(u) = pA(u)pB(u),
Πx(u) = pA(u)qA(u), and Πy(u) = pB(u)qB(u).

The zero-communication protocol π′ is described in Algorithm 4.4. This protocol is an extension of the
one in [BW11], where here Alice uses public coins to guess the hash function value instead of calculating
and transmitting it to Bob and both players are allowed to abort when they do not believe they can output the
correct value.

In order to analyze our protocol, we first define some events and give bounds on their probabilities.

Definition 4.5. We define the following events over the probability space of sampling (X,Y ) according to µ
and running π′ on (X,Y ) to produce a transcript Π:

1. Large divergence. BD occurs if (X,Y ) = (x, y) such that D(Πx,y ‖ Πx) >
8ICµ(π)

δ or D(Πx,y ‖
Πy) >

8ICµ(π)
δ . We will also let BD denote the set of such (x, y).

2. Collision. BC occurs if there exist distinct i, j ∈ A ∪ B such that h(i) = h(j) = r.
3. Protocol outputs something. H occurs if π′(X,Y ) 6= ⊥.

The proof of the main compression lemma (Lemma 3.4) uses the following claim.

Claim 4.6. The probability of the above events are bounded as follows:

1. The inputs rarely have large divergence: Pr(X,Y )∼µ[BD] ≤ δ/4.
2. For all (x, y), the hash function rarely has a collision: Prrπ′ [BC ] ≤ δ

16 · 2
−(k+∆).
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3. For all (x, y) /∈ BD, the probability of outputting something is not too small: Prrπ′ [H] ≥ (1 −
11δ
16 )2−(k+∆).

4. For all (x, y) the probability of outputting something is not too large: Prrπ′ [H] ≤ (1 + δ
16)2−(k+∆).

5. For all protocols π, input distributions µ and δ > 0, the algorithm π′ in Algorithm 4.4 satisfies: For all
(x, y) /∈ BD, let Π′x,y,H be the distribution of π′(x, y) conditioned on H (namely, on π′(x, y) 6= ⊥).
Then |Πx,y −Π′x,y,H | ≤ 3δ/4.

Proof. In the following, we will frequently use the fact that for all p, α ∈ [0, 1], it holds that p(1−α) ≥ p−α.
We extend the arguments given in [BW11] to prove the items of the claim in order.

1. By the definition of information complexity and the fact that mutual information is equal to the expec-
tation of the divergence, we have that for (X,Y ) distributed according to µ,

ICµ(π) = I(X; Π | Y ) + I(Y ; Π | X) = E(x,y)←(X,Y )[D(Πx,y ‖ Πy) +D(Πx,y ‖ Πx)]

This implies that E(x,y)←(X,Y )[D(Πx,y ‖ Πx)] ≤ ICµ(π), and since divergence is non-negative we have
by Markov’s inequality that

Pr
(x,y)←(X,Y )

[D(Πx,y ‖ Πx) > 8ICµ(π)/δ] ≤ δ/8

The same argument holds for D(Πx,y ‖ Πy) and by a union bound, we have Pr(X,Y )∼µ[BD] ≤ δ/4.

2. We may write:

Pr
rπ′

[BC ]

= Pr[∃i 6= j ∈ [T ] s.t. i ∈ (A ∪ B), j ∈ (A ∪ B), h(i) = h(j) = r]

≤
∑

i 6=j∈[T ]

Pr[i ∈ (A ∪ B) ∧ j ∈ (A ∪ B) ∧ h(i) = h(j) = r]

=
∑
i 6=j

Pr[i ∈ (A ∪ B)] Pr[j ∈ (A ∪ B)] Pr[h(i) = h(j) = r]

≤ T 2 4

(|U|2∆)2
· 1

22k

≤ δ
16 · 2

−(k+∆)

where we have used the independence between the trials and independence of the h from the trials, as
well as Item 1 of Claim 4.2.

3. Let us define G to be the event that the smallest i ∈ A satisfies h(i) = r, and also i ∈ B. (Notice this
implies that A,B are both non-empty.) We have

Pr
rπ′

[G] = Pr[A 6= ∅] · Pr[G | A 6= ∅].

Observe that an element i is in A if and only if experiment i is accepted by Alice. By Item 1 of
Claim 4.2, the probability of Alice aborting each experiment i is 1 − 1

|U|2∆ . Since the experiments are
independent, the probability of Alice aborting all experiments is

Pr[A = ∅] =
(

1− 1
|U|2∆

)T
≤ e−

T

|U|2∆ ≤ δ/8

10



We assume now that A is non empty and we denote by i its first element.

Pr[G | A 6= ∅]

= Pr[h(i) = r | A 6= ∅] Pr[i ∈ B | i ∈ A ∧ h(i) = r ∧ A 6= ∅]

For all j, the probability that h(j) = r is exactly 2−k, in particular this holds for the first element of A.

For any (x, y) /∈ BD, we have that D(Πx,y ‖ Πx) ≤ 8ICµ(π)/δ. Let us say that a transcript is “bad for
Alice” (resp. Bob) if it lies in the set B∆(Πx,y,Πx) (resp. in the set B∆(Πx,y,Πy). Using Lemma 4.3,
this implies that

γA = Pr[Πx,y bad for Alice] ≤
8
δ ICµ(π) + 1

∆
≤ δ/4

γB = Pr[Πx,y bad for Bob] ≤ δ/4

It follows that γ = Pr[Πx,y bad for Alice or Bob] ≤ γA + γB ≤ δ/2.

By definition, for any j, experiment j is accepted if and only if j ∈ A ∩ B. Therefore, ∀j ∈ [T ]:

Pr[j ∈ B | j ∈ A] = Pr[experiment j is accepted | j ∈ A]

=
Pr[experiment j is accepted]

Pr[j ∈ A]

≥ 1− γ
2∆

≥
1− δ

2

2∆

where we used Item 1 and Item 2 of Claim 4.2, and the fact that ¬BD implies that γ ≤ δ/4.

Also, observe that by the definition of the protocol, the choice of h and r are completely independent
of the experiments. Therefore we may add the condition that h(j) = r without altering the probability.
Since j ∈ A implies A 6= ∅, we can add this condition too. We use this with j = i, so therefore we
may write

Pr
rπ′

[G] ≥ (1− δ/8)
1− δ

4

2k+∆
≥

1− 5δ
8

2k+∆

Finally, observe that H \BC = G \BC , therefore we may conclude that:

Pr[H] ≥ Pr[H \BC ] = Pr[G \BC ] ≥ Pr[G]− Pr[BC ] ≥ (1− 11δ
16 )2−k−∆

4. We will again use the event G as defined in the previous point. We will again use the fact that:

Pr
rπ′

[G] = Pr[A 6= ∅] Pr[h(i) = r | A 6= ∅] Pr[i ∈ B | i ∈ A ∧ h(i) = r ∧ A 6= ∅]

≤ Pr[h(i) = r | A 6= ∅] Pr[i ∈ B | i ∈ A ∧ h(i) = r ∧ A 6= ∅]

As before the first factor is exactly 2−k for any i. We may also write:

Pr[i ∈ B | i ∈ A] = Pr[experiment i is accepted | i ∈ A]

=
Pr[experiment i is accepted]

Pr[i ∈ A]

≤ 1

2∆
,
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where we used Item 1 and Item 2 of Claim 4.2. As with the previous point, adding the conditions
h(i) = r and A 6= ∅ does not affect the probabilities. Therefore, Pr[G] ≤ 2−k−∆. Finally, observe
that H ⊆ G ∪BC , and therefore:

Pr[H] ≤ Pr[G ∪BC ] ≤ Pr[G] + Pr[BC ] ≤ (1 + δ
16)2−k−∆

5. The distribution of Π′x,y conditioned on not aborting and on no collision is simply the distribution of
the output of a single experiment, and we know from the facts about the single experiment (Claim 4.2)
that this is close to Πx,y. We wish to conclude that Π′x,y conditioned only on not aborting is also close
to Πx,y. The following lemma allows us to do this by using the fact that the probability of collision is
small:

Claim 4.7. Let Π and Π′ two distributions taking output in a common universe. Let F and H be
two events in the underlying probability space of Π′. Finally, we let Π′E denote the distribution Π′

conditioned on E = H \F , and assume that |Π′E−Π| ≤ c. Then it holds that |Π′H −Π| ≤ c+
PrΠ′ [F ]
PrΠ′ [H] .

Proof. For shorthand, for any event E let us write Π′H(E) = PrΠ′ [E | H], and similarly for Π′(E)
and Π(E). For a set S in the support of Π′ and Π, we let S also denote the event that the value of the
random variable is in S.

It suffices to prove that, for all subsets S in the union of the supports of Π and Π′H , it holds that
Π′H(S)−Π(S) ≤ c+

PrΠ′ [F ]
PrΠ′ [H] . To show this, we may write:

Π′H(S)−Π(S) =
Π′(H ∩ S)

Π′(H)
−Π(S)

≤ Π′(E ∩ S) + Π′((H \ E) ∩ S)

Π′(H)
−Π(S)

≤ Π′(E)(c+ Π(S)) + Π′(F )

Π′(H)
−Π(S)

since (H \ E) ⊆ F and |Π′E −Π| ≤ c. Using the fact that E ⊂ H , we can conclude that:

Π′H(S)−Π(S) ≤ c+
Π′(F )

Π′(H)
= c+

PrΠ′ [F ]

PrΠ′ [H]
.

We apply this lemma with Π = Πx,y, Π′ = Π′x,y, F = BC , and H the event that π′(x, y) 6= ⊥. We
note that E = H \BC = G \BC . We calculate c, Prrπ′ [F ] and Prrπ′ [H]:

• Since h and r are completely independent of the actual experiments themselves, it holds that
the distribution of Π′x,y conditioned on G \ BC is identical to the output of a single experiment
(Algorithm 4.1). Since (x, y) /∈ BD, the measure of the bad set B∆(Πx,y,Πy)∪B∆(Πx,y,Πx) is
bounded by δ/2. We apply Item 3 of Claim 4.2 to deduce that |Πx,y −Π′x,y,E | ≤ δ/2 = c.

• From Item 2 of Claim 4.6, we know that Prrπ′ [F ] = Prrπ′ [BC ] ≤ δ
16 · 2

−(k+∆).

• From Item 3 of Claim 4.6, we know Prrπ′ [H] ≥ (1− 11δ
16 )2−(k+∆) because (x, y) /∈ BD.
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Therefore, Claim 4.7 implies that:

|Πx,y −Π′x,y,6=⊥| ≤ δ/2 +
δ

16(1− 11δ
16 )
≤ δ/2 + δ/5 < 3δ/4

where we use the assumption that δ ≤ 1.

4.3 Proof of the Compression Lemma

Proof of Lemma 3.4. Set λ = 2−(k+∆). It holds that λ ≥ 2−C(ICµ(π)/δ2+1/δ) for C = 64. Let R be any
subset of the support of (X,Y, π(X,Y )). Then

Pr
rπ ,(X,Y )∼µ

[(X,Y, π(X,Y )) ∈ R] ≤ Pr
(X,Y )∼µ

[BD] + Pr
(X,Y )∼µ

[¬BD] · Pr
rπ ,(X,Y )∼µ

[(X,Y, π(X,Y )) ∈ R | ¬BD].

Applying Item 5 of Claim 4.6 and the fact thatR is simply an event, it follows that for all (x, y) /∈ BD
Pr
rπ

[(x, y, π(x, y)) ∈ R] ≤ Pr
rπ′

[(x, y, π′(x, y)) ∈ R | π′(x, y) 6= ⊥] + 3δ
4 .

Since Pr[BD] ≤ δ/4 (Item 1 of Claim 4.6),

Pr
rπ ,(X,Y )∼µ

[(X,Y, π(X,Y )) ∈ R] ≤ Pr
rπ′ ,(X,Y )∼µ

[(X,Y, π′(X,Y )) ∈ R | π′(x, y) 6= ⊥] + δ.

This proves one direction of Equation 4. For the other direction, we have that

Pr[(X,Y, π′(X,Y )) ∈ R | π′(X,Y ) 6= ⊥]

≤ Pr[BD] + Pr[¬BD] · Pr[(X,Y, π′(X,Y ))) ∈ R | ¬BD, π′(X,Y ) 6= ⊥]

≤ δ
4 + Pr[¬BD] ·

(
Pr[(X,Y, π(X,Y )) ∈ R | ¬BD] + 3δ

4

)
(8)

≤ Pr[(X,Y, π(X,Y )) ∈ R ∧ ¬BD] + δ

≤ Pr[(X,Y, π(X,Y )) ∈ R] + δ

where in Equation 8 we applied Item 5 of Claim 4.6. This proves Equation 4 of Lemma 3.4.
Equation 5 follows immediately from Item 4 of Claim 4.6.
Finally, for Equation 6, we may write:

Pr
rπ′ ,(X,Y )∼µ

[π′(X,Y ) 6= ⊥] ≥ Pr
(X,Y )∼µ

[¬BD] Pr
rπ′ ,(X,Y )∼µ

[π′(X,Y ) 6= ⊥|¬BD]

≥ (1− δ
4)( Pr

rπ′ ,(X,Y )∼µ
[H | ¬BD])

≥ (1− δ
4)(1− 11δ

16 )λ > (1− δ)λ

where we used Item 3 of Claim 4.6.

5 Applications
We can prove lower bounds on the information complexity of specific problems, by checking that their

communication lower bounds were obtained by one of the methods subsumed by the relaxed partition bound,
including the factorization norm, smooth rectangle, rectangle, or discrepancy. However, a bit of care is re-
quired to ascertain this. For example, while a paper may say it uses the “rectangle bound”, we must still verify
that the value of the linear program for p̄rt (or one of the subsumed programs such as srec or rec) is at least
the claimed bound, since different authors may use the term “rectangle bound” to mean different things. In
particular what they call “rectangle bound” may not satisfy the constraints of the rectangle/smooth rectangle
linear programs given by Jain and Klauck [JK10]. After we have verified that p̄rt is appropriately bounded,
then we can apply our main theorem (Theorem 1.1). We do this for the problems below.
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5.1 Exponential separation of quantum communication and classical information complexity
We prove that the quantum communication complexity of the Vector in Subspace Problem is exponentially

smaller than its classical information complexity (Theorem 1.2). In the Vector in Subspace Problem VSP0,n,
Alice is given an n/2 dimensional subspace of an n dimensional space over R, and Bob is given a vector.
This is a partial function, and the promise is that either Bob’s vector lies in the subspace, in which case the
function evaluates to 1, or it lies in the orthogonal subspace, in which case the function evaluates to 0. Note
that the input set of VSP0,n is continuous, but it can be discretized by rounding, which leads to the problem
ṼSPθ,n (see [KR11] for details).

Klartag and Regev [KR11] show that the Vector in Subspace Problem can be solved with an O(log n)
quantum protocol, but the randomized communication complexity of this problem is Ω(n1/3). Their lower
bound uses a modified version of the rectangle bound, which we show is still weaker than our relaxed partition
bound.

Lemma 5.1. There exist universal constants C and γ such that for any ε,

p̄rtε(ṼSPθ,n) ≥ 1

C
(0.8− 2.8ε) exp(γn1/3).

Klartag and Regev’s lower bound is based on the following lemma:

Lemma 5.2 ([KR11]). Let f = VSP0,n, X and Y denote Alice and Bob’s input sets for f , σ be the uniform
distribution over X × Y and σb be the uniform distribution over f−1(b). There exist universal constants C
and γ such that, for any rectangle R and any b ∈ {0, 1}, we have:

σb(R ∩ f−1(b)) ≥ 0.8σ(R)− C exp(−γn1/3).

We show that this implies the required lower bound on the relaxed partition bound of ṼSPθ,n.

Proof of Lemma 5.1. Let us first consider f = VSP0,n and show that log p̄rtε(VSP0,n) = Ω(n1/3). Note that
since the input set of VSP0,n is continuous, we need to extend the definition of the relaxed partition bound to
the case of a continuous input set, but this follows naturally by replacing summation symbols by integrals.

Let µ = σ0+σ1
2 , which satisfies µ(f−1) = 1, i.e. µ only has support on valid inputs. Then, Lemma 5.2

implies that for any rectangle R and any b ∈ {0, 1}, we have

2µ(R ∩ f−1(b⊕ 1)) ≥ 0.8σ(R)− C exp(−γn1/3).

Since µ only has support on f−1 and f is Boolean, we have µ(R) = µ(R ∩ f−1(b)) + µ(R ∩ f−1(b ⊕ 1)),
so that the inequality can be rewritten as

2µ(R)− 2µ(R ∩ f−1(b)) ≥ 0.8σ(R)− C exp(−γn1/3).

Setting t = exp(γn1/3)
C , we have that:

t ·
(
2µ(R ∩ f−1(b)) + 0.8σ(R)− 2µ(R)

)
≤ 1

We now construct a feasible point for the dual formulation of p̄rtε(f) given in Claim A.2 by setting
α(x, y) = 2tµ(x, y) for (x, y) ∈ f−1 and α(x, y) = 0.8tσ(x, y) otherwise; and β(x, y) = 2tµ(x, y) −
0.8tσ(x, y) for (x, y) ∈ f−1, and β(x, y) = 0 otherwise. Note that for (x, y) ∈ f−1, we have µ(x, y) =
σ(x, y)/σ(f−1) ≥ σ(x, y), hence all these values are positive. By the previous inequality, we also have∫

R∩f−1(b)
α(x, y)dxdy +

∫
R\f−1

α(x, y)dxdy −
∫
R
β(x, y)dxdy ≤ 1
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for any R, b, therefore this is a valid feasible point. Moreover, the corresponding objective value is∫
X×Y

(1− ε)α(x, y)dxdy −
∫
X×Y

β(x, y)dxdy

= t
(
(1− ε)2µ(f−1) + (1− ε)0.8(1− σ(f−1))− 2µ(f−1) + 0.8σ(f−1)

)
= t(0.8− 2.8ε+ 0.8εσ(f−1))

≥ t(0.8− 2.8ε).

Finally, let us note that we can construct a zero-communication protocol for VSP0,n by first rounding off the
inputs, and then applying a zero-communication protocol for ṼSPθ,n. This means that we can turn a feasible
point for the primal form of p̄rtε(ṼSPθ,n) (given in Claim A.2) into a feasible point for p̄rtε(VSP0,n) with
the same objective value, so that p̄rtε(ṼSPθ,n) ≥ p̄rtε(VSP0,n) ≥ t(0.8− 2.8ε).

Finally, Lemma 5.1 together with Theorem 1.1 imply that IC(ṼSPθ,n, ε) = Ω(n1/3) and also Theo-
rem 1.2.

This allows us to conclude that the information complexity of this function is at least Ω(n1/3). This solves
Braverman’s Open Problem 3 (Are there problems for which Q(f, ε) = O(polylog(IC(f, ε)))?) and Open
Problem 7 (is it true that IC(ṼSPθ,n, 1/3) = nΩ(1)?)

Moreover, our result implies an exponential separation between classical and quantum information com-
plexity. We refrain from defining quantum information cost and complexity in this paper (see [JN10] for a
definition), but since the quantum information complexity is always smaller than the quantum communication
complexity, the separation follows trivially from Theorem 1.2.

5.2 Information complexity of the Gap Hamming Distance Problem
In the Gap Hamming Distance Problem (GHDn), Alice and Bob each receive a string of length n and

they need to determine whether their Hamming distance is at least n/2 +
√
n or less than n/2 −

√
n. We

prove that the information complexity of Gap Hamming Distance is Ω(n) (Theorem 1.3; Open Problem 6
in [Bra12]). The communication complexity of Gap Hamming Distance was shown to be Ω(n) by Chakrabarti
and Regev [CR11]. The proof was subsequently simplified by Vidick [Vid11] and Sherstov [She11]. The first
two proofs use the smooth rectangle bound, while Sherstov uses the rectangle/corruption bound.

The corruption bound used by Sherstov is a slight refinement of the rectangle bound as defined by Jain
and Klauck [JK10], since it can handle distributions that put small weight on the set of inputs that map to
some function value z. We verify that this bound is weaker than our relaxed partition bound, which implies
Theorem 1.3.

Lemma 5.3. There exist universal constants C and δ such that for any small enough ε, p̄rtε(GHD) ≥ C2δn.

We let the output set be Z = {−1, 1} rather than bits, to follow the notation of [She11]. Let us recall the
corruption bound used by Sherstov.

Theorem 5.4. For any function f with output set Z = {−1, 1}, and ε, δ, β > 0 if a distribution on the inputs
µ is such that

µ(R) > β =⇒ µ(R ∩ f−1(1)) > δµ(R ∩ f−1(−1))

then
2Rε(f) ≥ 1

β
(µ(f−1(−1))− ε

δ
).
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We can derive the general corruption bound as used by Sherstov by giving a feasible solution to the dual
of the linear program by Jain and Klauck. In the dual form, reczε (f) is defined for z ∈ Z as

reczε (f) = max
αx,y≥0

(1− ε)
∑

(x,y)∈f−1(z)

αx,y − ε
∑

(x,y)∈f−1\f−1(z)

αx,y (9)

∀R,
∑

(x,y)∈R∩f−1(z)

αx,y −
∑

(x,y)∈R∩(f−1\f−1(z))

αx,y ≤ 1. (10)

Consider the following assignment for rec−1
ε , where µ is the distribution over the inputs in the theorem.

Letting αx,y = 1
βµ(x, y) if f(x, y) = −1, and αx,y = 1

δ
1
βµ(x, y) if f(x, y) = 1, we can verify the constraints

and the objective value is greater than the corruption bound.
To conclude the bound on GHD, Sherstov gives a reduction to the Gap Orthogonality Problem and proves

the following lemma.

Lemma 5.5 ( [She11]). Let f denote the Gap Orthogonality Problem. For a small enough constant δ < 1
and for the uniform distribution µ on inputs, and any rectangle R such that µ(R) > 2−δn, µ(R ∩ f−1(1)) >
δµ(R). Furthermore, µ(f−1(−1)) = Θ(1).

Putting all this together, we have that rec−1
ε (f) ≥ C2−δn for appropriate choices of ε, and the reduction

gives us p̄rtε(GHD) ≥ rec−1
ε (GHD) ≥ C2−δn.

6 Conclusions and open problems
We have shown that the information complexity is lower bounded by a relaxed version of the partition

bound. This subsumes all known algebraic and rectangle based methods, except the partition bound. It
remains to see if the partition bound also provides a lower bound on the information complexity. Alternatively,
if we would like to separate the communication and information complexities, then possible candidates could
be functions whose partition bound is strictly larger than their relaxed partition bound.

Moreover, we have seen how the relaxed partition bound naturally relates to zero-communication pro-
tocols with abort. Actually, we can relate all other lower bound methods to different variants of zero-
communication protocols [DKLR11, LLR12]. This provides new insight on the inherent differences be-
tween these bounds and may lead to new lower bound methods, coming from different versions of zero-
communication protocols. Moreover, since these protocols have been extensively studied in the field of quan-
tum information, it is intriguing to see what other powerful tools can be transferred to the model of classical
communication complexity.
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A Relaxed partition bound and other bounds
Recall the definition of the partition bound prtε(f) in [JK10]:

Definition A.1 ([JK10]). The partition bound prtε(f) is defined as the value of the following linear program:

prtε(f) = min
wR,z≥0

∑
R,z

wR,z subject to: ∀(x, y) ∈ I,
∑

R:(x,y)∈R

wR,f(x,y) ≥ 1− ε

∀(x, y) ∈ X × Y,
∑

z,R:(x,y)∈R

wR,z = 1

(To put this into a form similar to Definition 3.2, simply substitute 1
η =

∑
R,z wR,z and pR,z = wR,zη.)

We first show that p̄rtε(f) is indeed a relaxation of the partition bound by providing linear programming
formulations for p̄rtµε (f) and p̄rtε(f).

Claim A.2. p̄rtµε (f) can be expressed as the following linear programs:

1. Primal form:

p̄rtµε (f) = min
wR,z≥0

∑
R,z

wR,z subject to:

∑
(x,y)∈I

µx,y
∑

R:(x,y)∈R

wR,f(x,y) +
∑

(x,y)/∈I

µx,y
∑

z,R:(x,y)∈R

wR,z ≥ 1− ε

∀(x, y) ∈ X × Y,
∑

z,R:(x,y)∈R

wR,z ≤ 1

2. Dual form:

p̄rtµε (f) = max
α≥0,βx,y≥0

(1− ε)α+
∑

(x,y)∈X×Y

βx,y subject to:

∀R, z,
∑

(x,y)∈R∩f−1(z)

αµx,y +
∑

(x,y)∈R\I

αµx,y −
∑

(x,y)∈R

βx,y ≤ 1

Similarly, p̄rtε(f) is given by the value of the following linear programs:

1. Primal form:

p̄rtε(f) = min
wR,z≥0

∑
R,z

wR,z subject to: ∀(x, y) ∈ I,
∑

R:(x,y)∈R

wR,f(x,y) ≥ 1− ε

∀(x, y) /∈ I,
∑

z,R:(x,y)∈R

wR,z ≥ 1− ε

∀(x, y) ∈ X × Y,
∑

z,R:(x,y)∈R

wR,z ≤ 1
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2. Dual form:

p̄rtε(f) = max
αx,y≥0,βx,y≥0

∑
(x,y)∈X×Y

(1− ε)αx,y −
∑

(x,y)∈X×Y

βx,y subject to:

∀R, z,
∑

(x,y)∈R∩f−1(z)

αx,y +
∑

(x,y)∈R\I

αx,y −
∑

(x,y)∈R

βx,y ≤ 1

Proof. The primal form of p̄rtµε (f) can be obtained from Definition 3.2 by using the change of variables
wR,z = pR,z/η. The dual form then follows from standard linear programming duality.

As for p̄rtε(f), by Definition 3.2 we have p̄rtε(f) = maxµ p̄rt
µ
ε (f). The dual form of p̄rtε(f) then follows

from the dual form of p̄rtµε via the change of variables αx,y = αµx,y. Finally, the primal form can be obtained
via standard linear programming duality.

Let us compare the primal form of p̄rtε(f) with the definition of the partition bound prtε(f). We see that
the first two constraints in p̄rtε(f) imply that

∑
z,R:(x,y)∈R wR,z lies between 1 − ε and 1, while for prtε(f),

this should be exactly equal to 1. In terms of zero-communication protocols, this difference can be interpreted
as follows: for prtε(f), the protocol should output anything but ⊥ with constant probability η for any input
(x, y), while for p̄rtε(f), the probability of not outputting ⊥ is allowed to fluctuate between (1− ε)η and η.

Just as the partition bound, the relaxed partition bound is stronger than the smooth rectangle bound,
defined in [JK10] as follows:

Definition A.3 ([JK10]). The smooth rectangle bound srecz0ε (f) is the value of the following linear program:

srecz0ε (f) = min
w′R≥0

∑
R

w′R subject to: ∀(x, y) ∈ f−1(z0),
∑

R:(x,y)∈R

w′R ≥ 1− ε

∀(x, y) ∈ f−1(z0),
∑

R:(x,y)∈R

w′R ≤ 1

∀(x, y) ∈ I \ f−1(z0),
∑

R:(x,y)∈R

w′R ≤ ε.

Let us now prove Lemma 3.3, that is, srecz0ε (f) ≤ p̄rtε(f) ≤ prtε(f).

Proof of Lemma 3.3. The second inequality is immediate since the only difference between the linear pro-
grams is that the constraint

∑
z,R:(x,y)∈R wR,z = 1 in the primal form of prtε(f) has been relaxed to 1− ε ≤∑

z,R:(x,y)∈R wR,z ≤ 1.
As for the first inequality, let wR,z be an optimal solution for the primal formulation of p̄rtε(f) in

Claim A.2. Then, it is straightforward to check that setting w′R = wR,z0 leads to a feasible point for srecz0ε (f),
with objective value

∑
R w
′
R =

∑
R wR,z0 ≤

∑
R,z wR,z = p̄rtε(f).
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