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Abstract

Motivated by its relation to the length of cutting plane proofs for the Maximum Biclique problem, here we consider the following
communication game on a given graphG, known to both players. LetK be the maximal number of vertices in a complete bipartite
subgraph ofG, which is not necessarily an induced subgraph ifG is not bipartite. Alice gets a seta of vertices, and Bob gets a
disjoint setb of vertices such that|a|+ |b|> K. The goal is to find a nonedge ofG betweena andb. We show thatO(logn) bits of
communication are enough for everyn-vertex graph.

1. Introduction

Let G= (V,E) be a graph with vertex setV and edge setE.
A clique in G is a seta⊆V of vertices such that{u,v} ∈ E for
all u 6= v∈ a. A biclique in G is a pair{a,b} of disjoint subsets
of vertices such that{u,v} ∈E for all u∈ a andv∈ b. Thus, the
edges{u,v} form a complete bipartite subgraph ofG (which is
not necessarily aninducedsubgraph ifG is not bipartite). The
sizeof a clique (or biclique) is the number of its vertices. The
maximum size of a clique inG is denoted byω(G), and the
maximum size of a biclique inG is denoted byωb(G). Note
that ω(G) ≤ ωb(G) holds for every graphG: every clique of
sizek contains a biclique (in fact, many bicliques) of sizek. A
nonedgein a graph is a pair of its nonadjacent vertices.

Given an arbitrary (not necessarily bipartite) graphG=(V,E),
we are interested in the communication complexity of the fol-
lowing game between two players, Alice and Bob.

Biclique Game on G= (V,E):
Alice getsa⊆V, Bob getsb⊆V such thata∩b= /0 and
|a|+ |b| > ωb(G). The goal is to find a nonedge ofG
lying betweena andb. This nonedge must be known to
both players.

If the underlying graphG is bipartite with a bipartitionV =
V1 ∪V2, then we additionally require thata ⊆ V1 andb ⊆ V2.
Note that the promise|a|+ |b|> ωb(G) ensures that there must
be at least one nonedge betweena andb. The communication
complexity, cb(G), of this game is the minimum, over all (de-
terministic) communication protocols forG, of the number of
bits communicated on a worst-case input(a,b). We stress that
the graphG in this game isfixedand is known to both players.
The players are not adversaries—they help and trust each other.
The difficulty, however, is that Alice cannot see Bob’s setb, and
Bob cannot see Alice’s seta.
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To avoid trivialities, we will assume (without mentioning
this) that our graphs have no complete stars, that is, vertices ad-
jacent to all remaining vertices—such vertices can be ignored.

Clique Game on G= (V,E):
Alice gets a seta ⊆ V, Bob gets a setb ⊆ V such that
a∩ b = /0 and |a|+ |b| > ω(G). The goal is to find a
nonedge ofG lying within a∪ b. Again, this nonedge
must be known to both players.

Let c(G) denote the communication complexity of the clique
game onG.

Remark1. The main difference from the biclique game is that
now we have a weaker promise|a|+ |b|> ω(G). Note also that
the only nontrivial inputs are pairs(a,b), where botha andb
are cliques: the found nonedge must then liebetween aandb
(as in the biclique game). Indeed, if one of the sets, say,a is not
a clique, then it contains a nonedge. Alice can then send both
endpoints of this nonedge to Bob using at most 2⌈log2n⌉ bits,
and the game is over.

Our motivation to consider clique and biclique games cames
from their connection to the length of so-called “tree like”cut-
ting plane proofs for the Maximum Clique problem on a fixed
graphG= (V,E). Cliques inG are exactly the 0-1 solutions of
the system Cl(G) consisting of linear inequalitiesxu + xv ≤ 1
for all nonedges{u,v} 6∈ E, andxv ≥ 0 for all verticesv∈V. If
the graph is bipartite with bipartitionV =V1∪V2, then we only
have inequalitiesxu+xv ≤ 1 for all nonedges{u,v} with u∈V1

andv∈V2. In the “find a hurt axiom” game, given a 0-1 assign-
mentα to the variables such that∑v∈V αv ≥ ω(G)+1, we (the
adversary) first split the bits ofα between Alice and Bob, and
their goal is to find a nonedge{u,v} such thatαu = αv = 1. In
the bipartite case, the promise is∑v∈V αv ≥ ωb(G)+1.

Results of [8] imply that, if a clique (or biclique) game re-
quiresK bits of communication, then every tree-like cutting
planes proof of the 0-1 unsatisfiability of the system Cl(G) aug-
mented by the inequality∑v∈V xv ≥ ω(G) + 1 (or ∑v∈V xv ≥
ωb(G) + 1) must either use super-polynomially large coeffi-
cients, or must produce at least 2Ω(K/ logn) inequalities; see [9,
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Section 19.3 and Research Problem 19.12] for details. It was
therefore a hope thatn-vertex graphsG with cb(G)≫ log2n or
at least c(G)≫ log2n exist.

Our main result (Theorem 1 below) destroys the first hope:
for every (not necessarily bipartite)n-vertex graph, cb(G) =
O(logn) bits of communication are enough.

Since the found nonedge must be known to both players,
at least logn bits of communication are necessary for any non-
trivial graph onn-vertices. However, if the graph is complicated
enough, then (intuitively) this trivial number of bits should be
not sufficient. If, say, there are many nonedges leaving the sets
a andb, but only one of them lies betweena andb, how should
the players quickly localize this unique nonedge?

It turns out that, somewhat surprisingly, a logarithmic num-
ber of bits is sufficient foranygraph! That is, up to constant fac-
tors, the communication complexity of the biclique game does
not depend on the structure of the underlying graph.

Theorem 1. For every n-vertex graph G, we havecb(G) ≤
7.3logn+O(1).

The situation with the clique game is more complicated.
Here we are only able to show thatO(logn) bits are enough
for many graphs. Interestingly, the clique game is related to the
monotone complexity of the following decision problem.

The induced k-clique functionof an n-vertex graphG is a
monotone boolean function ofn variables which, given a sub-
set of vertices, outputs 1 if and only if somek of these ver-
tices form a clique inG. Thus, this function is just a version of
the well-knownNP-complete Clique function restricted to only
spanningsubgraphs of onefixed graphG. Let Depth(G) de-
note the maximum, over all integers 1≤ k≤ n, of the minimum
depth of a monotone circuit with fanin-2 AND and OR gates
computing the inducedk-clique function ofG.

Theorem 2. For every n-vertex graph G, we havec(G)≤Depth(G)+
2logn+O(1).

The measure Depth(G) is related to the numberκ(G) of
maximalcliques inG; a clique ismaximal, if it cannot be ex-
tended by adding a new vertex. It can be shown (see Lemma 3
below) that

Depth(G)≤ logκ(G)+5.3logn+O(1) . (1)

There are manyn-vertex graphsG= (V,E) for which κ(G) is
polynomial inn. In particular,κ(G)≤ n(d/2)p−2 holds for ev-
ery Kp-free graph of maximal degreed ≥ 2 [13]; κ(G) ≤ np,
wherep is the chromatic number ofG [11]; κ(G) ≤ (|E|/p+
1)p+ |E|, wherep is the maximum number of edges in an in-
duced matching in the complement ofG [4, 2]. If p= O(logn)
then Theorem 2 gives c(G) = O(log2n) for all such graphs, im-
plying that communication complexity arguments will fail for
such graphs, even for the Maximum Clique problem (not just
for the Maximum Biclique problem).

Still, it remains unknown whether c(G) = O(log2n) holds
for all graphs. We can only show thatO(logn) bits are always
enough in the following relaxed version of the clique game.

This version is no more related to cutting plane proofs, but may
be of independent interest.

A common neighborof a subsetb⊆V of vertices is a vertex
v 6∈ b which is adjacent to all vertices inb.

Relaxed Clique Game on G= (V,E):
Alice gets a seta⊆ V on vertices, Bob gets a setb⊆ V
of vertices such thata∩b= /0 and|a|+ |b|> ω(G). The
goal is to find a nonedge ofG which lies either within
a∪b or betweena and some common neighbor ofb.

Theorem 3. In the relaxed clique game,7.3logn+O(1) bits of
communication are enough for every n-vertex graph.

The rest is devoted to the proofs of these results.

2. The biclique game: proof of Theorem 1

Let G= (V,F) be a graph on|V|= n vertices with edge set
F . Inputs to the biclique game onG are pairs(a,b) of disjoint
subsets of vertices such that|a|+ |b| > ωb(G). Hence, there
must be at least one nonedge lying betweena andb. The goal
is to find such a “crossing” nonedge.

To solve this task, letE :=
(V

2

)

\F be the set of all nonedges
of G, and take a setX = {xe: e∈ E} of boolean variables, one
for each nonedge. Say that a nonedgee is incidentwith a subset
a⊆V, if e∩a 6= /0. For a subseta⊆V of vertices, letE(a)⊆ E
denote the set of all nonedges incident witha. Finally, we asso-
ciate with every subseta⊆V two vectorspa andqa in {0,1}|E|
whose coordinates correspond to nonedgese∈ E:

• pa(e) = 1 if and only ife∈ E(a);

• qa(e) = 0 if and only ife∈ E(a).

Thus,pa is the characteristic vector ofE(a), andqa is the com-
plement ofpa. Given an input(a,b), the goal in the biclique
game is to find a position (a nonedge)e such thatpa(e) = 1
(e is incident witha) andqb(e) = 0 (e is incident withb). To
do this, we will use monotone circuits for threshold functions.
Recall that athreshold-k function Thn

k accepts a 0-1 vector of
lengthn if and only if it contains at leastk ones. By amono-
tone circuitwe will mean a circuit consisting of fanin-2 AND
and OR gates; no negated variables are allowed as inputs. The
depthof a circuit is the length of a longest path from an input
to the output gate.

Theorem 4 (Valiant [17]). Every threshold functionThn
k can

be computed by a monotone circuit of depth at most5.3logn+
O(1).

We will use this result to show that there exist at mostn
small-depth monotone circuits such that every given pair ofvec-
tors (pa,qb) is separated by at least one of them. Then we use
these circuits to design the desired protocol.

Lemma 1. For every1 ≤ k ≤ n, there is a monotone circuit
C(X) of depth at most6.3logn+O(1) such that C(pa) = 1 and
C(qb) = 0 for all subsets a and b of vertices of size|a|= k and
|b|> ωb(G)−k.
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Proof. Associate with each subsetc⊆V the monomial

Mc(X) :=
∧

e∈E(c)

xe,

and let fk(X) be the OR of these monomials over allk-element
subsetsc ⊆ V. Then fk clearly accepts vectorpa for everyk-
element subset of verticesa. So, letb⊆V be a subset of|b| >
ωb(G)− k vertices. To show that the functionfk rejects the
vectorqb, it is enough to show that every its monomialMc does
this.

Case 1: c∩b= /0. Since|c|= k andc∩b= /0, our assump-
tion |c|+ |b| > |c|+ (ωb(G)− k) = ωb(G) implies that there
must be a nonedge betweenc and b, that is, a nonedgee in
E(c)∩E(b). But vectorqb sets all variablesxe with e∈ E(b) to
0, implying thatMc(qb) = 0.

Case 2: c∩ b 6= /0. Since we assumed thatG contains no
complete stars, there must be a nonedgee incident to some ver-
tex in a∩ b. So, e∈ E(c)∩E(b), and we again obtain that
Mc(qb) = 0.

Thus, fk(pa) = 1 and fk(qb) = 0 for all disjoint subsetsa
andb of vertices of size|a| = k and|b| > ωb(G)− k. It there-
fore remains to show that the functionfk can be computed by a
monotone circuitC of depth at most 6.3logn+O(1).

The functionfk accepts a setE′ ⊆E of nonedges if and only
if E(c)⊆E′ holds for some subsetc⊆V of |c|= k nodes, which
happens if and only ifE′ contains at leastk of the setsE(v) =
{e∈E : v∈ e} of nonedges incident to verticesv. We can there-
fore construct a monotone circuitC(X) computingfk(X) as fol-
lows.

The circuit, testing whetherE(v) ⊆ E′, is just the AND
Mv(X) =

∧

e∈E(v) xe of at mostn variables. Thus, by taking
the threshold-k of the outputs of these ANDs, we obtain an un-
bounded fanin circuit of depth-2 computingfk. EachMv has a
monotone fanin-2 circuit of depth at most logn+ 1. By The-
orem 4, the function Thnk has such a circuit of depth at most
5.3logn+O(1). Thus the depth of the entire circuit is at most
6.3logn+O(1).

We can now describe our protocol for the biclique game on
the graphG= (V,F). Recall that inputs to this game are pairs
(a,b) of disjoint subsets of vertices such that|a|+ |b|> ωb(G).

Alice first uses at most logn+1 bits to communicate Bob
the sizek = |a| ≤ ωb(G) of her seta; hence|b| > ωb(G)− k.
The players then take a minimal monotone circuitC guaranteed
by Lemma 1. Hence,C(pa) = 1 andC(qb) = 0. After that
they traverse (as in [10]) the circuitC backwards starting at the
output gate by keeping the invariant:C′(pa) = 1 andC′(qb) = 0
for every reached subcircuitC′.

Namely, suppose the output gate ofC is an AND gate, that
is, we can writeC=C0∧C1. Then Bob sends a biti correspond-
ing to a functionCi such thatCi(qb) = 0; if both C0(qb) and
C1(qb) output 0, then Bob sends 0. SinceC(pa) = 1, we know
thatCi(pa) = 1. If C = C0 ∨C1, then it is Alice who sends a
bit i corresponding to a functionCi such thatCi(pa) = 1; again,
if both C0(pa) andC1(pa) output 1, then Alice sends 0. Since
C(qb) = 0, we know thatCi(qb) = 0.

Alice and Bob repeat this process until they reach an in-
put of the circuit. Since the circuit is monotone (there are no
negated inputs), this input is some variablexe. Hence,xe(pa) =
1 andxe(qb) = 0. By the definition of vectorspa andqb (and
sincea∩b= /0), this means that the nonedgee lies betweena
andb, as desired.

The number of communicated bits in this last step is at most
the depth 6.3logn+O(1) of the circuitC. Thus, the total num-
ber of communicated bits is at most 7.3logn+O(1). This com-
pletes the proof of Theorem 1.

Remark2. One could presume that the main reason, why the
biclique game has small communication complexity, is just the
fact that the biclique problemis solvable in polynomial time
via, say, the maximum matching algorithm. In the biclique
problem, we are given a graphG and a positive integerK; the
goal is to decide whetherG contains a bicliquea× b of size
|a|+ |b| ≥ K. However, it is known [12] that a similarmaxi-
mum edge bicliqueproblem is alreadyNP-complete, even for
bipartite graphs. In this problem, the goal is to decide whether
G contains a bicliquea× b with |a× b| ≥ K edges. IfG is a
graph, in which every biclique has at mostK edges, then the
corresponding to this latter problem game is, given two disjoint
setsa,b of vertices such that|a× b| > K, to find a nonedge
betweena andb. It is easy to see thatO(logn) bits of com-
munication are enough also in this game. For this, it is enough
just to replace the condition|b|> ωb(G)−k in Lemma 1 by the
condition|b|> K/k. The rest of the proof is the same.

3. The clique game: proof of Theorem 2

Consider the clique game for a givenn-vertex graphG =
(V,F). Inputs to this game are pairs(a,b) of disjoint subsets
of vertices such that|a|+ |b| > ω(G), and the goal is to find a
nonedge lying withina∪b. Hence, now the promise is weaker,
but also the task is (apparently) easier: it is allowed that the
found nonedge lies withina or within b.

Let us first see why we cannot use the same functionfk as
in the biclique game. Recall thatfk is the OR of monomials
Mc(X) =

∧

e∈E(c) xe over all k-element subsetsc ⊆ V. Now,
even if b ⊆ V \ c is a clique, the condition|c|+ |b| > ω(G)
does not imply thatMc(qb) = 0. If, for example, there are no
nonedges lying betweenc and b, that is, when all nonedges
in c∪b lie within the setc, thenqb(e) = 1 for all nonedgese∈
E(c), implying thatMc(qb) = 1, that is, the functionfk wrongly
accepts the vectorqb. To get rid of this problem, we use more
complicated circuits.

Lemma 2. For every1 ≤ k ≤ n, there is a monotone circuit
C(X) of depth at mostDepth(G) + logn such that C(pa) = 1
and C(qb) = 0 for all cliques a and b of size|a| = k and|b| >
ω(G)−k.

Proof. As before, associate with each subsetc⊆ V the mono-
mial Mc(X) :=

∧

e∈E(c) xe, and letgk(X) be the OR of such
monomials over allk-cliquesc ⊆ V. That is, we now take the
OR only over setsc containing no nonedges. Letb ⊆ V be a
clique of size|b|> ω(G)−k. If c∩b 6= /0, then the star-freeness
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of G implies E(c)∩ E(b) 6= /0, and hence, alsoMc(qb) = 0.
If c∩ b = /0, then|c|+ |b| > ω(G) implies that there must be
a nonedge inc∪ b. But since bothc and b are cliques, this
nonedge must lie betweenc andb, that is belong toE(c)∩E(b),
and we again obtain thatMc(qb) = 0. Thus,gk(pa) = 1 and
gk(qb) = 0 for all cliquesa and b of size |a| = k and |b| >
ω(G)−k.

To design a monotone circuit of desired depth for the func-
tion gk, recall thatgk accepts a setE′ ⊆ E of nonedges if and
only if there is ak-clique c ⊆ V such thatMv(E′) = 1 for all
v∈ c. Thus, applying the inducedk-clique function ofG to the
outputs of the monomialsMv, we obtain a monotone circuit for
gk of depth at most Depth(G).

We can now describe our protocol for the clique game on a
given graphG= (V,F). By Remark 1, we can assume that the
inputs are pairs(a,b) of disjoint cliques such that|a|+ |b| >
ω(G). The goal is to find a nonedge lying betweena andb.

Using at most logn+1 bits, Alice first communicates Bob
the sizek= |a| ≤ ω(G) of her cliquea; hence|b|> ω(G)−k.
The players then take a minimal monotone circuitC guaranteed
by Lemma 2. Hence,C(pa) = 1 andC(qb) = 0. By traversing
this circuit, the players will find a variablexe (an input ofC)
such thatxe(pa) = 1 andxe(qb) = 0. By the definition of vectors
pa andqb (and sincea∩b= /0), this means that the nonedgee
lies betweena andb, as desired.

We now prove the inequality (1). Note that Theorem 4 states
that Depth(Kn) ≤ 5.3logn+O(1). The graphKn has only one
maximal clique—the graph itself. But Valiant’s theorem can
be easily extended to graphs with a larger number of maxi-
mal cliques. Recall thatκ(G) denotes the number of maximal
cliques inG.

Lemma 3. For every n-vertex graph G,Depth(G)≤ logκ(G)+
5.3logn+O(1).

Proof. Let G= ([n],E) be a graph, and Cliq(x) be its induced
k-clique function. That is, Cliq(x) = 1 if and only if the set
Sx = {i : xi = 1} contains ak-clique of G. Since every clique
is contained in some maximal clique, we have that Cliq(x) = 1
if and only if |Sx ∩C| ≥ k for at least one maximal cliqueC.
Thus, if δC ∈ {0,1}n is the characteristic vector ofC, and if
δC∧x is a component-wise AND, then Cliq(x) = 1 if and only
if Thn

k(δC∧x) = 1 holds for at least one maximal cliqueC. By
taking the OR, over allκ(G) maximal cliquesC, of monotone
circuits computing the threshold functions Thn

k(δC∧x), and us-
ing Theorem 4, we obtain a monotone circuit of depth at most
logκ(G)+5.3logn+O(1) computing Cliq(x).

4. Relaxed clique game: proof of Theorem 3

Let G= (V,F) be a graph on|V|= n vertices. Inputs to the
relaxed clique game onG are pairs(a,b) of disjoint subsets of
vertices with the same promise|a|+ |b|> ω(G) as in the clique
game. The task, however, is easier: the found nonedge must
either lie withina∪b (as in the clique game) or betweena and
some common neighbor ofb. We will argue as before, but will
use a modified definition of Bob’s vectorsqb.

Namely, say that a nonedge is acommon neighborof set
b⊆V, if both its endpoints are common neighbors ofb, that is,
are connected (by edges ofG) to all vertices inb. Now define
the vectorq′b by: q′b(e) = 0 if and only if e∈ E(b) or e is a
common neighbor ofb.

Lemma 4. For every1 ≤ k ≤ n, there is a monotone circuit
C(X) of depth at most6.3logn+ O(1) such that C(pa) = 1
and C(q′b) = 0 for all cliques a and b of size|a| = k and|b| >
ω(G)−k.

Proof. Let fk(X) be the monotone boolean function defined in
the proof of Lemma 1. That is,fk is the OR of monomials
Mc(X) =

∧

e∈E(c) xe over all k-element setsc ⊆ V. Let b ⊆ V
be a clique of size|b| > ω(G)− k. It is enough to show that
every monomialMc rejects the vectorq′b. This clearly holds
if E(c)∩E(b) 6= /0, becauseq′b sets to 0 all variablesxe with
e∈ E(b).

So, assume thatE(c)∩E(b) = /0, that is,c∩b= /0 and there
are no nonedges betweenc andb. Sinceb is a clique, the con-
dition |c|+ |b| > |c|+ (ω(G)− k) = ω(G) implies that both
endpoints of some nonedgeemust belong toc. But the absence
of nonedges betweenc andb implies thate is common neighbor
of b. Hence, again, the vectorq′b sets the variablexe to 0, and
Mc(q′b) = 0 holds.

Thus, fk(pa)= 1 andfk(q′b)= 0 holds for all disjoint cliques
a andb of size |a| = k and |b| > ω(G)− k. Since, as shown
in the proof of Lemma 1, the functionfk can be computed by
a monotone circuits of depth at most 6.3logn+O(1), we are
done.

The protocol for the relaxed clique game on a graphG is
now the same as for the clique game. As in that game, inter-
esting are only inputs(a,b), where botha andb are cliques. In
this case, the players take the circuit guaranteed by Lemma 4,
and traverse it until they find a nonedgee= {u,v} such that
xe(pa) = 1 andxe(q′b) = 0. By the definition of vectorspa and
q′b, this means that one endpoint ofe, say, vertexu belongs to
the cliquea, and the second endpointv either belongs tob or is
a common neighbor ofb (because in this latter case the nonedge
emust be a common neighbor ofb). In both cases, the nonedge
e is a legal answer in the relaxed clique game.

Remark3. Note that ifa andb are disjoint cliques such that
|a|+ |b|> ω(G), then theremustbe a “crossing” nonedge (be-
tweena andb), which would be a legal answer in the clique
game. However, the protocol for the relaxed game may output
a “wrong” nonedge—a common neighbor ofb.

5. Conclusion and open problems

Note that our communication protocol is not explicit be-
cause the construction of a small-depth monotone circuits for
the majority function in [17] is probabilistic. To get an ex-
plicit protocol, one can use the construction of a circuit ofdepth
K logn for the majority function given in [1]. But the constant
K resulting from this construction is huge, it is about 5000.

The main message of Theorem 1 is that communication
complexity arguments cannot yield any non-trivial lower bounds
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on the length of cutting plane proofs for systems corresponding
to the Maximum Biclique problem, because cb(G) = O(logn)
holds for alln-vertex graphsG. However, the case of the Max-
imum Clique problem remains unclear. Don-vertex graphsG
requiring c(G) ≫ log2n bits of communication in the clique
game exist? We have only shown that c(G) = O(logn) holds
for a lot of graphs, and that this number of communicated bits
is enough for all graphs in the relaxed clique game (which is no
more related to cutting plane proofs).

Let us mention that a different type of (adversarial) games,
introduced in [14], was recently used in [5] to derive strong
lower bounds for tree likeresolutionproofs for the Maximum
Clique problem. Is there some analogue of these games in the
case of cutting plane proofs?

The clique and biclique games on a given graphG are spe-
cial cases of amonotoneKarchmer–Wigderson game [10]: given
a pair(A,B) of two intersecting subsets of a fixedn-element set,
find an element in their intersectionA∩B. (In our case we have
A = E(a) andB = E(b).) In the non-monotonegame, inputs
are pairs of distinct sets, and the goal is to find an element in
the symmetric differenceA⊕B := (A\B)∪ (B\A). It is usu-
ally much easier to find an element in the symmetric difference
than in the intersection. Say, if the players know that|A| 6= |B|,
O(logn) bits are also enough to find an element inA⊕B [6].
However, monotone games (with the goal to find an element in
the intersection) usually require much more bits of communi-
cation. For example, themonotonegame corresponding to the
matching problem requiresΩ(n) bits of communication [15],
whereas [6] implies thatO(logn) bits are enough in thenon-
monotonegame for this problem. It is therefore interesting that,
in the biclique game, a logarithmic number of communicated
bits is enough even to find an element in the intersectionA∩B,
not just inA⊕B.

Finally, it would be interesting to understand the (mono-
tone) complexity of the inducedk-clique functions CLIQUE[G,k],
that is, to prove nontrivial lower bounds on Depthk(G), the
smallest depth of a monotone circuit computing this function
for individual graphsG. Recall that CLIQUE[G,k] accepts a
set of vertices if and only if the induced subgraph ofG on these
vertices contains ak-clique.

The minterms of CLIQUE[G,k] arek-cliques ofG, and max-
terms arek-clique transversals, that is, minimal sets of vertices
intersecting allk-cliques ofG. Thus, the result of Karchmer and
Wigderson [10] implies that Depthk(G) is exactly the commu-
nication complexity of the following game for CLIQUE[G,k]:
Alice gets ak-clique, Bob ak-clique transversal, and the goal is
to find a common vertex. Theorem 2 shows that the communi-
cation complexity c(G) of the clique game is at most Depthk(G)
plus an additive logarithmic factor. Does some reasonable con-
verse (up to an additive log2n factor) of this inequality hold?
What is Depthk(G) for random graphsG?

In the communication game for theNP-complete problem
CLIQUE(n,k), inputs are pairs(A,B) of subsets of edges (not
vertices) ofKn such that edges inA form ak-clique, and edges
in B form ak-coclique, that is,B consists ofk−1 vertex-disjoint
cliques covering all vertices ofKn. The goal is to find an edge
in A∩B. It is known that, for particular choices ofk = k(n),

this game requiresΩ(
√

k logn) bits [16, 3], and evenΩ(n1/3)
bits [7] of communication. Can the arguments of [16, 3, 7] be
adopted to the game for CLIQUE[G,k]? The problem in this
latter game is with Bob’s inputs: how to find a large family of
k-clique transversals inGsuch that only a small fraction of them
will contain a fixed set of, say,

√
n vertices? Actually, it is even

not clear whether there exist a sequence(Gn : n= 1,2, . . .) of n-
vertex graphsGn for which CLIQUE[Gn,k] is anNP-complete
problem.
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