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Abstract

Motivated by its relation to the length of cutting plane piofor the Maximum Biclique problem, here we consider théofeing
communication game on a given grahknown to both players. Lé be the maximal number of vertices in a complete bipartite
subgraph ofG, which is not necessarily an induced subgrap8 i not bipartite. Alice gets a setof vertices, and Bob gets a
disjoint setb of vertices such thgg| + |b| > K. The goal is to find a nonedge &fbetweera andb. We show thaO(logn) bits of
communication are enough for evewvertex graph.

1. Introduction To avoid trivialities, we will assume (without mentioning
this) that our graphs have no complete stars, that is, esrtd-

LetG = (V,E) be a graph with vertex setand edge S&.  ;5cent to all remaining vertices—such vertices can be ighore

A cliquein Gis a seta C V of vertices such thafu,v} € E for

allu#ve a. A bicliqguein Gis a pair{a, b} of disjoint subsets Clique Gameon G = (V,E):

of vertices such thafu, v} € E for allu € aandv € b. Thus, the Alice gets a sea C V, Bob gets a seb C V such that
edges{u, v} form a complete bipartite subgraph@f(which is anb=0 and|al + |b| > w(G). The goal is to find a
not necessarily amducedsubgraph ifG is not bipartite). The nonedge ofG lying within aub. Again, this nonedge
sizeof a clique (or biclique) is the number of its vertices. The must be known to both players.

maximum size of a clique i is denoted byw(G), and the

maximum size of a biclique i is denoted by, (G). Note  Let ¢(G) denote the communication complexity of the clique

that w(G) < wy,(G) holds for every graplG: every clique of ~game orG.

sizek contains a biclique (in fact, many bicliques) of skeA  Remarkl. The main difference from the biclique game is that

nonedgen a graph is a pair of its nonadjacent vertices. now we have a weaker promisg -+ |b| > w(G). Note also that
Given an arbitrary (not necessarily bipartite) graph (V,E), the only nontrivial inputs are pair&,b), where botha andb

we are interested in the communication complexity of the fol are cliques: the found nonedge must therbkween aandb

lowing game between two players, Alice and Bob. (as in the bicligue game). Indeed, if one of the sets, a&y/mnot

a clique, then it contains a nonedge. Alice can then send both

endpoints of this nonedge to Bob using at mogbg, n| bits,

and the game is over.

Biclique Gameon G = (V,E):

Alice getsa C V, Bob gets C V such thaenb =0 and
|al + |b] > wy(G). The goal is to find a nonedge &
lying betweera andb. This nonedge must be known to Our motivation to consider clique and biclique games cames
both players. from their connection to the length of so-called “tree liloeit-

ting plane proofs for the Maximum Clique problem on a fixed
graphG = (V,E). Cliques inG are exactly the 0-1 solutions of
the system GIG) consisting of linear inequalities, +x, < 1

for all nonedgequ,v} ¢ E, andx, > O for all verticesve V. If

the graph is bipartite with bipartitiovt = V4 UV,, then we only
have inequalitieg, + x, < 1 for all nonedgegu, v} with u €
andv € V. In the “find a hurt axiom” game, given a 0-1 assign-

If the underlying graphG is bipartite with a bipartitiorvV =
V1 UV,, then we additionally require tha C V; andb C V.
Note that the promisg| + |b| > w,(G) ensures that there must
be at least one nonedge betweeandb. The communication
complexity, (G), of this game is the minimum, over all (de-
terministic) communication protocols f@, of the number of

bits commu_nica_ted on a worst-case inpaitb). We stress that - antq to the variables such that,ey oy > w(G) + 1, we (the
the graphG in this game idixedand is known to both players. - ,qyersary) first split the bits af between Alice and Bob, and
The players are not adversaries—they help and trust each othg, i, goal is to find a nonedgfeu, v} such thaia, = ay = 1. In
The difficulty, however, is that Alice cannot see Bob'slsetnd 1,4 bipartite case, the promiseﬁsev ay > w(G) + 1.

Bob cannot see Alice’s set Results of [8] imply that, if a clique (or biclique) game re-
: quiresK bits of communication, then every tree-like cutting
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Section 19.3 and Research Problem 19.12] for details. It waghis version is no more related to cutting plane proofs, bay m

therefore a hope thatvertex graphss with ¢,(G) > log?nor  be of independent interest.

at least ¢G) > log?n exist. A common neighboof a subseb C V of vertices is a vertex
Our main result (Theorem 1 below) destroys the first hopev ¢ b which is adjacent to all vertices

for every (not necessarily bipartite}vertex graph, gG) =

O(logn) bits of communication are enough. Relaxed Clique Gameon G = (V, E):

Since the found nonedge must be known to both players,  Alice gets a sea C V on vertices, Bob gets a skic V
at least logn bits of communication are necessary for any non- of vertices such thaanb = 0 and|a| + |b| > w(G). The
trivial graph om-vertices. However, if the graph is complicated goal is to find a nonedge d@ which lies either within
enough, then (intuitively) this trivial number of bits shdie auUb or betweera and some common neighbor lof

not sufficient. If, say, there are many nonedges leavingéte s
a andb, but only one of them lies betweerandb, how should
the players quickly localize this unique nonedge?

It turns out that, somewhat surprisingly, a logarithmic Aum  The rest is devoted to the proofs of these resullts.
ber of bits is sufficient foanygraph! That is, up to constant fac-
tors, the communication complexity of the biclique gamesdoe
not depend on the structure of the underlying graph.

Theorem 3. In the relaxed cligue gamé&,3logn+ O(1) bits of
communication are enough for every n-vertex graph.

2. Thebicliqgue game: proof of Theorem 1

Theorem 1. For every n-vertex graph G, we haeg(G) < LetG= (V,F) pe'agraph ov| = nvertices with edgg set
7.3logn+O(1). F. Inputs to the bicligue game da are pairga, b) of disjoint

subsets of vertices such thiaf + |b| > w,(G). Hence, there

The situation with the clique game is more complicated.must be at least one nonedge lying betwaemdb. The goal
Here we are only able to show th@(logn) bits are enough s to find such a “crossing” nonedge.
for many graphs. Interestingly, the clique game is relabettid To solve this task, IeE ;= (\g) \ F be the set of all nonedges
monotone complexity of the following decision problem. of G, and take a seéX = {x.: e € E} of boolean variables, one

Theinduced k-cligue functionf ann-vertex graphG is a  for each nonedge. Say that a nonedggincidentwith a subset
monotone boolean function ofvariables which, given a sub- aCV,if ena+ 0. For a subsea C V of vertices, leE(a) CE
set of vertices, outputs 1 if and only if sonkeof these ver- denote the set of all nonedges incident véttFinally, we asso-
tices form a clique irG. Thus, this function is just a version of ciate with every subsetC V two vectorsp, andgs in {0, 1}“5‘
the well-knownNP-complete Cligue function restricted to only whose coordinates correspond to nonedges:
spanningsubgraphs of onéixed graphG. Let Depti{G) de-
note the maximum, over all integersik < n, of the minimum
depth of a monotone circuit with fanin-2 AND and OR gates 4 g,(e) =0 if and only ife € E(a).
computing the induceki-clique function ofG.

e pa(e)=1ifand onlyifee E(a);

Thus, pa is the characteristic vector &fa), andg, is the com-
Theorem 2. For every n-vertex graph G, we hawi) < Depth(G) plement ofp,. Given an input(a,b), the goal in the biclique
2logn+0O(1). game is to find a position (a nonedge}such thatpy(e) = 1
(eis incident witha) andgp(e) = 0 (e is incident withb). To
do this, we will use monotone circuits for threshold funoso
I%ecall that ahresholdk function TH, accepts a 0-1 vector of
lengthn if and only if it contains at least ones. By amono-
tone circuitwe will mean a circuit consisting of fanin-2 AND
Depth(G) < logk (G) + 5.3logn+ O(1). 1) and OR gat_es; no negated variables are allowed as inpu_ts. The
depthof a circuit is the length of a longest path from an input
There are many-vertex graphss = (V,E) for whichk(G) is  to the output gate.
polynomial inn. In particular,k (G) < n(d/2)P~2 holds for ev-
ery Kp-free graph of maximal degree> 2 [13]; k(G) < nP,

The measure Deptl®) is related to the numbex(G) of
maximalcliques inG; a clique ismaxima] if it cannot be ex-
tended by adding a new vertex. It can be shown (see Lemma
below) that

Theorem 4 (Valiant [17]). Every threshold functioffhy can
wherep is the chromatic number & [11]; k(G) < (|E|/p+ be computed by a monotone circuit of depth at ndadtogn +

1)P + |E|, wherep is the maximum number of edges in an in- o).
duced matching in the complement®f4, 2]. If p= O(logn) We will use this result to show that there exist at most
then Theorem 2 giveg &) = O(log?n) for all such graphs, im-  small-depth monotone circuits such that every given paieof
plying that communication complexity arguments will fadrf  tors (pa, g) is separated by at least one of them. Then we use
such graphs, even for the Maximum Clique problem (not justhese circuits to design the desired protocol.
for the Maximum Biclique problem).

Still, it remains unknown whether(@) = O(log?n) holds
for all graphs. We can only show th@{logn) bits are always
enough in the following relaxed version of the clique game.

Lemma 1. For everyl < k < n, there is a monotone circuit
C(X) of depth at moss.3logn+ O(1) such that Cp,;) = 1 and
C(gp) = Ofor all subsets a and b of vertices of siz¢= k and
|b| > wy(G) —k.
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Proof. Associate with each subset V the monomial

Mc(X) = A %,
ecE(c)

and letfi(X) be the OR of these monomials overlaklement
subsetx C V. Then fi clearly accepts vectqp, for everyk-
element subset of vertices So, letb CV be a subset ob| >
wr(G) — k vertices. To show that the functiofy rejects the
vectorqp, it is enough to show that every its monomi4 does
this.

Case 1cnb=0. Since|c| = kandcnb= 0, our assump-
tion || + |b| > |c| + (wh(G) — k) = wp(G) implies that there
must be a nonedge betweerandb, that is, a nonedge in
E(c)NE(b). But vectorq, sets all variablege with e € E(b) to
0, implying thatM¢(q) = O.

Case 2 cNb# 0. Since we assumed th&t contains no
complete stars, there must be a noneglgeident to some ver-
tex inanb. So,e< E(c)NE(b), and we again obtain that
Mc(p) = 0.

Thus, fk(pa) = 1 and fx(qgp) = 0 for all disjoint subseta
andb of vertices of sizea] = k and|b| > w,(G) — k. It there-
fore remains to show that the functidpcan be computed by a
monotone circuiC of depth at most @logn+ O(1).

The functionfy accepts a sé&’ C E of nonedges if and only
if E(c) C E’ holds for some subsetC V of |c| = k nodes, which
happens if and only iE’ contains at least of the setE(v) =
{e€ E: ve e} of nonedges incident to verticesWe can there-
fore construct a monotone circ@{X) computingf(X) as fol-
lows.

The circuit, testing whetheE(v) C E', is just the AND
My(X) = Aece(v) Xe Of at mostn variables. Thus, by taking

the thresholdk of the outputs of these ANDs, we obtain an un-

bounded fanin circuit of depth-2 computiig EachM, has a
monotone fanin-2 circuit of depth at most log- 1. By The-
orem 4, the function Thhas such a circuit of depth at most

Alice and Bob repeat this process until they reach an in-
put of the circuit. Since the circuit is monotone (there ame n
negated inputs), this input is some variakleHence xe(pa) =
1 andxe(qp) = 0. By the definition of vectorp, andq, (and
sincean b = 0), this means that the nonedgéies betweera
andb, as desired.

The number of communicated bits in this last step is at most
the depth @logn+ O(1) of the circuitC. Thus, the total num-
ber of communicated bits is at mos8Togn+ O(1). This com-
pletes the proof of Theorem 1. O

Remark2. One could presume that the main reason, why the
bicligue game has small communication complexity, is jbst t
fact that the biclique problers solvable in polynomial time
via, say, the maximum matching algorithm. In the biclique
problem, we are given a grafhand a positive integef; the
goal is to decide whethe® contains a bicliqgue x b of size

|al + |b| > K. However, it is known [12] that a similanaxi-
mum edge bicliqueroblem is alread\NP-complete, even for
bipartite graphs. In this problem, the goal is to decide Wwaet
G contains a bicliquex x b with |ax b| > K edges. IfGis a
graph, in which every biclique has at mdstedges, then the
corresponding to this latter problem game is, given twaoitisj
setsa, b of vertices such thafa x b| > K, to find a nonedge
betweena andb. It is easy to see thaD(logn) bits of com-
munication are enough also in this game. For this, it is ehoug
just to replace the conditidib| > «,(G) —kin Lemma 1 by the
condition|b] > K/k. The rest of the proof is the same.

3. Theclique game: proof of Theorem 2

Consider the clique game for a giververtex graphG =
(V,F). Inputs to this game are paifg,b) of disjoint subsets
of vertices such thge| + |b| > w(G), and the goal is to find a
nonedge lying withirmUb. Hence, now the promise is weaker,
but also the task is (apparently) easier: it is allowed that t

5.3logn+ O(1). Thus the depth of the entire circuit is at most found nonedge lies withia or within b.

6.3logn+O(1). O

We can now describe our protocol for the biclique game orMC(X)

Let us first see why we cannot use the same functioss
in the biclique game. Recall thdf is the OR of monomials
= Neci(c) Xe Over all k-element subsets C V. Now,

the graphG = (V,F). Recall that inputs to this game are pairs gyen if b CV\cis a clique, the conditionc| + [b| > w(G)

(a,b) of disjoint subsets of vertices such thalt-+ |b| > w,(G).

Alice first uses at most lag+ 1 bits to communicate Bob
the sizek = |a] < w,(G) of her seta; hencelb| > w,(G) — k.
The players then take a minimal monotone cir€@guaranteed
by Lemma 1. HenceC(ps) = 1 andC(q,) = 0. After that
they traverse (as in [10]) the circuitbackwards starting at the
output gate by keeping the invaria@:(ps) = 1 andC’(qy) =0
for every reached subcircui.

Namely, suppose the output gate®is an AND gate, that
is, we can writeC = Co AC;. Then Bob sends a kitorrespond-
ing to a functionC; such thatCi(qgp) = 0; if both Co(qp) and
Ci(0gp) output O, then Bob sends 0. Sin€ép,) = 1, we know
thatCi(pa) = 1. If C=Cp Vv Cy, then it is Alice who sends a
bit i corresponding to a functio such thati(pa) = 1; again,
if both Co(pa) andCy(pa) output 1, then Alice sends 0. Since
C(gp) = 0, we know thaCi(q,) = 0.

does not imply thaMc(qgy) = 0. If, for example, there are no
nonedges lying between and b, that is, when all nonedges
in cUb lie within the setc, thengy,(e) = 1 for all nonedgeg €
E(c), implying thatM¢(qp) = 1, that is, the functiorf, wrongly
accepts the vectar,. To get rid of this problem, we use more
complicated circuits.

Lemma 2. For everyl < k < n, there is a monotone circuit
C(X) of depth at mosDepth(G) + logn such that Cpa) = 1
and C(q,) = O for all cliques a and b of siz&| = k and|b| >
w(G) —k.

Proof. As before, associate with each subsét V the mono-
mial Mc(X) = Aecg(c) X, and letgk(X) be the OR of such
monomials over alk-cliquesc C V. That is, we now take the
OR only over setg containing no nonedges. LbtC V be a
clique of sizgb| > w(G) —k. If cnb# 0, then the star-freeness



of G implies E(c) NE(b) # 0, and hence, alstc(qy) = O. Namely, say that a nonedge iscammon neighboof set
If cnb =0, then|c| + |b| > w(G) implies that there must be b CV, if both its endpoints are common neighbordpfhat is,
a nonedge ircub. But since bothc andb are cliques, this are connected (by edges @j to all vertices inb. Now define
nonedge must lie betweerandb, that is belong té&(c)NE(b),  the vectorqy by: q(e) =0 if and only ifec E(b) oreis a
and we again obtain thaflc(qy) = 0. Thus,gk(pa) =1 and  common neighbor db.

9(Qp) = O for all cliquesa andb of size|a| = k and [b] > Lemma 4. For everyl < k < n, there is a monotone circuit

w(G) — k. o
To design a monotone circuit of desired depth for the func-c(x) of depth at mosB.3logn + O(1) such that Gpa) = 1

tion g, recall thatgy accepts a s’ C E of nonedges if and and (g) = 0 for all cligues a and b of siz{s| = k and[b| >
only if there is ak-clique c C V such thatV,(E’) = 1 for all w(G) —k.

v € ¢. Thus, applying the inducedclique function ofG to the  Proof. Let fi(X) be the monotone boolean function defined in
outputs of the monomialsly, we obtain a monotone circuit for the proof of Lemma 1. That isfy is the OR of monomials
gk of depth at most Depfi®). O Mc(X) = Aeck(c) Xe OVer allk-element sete C V. Letb CV

W d i L for the cli be a clique of sizeb| > w(G) —k. It is enough to show that
e can now describe our protocol for the clique game on aevery monomialM. rejects the vectogy,. This clearly holds

given graphG = (V,F). By Remark 1, we can assume that the / ; ;
inputs are pairga,b) of disjoint cliques such thag| + |b| > geEI(EfE)b;E(b) 7 0, becausej, sets to 0 all variablese with
W(G). .The goalis to find a T‘O”que Iying betweseqndb. So, assume th&(c) NE(b) = 0, thatiscnb = 0 and there
Using at most log +1 bits, A“Ce first communicates Bob g nonedges betweemndb. Sinceb is a clique, the con-
the sizek = |a] < w(G) of her cliquea; hencelb| > w(G) —k.  gition |¢| + |b| > |¢| + (w(G) — K) — w(G) implies that both
The players then take a minimal monotone cir€uguaranteed endpoints of some nonedgenust belong ta. But the absence
by Lemma 2. Hence(pa) = 1 andC(ap) = 0. By traversing nonedges betwearandb implies thateis common neighbor

this circuit, the players will find a variabbe (an input ofC) fb. H in th t ts th iable. t0 0. and
such thake(pa) = 1 andxe(qp) = 0. By the definition of vectors (|\)/| (d, ) ing?o?3§|n, € vectaf, sets the variablee to 0, an
c\Up) = .

pa andqy, (and sinceanb = 0), this means that the nonedge

— /) — isioi i
lies betweera andb, as desired. 0 Thus, fx(pa) = 1 andfy(qy,) = 0 holds for all disjoint cliques

a andb of size|a] = k and|b| > w(G) — k. Since, as shown

We now prove the inequality (1). Note that Theorem 4 stateg e -
proof of Lemma 1, the functiofy can be computed by
that DeptliKy) < 5.3logn+ O(1). The graptK, has only one 5 onotone circuits of depth at mosBégn+ O(1), we are
maximal cligue—the graph itself. But Valiant's theorem can yone ’ O

be easily extended to graphs with a larger number of maxi-

mal cliques. Recall that(G) denotes the number of maximal The protocol for the relaxed cligue game on a gré&pis

cligues inG. now the same as for the clique game. As in that game, inter-

esting are only input&a, b), where botta andb are cliques. In

Ié%r?ma& Cl):olr every n-vertex graph @ept(G) <logk (G) + this case, the players take the circuit guaranteed by Lemma 4
-3logn-+O(1). and traverse it until they find a nonedge= {u,v} such that

Proof. Let G = ([n],E) be a graph, and Cli) be its induced  Xe(Pa) = 1 andxe(q,) = 0. By the definition of vectorp, and
k-clique function. That is, Clix) = 1 if and only if the set G, this means that one endpoint@fsay, vertexu belongs to
Sc= {i: x = 1} contains a-clique of G. Since every clique the cliquea, and the second endpomeither belongs td or is

is contained in some maximal clique, we have that @jg=1  @common neighbor df (because in this latter case the nonedge
if and only if [S;NC| > k for at least one maximal cliqug. ~ ©must be a common neighbor ). In both cases, the nonedge
Thus, if & € {0,1}" is the characteristic vector &, and if ~ €is alegal answer in the relaxed clique game. O

& Axis a component-wise AND, then Clig) = 1 ifand only ~ Remark3. Note that ifa andb are disjoint cliques such that

if Thi(& A x) = 1 holds for at least one maximal cliq@ By  |a| + |b| > w(G), then theramustbe a “crossing” nonedge (be-
taking the OR, over alk(G) maximal clique<C, of monotone  tweena andb), which would be a legal answer in the clique
circuits computing the threshold functionsiThc Ax), and us-  game. However, the protocol for the relaxed game may output
ing Theorem 4, we obtain a monotone circuit of depth at mosh “wrong” nonedge—a common neighboriof

logk (G) +5.3logn+ O(1) computing Cligx). O

5. Conclusion and open problems

4. Relaxed clique game: proof of Theorem 3 o ] o
Note that our communication protocol is not explicit be-

Let G = (V,F) be a graph offV| = n vertices. Inputs to the cause the construction of a small-depth monotone circaits f
relaxed clique game oB are pairg(a,b) of disjoint subsets of the majority function in [17] is probabilistic. To get an ex-
vertices with the same promi$a + |b| > w(G) as in the clique  plicit protocol, one can use the construction of a circuidepth
game. The task, however, is easier: the found nonedge muktlogn for the majority function given in [1]. But the constant
either lie withinaub (as in the cligue game) or betwearand K resulting from this construction is huge, it is about 5000.
some common neighbor of We will argue as before, but will The main message of Theorem 1 is that communication
use a modified definition of Bob’s vectogg. complexity arguments cannot yield any non-trivial loweuhds



on the length of cutting plane proofs for systems correspand  this game require€(v/klogn) bits [16, 3], and evem(n1/3)
to the Maximum Biclique problem, becausg@) = O(logn) bits [7] of communication. Can the arguments of [16, 3, 7] be
holds for alln-vertex graph<s. However, the case of the Max- adopted to the game for CLIQUG&,k]? The problem in this
imum Clique problem remains unclear. Devertex graphss latter game is with Bob’s inputs: how to find a large family of
requiring ¢G) > log?n bits of communication in the clique k-clique transversals i such that only a small fraction of them
game exist? We have only shown th&6¢ = O(logn) holds  will contain a fixed set of, say/n vertices? Actually, it is even
for a lot of graphs, and that this number of communicated bitsiot clear whether there exist a seque(@g:n=1,2,...) of n-
is enough for all graphs in the relaxed cligue game (whichois n vertex graphss,, for which CLIQUEG, k] is anNP-complete
more related to cutting plane proofs). problem.

Let us mention that a different type of (adversarial) games,
introduced in [14], was recently used in [5] to derive strong
lower bounds for tree likeesolutionproofs for the Maximum

Clique problem. Is there some analogue of these games in the | am thankful to Mario Szegedy for interesting initial dis-
case of cutting plane proofs? cussions on the biclique game, and to Jacob&dor detect-

~ The clique and biclique games on a given gré&pare spe-  jng an error in a previous protocol for the clique game.
cial cases of amnonotoné&Karchmer—Wigderson game [10]: given

a pair(A, B) of two intersecting subsets of a fixaeelement set,
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In the communication game for tiéP-complete problem
CLIQUE(N, k), inputs are pairgA, B) of subsets of edges (not
vertices) ofK,, such that edges iA form ak-clique, and edges
in B form ak-coclique that is,B consists ok — 1 vertex-disjoint
cliques covering all vertices df,. The goal is to find an edge
in ANB. Itis known that, for particular choices &f= k(n),
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