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Abstract

In this paper, we study the approximability of Max CSP(P ) where P is a Boolean pred-
icate. We prove that assuming Khot’s d-to-1 Conjecture, if the set of accepting inputs of P
strictly contains all inputs with even (or odd) parity, then it is NP-hard to approximate Max
CSP(P ) better than the simple random assignment algorithm even on satisfiable instances.
This is a generalization of a work by O’Donnell and Wu [15] which proved that it is NP-hard
to approximate satisfiable instances of Max CSP(NTW) beyond 5

8 + ε for any ε > 0 based on
Khot’s d-to-1 Conjecture, where NTW is the “Not Two” predicate of size 3.

1 Introduction

A k-bit Constraint Satisfaction Problem (k-CSP) consists of a set of boolean variables, along
with boolean constraints each of which involves at most k of these variables. Each boolean
constraint is given by some predicate of arity at most k. The Max k-CSP problem is to find a
boolean assignment to the variables that maximizes the number of satisfied constraints. A k-CSP
is called satisfiable if there exists an assignment that satisfies all the constraints simultaneously.
We can further restrict the type of predicates in Max k-CSP to some predicate set. Specifically,
for a predicate P : {0, 1}k → {0, 1}, the Max CSP(P ) problem is the Max k-CSP problem in
which all constraints are of the form P (l1, · · · , lk), where each literal li is either a variable or a
negated variable. For example, we have the following k-CSP problem on variables x1, · · · , xn:

• Max-NTW: constraints are of the form NTW(li, lj , lk), where NTW is the 3-ary predicate
satisfied if and only if the number of true inputs is not two.

• Max-Parity: the predicate Parity(li1 , · · · , lik) = ¬(⊕kj=1lij ) that accepts inputs with
even parity.

Let P−1(1) be the set of satisfying assignments of P . In this paper, we are interested in predicates
P such that P−1(1) properly contains Parity−1(1).

It is known that the Max k-CSP problem is NP-hard for any k ≥ 2, and as a consequence, a
lot of research have been focused on studying approximability of such problems. We say that a
(randomized) algorithm has approximation ratio α, if for all instances, the algorithm is guaranteed
to find an assignment which (in expectation) satisfies at least α · Opt of the constraints, where
Opt is the maximum number of simultaneously satisfied constraints over any assignment.

There is an easy approximation algorithm for Max k-CSP problems: one simply picks a
random assignment to the variables. This algorithm has an approximation ratio of 1/2k. It

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 40 (2012)



was subsequently improved by [4]. As for a specific predicate P of arity k with m satisfying
assignments, the above random assignment algorithm achieves a ratio of m/2k.

Given the naiveness of the above algorithm, it may seem that one could do much better in
approximating Max k-CSP. Surprisingly, however, it turns out that for certain P , this is the best
possible algorithm. In a celebrated result, H̊astad [8] showed that for Parity, the Max CSP(P )
is NP-hard to approximate within 1/2 + ε, while the random assignment algorithm achieves 1/2.
Predicates P for which it is hard to approximate the Max CSP(P ) problem better than a random
assignment are called approximation resistant. A natural and important question is to understand
the structure of approximation resistance. For k = 2 and k = 3, this question is resolved —
predicates on 2 variables are never approximation resistant, and a predicate on 3 variables is
approximation resistant if and only if it is implied by an XOR of the three variables [8, 23].
For k = 4, Hast [7] managed to classify most of the predicates with respect to approximation
resistance.

However, for many other classical optimization problems, such as Max-Cut and Max-2SAT,
there is still a gap between the best known approximation algorithm and hardness result. To
address this, Khot [9] proposed the Unique Games Conjecture (UGC), which states that it is
NP-hard to distinguish whether certain Label Cover instance is almost satisfiable or far from
satisfiable. Assuming the UGC, many optimal approximation lower bound results were proved
[12, 10, 11, 14, 1]. Raghavendra proved a powerful result in [16] that assuming the Unique Games
Conjecture, if a certain natural SDP relaxation cannot approximate Max CSP(P ) to within some
factor α, then no polynomial time algorithm can. Also based on the UGC, Austrin and Mossel
[2] proved that P is approximation resistant if the set of satsifying assignments P−1(1) contains
the support of a pairwise independent distribution.

The case with satisfiable instances seems to be more intriguing as some predicates may behave
differently when it comes to satisfiable instances. We call P approximation resistant on satisfiable
instances if the best possible algorithm is still the random assignment algorithm even with the
promise that it is satisfiable. If predicate P is approximation resistant on satisfiable instances,
then clearly it is also approximation resistant. However, the converse may not be true. In fact,
it is easy to see that if Max CSP(Parity) is satisfiable, we could find a satisfiable assignment
to it, though Parity is approximation resistant on near satisfiable instances. Several other
approximation algorithms for satisfiable instances were introduced [22], and in particular, it is
known that predicates with fewer than (k + 1) satisfying assignments are never approximation
resistant on satisfiable instances. On the other hand, it is proved in [7] that predicates with fewer
than 2bk/2c + 1 accepting inputs are not approximation resistant so there is still a small gap
between satisfiable and almost-satisfiable instances when k is odd.

Despite the abundance of results on approximation resistance of predicates, the understand-
ing on approximation resistance on satisfiable instances is still quite limited. This situation is
not particularly surprising, as there are quite a few differences between satisfiable instances and
almost satisfiable instances. One of the differences is that there are approximation resistant pred-
icates which are easy to satisfy on satisfiable instances, for example linear constraint predicates,
thus it is possible that the structure of approximation resistance on satisfiable instances is richer
than that of approximation resistance. Also, in terms of PCPs, working on satisfiable instances
requires perfect completeness in the proofs, making the design and analysis more challenging.
Most notably, the Unique Games Conjecture, which has been used to prove a number of optimal
results, might not be applicable to satisfiable cases simply because it is non-perfect. To address
this, Khot additionally proposed the “d-to-1 Conjectures” [9]. The conjecture states that it is
NP-hard to distinguish whether a “d-to-1 Label Cover Instance” is satisfiable or far from satis-
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fiable. The conjectures are parameterized by an integer constant d ≥ 2. The bigger d is, the
less restrictive are d-to-1 Label Cover instances; thus for each d, the d-to-1 Conjecture implies
the (d + 1)-to-1 Conjecture. There are several applications of the d-to-1 Conjectures prior to
this work. Dinur, Mossel and Regev [5] proved that the 2-to-1 Conjecture implies hardness of
coloring 4-colorable graphs by O(1) colors. O’Donnell and Wu proved a nice result in [15] that
Max-NTW is approximation resistant on satisfiable instances assuming the d-to-1 conjecture
for some d. Following their approach, Tang [21] studied the approximability of satisfiable Max-
3CSPq where q is a prime greater than 3 and gave a (1/q+ 1/q2− 1/q3) lower bound by showing
approximation lower bound for a special predicate which could be viewed as a generalization of
the NTW in [15]. In [20], Tamaki and Yoshida gave a non-adaptive (2k − 1)-query Long Code
test with perfect completeness and soundness (2q + 3)/2q where q = 2k − 1 is the number of
queries. Their test was a noised version of Samorodnitsky-Trevisan’s Hyper Graph linearity test,
and used Invariance-Principle style analysis in the spirit of [15]. However, it is not known if it is
possible to combine their tester with d-to-1 Games.

1.1 Our Contribution

In this paper, we prove the following theorem:

Theorem 1.1. Let P : {0, 1}k → {0, 1} be a Boolean predicate such that k ≥ 4 and P−1(1)
properly contains Parity−1(1). Suppose that Khot’s d-to-1 Conjecture holds for some finite
constant d. Then for any ε > 0, given a satisfiable Max-CSP(P ) instance, it is NP-hard to
satisfy more than a |P−1(1)|/2k + ε fraction of the constraints.

Based on the classical connection between PCPs and hardness of approximation, the above
theorem is equivalent to saying that there is a nonadaptive PCP system for an NP-complete
language with perfect completeness and soundness |P−1(1)|/2k, decides to accept or reject based
on the predicate P . In the remaining part of this paper, we design such a PCP, and follow the
classical approach of showing approximation resistance by arithmetizing the accepting probability
and bounding each non-constant terms.

Our result is closely related to [15]. In fact, we can view the NTW predicate as accepting
input (0, 0, 0) in addition to the odd parity predicate. While the analysis of many terms for our
predicates are in fact almost identical to [15], there are several difficulties in generalizing their
result. First of all, we need to find a suitable distribution. More specifically, having a balanced
and “sufficiently” independent testing distribution would ease the analysis for most of the terms.
Another difficulty is the analysis of certain terms such as E[

∏
g(yi)]. The similar term in [15] is

upperbounded by bounding the expectation under another distribution for which the resulting
expectation is no smaller than under the original distribution. To prove that the expectation
never decreases when passing to the new distribution, O’Donnell and Wu developed an approach
using matrix notation of distributions. This approach is not directly applicable, and we show
how to deal with it in our case.

2 Preliminaries

In this section, we recall some basic notions and results. We give definitions for Label Cover
problems and state Khot’s d-to-1 Conjectures. We also recall some basics in Fourier Analysis
of Boolean functions and the Efron-Stein decomposition, a concept closely related to Fourier
decompositions. We then define the noise operator and correlation of probability spaces as in
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[13], and quote several results on the relation between these concepts. Finally, we describe the
overall framework of our PCP system, a generalization of the one in [15].

2.1 Khot’s d-to-1 Conjecture

To introduce Khot’s d-to-1 Conjecture, we first define the Label-Cover problem.

Definition 2.1. We define a Label-Cover instance L := (U, V,E, P,R1, R2,Π). Here U and V
are the two vertex sets of a bipartite graph and E is the set of edges between U and V . P is an
explicitly given probability distribution on E. R1 and R2 are integers with 1 ≤ R1 ≤ R2. Π is a
collection of “projections”, one for each edge: Π = {πe : [R2] → [R1]|e ∈ E}. A labeling L is a
mapping L : U → [R1], V → [R2]. We say that an edge e = (u, v) is “satisfied” by labeling L if
πe(L(v)) = L(u). We define:

Opt(L) = max
L

Pr
e=(u,v)∼P

[πe(L(v)) = L(u)].

For Label-Cover problems, we have the following inapproximability theorem of Raz [17].

Theorem 2.2. For every constant η > 0, there is some constant k(η) <∞ such that for Label-
Cover instance L with R2 ≥ k(η), it is NP-hard to distinguish the case Opt(L) = 1 from the case
Opt(L) ≥ η.

Now we define the d-to-1 Label-Cover.

Definition 2.3. A projection π : [R2]→ [R1] is said to be “d-to-1” if for each element i ∈ [R1],
we have |π−1(i)| ≤ d. We say the projection is “exactly d-to-1” if R2 = dR1, and |π−1(i)| = d
for each i. The d-to-1 Label-Cover is the Label-Cover in which each projection is d-to-1.

In Theorem 2.2, one can take the Label-Cover instances to be exactly d-to-1, but d needs
to be at least poly(1/η). Khot’s d-to-1 Conjecture states that one can take d to be a constant
independent of η.

Conjecture 2.4. For each integer d ≥ 2, for every constant η > 0, there is some constant
k(d, η) < ∞ such that for d-to-1 Label-Cover instances L with R2 ≥ k(d, η), it is NP-hard to
distinguish the case Opt(L) = 1 from the case Opt(L) ≤ η.

2.2 Fourier Analysis and Influences

As is usual in Fourier analysis, from now on we represent “true” by -1 and “false” by 1, in-
stead of 1 and 0. For S ⊆ [n], define χσ : {−1, 1}n → R as χS(x1, · · · , xn) =

∏
i∈S xi.

The functions {χS}S⊆[n] form an orthonormal basis for the L2({−1, 1}n), thus every function

f ∈ L2({−1, 1}n) can be written as f(x) =
∑

S⊆[n] f̂(S)χS(x), where f̂ : P([n]) → R is defined

by f̂(S) = 2−n
∑

x∈{−1,1}n f(x)χS(x).
We now define a notion of the influence of a set of coordinates on a function f as in [15].

Definition 2.5. For a function f : {−1, 1}n → R and a set of coordinates S ⊆ [n], we define the
influence of S on f to be

InfS(f) =
∑
U⊇S

f̂(U)2.

Next we recall the Bonami-Beckner operator Tρ on Boolean functions.
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Definition 2.6. Let 0 ≤ ρ ≤ 1. The Bonami-Beckner operator Tρ is a linear operator mapping
functions g : {−1, 1}n → R into functions Tρg : {−1, 1}n → R as (Tρg)(x) = E[g(y)], where y
is formed by setting yi = xi with probability ρ and setting yi to be a uniformly random bit with
probability 1− ρ.

There is a simple relation between the Fourier decomposition of f and Tρf .

Claim 2.7.
Tρf =

∑
S⊆[n]

ρ|S|f̂(S)χS .

The following lemma says that for a noised Boolean function, the sum of influences of constant-
size sets is bounded.

Lemma 2.8. [15] For any function f : {−1, 1}n → R with E[f2] ≤ 1, and any parameters
0 < δ ≤ 1/2, m ∈ N ∑

S⊆[n],|S|≤m

InfS(T1−δf) ≤ (m/2δ)m.

We also need the following Efron-Stein decomposition as is described in [13].

Definition 2.9. Let (Ω1, µ1),. . . ,(Ωn, µn) be discrete probability spaces (Ω, µ) =
∏n
i=1(Ωi, µi).

The Efron-Stein decomposition of f : Ω→ R is given by

f(x) =
∑
S⊆[n]

fS(xS),

where the functions fS satisfy:

• fS depends only on xS.

• For all S 6⊆ S′ and all xS′ it holds that E[fS |XS′ = xS′ ] = 0. That is, as long as we have
not conditioned on all the variables that fS depends on, the conditional expectation is 0.

It is known that the Efron-Stein decomposition exists and that it is unique. In fact, when
Ωi = {−1, 1} for all i, the Efron-Stein decomposition of f is the same as its Fourier decomposition.
For general Ωi’s, the Fourier decomposition depends on the choice of Fourier basis, while the
Efron-Stein decomposition is invariant under different choices. We use Efron-Stein decomposition
in the proof of Lemma B.4.

2.3 Correlation of Probability Spaces

We use an equivalent definition of correlation for probability spaces as defined in [13].

Definition 2.10. Let (Ω×Ψ, µ) be a correlated probability space, µ is a distribution on the finite
product set Ω×Ψ and that the marginals of µ on Ω and Ψ have full support. Define the correlation
between Ω and Ψ to be

ρ(Ω,Ψ;µ) = max
f :Ω→R
g:Ψ→R

{|E[fg]| | E[f ] = 0,E[f2] ≤ 1,E[g] = 0,E[g2] ≤ 1},

where the expectation E[fg] is under µ, and E[f ], E[f2], E[g] and E[g2] are under marginals of
µ on corresponding variables.
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The following lemma is useful for bounding correlation between probability spaces from 1.

Lemma 2.11. [13] Let (Ω×Ψ, µ) be two correlated spaces such that the probability of the smallest
atom in Ω × Ψ is at least α > 0. Define a bi-partite graph G = (Ω,Ψ, E) where (a, b) ∈ Ω × Ψ
satisfies (a, b) ∈ E if µ(a, b) > 0. Then if G is connected then ρ(Ω,Ψ;µ) ≤ 1− α2.

Next we recall the definition of the conditional expectation operator.

Definition 2.12. Let (Ω×Ψ, µ) be two correlated spaces. The conditional expectation operator
U associated with (Ω,Ψ) is the operator mapping f ∈ Lp(Ψ, µ) to Uf ∈ Lp(Ω, µ) by (Uf)(x) =

E[f(Y )|X = x] for x ∈ Ω and (X,Y ) ∈ Ω×Ψ is distributed according to µ.

An important property we need in the analysis is that the Efron-Stein decomposition com-
mutes with the conditional expectation operator.

Proposition 2.13. [13] Let (Ω×Ψ, µ) := (
∏

Ωi×
∏

Ψi,⊗µi) be correlated space and let T := ⊗Ti
be the conditional expectation operator associated with Ω and Ψ. Suppose f ∈ L2(Ψ) has Efron-
Stein decomposition f(x) =

∑
S⊆[n] fS(xS). Then the Efron-Stein decomposition of Uf satisfies

(Uf)S = U(fS) for S ⊆ [n].

The following result shows that in the above setting, if the correlations between all Ω and Ψ
are less than 1, then the L2 norms of the high-degree terms of Uf are small.

Proposition 2.14. [13] Assume the setting of Proposition 2.13 and that for all i, we have
ρ(Ωi,Ψi;µi) ≤ ρi. Then for all f , we have ‖U(fS)‖2 ≤

(∏
i∈S ρi

)
‖fS‖2.

2.4 PCP System Framework

Consider a predicate P of arity (r + 1) ≥ 4. Our PCP system is similar to O’Donnell and Wu’s
PCP for Max-NTW [15]. For a d-to-1 Label-Cover instance L = (U, V,E,P, R1, R2,Π), a proof
consists of a collection of truth tables of Boolean functions, one for each vertex. Let Te be the test
distribution defined on {−1, 1}R1 ×

∏r
i=1{−1, 1}R2 ; Our verifier checks the proof as following:

• Pick an edge e = (u, v) from distribution P ;

• Generate a tuple (x, y1, · · · , yr) from the test distribution Te;

• Accept if P (fu(x), gv(y1), · · · , gv(yr)).

As usual, we assume the functions fu and gv are folded, and therefore we can assume that all the
functions h are odd, meaning that h(−z) = −h(z) for all inputs z.

3 The Test Distribution

In this section, we define the test distribution Te for predicate P of arity r + 1. For a positive
integer r, let [r] := {1, · · · , r}. For an input α to predicate P , let its coordinates be α0, α1, · · · , αr.

For the picked edge e, we write di = |π−1
e (i)| for i ∈ [R1]. The verifier now views fu as

fu : X 1 × X 2 × · · · × XR1 → {−1, 1}, where each X i = {−1, 1}(i). The verifier also views gv
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as a function over an R1-fold product set gv : Y1
j × Y2

j × · · · × Y
R1
j → {−1, 1}, where each

Y ij = {−1, 1}π
−1
e (i) for j ∈ [r]. Te is a distribution over the following R1-fold product set

R1∏
i=1

X i × r∏
j=1

Y ij

 ' (R1∏
i=1

X i
)
×

r∏
j=1

(
R1∏
i=1

Y ij

)
.

In fact, for each i ∈ [R1], we define a distribution T ie on X i×
∏r
j=1 Y ij . We let Te be the product

distribution ⊗R1
i=1T ie . The distribution T ie only depends on di, and we could simply view it as a

distribution on {−1, 1} ×
∏r
i=1{−1, 1}di . Further, the distributions for different di’s are actually

constructed in a uniform way, parameterized by di. More specifically, we define distributions
on {−1, 1} ×

∏r
i=1{−1, 1}D, which we would write as X ×

∏r
i=1 Yi for simplicity. The final

distribution is a product of distributions corresponding to each i ∈ [R1], substituting D with the
respective dis.

The test distribution is a combination of several simple distributions. The first such distribu-
tion is the parity distribution which we denote by H in its simple form and H(D) in its product
form.

Definition 3.1. Define distribution H generating (x, y1, · · · , yr) as follows: x, y1 . . . yr−1 are
generated independently and uniformly random, then set yr to be x

∏r−1
i=1 yi.

Define distribution H(D) on X ×
∏r
i=1 Yi as follows: generate x, yi,j for i ∈ [D], j ∈ [r − 1]

independent and uniformly random, then for each i ∈ [D], yi,r = x
∏r−1
j=1 yi,j.

Next we define the “noise” distributions for α ∈ P−1(−1) \ Parity−1(−1). Note that α /∈
Parity−1(−1), thus we have that

∏r
i=0 αi = −1, and therefore if we define α′ to be the same

as α except for the first bit where α′0 = −α0, then we have α′ ∈ Parity−1(−1). The noise
distributions looks very similar to H and H(D). In fact, we first generate the parity distribution
with some bias on the first bit. The difference now is that in the noise distribution, instead of
generating α′ ∈ Parity−1(−1), we always generate α. We also assign different weights so that
the marginal of the first bit is uniform. We can view Nα as a generalization of the distribution N
in [15]. In particular, we distribute probability mass in Nα over a larger set. One could actually
verify that when the size of the predicate is 3, and α = (1, 1, 1), it is exactly the distribution in
which we pick (−1,−1,−1) and (1, 1, 1) with probability 1

2 each.

Definition 3.2. Define Nα on {−1, 1}r+1: generate y1, · · · , yr−1 independently and uniformly
random, and with probability 2r−2/(2r−1 − 1), set x = −α0, and x = α0 otherwise. Then let
yr = x

∏r−1
i=1 yi, and flip x if (x, y1, · · · , yr) = (−α0, α1, · · · , αr).

Define Nk,α(D) on X ×
∏
Yi: generate (x, yk,1, · · · , yk,r) ∼ Nα, then generate (yj,1, · · · , yj,r)

for all j ∈ [D] \ {k} according to parity distribution H and x. Let Nα(D) := (
∑

kNk,α(D))/D.

The distribution Nα has the nice property that the marginal is uniform if we only condition
on yS where S ( [r].

Lemma 3.3. Let S ( [r] be a set of coordinates, and let yS be an assignment on the coordinates
in S. Then PrNα [yS = yS ] = 2−|S|. Moreover, the marginal distribution over X is also uniform.

Proof. If r /∈ S, then since {yi}i∈S are picked uniformly at random, the statement holds. If r ∈ S,
the last step when generating from Nα only flips x, and this does not change the probability we
are considering if we do not condition on x. Before this final flipping, we have yr = x

∏r−1
i=1 yi,
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and we could change the role between yr and yj for some j /∈ S, and conclude that the marginal
is uniform.

For the marginal of X , note that in the first step, x = −α1 with probability 2r−2/(2r−1 −
1), and it would still be the case at the end unless (x, y1, · · · , yr) = (−α1, α2, · · · , αr+1) with
probability 2−(r−1)·2r−2/(2r−1−1), thus the probability that x = −α1 is (1−2−(r−1))·2r−2/(2r−1−
1) = 1/2.

It turns out that all Nα are suitable for our purpose, therefore we simply pick an arbitrary
α ∈ P−1(−1) \Parity−1(−1) and omit indicating the dependence on α in the rest of this paper.
We are now ready to define the test distribution Te.

Definition 3.4. For 0 < γ < 1, define distribution Hγ(D) = (1 − γ)H(D) + γN (D) = (1 −
γ)H(D) + γ(

∑
Nk(D))/D. For each i ∈ [R1], define the T ie to be Hγ(di). The test distribution

Te is the product of these distributions, Te = ⊗R1
i=1T ie .

We have the following bound on ρ(X ,
∏
i∈S Yi;Hγ(D)) for S ( [r]. We need to apply Lemma

3.3 and the proof is similar to that of Lemma 5.3 in [15].

Lemma 3.5. For all S ( [r], we have ρ(X ,
∏
i∈S Yi;Hγ(D)) ≤ γ.

Lemma 3.6. For any r0 ∈ [r], α ∈ P−1(−1) \ Parity−1(−1), ρ(X ×
∏
i 6=r0 Yi,Yr0 ;Hγ(D)) ≤

1−β2/2, where β = γ · (2r−2−1)/((2r−1−1) ·2(r−1)D ·D) is a lower bound of the least probability
of an atom under Hγ(D).

Proof. For notational simplicity, we only prove this for r0 = r, since all coordinates are entirely
symmetric. To apply Lemma 2.11, we only need to show that the distribution is connected. Let
(w1, . . . , wD) be an arbitrary right vertex, and (w′1, · · · , w′D) be the right vertex that has w′j = wj
for j 6= k, and w′k = αr. We claim that for any k ∈ [D], (w1, · · · , wD) and (w′1, · · · , w′D) are
always connected. In fact, if we already have wk = αr, then we are done. Otherwise, we pick the
following left vertex (x, y1,1, y1,2, · · · , y1,r−1, y2,1, · · · , yD,r−1), such that it is connected to both
(w1, · · · , wD) and (w′1, · · · , w′D): x = α0, (yj,1, yj,2, · · · , yj,r−2, yj,r−1) = (1, 1, · · · , 1, α0wj) for
j 6= k, and (yk,1, yk,2, · · · , yk,r−2, yk,r−1) = (α1, α2, · · · , αr−1). It is not hard to see that for any
j 6= k, (x, yj,1, · · · , yj,r−1, wj) ∈ H, and (x, yk,1, · · · , yk,r−1, wk) ∈ H, (x, yk,1, · · · , yk,r−1, w

′
k) ∈

Nα. Therefore, it is connected to the right vertex (w1, · · · , wD) due toH(D), and to (w′1, · · · , w′D)
due to Nk(D).

We conclude from the above claim that all right vertices are connected to the right vertex
(αr, · · · , αr). It is also easy to see that all left vertices are at least connected with one right
vertex, therefore the bipartite graph is connected.

Similar to [15], we need to pass to a new distribution Iγ(D) with almost no correlation
between X and

∏
Yi.

Definition 3.7. Define distribution I(D) on X ×
∏r
i=1 Yi as follows: first draw from H(D), then

uniformly rerandomize the bit x. Define Iγ(D) := (1− γ)I(D) + γN (D).

We bound ρ(X ,
∏
Yi; Iγ(D)) in the following lemma.

Lemma 3.8. ρ(X ,
∏r
i=1 Yi; Iγ(D)) ≤ √γ.

The proof of this lemma is almost identical to Lemma 5.4 of [15].
By Proposition 2.13 of [13], bounds in Lemma 3.5, 3.6 and 3.8 holds for products of correlated

spaces.
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Lemma 3.9.

ρ
(∏R1

j=1X j ,
∏R1
j=1

(∏
i∈S Y

j
i

)
;
⊗R1

i=1Hγ(di)
)
≤ γ;

ρ
(∏R1

j=1

(
X j ×

∏
i 6=r0 Y

j
i

)
,
∏R1
j=1 Y

j
r0 ;
⊗R1

j=1Hγ(di)
)
≤ 1− β2/2;

ρ
(∏R1

j=1X j ,
∏R1
j=1

(∏r
i=1 Y

j
i

)
;
⊗R1

i=1 Iγ(di)
)
≤ √γ,

where β = γ · (2r−2 − 1)/((2r−1 − 1) · 2(r−1)d · d).

4 Analysis of the Verifier

In this section we give details of the analysis of our verifier.
The completeness analysis is standard.

Theorem 4.1. The verifier has completeness 1.

Proof. Let L be a given d-to-1 Label Cover instance, and L : U → [R1], V → [R2] a perfect
labeling. For each u ∈ U , the prover takes fu to be the L(u)-th dictator function χ{L(u)}, and for
each v ∈ V , take gv to be the L(v)-th dictator function χ{L(v)}. Now for any edge, we have that
πe(L(v)) = L(u). It follows from the definition of Te that the tuple (xL(u), yL(v),1, · · · , yL(v),r)
generated is in the support of P . Hence the verifier has perfect completeness.

Next we show soundness.

Theorem 4.2. For a d-to-1 Label Cover instance L, if the verifier accepts with probability
|P−1(−1)|/2r+1 + ε, then there is a randomized labeling strategy for L achieving expected value
at least η, a positive constant depending only on d and ε.

Proof. To analyze the soundness of the verifier, we first arithmetize the probability a given proof
passes

Pr[verifier accepts] = Pr
e∼P

Pr
Te

[P (fu(x), gv(y1), · · · , gv(yr))]

= E
e∼P
Te

 ∑
S⊆{0,··· ,r}

P̂ (S)χS(fu(x), gv(y1), · · · , gv(yr))

 .
Note that P̂ (∅) = |P−1(1)|/2r+1. By Lemma 3.3 and the fact that fu and gv are odd functions, we
conclude that Ee∼P,(x,{yi})∼Te [χS(fu(x), gv(y1), · · · , gv(yr))] = 0 for either S ( [r] or S = {0}.
Also, by Lemma 3.9, the absolute value of the terms with S ( [r] and 0 ∈ S are upperbounded
by γ. Therefore

Pr[verifier accepts] ≤ |P
−1(1)|
2r+1

+
(2r−1 − 1)γ

2r

+ E
Te

[
P̂ ([r])

r∏
i=1

gv(yi) + P̂ ([r] ∪ {0})fu(x)

r∏
i=1

gv(yi)

]
. (1)

We bound the remaining two terms in the following two theorems:
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Theorem 4.3. For any e = (u, v), and odd function gv : {−1, 1}R2 → {−1, 1}, we have

ETe [
∏r
i=1 gv(yi)] ≤ γ.

To show the above bound, we apply the matrix approach in [15] to the distribution conditioned
on yi = yi for i ∈ [r − 2] for any {yi}i∈[r−2]. We use the matrix approach to bound the absolute
value of the expectation in the conditional distribution. Details are given in Appendix A.

Theorem 4.4. There exists constants δ′, τ > 0 depending only on d, r and γ, such that the
following holds: if for every i ∈ [R1] and every odd-cardinality set S ⊆ π−1

e (i) we have that
min{Infi(T1−δ′/2fu), InfS(T1−δ′/2gv)} ≤ τ , then |ETe [fu(x)

∏r
i=1 gv(yi)]| ≤ (r + 3)

√
γ.

Proof of Theorem 4.4 is almost the same as [15] and we include it in Appendix B.
Now let us see how Theorem 4.2 follows from Theorem 4.3 and Theorem 4.4. We’ve proved

that under the hypothesis of Theorem 4.4, (1) is upperbounded by

|P−1(1)|
2r+1

+
(2r−1 − 1)γ

2r
+ γ + (r + 3)

√
γ ≤ |P

−1(1)|
2r+1

+ 2γ + (r + 3)
√
γ.

Equivalently, suppose that the functions fu and gv cause the verifier to accept with probability
exceeding |P−1(1)|/2r+1 + ε = |P−1(1)|/2r+1 + 2γ + 2(r+ 3)

√
γ, then |ETe [fu(x)

∏r
i=1 gv(yi)]| >

2(r + 3)
√
γ. By an averaging argument, this implies that for at least an (r + 3)

√
γ fraction of

edges under distribution P over the edges, we have |ETe [fu(x)
∏r
i=1 gv(yi)]| > (r + 3)

√
γ. We

call such edges “good”.
By Theorem 4.4, we know for evey good edge e, there must exist some ie ∈ [R1] and odd

cardinality set Se ⊆ π−1
e (ie) such that min{Infi(T1−δ′/2fu), InfS(T1−δ′/2gv)} > τ . For each u ∈ U ,

we define Lu = {i ∈ [R1] : Infi(T1−δ′/2fu) > τ}, for each v ∈ V , we define Lv = {j ∈ [R2] :
j ∈ S, InfS(T1−δ′/2gv) > τ, |S| ≤ d, |S| is odd}. By Lemma 2.8, we know that for gv, we have∑
|S|≤d InfS(T1−δ′/2gv) ≤ (d/δ′)d. Therefore, at most (d/δ′)d/τ sets S can contribute in the

definition of Lv, and thus for each v ∈ V , we have |Lv| ≤ d · (d/δ′)d/τ . Similarly, we have that
for each u ∈ U |Lu| ≤ 1/δ′τ .

Whenever e = (u, v) is a good edge, ie ∈ Lu and Se contributes to Lv. Since Se is odd, it
is nonempty, and thus there exists je ∈ Lv and ie ∈ Lu such that πe(je) = ie. Therefore, for a
good edge, a randomized labeling has at least a 1/(|Lu||Lv|) ≥ τ2(δ′/d)d+1 chance for choosing
ie and je and thus satisfying e. Since at least an (r+ 3)

√
γ fraction (with respect to distribution

P ) of edges are good, the expected fraction of edge weight satisfied by a randomized labeling
exceeds (r+ 3)

√
γτ2(δ′/d)d+1, a positive constant depending only on d, r and ε, as desired. This

completes the proof of Theorem 4.2.

5 Conclusion

In this work, we generalized O’Donnell and Wu’s work [15] on the inapproximability of Max-NTW
and showed that for any boolean predicate P of size greater than 3, if its set of accepting input
strictly contains all inputs of even (or odd) parity, then assuming the d-to-1 Conjecture for some d,
it is NP-hard to approximate Max-CSP(P ) better than the random assignment algorithm. While
the overall analysis is in a similar flavor to [15], we generalized the design of the test distribution
in a new way, and strengthened some part of the analysis so that it worked in general settings.

The question of approximability on satisfiable instances is still widely open. It would be nice
to study if there are any similar results as in [2, 16]. An interesting next step would be to try to
understand the situation where the predicates imply some general linear constraints, such as the
Samorodnitsky-Trevisan predicates in [18, 19].
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Appendix

A Analyzing ETe[
∏r

i=1 gv(yi)]

In this section, we prove Theorem 4.3. We use the same approach as in [15]. However, the
approach in [15] is defined on two variables, while in our case we have r of them. In order to
use the matrix notation, we study the conditional distribution where y1, · · · ,yr−2 is given. Let
H(D, {zi}i∈[r−2]) be the distribution H(D) conditioned on yi = zi for i = 1, · · · , r−2. Similarly,
we define N (D, {zi}i∈[r−2]), Nk(D, {zi}i∈[r−2]) and Hγ(D, {zi}i∈[r−2]).

Let M(P) be the 2D × 2D matrix associated with distribution P defined on {−1, 1}D ×
{−1, 1}D, defined as

M(P)S,T = E
(x,y)∼P

[χS(x)χT (y)].

For a function g : {−1, 1}D → R, we also identify it with a column vector of length 2D, with
entries indexed by S ⊂ [D] in the same order as in the matrix notation. The S-th entry of g is
ĝ(S). Then we have

E
P

[g(x)g(y)] = gTM(P)g.

Thus to bound EHγ(D)[
∏r
i=1 g(yi)], all we need is to upperbound the absolute value of

gT
(
⊗R1
i=1M(Hγ(D, {yj}j∈[r−2]))

)
g.

The following proposition is easy to check.
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Proposition A.1. For any {yi}i∈[r−2], M(H(D, {yi}i∈[r−2]))S,T is nonzero iff S = T and |S|
and |T | are even, in which case it is equal to 1.

Define the distribution E(D) on X ×
∏r
i=1 Yi which generates pairs (yr−1,yr) by choosing

yr−1 uniformly at random and setting yr = yr−1, regardless of the values of x and other yi’s.
M(E(D, {yj}j∈[r−2])) is then the identity matrix. Further introduce Eγ(D) = (1 − γ)H(D) +
γE(D).

The proof is divided into two steps. First, we show that the absolute value of the expectation
under Hγ(D, {yj}j∈[r−2]) is upper bounded by the expectation under Eγ(D, {yj}j∈[r−2]). Then
we derive a bound for the latter. The overall proof is the same as in [15], but we have to make sure
that everything still works when conditioning on any value of {yj}j∈[r−2]. In fact, conditioning
does not change H(D) at all, while the affect of N (D) is limited.

To finish the first step, we need the following lemma in matrix algebra.

Lemma A.2 ([15]). Let Ai and Bi be mi ×mi matrices, i = 1..n, and suppose that Ai −Bi and
Ai +Bi are positive semidefinite. Then

⊗n
i=1Ai −

⊗n
i=1Bi and

⊗n
i=1Ai +

⊗n
i=1Bi are positive

semidefinite.

Lemma A.3. For any fixed values of {yj}j∈[r−2], the matrices

R1⊗
i=1

M(Eγ(di, {yj}j∈[r−2]))±
R1⊗
i=1

M(Hγ(di, {yj}j∈[r−2]))

are positive semidefinitive.

Proof. By Lemma A.2, we only need to show that for each D ≥ 1, the matrices

M(Eγ(D, {yi}i∈[r−2]))±M(Hγ(D, {yi}i∈[r−2]))

are positive semidefinite. For notational simplicity, we henceforth omit showing the dependence
on D and {yi}i∈[r−2].

For the conditional distributions, we still have

Hγ(D, {yi}i∈[r−2]) = (1− γ)H(D, {yi}i∈[r−2]) + γN (D, {yi}i∈[r−2])

and
Eγ(D, {yi}i∈[r−2]) = (1− γ)H(D, {yi}i∈[r−2]) + γE(D, {yi}i∈[r−2]),

therefore M(Eγ) −M(Hγ) = γ(M(E) −M(N )). Hence, to show M(Eγ) −M(Hγ) is positive
semidefinite, we only need to show it for M(E)−M(N ). For any h : {−1, 1}D → R, we have

hTM(N )h = E
(yr−1,yr)∼N

[h(yr−1)h(yr)]

≤
√

E
(yr−1,yr)∼N

[h(yr−1)2]
√

E
(yr−1,yr)∼N

[h(yr)
2]

by Cauchy-Schwarz. Note that the marginals of N are uniform by Lemma 3.3 (actually marginals
of (y1, · · · ,yr−1) and (y1, · · · ,yr−2,yr) since we are already conditioning on {yi}i∈[r−2]). The
marginals are also uniform for E , therefore√

E
(yr−1,yr)∼N

[h(yr−1)2]
√

E
(yr−1,yr)∼N

[h(yr)
2]

= E[h2] = E
(yr−1,yr)∼E

[h(yr−1)h(yr)] = hTM(E)h,
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so we’ve shown that hTM(N )h ≤ hTM(E)h for all h, and hence M(E) − M(N ) is positive
semidefinite as needed.

As for the matrix M(Eγ) + M(Hγ), it equals 2(1 − γ)M(H) + γ(M(E) + M(N )). M(H) is
diagonal with only nonnegative numbers on the diagonal, hence it is positive semidefinite.

It remains to show that M(E) + M(N ) also is. The proof is essentially the same: we start
with hT (−M(N ))h = E(yr−1,yr)∼N [−h(yr−1)h(yr)] and the minus sign disappears with the ap-
plication of Cauchy-Schwarz.

Lemma A.4. ∣∣∣∣∣gT
(

R1⊗
i=1

M(Eγ(di))

)
g

∣∣∣∣∣ ≤ γ.
Proof. M(H(D)) is a diagonal matrix with (S, S) equal to 0 if |S| is odd and 1 if |S| is even,
M(E(D)) is the identity matrix. Thus M(Eγ(D)) is a diagonal matrix whose (S, S) entry is equal
to 1 if |S| is even and equal to γ if |S| is odd. According to definitions, it follows that∣∣∣∣∣gT

(
R1⊗
i=1

M(Eγ(di))

)
g

∣∣∣∣∣ =
∑

S⊆[R2]

ĝ(S)2 · γ#{i∈[R1]:|S∩π−1(i)|is odd}. (2)

But g is an odd function, and therefore ĝ(S)2 is nonzero only if |S| is odd, which implies that
|S ∩ π−1(i)| is odd for at least one i, and hence (2) is upper-bounded by∑

S⊆[R2]

ĝ(S)2 · γ = E[g2] · γ = γ.

Theorem A.5. For any e = (u, v), gv : {−1, 1}R2 → {−1, 1} is odd implies that for any
{yi}i∈[r−2] ∣∣∣∣∣ E

Te({yi}i∈[r−2])
[g(yr−1)g(yr)]

∣∣∣∣∣ ≤ γ.
Proof. Using the matrix notation, we have

E
Te({yi}i∈[r−2])

[g(yr−1)g(yr)] = gTM(Te({yi}i∈[r−2]))g

= gT

(
R1⊗
i=1

M(Hγ(di, {yi}i∈[r−2]))

)
g. (3)

We bound (3) by Lemma A.3

gT

(
R1⊗
i=1

M(Eγ(di))−
R1⊗
i=1

M(Hγ(di, {yi}i∈[r−2]))

)
g ≥ 0,

gT

(
R1⊗
i=1

M(Eγ(di)) +

R1⊗
i=1

M(Hγ(di, {yi}i∈[r−2]))

)
g ≥ 0,
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which implies that

−gT
(

R1⊗
i=1

M(Eγ(di))

)
g ≤ gT

(
R1⊗
i=1

M(Hγ(di, {yi}i∈[r−2]))

)
g ≤ gT

(
R1⊗
i=1

M(Eγ(di))

)
g.

By Lemma A.4 ∣∣∣∣∣ E
Te({yi}i∈[r−2])

[g(yr−1)g(yr)]

∣∣∣∣∣ ≤ γ. (4)

B Analyzing E[fu(x)
∏r

i=1 gv(yi)]

In this section, we prove Theorem 4.4. The analysis of this term is almost an exact copy of
O’Donnell and Wu’s approach. We include the full analysis here for reader’s convenience.

Let Hγ := ⊗Hγ(di), and Iγ := ⊗Iγ(di). The overall idea of the proof is to show that

E
Hγ

[fu(x)
r∏
i=1

gv(yi)] ≈ E
Iγ

[fu(x)
r∏
i=1

gv(yi)],

and then we bound the right hand side. More precisely, the argument is divided into three steps.
First, we apply the Bonami-Beckner operator to the functions. The following theorem bounds

the error introduced in this step.

Theorem B.1. There are positive constants δ ≥ δ′ > 0 depending only on γ and d such that∣∣∣∣∣EHγ[f(x)
r∏
i=1

g(yi)]− E
Hγ

[T1−δ′f(x)
r∏
i=1

T1−δg(yi)]

∣∣∣∣∣ ≤ (r + 1)
√
γ.

Next, we move from distribution Hγ to Iγ .

Theorem B.2. There exists constants τ > 0 depending only on d, γ and δ′, such that the
following holds. If for every i ∈ [R1] and every odd-cardinality set S ⊆ π−1

e (i), we have

min{Infi(T1−δ′fu), InfS(T1−δ′gv)} ≤ τ,

then ∣∣∣∣∣EHγ[T1−δ′f(x)

R1∏
i=1

T1−δg(yi)]− E
Iγ

[T1−δ′f(x)

R1∏
i=1

T1−δg(yi)]

∣∣∣∣∣ ≤ √γ.
And finally, we bound the expectation under Iγ .

Theorem B.3. ∣∣∣∣∣EIγ[T1−δ′f(x)
r∏
i=1

T1−δg(yi)]

∣∣∣∣∣ ≤ √γ.
This follows directly from Lemma 3.9.
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B.1 Proof of Theorem B.1

We first prove Theorem B.1. The idea is to apply Tρ to the functions one by one. Intuitively,
the Bonami-Beckner operator does not change the low-degree parts of functions too much. For
the high-order parts, it follows from Proposition 2.14 that their norms are small and would not
affect much.

Lemma B.4. By taking δ > 0 small enough as a function of δ, d and γ, we ensure that for any
k ∈ [r] ∣∣∣∣∣EHγ[f(x)

k∏
i=1

g(yi) ·
r∏

i=k+1

T1−δg(yi)]− E
Hγ

[f(x)
k−1∏
i=1

g(yi) ·
r∏
i=k

T1−δg(yi)]

∣∣∣∣∣ ≤ √γ.
Proof. Let U be the conditional expectation operator for the correlated probability space

(({−1, 1}R1 ×
r−1∏
i=1

{−1, 1}R2)× ({−1, 1}R2),Hγ),

mapping function h on the latter space to the former space by

(Uh)(x, {yi}i∈[r]\{k}) = E
Hγ

[h(yk)|(x, {yi}i∈[r]\{k})].

We have ∣∣∣∣∣EHγ[f(x)
k∏
i=1

g(yi) ·
r∏

i=k+1

T1−δg(yi)]− E
Hγ

[f(x)
k−1∏
i=1

g(yi) ·
r∏
i=k

T1−δg(yi)]

∣∣∣∣∣
=

∣∣∣∣∣EHγ[f(x)
k−1∏
i=1

g(yi) ·
r∏

i=k+1

T1−δg(yi) · (id− T1−δ)g(yk)]

∣∣∣∣∣
=

∣∣∣∣∣ E
(x,{yi}i∈[r]\{k})∼Hγ

[
f(x)

k−1∏
i=1

g(yi)

r∏
i=k+1

T1−δg(yi)

·(U(id− T1−δ)g)(x, {yi}i∈[r]\{k})
]∣∣∣∣∣. (5)

Consider the function inside the expectation to be a product of two functions on X ×
∏k−1
i=1 Yi ×∏r

i=k+1 Yi, F = f
∏k−1
i=1 g

∏r
i=k+1 T1−δg and G = U(id − T1−δ)g. Take the Efron-Stein decom-

position of these two functions w.r.t. Hγ on X ×
∏k−1
i=1 Yi ×

∏r
i=k+1 Yi. By orthogonality of the

Efron-Stein decomposition and Cauchy-Schwarz,

(5) =

∣∣∣∣∣ ∑
S⊆[R1]

E
(x,{yi}i∈[r]\{k})

∼Hγ

[FS(x, {yi}i∈[r]\{k}) ·GS(x, {yi}i∈[r]\{k})]

∣∣∣∣∣ (6)

≤
√ ∑
S⊆[R1]

‖FS‖22
√ ∑
S⊆[R1]

‖GS‖22 ≤
√ ∑
S⊆[R1]

‖GS‖22, (7)

where the ‖·‖2 are with respect to Hγ ’s marginal on X ×
∏
i∈[r]\k Yi. The conditional expectation

operator U commutes with taking Efron-Stein decomposition, GS = UG′S , where G′ = (id −
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T1−δ)g. Here the Efron-Stein decomposition is with respect to Hγ ’s marginal distribution on Yk,
namely, the uniform distribution, and it satisfies

gS =
∑

U⊆[R2]:π(U)=S

ĝ(U)χU .

Applying noise operator also commutes with taking Efron-Stein decomposition, hence GS =
UG′S = U(id− T1−δ)gS . Substituting this into (7) yields

(7) =

√ ∑
S⊆[R1]

‖U(id− T1−δ)gS‖22. (8)

Let ρ0 = 1− β2/2 be the bound in Lemma 3.9. Then

(8) ≤
√ ∑
S⊆[R1]

ρ
|S|
0 ‖(id− T1−δ)gS‖22, (9)

‖(id− T1−δ)gS‖22 =
∑

U⊆[R2]:π(U)=S

(
1− (1− δ)2|U |

)
ĝ(U)χ(U) (10)

≤
∑

U⊆[R2]:π(U)=S

(
1− (1− δ)2d|S|ĝ(U)

)
χ(U) (11)

=
(

1− (1− δ)2d|S|
)
‖gS‖22, (12)

therefore

(8) ≤
√ ∑
S⊆[R1]

ρ
|S|
0

(
1− (1− δ)2d|S|

)
‖gS‖22. (13)

We bound

ρ
2|S|
0

(
1− (1− δ)2d|S|

)
≤ exp

(
−|S|β2

)
· (2d|S|δ). (14)

Choose δ > 0 small enough so that (14) is upper-bounded by γ, and (5) ≤ √γ.

It remains to prove the following lemma.

Lemma B.5. By taking δ′ > 0 small enough as a function of δ, d, γ and δ, we ensure∣∣∣∣∣EHγ[f(x)
r∏
i=1

T1−δg(yi)]− E
Hγ

[T1−δ′f(x)
r∏
i=1

T1−δg(yi)]

∣∣∣∣∣ ≤ √γ.
Proof. Define the noised version of Hγ , H∗γ by first generating (x, {yi}i∈[r]) ∼ Hγ , and then

rerandomize each bit in yi with probability δ. Define H∗γ(D) on {−1, 1}R1 × ⊗ri=1{−1, 1}R2

similarly. Then H∗γ can also be written as a product distribution H∗γ = ⊗R1
i=1H∗γ(di).

The structure of the proof is similar to Lemma B.4. We need the following correlation lemma
whose proof is similar to Lemma 3.9.

Lemma B.6. ρ({−1, 1},
∏r
i=1{−1, 1}D;H∗γ(D)) ≤ 1− β2/2 where

β =
γ · (2r−2 − 1)δrD

2(2r−1)DD(2r−1 − 1)
.

is a lowerbound of the least probability of an atom in H∗γ(D).
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B.2 Proof of Theorem B.2

By definition, we have Hγ = ⊗Hγ(di) and Iγ = ⊗Iγ(di). The overall plan is to change the
distributions in the product one by one from Hγ(di) to Iγ(di). To this end, we prove the following
theorem.

Theorem B.7. For each k ∈ [R1]∣∣∣ E⊗k−1
i=1 Iγ(di)⊗

⊗R1
i=kHγ(di)

[T1−δ′f(x)

r∏
i=1

T1−δg(yi)]

− E⊗k
i=1 Iγ(di)⊗

⊗R1
i=k+1Hγ(di)

[T1−δ′f(x)

r∏
i=1

T1−δg(yi)]
∣∣∣ ≤ ∆k, (15)

where

∆k := τ δ
′/2(r+1)

2dInfk(T1−δ′/2f) +
∑

S⊆π−1(k),|S| is odd

InfS(T1−δ′/2g)

 .

Proof of Theorem B.2. If we sum over all k ∈ [R1], by triangle inequality, we have∣∣∣∣∣EHγ[T1−δ′f(x)

R1∏
i=1

T1−δg(yi)]− E
Iγ

[T1−δ′f(x)

R1∏
i=1

T1−δg(yi)]

∣∣∣∣∣
≤ τ δ

′/2(r+1)

2d
R1∑
k=1

Infk(T1−δ′/2f) +
∑

S⊆π−1(k)
for some k∈[R1]

InfS(T1−δ′/2g)


≤ τ δ

′/2(r+1)(2d(1/δ′) + (d/δ′)d)

≤ τ δ
′/2(r+1)2(d/δ′)d.

We now choose τ small enough so that the RHS is bounded by
√
γ, and this completes the

proof.

Proof of Theorem B.7. We show the theorem for case k = 1. We write x′ for strings (x2, · · · , xR1),
y′i for strings (yi,d1+1, · · · , yi,R2). We break up the Fourier expansion of f according to its depen-
dence on x1:

f(x) = F∅(x
′) + x1F1(x′).

Similarly, we break up the Fourier expansion of g according to its dependence on the bits
y1, · · · , yd1 :

g =
∑
S⊆[d1]

χS(y1, · · · , yd1)GS(y′),

where for any S ⊆ [d1], we have

GS(y′) =
∑

Q⊆[R2],Q∩[d1]=S

ĝ(Q)χQ\S(y′).

Since ĝ(Q) = Ey[g(y)χQ(y)], we have

GS(y′) = E
y1,y2,··· ,yd1

,y′
[g(y1,y2, · · · ,yd1 , y

′)χS(y1,y2, · · · ,yd1)],
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and therefore GS is bounded in [−1, 1]. Similarly, so are F∅ and F1. We also have the Fourier
expansions

T1−δ′f(x) = T1−δ′F∅(x
′) + (1− δ′)x1T1−δ′F1(x′), (16)

T1−δg(y) =
∑
S⊆[d1]

(1− δ)|S|χS(y1, · · · , yd1)T1−δGS(y′). (17)

Lemma B.8. For any functions F : X → R, Gi : Yi → R,

E
Hγ(D)

[F (x)
r∏
i=1

Gi(y)]− E
Iγ(D)

[F (x)
r∏
i=1

Gi(y)] =
∑

S⊆[D],|S| is odd

(1− γ)F̂ ({1})
r∏
i=1

Ĝi(S). (18)

Proof.

LHS =
∑
U⊆[1]
Vi⊆[D]

F̂ (U)
r∏
i=1

Ĝ(Vi)

(
E

Hγ(D)
[χU (x)

r∏
i=1

χVi(yi)]− E
Iγ(D)

[χU (x)
r∏
i=1

χVi(yi)]

)
. (19)

Since Hγ(D) = (1−γ)H(D)+γN (D), Iγ(D) = (1−γ)I(D)+γN (D), by linearity of expectation,
we have

E
Hγ(D)

[χU (x)
r∏
i=1

χVi(yi)]− E
Iγ(D)

[χU (x)
r∏
i=1

χVi(yi)] (20)

= (1− γ)

(
E
H(D)

[χU (x)
r∏
i=1

χVi(yi)]− E
I(D)

[χU (x)
r∏
i=1

χVi(yi)]

)
. (21)

Note that H(D) and I(D) have the same marginal distribution on
∏r
i=1 Yi. Therefore, for (21)

to be nonzero, U must be nonempty, or U = {1}. Now we have that

E
I(D)

[χU (x)

r∏
i=1

χVi(yi)] = E
I(D)

[x] E
I(D)

[
r∏
i=1

χVi(yi)] = 0.

It is easy to see that EH(D)[χU (x)
∏r
i=1 χVi(yi)] is zero unless for all i ∈ [r], Vi = V for some

V . Moreover, |V | must be odd, in which case the expectation is 1. Thus (21) is equal to the
RHS.

We now rewrite the LHS of (15) as∣∣∣ E
H′γ

[ E
Hγ(d1)

[T1−δ′f(x)
r∏
i=1

T1−δg(yi)]− E
Iγ(d1)

[T1−δ′f(x)
r∏
i=1

T1−δg(yi)]]
∣∣∣. (22)

By Lemma B.8, the above is equal to

|
∑

S⊆[d1],|S| is odd

(1− γ)(1− δ′)(1− δ)r|S| E
H′γ

[T1−δ′F1(x′)
r∏
i=1

T1−δGS(y′
i)]| (23)

≤
∑

S⊆[d1],|S| is odd

(1− δ′)(1− δ)r|S| E
H′γ

[|T1−δ′F1(x′)
r∏
i=1

T1−δGS(y′
i)|] (24)

≤
∑

S⊆[d1],|S| is odd

(1− δ′)(1− δ)r|S|‖T1−δ′F1‖r+1‖T1−δGS‖rr+1, (25)
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where the last step uses Hölder’s Inequality, and the norms ‖ · ‖r+1 are with respect to the
corresponding marginals of H′γ , which are uniform.

Lemma B.9. For any function f : {−1, 1}n → [−1, 1] and 0 < η < 1,

‖T1−ηf‖r+1 ≤ ‖T1−η/2f‖
(2+η)/(r+1)
2 .

Proof. We first prove that for f ′ : {−1, 1}n → [−1, 1],

‖T1−η′f
′‖r+1 ≤ ‖f ′‖(2+2η′)/(r+1)

2 .

Observe that

‖T1−η′f
′‖r+1 = E[|T1−η′f

′|r+1]1/(r+1)

≤ E[|T1−η′f |2+2η′ ]1/(r+1) = ‖T1−η′f‖
(2+2η′)/(r+1)
2+2η′ .

Since 2 + 2η′ ≤ (1 − η′)2 + 1, by Hypercontractive Inequality of Bonami [3] and Gross [6], the

above is upper-bounded by ‖f‖(2+2η′)/(r+1)
2 . To prove the lemma, observe that

‖T1−ηf‖r+1 ≤ ‖T1−η/2T1−η/2f‖r+1 ≤ ‖T1−η/2f‖
(2+η)/(r+1)
2 .

As F1 and GS are bounded in [−1, 1], we can upper-bound

‖T1−δ′F1‖r+1‖T1−δGS‖rr+1 ≤ ‖T1−δ′/2F1‖(2+δ′)/(r+1)
2 ‖T1−δ/2GS‖

r(2+δ)/(r+1)
2 .

We express GS ’s and F1’s Fourier coefficients with g’s and f ’s original Fourier coefficients

‖T1−δ/2GS‖22=
∑

Q⊆[R2],Q∩[d1]=S

(1− δ/2)2|Q|−2|S|ĝ(Q)2 (26)

≤
∑

S⊆Q⊆[R2]

(1− δ/2)2|Q|−2|S|ĝ(Q)2 (27)

≤(1− δ/2)−2|S| · InfS(T1−δ′/2g), (28)

(29)

where we used δ ≥ δ′ in the last step.

‖T1−δ′/2F1‖22 ≤ (1− δ′/2)2 · Inf1(T1−δ′/2f).

Plugging these two bounds back, we upper-bound the LHS as following∑
S⊆[d1],S is odd

Inf1(T1−δ′/2f)(2+δ)/2(r+1) · InfS(T1−δ′/2g)r(2+δ)/2(r+1), (30)

where we also used δ ≥ δ′. By the hypothesis that min{Inf1(T1−δ′/2f), InfS(T1−δ′/2g)} ≤ τ , either

Inf1(T1−δ′/2f)δ/2(r+1) ≤ τ δ/2(r+1), or InfS(T1−δ′/2g)rδ/2(r+1) ≤ τ rδ/2(r+1) for each S in the sum.
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In either case, we can bound the above by

τ δ/2(r+1) ·
∑

S⊆[d1],S is odd

Inf1(T1−δ′/2f)1/(r+1) · InfS(T1−δ′/2g)r/(r+1) (31)

≤τ δ′/2(r+1) ·
∑

S⊆[d1],S is odd

(Inf1(T1−δ′/2f) + InfS(T1−δ′/2g)) (32)

≤τ δ′/2(r+1) · (2dInf1(T1−δ′/2f) +
∑

S⊆[d1],S is odd

InfS(T1−δ′/2g)). (33)
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