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Abstract

We consider so-called “incremental” dynamic programming algorithms, and are in-
terested in the number of subproblems produced by them. The standard dynamic pro-
gramming algorithm for the n-dimensional Knapsack problem is incremental, produces
nK subproblems and nK2 relations (wires) between the subproblems, where K is the
capacity of the knapsack. We show that any incremental algorithm for this problem must
produce about nK subproblems, and that about nK log K wires (relations between sub-
problems) are necessary.
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1 Introduction

Capturing the power and weakness of algorithmic paradigms is an important task pursuit over
several last decades. The problem is a mix of two somewhat contradicting goals. The first
of them is to find an appropriate mathematical model formalizing vague terms like greedy
algorithms, dynamic programming, backtracking, branch-and-bound algorithms, etc. The
models must be expressive enough by being able to simulate at least known algorithms. But
they should also be “reasonable” enough to avoid the power of arbitrary algorithms, to avoid
problems like P versus NP, as well as the power of general boolean circuits.

Having found a formal model for an algorithmic paradigm, the ultimate goal is to prove
lower bounds in them. If one succeeds in doing this, we have a provable limitation of a
particular algorithmic paradigm. If one fails to prove a strong lower bound, matching an
upper bound given by known algorithms, this is a strong motivation to search for more efficient
algorithms. Note that we are seeking for unconditional lower bounds that are independent of
any unproven assumptions, like the assumption that P 6= NP.

Much work has been conducted along these lines. Just to name a few, Hausmann and Korte
[18] showed that there is no polynomial query approximative algorithm for the optimization
problem over a general independence system which has a better worst-case behavior than the
greedy algorithm. A query algorithm can ask in each step whether some solution is a feasible
solution. Chvátal [15] defined a general scheme for branch-and-bound algorithms and proved
exponential lower bounds to 0-1 Knapsack in this model. This last result was extended by
Chung et al. [14] to integer Knapsack, and to a more general model capturing some aspects of
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dynamic programming in [26]. Exponential lower bounds for 0-1 Knapsack problem in a class
of query algorithms were proved by Hausmann et al. [19]. More generally, Khana et al. [29]
formalized various local search paradigms, and Arora et al. [5] looked at general methods for
generating linear relaxations for boolean optimization problems.

In this paper we focus on the dynamic programming paradigm. There were many attempts
to formalize this paradigm, and various refinements were obtained [8, 27, 36, 21, 20, 37, 3, 13],
just to mention some of them. In particular, Woeginger [37] introduces a model of so-
called “DP-simple” algorithms in which only problems susceptible to a dynamic program-
ming fully polynomial time approximation schemes can be expressed. More general, but still
tractable models of so-called “prioritized branching trees” (pBT) and “prioritized branch-
ing programs” (pBP) were introduced, respectively, by Alekhnovich et al. [3] and Buresh-
Oppenheim et al. [13]. These models are based on the framework of “priority algorithms”
introduced by Borodin et al. [11], and subsequently studied and generalized by [4, 3, 12, 16, 35];
this framework aims to capture the power of greedy algorithms. The models of pBT and pBP
extend the power of greedy algorithms by adding a power of backtracking and dynamic pro-
gramming. In particular, already pBTs subsume the power of DP-simple algorithms. In [3]
it is shown that the Knapsack problem requires pBTs of exponential size, whereas in [13] it
is shown that detecting the presence of a perfect matching in bipartite graphs requires even
pBPs of exponential size.

Our model Just like in the case of prioritized BPs, our starting point is the fact that every
DP algorithm implicitly constructs a subproblem graph (or a “table of partial solutions”, as we
know from algorithms courses). This graph has a directed wire from the node for subproblem
u to the node for subproblem v if determining an optimal solution for subproblem v involves
directly considering an optimal solution for subproblem u. Our main observation is that
for some DP algorithms, these subproblem graphs “work” in a similar manner as classical
branching programs for decision problems do—we only need to change the underlying boolean
semiring by other semirings.

This leads us to the model of “dynamic branching programs” (dynamic BP) that are able to
simulate so-called “incremental” DP algorithms. Our hope is that such a more direct relation
to the classical model of branching programs could help us to use lower-bound methods
developed for this latter model. Proofs given in this paper support this hope: we apply lower
bound arguments already invented for the boolean model.

Meaning of “incremental” Let us explain what do we mean under an “incremental” DP
algorithm. In DP algorithms for optimization problems one usually uses max and plus (or min
and plus) operations to produce the value S(v) of a subproblem v from the values computed
at the subproblems u1, . . . , uk having direct wires to v in the subproblem graph. We call a
DP algorithm incremental if its subproblem graph has the following two properties. First,
each wire uj → v is responsible for at most one data item xi in the given problem instance
x = (x1, . . . , xn). Second, the transition function has the form

S(v) = max{S(u1) + c1, . . . , S(uk) + ck}

where ci is the cost of the data item which the wire (ui, v) is responsible for, if this item was
accepted at that wire; if the item was rejected at the wire, then ci = 0. That is, the cost of
the problem solution is the subproblem cost plus a cost that is directly attributable to the
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decision about the item itself. We thus use the term “incremental” to stress that the value of
a partial solution is incrementally (not globally) modified.

In a non-incremental algorithm, the transition function can have a more general form

S(v) = max
{

∑

i∈I1

S(ui), . . . ,
∑

i∈Im

S(ui)
}

for some subsets I1, . . . , Im ⊆ {1, . . . , k}. Thus, incremental DP algorithms constitute a
subclass of all DP algorithms where the usage of +-operation is restricted: one of the two
inputs must be the cost of a data item, not the value of an another subproblem.

By the size of a DP algorithm we will mean the number of subproblems it produces, that
is, the number of nodes in its subproblem graph. Given an optimization problem, a natural
question is: what is the smallest possible size of a DP algorithm solving this problem? In
this paper we prove almost matching lower bounds on the size of incremental DP algorithms
solving the Knapsack problem.

The Knapsack problem In the n-dimensional Knapsack problem with an integer knapsack
capacity K, a problem instance is a sequence of n pairs ai = (pi, wi) of natural numbers; pi is
the “profit”, and wi the “weight” of the i-th item. We will assume that wi ≤ K for all i. The
goal is to pack items into the knapsack so that the total size does not exceed the capacity of
the knapsack, and the total profit is as large as possible:

maximize p(S) :=
∑

j∈S pj

subject to w(S) :=
∑

j∈S wj ≤ K and S ⊆ [n] = {1, . . . , n} (1)

A standard DP algorithm for the maximization problem is to define the subproblems by:
S(i, j) = the maximal total profit for filling a capacity j knapsack with some subset of items
1, . . . , i. The DP algorithm is then described by the recursion:

S(i, j) = max{S(i − 1, j), S(i − 1, j − wi) + pi} . (2)

The value of the optimal solution is Opt(a) = S(n, K). Note that this algorithm is incre-
mental: when going from subproblem S(i − 1, j − wi) to S(i, j), the value is increased by just
adding the profit pi. The number of subproblems produced by this algorithm, and hence,
the size of this algorithm is nK. The algorithm is “read-once” (along every branch of the
recursion, every item is queried only once), and is “oblivious” (along all branches the items
are queried in the same order).

In the minimization Knapsack problem we want to minimize the total weight by keeping
the total profit over some threshold K:

minimize w(S)
subject to p(S) ≥ K and S ⊆ [n]

(3)

In this case we can consider subproblems T (i, j) = the minimum weight using only items
1, . . . , i and a profit of at least j. The DP algorithm is then described by the recursion:

T (i, j) = min{T (i − 1, j), T (i − 1, j − pi) + wi} . (4)

The value of the optimal solution is Opt(a) = T (n, K). The size of (the number of subprob-
lems produced by) this algorithm is nK, and the algorithm is incremental, as well.
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Our results We have just seen that the n-dimensional Knapsack problem with knapsack
capacity K can be solved by an incremental DP algorithm using nK subproblems and at
most nK2 relations (wires) between them. A natural question is: can any incremental DP
algorithm solve the Knapsack problem using substantially smaller size? Our first result is
a negative answer: any incremental DP algorithm for the Knapsack problem must have size
Ω(nK), as long as K ≥ 3n (Theorem 3.1). Our next result is that, even if “redundant”
paths in the subproblem-graph are allowed, at least Ω(nK log K) wires (relations between the
subproblems) are necessary to solve the minimization Knapsack problem (Theorem 4.1). It
remains open whether Ω(nK) nodes are necessary in this more general model.

The proofs of our lower bounds are not involved: they use standard cut-and-paste ar-
guments for branching programs together with some combinatorics. So, our contribution is
rather conceptional: we isolate a natural subclass of DP algorithms where some non-trivial
lower bounds can be proved. The model of “dynamic branching programs” introduced in
this paper can be generalized in several ways, as sketched in the last section. Strong lower
bounds for such generalized models would extend our knowledge about the limitations of
DP algorithms, even when they are equipped with features that are not used in existing DP
algorithms.

Of particular interest is to understand the role of the feature of allowing “redundant” paths
in the subproblem graph, that is, paths that contribute “nothing” to the computed value, but
whose presence may substantially reduce the total number of generated subproblems. In clas-
sical branching programs such “redundant” paths play a crucial role: their presence provably
leads to exponential savings in program size. Interestingly, none of existing DP algorithms
(we are aware of) use this “strange” feature, so it would be interesting to understand its
algorithmic meaning. We will shortly discuss this issue in Section 5.

2 Dynamic Branching Programs

We consider 0-1 optimization problems. In each such problem we have some finite set D
of data items together with their cost function cost : D → R. A problem instance is a
sequence a = (a1, . . . , an) ∈ Dn of data items. A solution for instance a is a binary vector
δ = (δ1, . . . , δn) ∈ {0, 1}n, where δi = 1 means that the i-th item ai is accepted; we will
often view a solution δ as the set I = {i ∈ [n] : δi = 1} of accepted items. There is also
some constraint predicate C : Dn × {0, 1}n → {0, 1}. A solution δ is a feasible solution for an
instance a if and only if C(a, δ) = 1. The goal is to maximize (or minimize) the total cost
∑n

i=1 δi · cost(ai) over all feasible solutions δ for a. The value of an optimal solution for a
given instance a is denoted by Opt(a). For definiteness, we set Opt(a) = 0 if a has no feasible
solutions.

For example, in the n-dimensional Knapsack problem with knapsack of capacity K, items
are pairs of natural numbers (profit, weight), whose costs are equal to their profits. The
constraint predicate has the form “the weight of accepted items does not exceed K”, and
Opt(a) is the biggest total profit of accepted items.

Definition of dynamic branching programs A static branching program (static BP)
is a directed acyclic graph P (x1, . . . , xn) with two special nodes, the source node s and the
target node t. Multiple wires, joining the same pair of nodes are allowed. If there are no
multiple wires and if (after removing the target node t) the underlying graph of a program
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is a tree, then we call it a static branching tree (static BT). By the size of a program we will
mean the number of inner nodes (that is, we do not count s and t as nodes).

There are two types of wires: unlabeled wires (rectifiers) and labeled wires (contacts).
Each contact e is labeled by one of the variables xi (meaning that e is responsible for the i-th
item in the input sequence) and has a decision predicate δe : D → {0, 1} about the item it is
responsible for: the item xi is accepted at e if and only if δe(xi) = 1.

In a dynamic branching program (dynamic BP), each contact is also allowed to have its
survival test te : D → {0, 1}. The meaning of this test is the following: when input a ∈ Dn

comes, the contact e responsible for the i-th variable is removed from the program if te(ai) = 0
(the contact has not passed the survival test on input a), and e remains intact if te(ai) = 1.
Thus, being “dynamic” means that the structure of the program may depend on the actual
problem instance.

A path p is consistent with a given input string a ∈ Dn, if this input passes all survival
tests along p; in this case we also say that p is a computation on input a. We require that a
BP (be it static or dynamic) satisfies the following two “consistency conditions”.

Consistency conditions If a wire e1 precedes a wire e2 on some path, and if both wires
are responsible for the same variable, then we require that

(i) te1
≤ te2

(once survived, always survived);

(ii) δe1
≤ δe2

(once accepted, always accepted).

The first condition (i) requires that if an item passed the first survival test along a path, then
it cannot “die” later on a wire responsible for this item. The second condition (ii) requires
that if an item is accepted, then it cannot be rejected later by a wire responsible for this item.
Note however that once rejected, the item can be still accepted later.

A dynamic BP is oblivious if along every path the items are queried in the same order,
and is read-once if along every path at most one contact is responsible for one and the same
item.

Remark 1. Note that read-once BP need not be oblivious, and an oblivious BP need not be
read-once. Every read-once BP automatically satisfies both conditions (i) and (ii). Every
static BP automatically satisfies the condition (i) just because there are no survival tests at
all.

How does a dynamic BP compute? When an input a ∈ Dn comes, each contact e
responsible for the i-th variable xi receives its weight we(a) which is defined as

we(a) := δe(ai) · cost(ai) .

That is, if the wire e is responsible for the i-th item, then we(a) = 0 if this item is rejected,
and we(a) = cost(ai) if this item is accepted at e. Unlabeled wires (rectifiers) e are responsible
for no variable, have no survival tests and make no decisions; their weight is always zero.

Let Paths(a) denote the set of all s-t paths in the program that are consistent with a given
input a ∈ Dn. The weight, wp(a), of a path p ∈ Paths(a) on an input a ∈ Dn is defined as
the sum wp(a) :=

∑

e∈p we(a) of the weights of its wires. The value P (a) of the program on
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the input a is the maximum (or a minimum, if we have a minimization problem) weight of
all paths consistent with a:

P (a) = max
{

∑

e∈p

we(a) : p ∈ Paths(a)
}

.

That is, when an input a ∈ Dn comes, we first remove all wires e for which te(a) = 0, and then
compute the value P (a) as the maximum weight of an s-t path in the remaining sub-program
of P . In other words, P (a) is the value, Val(t), of the target node t defined inductively as
follows. The start node s always has a zero value, Val(s) = 0. Let now e1, . . . , ek be all the
wires from nodes v1, . . . , vk to a node v that are consistent with the input a; that is, each
wire ej = (vj , v) is either a rectifier (an unlabeled wire), or is a contact such that tej

(a) = 1.
Then

Val(v) = max{Val(v1) + we1
(a), . . . , Val(vk) + wek

(a)} . (5)

In other words, at each wire the value is increased by its weight, and at every node the
maximum of values coming from its (survived) predecessors is taken. Recall that rectifiers
do not change the accumulated value: they are only used to “transport” the value. The
presence of such “useless” wires my still substantially decrease the total number of wires (see
Remark 7).

Remark 2. If a contact e = (vj , v) is responsible for the item xi, then this item is accepted
at e only if both te(xi) = 1 and δe(xi) = 1 hold. So, one could wonder why not to assign
to e just one predicate ∆e(xi) = te(xi) ∧ δe(xi) and define the weight of the contact e as
w′

e(a) := ∆e(ai) · cost(ai)? The reason for not doing this is explained by the way (5) the
values at nodes are computed: out of all wires entering the node v, only survived wires can
contribute to Val(v). That is, if the wire e survived the test (te(a) = 1), then it contributes
either Val(vj) + we(a) or Val(vj) to the maximum (5). But if e does not survive the test
(te(a) = 0), then it contributes nothing to Val(v).

The solution produced by a path p ∈ Paths(a) on input a is the set

Ip(a) = {i : δe(ai) = 1 and e ∈ p}

of items accepted along p. A program P solves a given optimization problem on a subset
A ⊆ Dn of problem instances, if for every a ∈ A the following holds:

1. For every input a ∈ A there is a path in Paths(a) whose produced solution is optimal
for a.

2. For every path p ∈ Paths(a), the solution Ip(a) produced by p on input a is a feasible
solution for a.

A program solves the problem if it solves it on the set A = Dn of all problem instances.

Example 1 (Knapsack problem). The DP algorithm (2) for the maximization Knapsack prob-
lem (1) can be turned into an oblivious read-once dynamic BP with nK nodes as follows.

As nodes we take the subproblems S(i, j) as defined in (2). For every k = 1, . . . , j, there
is a contact S(i − 1, k) → S(i, j) responsible for the i-th item xi = (pi, wi). The contact
S(i − 1, j) → S(i, j) has no survival test, and makes the decision δ(xi) ≡ 0 (always reject).
Each of the remaining contacts S(i−1, k) → S(i, j), for k < j, has the survival test te(xi) = 1
if and only if wi = j − k. The decision of each such contact e is δe(xi) ≡ 1 (always accept),
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· · · S(i − 1, k) · · · S(i − 1, j) · · ·

S(i, j)· · · · · ·

δ(xi)≡1

is wi = j − k?
δ(xi)≡0

Figure 1: A fragment of a dynamic branching program for the Knapsack problem.

and hence, the weight of each such contact is cost(xi) = pi. Thus, when an input a with
ai = (pi, wi) comes, only two contacts S(i−1, j) → S(i, j) and S(i−1, j−wi) → S(i, j) entering
the node S(i, j) will survive (see Fig. 1). There is also the start node S(0, 0) from which there
is a contact responsible for the first item x1 to each of the nodes S(1, 1), . . . , S(1, K). Each
contact S(0, 0) → S(1, j) makes a trivial decision δ(x1) ≡ 1 (accept the first item), and has
a survival test te(a1) = 1 iff w1 ≤ j. The target node is S(n, K). It is easy to see that the
resulting dynamic BP is read-once and oblivious. The program has nK nodes and O(nK2)
wires. The dynamic BP for the minimization Knapsack problem (3) is similar.

More examples of dynamic BPs for other optimization problems are given in Appendix A.
At this point, we only stress that in all these examples the DP algorithm itself gives us a
dynamic BP without any changes in the algorithms; only the form of input instances has to be
slightly modified, in some cases. This indicates that the model of dynamic BPs is apparently
the “right” way to represent incremental DP algorithms.

Remark 3. Note that we have one program for all problem instances a ∈ Dn. But we do not
require that every optimal solution for a must be produced by some s-t path: it is enough
that one path produces an optimal solution, and none of the remaining paths produces an
infeasible solution.

Remark 4. The model of static BP tries to solve the original problem by reducing it to the
“heaviest” (or “lightest”) s-t path problem on one particular acyclic graph. Namely, every
instance a ∈ Dn defines some weighting of the wires of the underlying graph G of the static
BP P , and the output value P (a) is the weight of the heaviest s-t path in G. If the program is
dynamic (has survival tests), then P (a) is the the weight of the heaviest s-t path in a subgraph
of G defined by the instance a.

Remark 5. A similar in its “sole” model of so-called combinatorial dynamic programs was
introduced in [9]. Here one associates with each problem instance a digraph whose wires keep
some weights in such a way that there is a 1-to-1 between s-t paths and all feasible solutions
for that instance. The minimal weight of a path must then be the value of an optimal solution
for the given instance. Thus, this is not a “computational model” in a usual sense since there
are no “ partial computations” and no “partial solutions” in this model—only s-t paths have
a “meaning”. This is more a class of problems whose all feasible solutions may be encoded as
s-t paths.

Remark 6. The way how a dynamic BP computes its value depends on what semiring we
are working over. So as defined above, dynamic BPs work over the semiring (max, +) or
(min, +). The weight of a path in this case is the sum of weights of the contacts accepting
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the corresponding items, and the value of the program is the maximum (or minimum) of the
weights of all consistent paths. In the boolean semiring ({0, 1}∨, ∧), the weight of a path
is the AND of the weights of its contacts. That is, in this case we have AND instead of
Plus, and OR instead of Max. Thus, if we let all decisions be “accept” (δe ≡ 1), and set
cost(0) = cost(1) = 1, then any dynamic BP P over the boolean semiring turns to a classical
nondeterministic branching program computing some boolean function f : {0, 1}n → {0, 1}
by: f(a) = 1 if and only if there is an s-t path in P consistent with a.

Are our restrictions on dynamic BP reasonable? Our restriction on survival tests te :
D → {0, 1} is twofold: first we require these tests be “local” (they can only depend on a single
item in the input sequence), and we have the consistency condition (i) on them. Both these
restrictions on survival tests are (more or less explicitly) present in many other formalizations
of DP algorithms, including the model of prioritized branching programs invented in [13]. We
now argue that this is not a coincidence: without any restrictions on the survival tests the
resulting model would be too powerful.

Proposition 1. If survival tests can be arbitrary functions te : Dn → {0, 1}, then any n-
dimensional 0-1 optimization problem can be solved by an oblivious read-once dynamic BP of
size n.

Proof. To construct a desired dynamic BP, take a sequence v1, . . . , vn of nodes, and draw
two parallel wires ei,0 and ei,1 from vi to vi+1. Let the decision made at the wire ei,α be
δ(xi) ≡ α (always accept or always reject). Finally, define the survival tests ti,α(x) of these
wires as follows. For each feasible input x ∈ Dn, fix an optimal solution Ix ⊆ [n] for x. Then
define ti,1(x) = 1 if and only if i ∈ Ix, and ti,0(x) = 1 if and only if i 6∈ Ix. Now, when an
input x ∈ Dn comes, only one s-t path will survive, and Ix is the solution produced by this
path.

We now argue that the consistency condition (i) is essential: even if we would require all
survival tests be local (of the form “is xi = d?” for a data item d ∈ D), and even if we would
allow constant decisions (δe ≡ 0 or δe ≡ 1), the resulting model is still too powerful—at least
as powerful as unrestricted branching programs! Recall that a nondeterministic branching
program (NBP) for a boolean function f : {0, 1}n → {0, 1} is a directed acyclic graph where
at some wires tests of the form “is xi = 0?” or a test “is xi = 1?” are made; if there are
no rectifiers (wires at which no test is made), then such a program is usually called contact
scheme. We also have a source node s and a target node t. Such a program accepts an input
x ∈ {0, 1}n if and only if this input passes all tests of at least one s-t path. The strongest lower
bound for NBPs remain the lower bound Ω(n3/2/ log n) proved by Nechiporuk [32]. Moreover,
this bound is on the number of wires; concerning the number of nodes (the measure we are
interested in), even super-linear lower bounds are not known.

Proposition 2. Without the restrictions (i) on survival tests, the model of dynamic BPs is
at least as powerful as the model of nondeterministic branching programs.

Proof. With every boolean function f : {0, 1}n → {0, 1} we can associate the following
artificial maximization problem with a linear target function. In this problem, data items are
boolean bits ai ∈ {0, 1}, each with cost(ai) = 1. Solutions are vectors δ ∈ {0, 1}n. Such a
solution δ is feasible for input instance a ∈ {0, 1}n if f(a) = 1 and δ has exactly one 1. The
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goal is to compute Opt(a) = max
∑n

i=1 δi · cost(ai) over all feasible solutions δ for a. Note
that every dynamic BP solving this problem must compute the function f .

Suppose now we have a nondeterministic branching program P computing f . We can
transform P into a dynamic BP P ′(x) solving the optimization problem for f by just relabeling
the wires. Let e be a wire in P at which a test te(xi) of the form “is xi = 1?” is made. We
leave this test as a survival test of e, and define the decision predicate δe at e by: δe(xi) ≡ 1,
if e is a wire leaving the start node s of P , and δe(xi) ≡ 0 otherwise. Thus, along each
consistent s-t path exactly one item is accepted. Since the NBP accepts an input a ∈ {0, 1}n

if and only if there exists an s-t path consistent with a, the resulting dynamic BP solves the
maximization problem for f .

3 Lower Bound for Dynamic Programs

We have just shown that the n-dimensional Knapsack problem can be solved by a dynamic BP
using nK nodes, where K is the capacity of the knapsack. Moreover, the resulting BP is read-
once and oblivious. We will now show that this trivial upper bound is almost tight: Ω(nK)
nodes are also necessary, even in the class of non-oblivious and not read-once programs.

Moreover, this number of nodes is necessary already to solve the simple Knapsack problem
where the profit of each item is equal to its weight. In this problem, which we call the (n, K)-
knapsack problem, input instances are sequences a = (a1, . . . , an) of integers in {0, 1, . . . , K},
and the goal is to compute the maximum Opt(a) = max

∑

i∈I ai over all subsets I ⊆ [n] such
that

∑

i∈I ai ≤ K; subsets I satisfying this last inequality are feasible solutions for instance a.
Let Size(n, K) denote the smallest size of a dynamic branching program solving the (n, K)-

knapsack problem on the set of all inputs a with Opt(a) = K. By Example 1, Size(n, K) ≤ nK
holds even in the restricted class of oblivious read-once dynamic branching programs. We
now show that one cannot expect to do much better, even if neither the order nor the number
of tests is restricted.

Theorem 3.1. If K ≥ 3n then Size(n, K) ≥ 1
2nK.

To prove the theorem, we first establish some properties of integer partitions.
Let k ≤ n be two fixed natural numbers. A partition of n into k blocks is a vector

x = (x1, . . . , xk) of non-negative integers such that x1 + · · · + xk = n. It is well known
that there are

(n+k−1
n

)

such partitions. By a test we mean a pair (S, b), where S ⊆ [k], and
0 ≤ b ≤ n is an integer. Such a test is legal if 0 6= |S| ≤ k − 1. Say that a test (S, b) covers
a partition x if

∑

i∈S xi = b. Let us call S the support, and b the threshold of the test (S, b).
Note that the (illegal) test ([k], n) alone covers all partitions. We are interested in how many
legal tests do we need to cover all partitions. So, let τ(n) denote the minimum number of
legal tests that cover all partitions of n into k blocks. We have the following surprisingly tight
result.

Lemma 1. τ(n) = n + 1.

Proof. The upper bound τ(n) ≤ n + 1 is easy: already tests ({1}, b) with b = 0, 1, . . . n will
do the job. To prove the lower bound τ(n) ≥ n + 1, we argue by induction on n and on the
number m of supports in the collection.

If m = 1 then for every n, all the tests have the same support S, say, S = {1, . . . , r}. If
some threshold b is missing, then the vector x = (b, 0, . . . , 0, n − b) is a partition of n, but it
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is covered by none of the tests, because the legality of the tests implies r < k. Thus, in this
case n + 1 tests are necessary.

For general m, fix one support S containing no other support (from our collection of tests)
as a proper subset. Take the smallest number c which does not appear as a threshold b in
any of our tests of the form (S, b). Thus, we must already have at least c tests with support
S. The remaining tests (T, b) with T 6⊆ S can be modified in such a way that they cover all
partitions of n−c into k −|S| blocks. Namely, fix a string of numbers (ai : i ∈ S) summing up
to c, and concentrate on partitions of n containing this string. If some test (T, b) participates
in covering any of such partitions, and if T ∩ S 6= ∅, then replace (T, b) by the test (T \ S, b′)
where b′ = b − ∑

i∈S∩T ai. By induction hypothesis, there must be at least n − c + 1 such
tests, giving a lower bound n + 1 on the total number of tests.

Let τ+(n) denote the version of τ(n) in the case when only positive integers are allowed
to participate in a partition; we call such partitions positive partitions.

Lemma 2. τ+(n) ≥ τ(n − k).

Proof. There is a 1-1 correspondence between positive partition x of n and partitions x′ of
n − k given by x′ = (x1 − 1, . . . , xk − 1). Now suppose we have a collection of tests covering
all positive partitions of n. Replace each test (S, b) by the test (S, b − |S|). Note that b ≥ |S|
if the test covers at least one positive partition x, because then

∑

i∈S xi = b and all xi ≥ 1.
Since

∑

i∈S xi = b implies that
∑

i∈S(xi − 1) = b − |S|, a partition x′ of n − k passes the test
(S, b − |S|) if the positive partition x of n passes the test (S, b). Thus, the new collection of
test covers all partitions of n − k.

of Theorem 3.1. Take a dynamic branching program P = (V, E) solving the (n, K)-knapsack
problem on the set A ⊆ [K]n of all positive partitions of K. Thus, for every instance a ∈ A,
the set I = [n] is the only optimal solution, and its value is K. Important, however, is that
on none of the remaining instances, the program can produce an infeasible solution.

For every a ∈ A there must be an s-t path which is consistent with a and has weight K
on input a. Fix one such path, and call it the optimal path for a. Since none of the inputs in
A has a zero component, along each optimal path exactly n items must be accepted.

Fix now an integer r ∈ {1, . . . , n − 1}, and stop the optimal path for a after exactly r
items of a were accepted. Let pa denote the first segment (until the “stop-node”) and qa the
second segment of the optimal path for a. Let Ia = Ipa(a) ⊆ [n] be the set of items accepted
along the first segment pa, and Ja = Iqa(a) ⊆ [n] the set of items accepted along the last
segment of this path; hence, Ia ∩ Ja = ∅, |Ia| = r and |Ja| = n − r.

Take now an instance b ∈ A whose optimal path was stopped at the same node as that of
instance a.

Claim 1. Ia ∩ Jb = ∅ and wpa(a) = wpb
(b).

Proof. Let p = pa and q = qb, and define the combined input c ∈ Dn by: ci = ai if the
i-th variable is queried along p, and ci = bi otherwise. We know that the input a passes
all survival tests along the path p, and input b passes all survival tests along the path q.
If none of the variables queried along p is queried again along q, then the combined path
(p, q) is clearly consistent with the combined input c. If some variable xj is queried at
some wire e1 ∈ p and at some wire e2 ∈ q, then the consistency condition (i) implies that
1 = te1

(aj) = te1
(cj) ≤ te2

(cj). Thus, the path (p, q) is consistent with c also in this case.
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Now assume that j ∈ Ip(a) ∩ Iq(b). Then there must be a wire e1 ∈ p and a wire e2 ∈ q
such that δe1

(aj) = δe2
(bj) = 1. Since cj = aj for all j ∈ Ip(a), the consistency condition (ii)

implies 1 = δe1
(aj) = δe1

(cj) ≤ δe2
(cj). Thus, along the combined path (p, q), the j-th item

cj of c is accepted at least two times, implying that the solution produced by the path (p, q)
on input c is not a feasible solution for c, a contradiction. Thus, Ia ∩ Jb = ∅.

To show wpa(a) = wpb
(b), assume that wpa(a) > wpb

(b), and consider the same combined
input c ∈ Dn as above. Since wpa(a) =

∑

i∈Ia
ai and ci = ai for all i ∈ Ia, we have that

wpa(c) ≥ wpa(a). Since Ia ∩ Jb = ∅, we also have that wqb
(c) ≥ wqb

(b). The combined path
(pa, qb) is consistent with the combined input c, but its weight is

wr(c) = wpa(c) + wqb
(c) ≥ wpa(a) + wqb

(b) > wpb
(b) + wqb

(b) = K .

Thus, the combined path produces an infeasible solution for the instance c, a contradiction.

Let Vr ⊆ V denote the set of nodes v in our program such that the optimal path of at
least one input instance a ∈ A was stopped at v. Let also Av ⊆ A be the set of inputs a ∈ A
whose optimal paths were stopped at v, that is, a ∈ Av if and only if v is the last node of pa.

Claim 2. For every node v ∈ Vr there exist a subset Sv ⊆ [n] of size |Sv| = r and an integer
bv ∈ [K] such that

∑

i∈Sv
ai = bv holds for all a ∈ Av.

Proof. By Claim 1, we know that Ia ∩ Jb = ∅ for all a, b ∈ Av. Since |Ia| = r and |Ja| = n − r
for every a ∈ Av, this implies that Ia = Ib = Sv for all a, b ∈ Av. Thus along the first segments
pa of optimal paths of all inputs a ∈ Av the same set Sv ⊆ [n] of |Sv| = r items is accepted.
Furthermore, Claim 1 implies that all the weights wpa(a) =

∑

i∈Sv
ai of these paths are the

same.

We can now finish the proof of Theorem 3.1 as follows. Our set A of inputs is the set
of positive partitions of K into n blocks. By Claim 2, for every r = 1, . . . , n − 1, all these
partitions can be covered by |Vr| tests (Sv, bv) for v ∈ Vr. Together with Lemma 2, this
implies that |Vr| ≥ τ+(K) ≥ K − n + 1. Since this holds for every r = 1, . . . , n − 1, the total
number |V | of nodes in our program must be |V | ≥ (n − 1)(K − n + 1) = Kn − K − (n − 1)2,
which is ≥ 1

2nK for K ≥ 3n, as desired.

4 Lower Bound for General Dynamic Programs

We now consider dynamic branching programs where only equality tests ”is xi = d?” are
allowed, but there are no other restrictions, in particular, there are no consistency conditions.
That is, along one path, two contradictory tests ”is xi = d?” and ”is xi = d′?” for d 6= d′

may be made. We, however, assume that there are no rectifiers, that is, every contact has
a survival test. Let us call such programs general dynamic BP. We are going to prove a
non-trivial lower bound on the number of wires in such a program. For this purpose, it
will be convenient to consider the minimization Knapsack problem. Just like in the case of
maximization Knapsack problem, the standard DP algorithm gives rise to a (read-once and
oblivious) dynamic BP with at most nK2 wires. We will now show that about nK log K wires
are also necessary even in the class of general dynamic BP.

We consider the simplified version of the minimization Knapsack problem, where the profit
of each item is equal to its weight. That is, data items are integers in D = {0, 1, . . . , K}. As
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before, a solution for a problem instance a ∈ Dn is a subset I ⊆ [n]. Such a solution I is
feasible, if

∑

i∈I ai > K. The goal is to minimize the sum
∑

i∈I ai over all feasible solutions I
(if there are any). Let Wires(n, K) denote the smallest number of wires in a general dynamic
BP solving this problem. We already know (see Example 1) that Wires(n, K) ≤ nK2 holds
even in the class of oblivious read-once dynamic programs.

Theorem 4.1. Wires(n, K) = Ω(nK log K).

Proof. Let P (x1, . . . , xn) be a general dynamic BP solving the minimization Knapsack prob-
lem on the set A. We assume that the number n of items as well as the capacity K are even
numbers. To prove the lower bound Wires(n, K) = Ω(nK log K) on the number of contacts
in P , it is enough to show that, for every i = 1, . . . , n/2, the program P must contain at least
Ω(K log2 K) contacts responsible for variables x2i−1 and x2i. By symmetry, it is enough to
show this only for i = 1. That is, it is enough to show that the number of contacts responsible
for x1 and x2 must be at least Ω(K log2 K).

Our proof will be based on a classical result of Hansel [17] that any monotone contact
scheme computing the threshold-2 function Thm

2 (x1, . . . , xm) must have at least Ω(m log m)
contacts. Recall that Thm

2 accepts a boolean vector if and only if it contains at least two 1s.
With some abuse of notation, say that a dynamic program “accepts” an input string

a ∈ Dn if at least one s-t path is consistent with a, and “rejects” a if no s-t path is consistent
with a. Thus, our program P accepts a if an only if

∑n
i=1 ai > K.

From P we obtain a dynamic program P ′ depending only on x1 and x2 by removing from
P all wires making tests xi = d for d 6= 0 and i ≥ 3, and by contracting all wires that make
tests xi = 0 for i ≥ 3. Thus, the resulting program P ′(x1, x2) accepts a vector (u, v) ∈ D2

if and only if the original program P accepts the vector (u, v, 0, . . . , 0), which happens if and
only if u + v > K.

Now we turn the dynamic program P ′(x1, x2) into a monotone contact scheme P ′′ as
follows. Let S = {K/2 + 1, . . . , K}, and take m = |S| boolean variables yu, one for each
element u ∈ S. Remove from P ′ all decision predicates, as well as all tests x1 = d and x2 = d
for d 6∈ S. Further, replace all tests x1 = d and x2 = K − d for d ∈ D by the test yd = 1.
By Hansel’s theorem, it remains to show that the obtained monotone contact scheme P ′′

computes the threshold-2 function Thm
2 (yu : u ∈ S). Since the scheme P ′′ is monotone, it is

enough to show that it accepts all vectors with exactly two 1s, and rejects all vectors with
exactly one 1. To show this, take an arbitrary vector b ∈ {0, 1}m with one or two 1s.

Case 1 : Vector b has exactly two ones in some positions u 6= v ∈ S. Consider the input
a = (u, v, 0, . . . , 0) to P . Since u + v > K and u, v ≤ K, I = {1, 2} is a solution (in fact,
an optimal solution) for a. Hence, there must be an s-t path p in P along which only the
tests x1 = u and x2 = v and perhaps some of the tests xi = 0 for i ≥ 3 are made. Thus, in
program P ′′, the path p turns to the s-t path p′′ along which only tests yu = 1 and yv = 1
are made. Hence, P ′′(b) = 1, as desired.

Case 2 : Vector b has only one 1 in some position u ∈ S. Suppose that P ′′(b) = 1. Then there
is an s-t path p′′ in P ′′ along which only tests yu = 1 are made. In P ′ this path has only tests
x1 = u and/or x2 = v where v = K − u. But since u + v = K is not larger than K, the input
a = (u, v, 0, . . . , 0) has no feasible solution, implying that none of the s-t paths in P can be
consistent with a, and hence, none of the s-t paths in P ′(x1, x2) can be consistent with the
input (u, v). Hence, our assumption that P ′′ accepts vector b was wrong.
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Remark 7. In our proof it was essential that no rectifiers (unlabeled wires) were allowed.
The reason is that using rectifiers, the threshold-2 function Thm

2 can be computed using only
2m − 2 contacts:

• ◦ ◦

◦ ◦ ◦

◦ ◦ ◦
...

...
...

◦ ◦ •

x1 x2

x2 x3

x3 x4

xm−1 xm

It would be interesting to prove a non-trivial lower bound for the Knapsack problem in
the general model where rectifiers are allowed. It would be also interesting to prove such
a bound on the number of nodes, not only wires. The proof above cannot give larger than
Ω(n log K) lower bound on the number of nodes, because the complete m-vertex graph can
be covered by O(log m) complete bipartite graphs, and hence, Thm

2 can be computed by a
monotone contact scheme with O(log m) nodes.

5 Conclusion and Open Problems

In this paper we introduced a model of dynamic branching programs (dynamic BP) which
captures the power of so-called “incremental” dynamic programming algorithms, and proved a
matching lower bound for the Knapsack problem in this model. Still, many questions remain
open.

The first natural question is to relax the consistency conditions (i) and (ii) for dynamic
BPs. Although all incremental DP algorithms we know can be simulated without any loss in
efficiency by BPs satisfying these conditions, it would be interesting to relax any one of them.
If we fail in proving strong lower bounds, this would be a serious indication that the current
dynamic programming paradigm can be extended to a more powerful one.

Problem 1. Can the lower bounds in Theorem 3.1 be proved without the consistency con-
dition (ii) on the decision predicates, that is, when already accepted items are allowed to be
rejected later.

Null-chains Consistency condition (i) seems to be a more severe one. If we completely
remove this condition then, by Proposition 2, we will land into the realm of general model
of nondeterministic branching programs (NBP), where even larger than n lower bounds on
the number of nodes are not know so far. The consistency condition (i) results in branching
programs, known also as “null-chain-free” programs, and for them exponential lower bounds
are long known (see, e.g. [34, 30, 22, 25]). The absence of null-chains (paths that are consistent
with none of the input strings) allows one to use “cut-and-paste” arguments to show that small
programs must make errors. Strong lower bounds for NBP are also know when null-chains
are allowed, but there is some restrictions on their structure [22].

Although allowing such “redundant” paths, followed by none of the inputs, seems to be
an overkill (why should we do this?), it is known that their presence can substantially reduce
the number of nodes (number of subproblems used). For example, as shown in [23], there
are boolean functions that require NBPs of exponential size, if null-chains are forbidden, but
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can be computed by small NBPs when null-chains are allowed. Such is, for example, the
Exact Perfect Matching function, that is, a boolean function which, accepts a given 0-1 n × n
matrix if and only if every row and every column has exactly one 1. Without null chains,
( n

n/2

)

= Ω(2n/
√

n) nodes are necessary, whereas already O(n3) wires are enough if null-chains
are allowed: just test whether every row has at least n − 1 0s, and whether each column has
at least one 1. Every s-t path in this program is either read once, or is inconsistent, that is,
makes two contradictory survival tests xij = 0 and xij = 1 on the same entry (i, j) of the
input matrix are made.

It is therefore an interesting problem to understand the role of null-chains in dynamic
programming algorithms. In particular, can the presence of null-chains reduce the size of DP
algorithms solving “natural” optimization problems?

Read-k dynamic BPs? Another possible relaxation of the consistency condition could be
to allow inconsistent paths in a dynamic BP, but to require that along every path (be it
consistent of not) each item xi is queried at most some given number k of times. In the case
of boolean functions, such programs are known as (syntactic) read-k branching programs, and
several exponential lower bounds for them are known [33, 10, 22]. For branching programs
computing functions f : Dn → {0, 1} for larger domains than D = {0, 1}, exponential lower
bounds are known even for “semantic” read-k programs, where it is only required that along
every consistent path one item is queried at most k times [2, 7, 24]. It would be interesting
to prove strong lower bounds for read-k dynamic branching programs solving some natural
optimization problems.

Dynamic circuits The next interesting problem is to eliminate the “incremental” restric-
tion of BPs. This leads to the model of dynamic circuits over semirings like (+, min) (or
(+, max)). Such a circuit consists of fanin-2 Plus and Min gates (or Plus and Max gates).
The size of a circuit is the total number of gates.

In a dynamic circuit we again allow survival tests on wires. Thus, when an input x ∈ Dn

comes, some wires in a dynamic circuit will disappear, and then the circuit computes its
value in a standard manner. Of course, we cannot allow the survival tests be arbitrary (see
Proposition 1). So, as in the case of dynamic BPs, let us assume that each of these tests can
only depend on one input variable xi.

It is clear that every dynamic BP with W wires can be transformed into a dynamic circuit
(+, max)-circuit with O(W ) fanin-2 gates. Thus, Example 1 implies that O(nK2) gates are
enough to solve the Knapsack problem by a dynamic (+, max)-circuit.

Problem 2. How many gates are necessary to solve the Knapsack problem by a dynamic
(+, max)-circuit?

Shortest path problems In the all pairs shortest path problem we are given a weighting
of the edges of a complete directed graph on n vertices, and want to compute the weights of
a shortest paths between all pairs of vertices. In the s-t shortest path problem we only want
to compute the weight of a shortest path from s to t.

A prominent example of a DP algorithm that is not incremental is the Floyd–Warshall
algorithm for the all pairs shortest path problem. As subproblems it takes Sk(i, j) = the length
of a shortest paths from i to j that only uses vertices 1, . . . , k as inner nodes. We set S0(i, j)
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= the weight of the edge (i, j). The DP solution is then Sk(i, j) = min{Sk−1(i, j), Sk−1(i, k)+
Sk−1(k, j)} .

This algorithm gives us a static (+, min)-circuit of size O(n3). On the other hand, it is
known (see [1, pp. 204–206]) that the complexity (number of arithmetic operations) of this
problem is of the same order of magnitude as the complexity of computing the product of
two matrices over the semiring (+, min). In this latter problem, we have two n × n matrices
A = (aij) and X = (xij). The goal is to compute their “product” M = AX where M = (mij)
is an n × n matrix with mij = min{ai1 + x1j , ai2 + x2j , . . . , ain + xnj} . It is clear that n3

additions are always enough to compute M . On the other hand, Kerr [28] showed that n3

additions are also necessary. This implies that, in the class of static (+, min)-circuits, the
Floyd–Warshall all pairs shortest paths DP algorithm is optimal!

Much fewer is known about the (+, min)-circuit complexity of the s-t shortest path prob-
lem. Lyons [31] proved some tight bounds on the size of (+, min)-circuits solving the shortest
s-t path in two-layered acyclic digraphs. Namely, given a real n × n matrix A and two
real vectors x and y of length n, we want to compute the value of x⊤Ay over the semiring
(+, min, 0, ∞). This can be viewed as the shortest s-t path problem in a “complete two-
layered digraph”: we have the start vertex s, the target vertex t, and two n-element sets of
intermediate vertices L and R with edges going from each u ∈ L to each v ∈ R; we also
have edges from s to all L, and edges from all R to t. The matrix A gives a weighting of
the middle edges L × R, whereas x gives the weights of edges leaving s, and y the weights
of edges entering t. What Lyons [31] proves is that the smallest number of +-gates in any
(+, min)-circuit computing x⊤Ay is equal to n2 + n, and the smallest number of min-gates in
such a circuit is n2.

Problem 3. Does the shortest s-t path problem for general n-vertex graphs requires Ω(n3)
gates in (+, min)-circuits?

It can be shown (see Example 5 below) that the Bellman–Ford algorithm for this problem
can be solved by a static BP with O(n2) nodes and O(n3) wires. So, the following special
case of Problem 3 naturally arises.

Problem 4. Does the shortest s-t path problem for n-vertex graphs requires Ω(n3) wires in
static branching programs?
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Figure 2: A static branching program for the Maximum Value Contiguous Subsequence prob-
lem. All decisions are “accept”. Both wires entering the i-th node S(i) are responsible for the
i-th item xi.

Appendix: More examples of dynamic branching programs

Let us first show that every 0-1 optimization problems can be solved by a dynamic BP.

Proposition 3. Every n-dimensional 0-1 optimization problem over a set D of data items
can be solved by an oblivious dynamic branching tree of size at most (2|D|)n+1.

Proof. Fix an n-dimensional 0-1 optimization problem whose data items come from some
finite set D of size |D| = m. Take a 2m-ary tree T of depth n. We let all 2m wires leaving
a vertex v of depth i − 1 be responsible for the i-th item xi. For each d ∈ D there are two
contacts at which the same survival test “is xi = d?” and two decisions δe ≡ 0 and δe ≡ 1 are
made. Thus, for every sequence a ∈ Dn of data items, and for every sequence δ ∈ {0, 1}n of
decisions about them there is a unique path to a leaf of T which is consistent with a and all
decisions are consistent with δ. We can now fix an optimal decision sequence for each a ∈ Dn,
and put rectifiers (unlabeled wires from the corresponding mn leaves to the target node. The
total number of nodes in T is at most (2m)n+1.

The trivial upper bound in Proposition 3 is very “pessimistic”: many optimization prob-
lems can be solved by much smaller dynamic BPs. We illustrate this by several examples.

Example 2 (Maximum Value Contiguous Subsequence). We are given a sequence x1, . . . , xn

of integer weights, and the goal is to find a contiguous subsequence with maximal weight.
Thus, data items in this case are the weights xi, each with cost(xi) = xi. Feasible solutions
are contiguous intervals I = {i, i+1, . . . , j}, and their values are the sums xi +xi+1 + · · ·+xj .
As subproblems we take S(j) = maximum weight of an interval ending in j. The terminal
value is S(0) = 0. The DP solution is

S(j) = max{S(j − 1) + xj , xj} .

This algorithm can be implemented as a read-once static BP with n + 1 nodes as follows (see
Fig. 2). The nodes are S(1), . . . , S(n) and one special node S(0). The nodes form a path
S(0) → S(1) → S(2) → . . . → S(n) consisting of contacts, each making a trivial decision
δe ≡ 1 (always accept). The contact S(j − 1) → S(j) is responsible for item xj , and hence,
has weight xj . There are also contacts from S(0) to every node S(j), j = 2, . . . , n, each of
weight xj . This program is not oblivious, but is read-once and is static. It has n + 1 nodes.

Example 3 (Longest Increasing Subsequence). A problem instance is a sequence x = (x1, . . . , xn)
of integers, and the goal is to find a largest subset I = {i1 < i2 < . . . < ik} of indices such that
xi1

≤ xi2
≤ . . . ≤ xik

. Each instance can be viewed as a weighting of the edges of the complete
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· · · S(i − 1, j − 1) S(i − 1, j) · · ·

S(j, j − 1) S(i, j) · · ·· · ·

δ(xij)=1 iff ai=bj

δ(xij)≡0

δ(xij)≡0

· · · Sk−1(i) · · · Sk−1(j) · · ·

Sk(j)· · · · · ·

δ(xij)≡1

Figure 3: Fragments of a static branching programs for the Longest Common Subsequence
problem (left), and for the Shortest Paths problem (right)

directed acyclic graph Gn on vertices 1, . . . , n, where two vertices i and j are adjacent if and
only if i < j. Then every instance x ∈ Z

n turns to the 0-1 weighting w : Gn → {0, 1} of the
edges of Gn given by wij = 1 if and only if xi ≤ xj . Such a weighting leads to a subgraph
of Gn consisting of edges (i, j) with wij = 1, and the goal is to find a longest path in this
subgraph. If S(j) denotes the length of the longest path ending in vertex j, then the DP
solution is

S(j) = max{S(i) + 1: wij = 1} .

This algorithm can be turned into a read-once dynamic BP of size n by just taking Dn as the
underlying graph, and allowing each wire e = (i, j) to make the survival test “is xi ≤ xj?”,
and a trivial decision δe ≡ 1 (always accept). It then remains to add a rectifier (an unlabeled
wire) from each of the n vertices to a new target node.

Example 4 (Longest Common Subsequence). Given two sequences of characters a = (a1, . . . , an)
and b = (b1, . . . , bm), the goal is to find a longest common subsequence of them. A common
subsequence of a and b is a sequence c = (c1, . . . , ck) for which there exist two sequences of
positions 1 < i1 < · · · < ik < n and 1 < j1 < · · · < jk < n such that cr = air = bjr for all
r = 1, . . . , k. That is, a subsequence need not be consecutive, but must be in order.

In this case, data items are pairs xij = (ai, bj), each of cost 1. A problem instance is
then the n × m 0-1 matrix M = (mij) such that mij = 1 if and only if ai = bj . The goal
is to find a largest number of 1-entries, no two of which lie the same row or in the same
column. This number is also known as the term-rank of M . As subproblems we take S(i, j)
= length of the longest subsequence of (a1, . . . , ai) and (b1, . . . , bj). The terminal values are
S(0, j) = S(i, 0) = 0 for all i, j. The DP solution is

S(i, j) = max{S(i − 1, j − 1) + 1, S(i, j − 1), S(i − 1, j)} .

This algorithm can be easily implemented as a static read-once BP with O(nm) nodes
S(i, j) for i = 0, 1, . . . , n and j = 0, 1, . . . , m (see Fig. 3). Each node S(i, j) is entered by
three contacts from S(i, j −1), S(i−1, j −1) and S(i−1, j), each responsible for the data item
(edge) (i, j). The decisions made on contacts S(i, j − 1) → S(i, j) and S(i − 1, j) → S(i, j)
are δ(xij) ≡ 0 (always reject), and that on the contact S(i − 1, j − 1) → S(i, j) is: δ(xij) = 1
if and only if ai = bj . The target node is S(n, m).

Example 5 (Single Source Shortest Paths, Bellman–Ford algorithm). A problem instance is
an assignment of real weights wij to the edges of a directed complete graph Kn on vertices
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[n] = {1, . . . , n}; infinitely large weight wij = ∞ is allowed. The assumption for the weighting
is that there cannot be any cycles of negative weight. The goal is to find a lightest path from
vertex s = 1 to all remaining vertices, that is, to find paths with the smallest total weight
of their edges. Thus, feasible solutions are subgraphs of Kn containing a simple path from 1
to n; since this is a minimization problem, optimal solutions must necessarily be just simple
paths. Data items are edges (i, j) of Kn, and their costs are the weights wij . As subproblems
we take Sk(j) = length of a shortest path from 1 to j using at most k edges. The terminal
values are S1(j) = w1j , j = 2, . . . , n. The DP solution is:

Sk(j)= minimum of Sk−1(j) and all Sk−1(i) + wij .

The optimal value for a vertex j is Sn−1(j). The algorithm can be easily implemented as a
static BP (see Fig. 3).

The node Sk(j) is entered by a rectifier (unlabeled wire) Sk−1(j) → Sk(j) as well as by
contacts Sk−1(i) → Sk(j) with i 6= j responsible for variables xij ; the weight of each such
contact is the weight wij of the edge (i, j). We also have a source node s with contacts going
to all nodes S1(j) for j = 2, . . . , n. Each contact s → S1(j) is responsible for the variable
(edge) x1j . The decisions of all contacts e are trivial: δe ≡ 1 (always accept). The number of
nodes in the constructed static BP is O(n2), and the number of wires is O(n3).

Interestingly, it is shown in [13] that this problem requires prioritized branching trees of
exponential size; thus, static BP 6⊆ pBT.

Example 6 (The k-TSP problem). Consider the n-city traveling salesman problem (TSP)
defined on a complete directed (or undirected) graph with edges assigned their non-negative
costs, and fix city 1 as the home city, where all tours start and end. Suppose now that we
are given an integer k, 1 ≤ k < n, and an ordering (1, . . . , n) of the set of n cities, and we
want to find a minimum cost permutation π of {1, . . . , n} (an associated tour) subject to the
condition: j ≥ i + k implies π(i) < π(j). That is, city i must be traversed before city j if
i + k ≤ j. It is shown in [6] that this problem can be solved in time T = O(k22kn). This
is obtained by reducing the problem to the shortest s-t path problem. The reduction itself
immediately gives us a static BP (with trivial decisions “always accept”) for this problem
with T nodes.

Table 1: This table summarizes the form of obtained dynamic BPs.

Problem Static BP Constant decisions BP is read-once Size

Max. Contiguous Subseq. Yes Yes Yes n

Longest Increasing Subseq. No Yes Yes n

Longest Common Subseq. Yes No Yes n
2

Shortest Path Yes Yes No n
2

k-TSP Yes Yes No k
22k

n

Knapsack No Yes Yes nK
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