
Limitations of Incremental Dynamic Programming

Stasys Jukna

Abstract We consider so-called “incremental” dynamic programming algorithms, and are
interested in the number of subproblems produced by them. The classical dynamic pro-
gramming algorithm for the n-dimensional Knapsack problem is incremental, produces nK
subproblems and nK2 relations (wires) between the subproblems, where K is the capacity
of the knapsack. We show that any incremental algorithm for this problem must produce
about nK subproblems, and that about nK logK wires (relations between subproblems)
are necessary. We also give upper and lower bounds on the number of subproblems needed
to approximate the knapsack problem.

Keywords Dynamic programming, Knapsack, branching programs, lower bounds

1 Introduction

Capturing the power and weakness of algorithmic paradigms is an important task pursuit
over several last decades. The problem is a mix of two somewhat contradicting goals. The
first of them is to find an appropriate mathematical model formalizing vague terms, as
greedy algorithms, dynamic programming, backtracking, branch-and-bound algorithms,
etc. The models must be expressive enough by being able to simulate at least known
algorithms. But they should also be “reasonable” enough to avoid the power of arbitrary
algorithms, to avoid problems as P versus NP, as well as the power of general boolean
circuits.

Having found a formal model for an algorithmic paradigm, the ultimate goal is to prove
lower bounds in them. If one succeeds in doing this, we have a provable limitation of a
particular algorithmic paradigm. If one fails to prove a strong lower bound, matching an
upper bound given by known algorithms, this is a strong motivation to search for more

Research supported by the DFG grant SCHN 503/5-1.

Universität Frankfurt, Institut für Informatik, Robert-Mayer Str. 11-15, Frankfurt am Main, Germany · Vilnius
University, Institute of Mathematics, Akademijos 4, Vilnius, Lithuania
E-mail: jukna@thi.informatik.uni-frankfurt.de

2

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 41 (2012)

efficient algorithms. Note that we are seeking for unconditional lower bounds that are
independent of any unproven assumptions, as the assumption that P 6= NP.

The problem of proving absolute lower bounds for particular algorithmic paradigms is
important by at least two reasons: they show the limits of these paradigms, and the proofs
of these lower bounds localize the weak points of the paradigms, which can lead to better
heuristics.

In this paper we focus on the dynamic programming paradigm. There were many
attempts to formalize this paradigm, and various refinements were obtained [6,20,25,15,
14,27], just to mention some of them. In all these attempts, the goal is to include more
and more algorithmic features to cover more and more existing DP algorithms. But, as a
rule, the resulting models are too powerful to prove strong lower bounds in them.

More tractable models of so-called “prioritized branching trees” (pBT) and “prior-
itized branching programs” (pBP) were recently introduced, respectively, by Alekhno-
vich et al. [3] and Buresh-Oppenheim et al. [11]. These models are based on the framework
of “priority algorithms” introduced by Borodin et al. [9], and subsequently studied and
generalized in [4,3,10,12,24]; this framework aims to capture the power of greedy algo-
rithms. The models of pBT and pBP extend the power of greedy algorithms by adding a
some aspects of backtracking and dynamic programming. The model of pBP adds to that
of pBT an additional feature of memoization. In [3] it is shown that the Knapsack problem

with capacity K about n3n requires pBTs of size
(n/2
n/4

)

, whereas in [11] it is shown that

detecting the presence of a perfect matching in bipartite graphs requires (restricted) pBPs
of size exp(Ω(n1/8)).

In this paper we pursue essentially the same goal as in [3] and [11], but in a different,
more “conservative” direction. There is an old field—that of boolean circuit complexity—
where the same goal (what small circuits cannot do) was pursuit for now more than 70
years. Along the way, many subtle lower-bounds arguments were invented there. So, it
makes sense to look what could be useful from all this classical “tool-box” when analyzing
the limitations of DP algorithms. A possible approach here is to modify boolean circuits
so that they are able to simulate DP algorithms.

Our model

Just as in the case of prioritized BPs, our starting point is the fact that every DP algorithm
implicitly constructs a subproblem graph (or a “table of partial solutions”, as we know from
algorithms courses). This graph has a directed wire from the node for subproblem u to
the node for subproblem v if determining an optimal solution for subproblem v involves
directly considering an optimal solution for subproblem u. Our main observation is that
for some DP algorithms, these subproblem graphs “work” in a similar manner as classical
branching programs for decision problems do—we only need to replace the underlying
boolean semiring by other semirings. For more information about branching programs,
the reader may consult, for example, the books [26,19].

This leads us to the model of “dynamic branching programs” (dynamic BP) that are
able to simulate so-called “incremental” DP algorithms. Our hope is that such a more direct
relation to the classical model of branching programs could help us to use lower-bound

3

methods developed for this latter model. Proofs given in this paper support this hope: we
apply lower bound arguments already invented for the boolean model.

Meaning of “incremental”

Let us explain what we mean under an “incremental” DP algorithm. In DP algorithms
for optimization problems one usually uses max and plus (or min and plus) operations to
produce the value f(v) of a subproblem v from the values computed at the subproblems
u1, . . . , uk having direct wires to v in the subproblem graph. We call a DP algorithm
incremental if its subproblem graph has the following two properties. First, each wire
uj → v is responsible for at most one data item xi in the given problem instance x =
(x1, . . . , xn). Second, the transition function has the form

f(v) = max{f(u1) + w1, . . . , f(uk) + wk}

where wi is the weight of the data item which the wire (ui, v) is responsible for, if this item
was accepted at that wire; if the item was rejected at the wire, then wi = 0. We thus use
the term “incremental” to stress that the value of a partial solution is incrementally (not
globally) modified.

In a non-incremental algorithm, the transition function may have a more general form

f(v) = max
{

∑

i∈I1

f(ui), . . . ,
∑

i∈Im

f(ui)
}

for some subsets I1, . . . , Im ⊆ {1, . . . , k}. Thus, incremental DP algorithms constitute a
subclass of all DP algorithms where the usage of +-operation is restricted: one of the two
inputs must be the weight of a data item, not the value of an another subproblem.

By the size of a DP algorithm we will mean the number of subproblems it produces,
that is, the number of nodes in its subproblem graph. Given an optimization problem,
a natural question is: what is the smallest possible size of a DP algorithm solving this
problem? In this paper we prove almost matching lower bounds on the size of incremental
DP algorithms solving the Knapsack problem.

The Knapsack problem

In this paper we concentrate on the Knapsack problem. In the n-dimensional Knapsack
problem with an integer knapsack capacity K, a problem instance is a sequence of n pairs
ai = (pi, si) of natural numbers; pi is the “profit”, and si the “size” of the i-th item. We
will assume that si ≤ K for all i. The goal is to pack items into the knapsack so that the
total size does not exceed the capacity of the knapsack, and the total profit is as large as
possible: maximize

∑

j∈S pj subject to
∑

j∈S sj ≤ K.

A standard DP algorithm for this problem is to define the subproblems by: S(i, j) =
the maximal total profit for filling a capacity j knapsack with some subset of items 1, . . . , i.
The DP algorithm is then described by the recursion:

S(i, j) = maximum of S(i− 1, j) and S(i− 1, j − si) + pi for si ≤ j.

4

The value of the optimal solution is opt(a) = S(n,K). Note that this algorithm is incre-
mental: when going from subproblem S(i − 1, j − si) to S(i, j), the value is increased by
just adding the profit pi. The number of subproblems produced by this algorithm, and
hence, the size of this algorithm is nK. The algorithm is “read-once” (along every branch
of the recursion, every item is queried only once), and is “oblivious” (along all branches
the items are queried in the same order).

In the minimization Knapsack problem we want to minimize the total size by keeping
the total profit over some threshold K: minimize

∑

j∈S sj subject to
∑

j∈S pj ≥ K. In this

case we can consider subproblems T (i, j) = the minimum size using only items 1, . . . , i
and a profit of at least j. The DP algorithm is then described by the recursion:

T (i, j) = minimum of T (i− 1, j) and T (i− 1, j − pi) + si for pi ≤ j.

The value of the optimal solution is opt(a) = T (n,K). The size of (the number of sub-
problems produced by) this algorithm is nK, and the algorithm is incremental, as well.

Our results

We have just seen that the n-dimensional Knapsack problem with knapsack capacity K
can be solved by an incremental DP algorithm using nK subproblems and at most nK2

relations (wires) between them. A natural question is: can any incremental DP algorithm
solve the Knapsack problem using substantially smaller size? Our first result is a negative

answer: any incremental DP algorithm for the Knapsack problem must have size Ω(nK),
as long as K ≥ 3n (Theorem 1). Our next result is that, even if “redundant” paths in
the subproblem-graph are allowed, at least 1 Ω(nK logK) wires (relations between the
subproblems) are necessary to solve the minimization Knapsack problem (Theorem 2). It
remains open whether Ω(nK) nodes (subproblems) are necessary in this more general
model. Finally, he also shows that the number of nodes in a dynamic BP approximating
the Knapsack problem within a factor 1− ǫ lies between n/ǫ and n3/ǫ.

The model of “dynamic branching programs” introduced in this paper can be generalized
in several ways, as sketched in the last section. Strong lower bounds for such generalized
models would extend our knowledge about the limitations of DP algorithms, even if they
are equipped with features that are not used in existing DP algorithms.

Of particular interest is to understand the role of the feature of allowing “redundant”
paths in the subproblem graph, that is, paths that contribute “nothing” to the computed
value, but whose presence may substantially reduce the total number of generated sub-
problems. In classical branching programs such “redundant” paths play a crucial role:
their presence provably leads to exponential savings in program size. Interestingly, none
of existing DP algorithms (we are aware of) use this “strange” feature, so it would be
interesting to understand its algorithmic meaning. We will shortly discuss this issue in
Section 6.

1 All logarithms in this paper are to the basis 2.

5

2 Dynamic Branching Programs

We consider 0-1 optimization problems. In each such problem we have some finite set D
of data items. Each data item d ∈ D has its weight w(d) (a real number). An input (or
problem instance) is a sequence x = (x1, . . . , xn) ∈ Dn of data items. A solution for x
is a subset I ⊆ {1, . . . , n} of (indexes of) data items in x. There is also some constraint
predicate F : Dn × 2[n] → {0, 1}. A solution I is a feasible solution for an instance x if
and only if F (x, I) = 1. Given an input x ∈ Dn, the goal is to maximize (or minimize)
the total weight

∑

i∈I w(xi) over all feasible solutions I for x. The value of an optimal
solution for a given instance x is denoted by opt(x). For definiteness, we set opt(x) = 0 if
x has no feasible solutions.

For example, in the n-dimensional Knapsack problem with knapsack of capacity K,
items are pairs of natural numbers (profit, size). The weight of such an item is its profit.
The constraint has the form “the size of accepted items does not exceed K”, and opt(x) is
the biggest total profit of an optimal solution for x.

The model of “dynamic branching programs”, we are now going to describe, is trying
to reduce the original optimization problem to the shortest (or longest) path problem on
subgraphs of one particular acyclic graph.

A dynamic branching program (dynamic BP) is a directed acyclic graph P (x1, . . . , xn)
with two special nodes, the source node s and the target node t. Multiple wires2, joining the
same pair of nodes are allowed. The size of a program is the number of its nodes. There are
two types of wires: unlabeled wires (rectifiers) and labeled wires (contacts). Each contact
e is labeled by one of the variables xi, meaning that e is responsible for the i-th item in the
input sequence. The contact e may also have a decision predicate δe : D → {0, 1} about
the item it is responsible for, as well as its survival test te : D → {0, 1}:

◦ ◦survival test te(xi)

decision δe(xi)

Both these predicates depend only on the item xi which e is responsible for. The
meaning of the decision predicate δe is that the item xi is accepted at e if and only if
δe(xi) = 1. The meaning of the survival test te is the following: when input x ∈ Dn comes,
the contact e responsible for the i-th variable is removed from the program if te(xi) = 0
(the contact has not passed the survival test on input x, or “dies” on item xi), and e remains
intact if te(xi) = 1 (or remains “alive” on item xi). Thus, being “dynamic” means that the
structure of the program may depend on the actual problem instance. If the program has
no survival tests, then we call it static.

A path p is consistent with a given input string x ∈ Dn, if this input passes all survival
tests along p. A path is consistent, if it is consistent with at least one input string. If p is
an s-t path, and if p is consistent with an input x ∈ Dn, then the solution produced by
p on x is the a multi-set Ip(x) = {i : δe(xi) = 1 and e ∈ p} of items accepted along p. A
program P solves a given optimization problem on a subset A ⊆ Dn of problem instances,
if the following holds:

2 We prefer to use the word “node” instead of “vertex” as well as “wire” instead of “edge” while talking about
branching programs, because inputs to programs may also be edges and vertices of a customary graph.

6

1. For every input x ∈ A, there is an s-t path p such that p is consistent with x and Ip(x)
is an optimal solution for x.

2. For every input x ∈ Dn and for every s-t path p, if p is consistent with x, then Ip(x) is
a feasible solution for x.

That is, on inputs in A the program must produce optimal solutions, but it cannot produce
any infeasible solution on the remaining inputs. A program solves the problem if it solves
it on the set A = Dn of all problem instances.

Remark 1 Since we consider not arbitrary, but only 0-1 optimization problems, every dy-
namic BP for such a problem must (implicitly) fulfill the following “accept at most once”
condition. Let p be an s-t path consistent with some input x ∈ Dn. Then one item xi of
x can be rejected and then accepted later. But it cannot be accepted and then accepted
again, for otherwise the weight of xi would contribute more than once to the weight of the
solution Ip(x) produced by the path p on x.

We require that a BP (be it static or dynamic) satisfies the following “consistency
conditions” for survival tests and decisions: if a contact e1 precedes a contact e2 on the
same path, and if both wires are responsible for the same variable xi, then we require that

(i) te1(xi) = te2(xi);
(ii) δe1(xi) ≤ δe2(xi).

The first condition (i) requires that one and the same item cannot live and die along the
same path. The second condition (ii) requires that if an item is accepted, then it cannot
be rejected later at some other wire responsible for the same item. (This is also required
in the model of prioritized BP [11] mentioned in Introduction.) Note however that once
rejected, the item can be still accepted later.

A dynamic BP is oblivious if along every path the items are queried in the same order,
and is read-once if along every path at most one contact is responsible for one and the
same item.

Remark 2 Note that read-once BP need not be oblivious, and an oblivious BP need not be
read-once. Every read-once BP automatically satisfies both conditions (i) and (ii). Every
static BP automatically satisfies the condition (i) just because there are no survival tests
at all.

How does a dynamic BP compute?

When an input x ∈ Dn comes, each contact e responsible for the i-th item xi receives its
weight we(x) which is 0, if this item is rejected, and is the weight w(xi) of this item, if the
item is accepted at e. Unlabeled wires (rectifiers) e are responsible for no variable, have
no survival tests and make no decisions; their weight is always zero.

The weight of a path on input x ∈ Dn is the sum of the weights of its contacts. The
value P (x) of the program on the input x is the maximum (or a minimum, if we have a
minimization problem) weight of all s-t paths consistent with x. That is, when an input
x ∈ Dn comes, we first remove all contacts e for which te(xi) = 0 (the survival test is not

7

passed on them), and then compute the value P (x) as the maximum weight of an s-t path
in the remaining sub-program of P .

To see that dynamic BP simulates incremental DP algorithms, let us observe that the
program P (x) computes its value by inductively assigning values to the nodes as follows.
The start node s always has a zero value, val(s, x) = 0 for all x ∈ Dn. Let now e1, . . . , ek
be all the wires from nodes v1, . . . , vk to a node v that are consistent with the input x;
that is, each wire ej = (vj , v) is either a rectifier (an unlabeled wire), or is a contact which
passed its survival test on input x. Then

val(v, x) = max{val(v1, x) + we1(x), . . . , val(vk, x) + wek(x)} ,

and P (x) = val(t, x), where t is the target node of P . In other words, at each wire the
value is increased by its weight, and at every node the maximum of values coming from
its (survived) predecessors is taken. Recall that rectifiers do not change the accumulated
value: they are only used to “transport” the value. The presence of such “useless” wires
may still substantially decrease the total number of wires (see Remark 7 below).

Many DP algorithms can be almost directly translated to dynamic (and even static)
branching programs. We restrict ourselves to several illustrative examples.

Example 1 Single Source Shortest Paths, Bellman–Ford. A problem instance is an
assignment of real weights wij to the edges of a directed complete graph Kn on vertices
[n] = {1, . . . , n}; infinitely large weight wij = ∞ is allowed. The assumption for the
weighting is that there cannot be any cycles of negative weight. Note that the problem is
only well-defined in the absence of such cycles. The goal is to find a lightest path from
vertex s = 1 to all remaining vertices, that is, to find paths with the smallest total weight
of their edges. Thus, feasible solutions are subgraphs of Kn containing a simple path from
1 to n; since this is a minimization problem, optimal solutions must necessarily be just
simple paths. Data items are edges (i, j) of Kn, and their costs are the weights wij .

The Bellman–Ford algorithm for this problem can be easily implemented as a static
BP. As subproblems we take Sk(j) = length of a shortest path from 1 to j using at most
k edges. The terminal values are S1(j) = w1j , j = 2, . . . , n. The DP recursion is:

Sk(j)= minimum of Sk−1(j) and Sk−1(i) + wij for all i.

The optimal value for a vertex j is Sn−1(j). The algorithm can be easily implemented as
a static BP. A fragment of this BP is shown here:

Sk−1(1) · · · Sk−1(i) · · · Sk−1(j) · · ·

Sk(j)· · · · · ·
accept x1j

accept xij

The node (subproblem) Sk(j) is entered by a rectifier (unlabeled wire) Sk−1(j) → Sk(j)
as well as by contacts Sk−1(i) → Sk(j) with i 6= j responsible for variables xij ; the weight
of each such contact is the weight wij of the edge (i, j). We also have a source node s with

8

contacts going to all nodes S1(j) for j = 2, . . . , n. Each contact s → S1(j) is responsible for
the variable (edge) x1j . The decisions of all contacts e are trivial: δe ≡ 1 (always accept).
The number of nodes in the constructed static BP is O(n2), and the number of wires is
O(n3).

Example 2 Maximum Value Contiguous Subsequence. We are given a sequence
x1, . . . , xn of integer weights, and the goal is to find a contiguous subsequence with max-
imal weight. Thus, data items in this case are the weights xi, each with w(xi) = xi.
Valid solutions are contiguous intervals I = {i, i+1, . . . , j}, and their values are the sums
xi+xi+1+ · · ·+xj . As subproblems we take S(j) = maximum weight of an interval ending
in j. The terminal value is S(0) = 0. The DP recursion is

S(j) = max{S(j − 1) + xj , xj} .

This algorithm can be implemented as a read-once static BP with n+ 1 nodes:

S(0) S(1) S(2) S(3) · · · S(n)x1 x2 x3 x4 xn

x2

x3

xn

All decisions are “accept”. This program is not oblivious, but is read-once and is static.

Example 3 Longest Common Subsequence. Given two sequences a = (a1, . . . , an) and
b = (b1, . . . , bm) of characters, the goal is to find a longest common subsequence of them.
A common subsequence of a and b is a sequence c = (c1, . . . , ck) for which there exist
two sequences of positions 1 < i1 < · · · < ik < n and 1 < j1 < · · · < jk < n such
that cr = air = bjr for all r = 1, . . . , k. That is, a subsequence need not be consecutive,
but must be in order. In this case, data items are pairs xij = (ai, bj), each of weight 1.
As subproblems we take S(i, j) = length of the longest subsequence of (a1, . . . , ai) and
(b1, . . . , bj). The terminal values are S(0, j) = S(i, 0) = 0 for all i, j. The DP recursion is

S(i, j) = max{S(i− 1, j − 1) + 1, S(i, j − 1), S(i− 1, j)} ,

and the answer is S(n,m). This algorithm can be easily implemented as a static read-once
BP with O(nm) nodes S(i, j):

S(i− 1, 1) · · · S(i− 1, j − 1) S(i− 1, j) · · ·

S(j, j − 1) S(i, j) · · ·· · ·

accept xij iff ai=bj
reject xij

reject xij

9

Example 4 Knapsack problem. Recall that the standard DP algorithm for the maxi-
mization Knapsack problem is given by the recursion

S(i, j) = max{S(i− 1, j), S(i− 1, j − si) + pi} ,

where S(i, j) = the maximal total profit for filling a capacity j knapsack with some subset
of items 1, . . . , i. The output is S(n,K). This algorithm can be easily turned into an
oblivious read-once dynamic BP with nK nodes as follows:

S(i− 1, 1) · · · S(i− 1, k) · · · S(i− 1, j) · · ·

S(i, j)· · · · · ·

accept xi

is si = j − k?
reject xi

As nodes we take the subproblems S(i, j). For every k = 1, . . . , j, there is a contact
S(i− 1, k) → S(i, j) responsible for the i-th item xi = (pi, si). The contact S(i− 1, j) →
S(i, j) has no survival test, and makes the decision δ(xi) ≡ 0 (always reject). Each of the
remaining contacts S(i− 1, k) → S(i, j), for k < j, has the survival test te(xi) = 1 if and
only if si = j − k. The decision of each such contact e is δe(xi) ≡ 1 (always accept), and
hence, the weight of each such contact is w(xi) = pi. Thus, when an input x with xi =
(pi, si) comes, only two (out of j) contacts S(i−1, j) → S(i, j) and S(i−1, j−si) → S(i, j)
entering the node S(i, j) will survive

There is also the start node S(0, 0) from which there is a contact responsible for the first
item x1 to each of the nodes S(1, 1), . . . , S(1,K). Each contact S(0, 0) → S(1, j) makes
a trivial decision δ(x1) ≡ 1 (accept the first item), and has a survival test te(a1) = 1 iff
s1 ≤ j. The target node is S(n,K). It is easy to see that the resulting dynamic BP is
read-once and oblivious. The program has nK nodes and O(nK2) wires. The dynamic BP
for the minimization Knapsack problem is similar.

Remark 3 Note that we have one program for all problem instances. But we do not require
that every optimal solution for a given input must be produced by some s-t path: it is
enough that one path produces an optimal solution, and none of the remaining paths
produces an infeasible solution.

Remark 4 The model of static BP tries to solve the original problem by reducing it to the
“heaviest” (or “lightest”) s-t path problem on one particular acyclic graph. Namely, every
instance a ∈ Dn defines some weighting of the wires of the underlying graph G of the
static BP P , and the output value P (a) is the weight of the heaviest s-t path in G. If the
program is dynamic (has survival tests), then P (a) is the the weight of the heaviest s-t
path in a subgraph of G defined by the instance a.

Remark 5 A similar in its “sole” model of so-called combinatorial dynamic programs was
considered by Bompadre in [7]. This model is essentially our model of static BP with all

10

decision predicates being “accept”. Thus, a solution produced by a path is just the set of
items tested along this path. Only the weights of contacts depend on the actual input.
Besides being static, combinatorial DPs have one restriction, not present in our model:
each feasible solution must be produced by at least one s-t path (see Definition 3, item 3
in [7]). In our model it is enough that: (1) at least one optimal solution is produced, and
(2) every produced solution must be feasible. Using a reduction to monotone arithmetic
circuits, exponential lower bounds on the number of wires in combinatorial DP are proved
in [7] for some “permanent-like” optimization problems: Traveling Salesman Problem, the
Bipartite Matching Problem, and the Min and Max s-t Cut Problems. First exponential
lower bounds for monotone arithmetic circuit were proved by Jerrum and Snir [16], and
these were also for “permanent-like” problems. The Knapsack problem is not “permanent-
like”, and for it, no lower bound was known in this model.

Remark 6 The way how a dynamic BP computes its value depends on what semiring we
are working over. So as defined above, dynamic BPs work over the semiring (max,+)
or (min,+). The weight of a path in this case is the sum of weights of the contacts
accepting the corresponding items, and the value of the program is the maximum (or
minimum) of the weights of all consistent paths. In the boolean semiring ({0, 1},∨,∧), the
weight of a path is the AND of the weights of its contacts. That is, in this case we have
AND instead of Plus, and OR instead of Max. Thus, if we let all decisions be “accept”
(δe ≡ 1), and set w(0) = w(1) = 1, then any dynamic BP P over the boolean semiring
turns to a classical nondeterministic branching program computing some boolean function
f : {0, 1}n → {0, 1} by: f(a) = 1 if and only if there is an s-t path in P consistent with a.

Are our restrictions on dynamic BP reasonable?

Our restriction on survival tests te : D → {0, 1} is twofold: first we require these tests be
“local” (they can only depend on a single item in the input sequence), and we have the
consistency condition (i) on them. Both these restrictions on survival tests are (more or
less explicitly) present in other formalizations of DP algorithms, including the model of
prioritized branching programs invented in [11].

It is easy to see that we cannot allow arbitrary survival tests te : D
n → {0, 1}, because

the resulting model would be too powerful: any n-dimensional 0-1 optimization problem
could then be solved by an oblivious read-once dynamic BP of size n. Indeed, we could
then take a sequence v1, . . . , vn of nodes, and draw two parallel wires ei,0 and ei,1 from
vi to vi+1, both responsible for the i-th item xi. Let the decision made at the wire ei,α
be δ(xi) ≡ α (always accept or always reject). Finally, define the survival tests ti,α(x) of
these wires as follows. For each feasible input x ∈ Dn, fix an optimal solution Ix ⊆ [n]
for x. Then define ti,1(xi) = 1 if and only if i ∈ Ix, and ti,0(xi) = 1 if and only if i 6∈ Ix.
Now, when an input x ∈ Dn comes, only one s-t path will survive, and Ix is the solution
produced by this path.

Our consistency condition on survival tests (present also in the model of prioritized
BP [11]) is that one and the same item cannot survive and die along the same path. If we
remove this condition, then the resulting model will be also very powerful (even if each test

11

depends on a single data item): it will have the power of unrestricted branching programs.
This happens even if all tests have the form xi = d, and all decisions are constant.

Recall that a nondeterministic branching program (NBP) for a boolean function f :
{0, 1}n → {0, 1} is a directed acyclic graph where at some wires tests of the form “is
xi = 0?” or a test “is xi = 1?” are made; if there are no rectifiers (wires at which no test
is made), then such a program is usually called contact scheme. We also have a source
node s and a target node t. Such a program accepts an input x ∈ {0, 1}n if and only if
this input passes all tests of at least one s-t path. The strongest lower bound for NBPs
remains the lower bound Ω(n3/2/ log n) proved by Nechiporuk [22]. Moreover, this bound
is on the number of wires ; concerning the number of nodes (the measure we are interested
in), even super-linear lower bounds are not known.

Proposition 1 Without the consistency condition on survival tests, dynamic BPs are at

least as powerful as boolean nondeterministic branching programs.

Proof With every boolean function f : {0, 1}n → {0, 1} we can associate the following
artificial maximization problem with a linear target function. In this problem, data items
are boolean bits ai ∈ {0, 1}, each with w(ai) = 1. Solutions are vectors δ ∈ {0, 1}n. Such
a solution δ is feasible for input instance a ∈ {0, 1}n if f(a) = 1 and δ has exactly one
1. The goal is to compute opt(a) = max

∑n
i=1 δi · w(ai) over all feasible solutions δ for a.

Note that every dynamic BP solving this problem must compute the function f .
Suppose now we have a nondeterministic branching program P computing f . We can

transform P into a dynamic BP P ′(x) solving the optimization problem for f by just
re-labeling the wires. Let e be a wire in P at which a test te(xi) of the form “is xi = 1?”
is made. We leave this test as a survival test of e, and define the decision predicate δe at
e by: δe(xi) ≡ 1, if e is a wire leaving the start node s of P , and δe(xi) ≡ 0 otherwise.
Thus, along each consistent s-t path exactly one item is accepted. Since the NBP accepts
an input a ∈ {0, 1}n if and only if there exists an s-t path consistent with a, the resulting
dynamic BP solves the maximization problem for f . ⊓⊔

3 Lower Bound for Dynamic Programs

We have just shown that the n-dimensional Knapsack problem can be solved by a dynamic
BP using nK nodes, where K is the capacity of the knapsack. Moreover, the resulting BP
is read-once and oblivious. We will now show that this trivial upper bound is almost tight:
Ω(nK) nodes are also necessary, even in the class of non-oblivious and not read-once
programs. Moreover, this number of nodes is necessary already to solve the subset-sum

problem, a special case of the Knapsack problem, where the profit of each item is equal to
its size. To prove this, we first establish some properties of integer partitions, which may
be of independent interest.

3.1 Integer partitions

Let k ≤ n be two fixed natural numbers. A partition of n into k blocks is a vector
x = (x1, . . . , xk) of non-negative integers such that x1+ · · ·+xk = n. By a test we mean a

12

pair (S, b), where S ⊆ [k], and 0 ≤ b ≤ n is an integer. Such a test is legal if 0 6= |S| ≤ k−1.
Say that a test (S, b) covers a partition x if

∑

i∈S xi = b. Let us call S the support, and b the
threshold of the test (S, b). Note that the (illegal) test ([k], n) alone covers all partitions.
We are interested in how many legal tests we need to cover all partitions. So, let τ(n)
denote the minimum number of legal tests that cover all partitions of n into k blocks. We
have the following surprisingly tight result.

Lemma 1 τ(n) = n+ 1.

Proof The upper bound τ(n) ≤ n+1 is easy: already tests ({1}, b) with b = 0, 1, . . . n will
do the job. To prove the lower bound τ(n) ≥ n + 1, we argue by induction on n and on
the number m of supports in the collection.

If m = 1 then for every n, all the tests have the same support S, say, S = {1, . . . , r}. If
some threshold b is missing, then the vector x = (b, 0, . . . , 0, n− b) is a partition of n, but
it is covered by none of the tests, because the legality of the tests implies r < k. Thus, in
this case n+ 1 tests are necessary.

For general m, fix one support S containing no other support (from our collection
of tests) as a proper subset. Take the smallest number c which does not appear as a
threshold b in any of our tests of the form (S, b). Thus, we must already have at least c
tests (S, 0), (S, 1), . . . , (S, c− 1) with support S in our collection.

The remaining tests (T, b) with T 6= S in our collection can be modified in such a way
that they cover all partitions of n − c into k − |S| = k − r blocks. Namely, fix a string
of numbers (ai : i ∈ S) summing up to c, and concentrate on partitions of n containing
this string. By ignoring the positions i ∈ S, these partitions give us all partitions of
n− c into k − |S| blocks. Now we modify the remaining tests (T, b) so that they cover all
these (shorter) partitions. If T ∩ S 6= ∅, then replace (T, b) by the test (T \ S, b′) where
b′ = b−∑

i∈S∩T ai. If T ∩S = ∅, then leave the test (T, b) as it is. By induction hypothesis,
there must be at least n− c+ 1 such (modified) tests, giving a lower bound n+ 1 on the
total number of tests. ⊓⊔

Let τ+(n) denote the version of τ(n) in the case when only positive integers are allowed
to participate in a partition; we call such partitions positive partitions.

Lemma 2 τ+(n) ≥ τ(n− k).

Proof There is a 1-1 correspondence between positive partitions x of n and partitions x′

of n − k given by x′ = (x1 − 1, . . . , xk − 1). Now suppose we have a collection of tests
covering all positive partitions of n. Replace each test (S, b) by the test (S, b− |S|). Note
that b ≥ |S| if the test covers at least one positive partition x, because then

∑

i∈S xi = b
and all xi ≥ 1. Since

∑

i∈S xi = b implies that
∑

i∈S(xi − 1) = b − |S|, a partition x′ of
n−k passes the test (S, b−|S|) if the positive partition x of n passes the test (S, b). Thus,
the new collection of test covers all partitions of n− k. ⊓⊔

3.2 A lower bound for subset-sum problem

We consider a special case of the Knapsack problem, where the profit of each item is
equal to its size. In this problem, which we call the (n,K)-knapsack problem (to indicate

13

the number of items, and the capacity of the knapsack), input instances are sequences
a = (a1, . . . , an) of integers in [K] = {1, . . . ,K}. The goal is to compute the maximum
opt(a) = max

∑

i∈I ai over all subsets I ⊆ [n] such that
∑

i∈I ai ≤ K. In the minimization

problem, the goal is to compute the minimum opt(a) = min
∑

i∈I ai over all subsets I ⊆ [n]
such that

∑

i∈I ai ≥ K.

Theorem 1 If K ≥ 3n then every dynamic branching program solving the maximization

or minimization (n,K)-knapsack problem must have at least 1
2nK nodes.

Proof Take a dynamic branching program P = (V,E) solving the (n,K)-knapsack problem.
In particularly, this program must solve the problem on the set A ⊆ [K]n of all positive
partitions of K, that is, on the set of all input strings a = (a1, . . . , an) such that a1+ · · ·+
an = K, and all ai belong to [K] = {1, . . . ,K}.

For every a ∈ A, there must be an s-t path which is consistent with a and has weight K
on input a. Fix one such path, and call it the optimal path for a. Since none of the inputs
in A has a zero component (partitions are positive), along each optimal path exactly n
items must be accepted.

Fix now an integer r ∈ {1, . . . , n− 1}, and stop the optimal path for a after exactly r
items of a were accepted. Let pa denote the first segment (until the “stop-node”) and qa
the second segment of the optimal path for a. Let also Vr ⊆ V denote the set of nodes v in
our program such that the optimal path of at least one input instance a ∈ A was stopped
at v.

Recall that our set A of inputs is the set of positive partitions a1 + · · ·+ an = K of K
into n blocks.

Claim 1 For every r = 1, . . . , n − 1, the set of all positive partitions of K into n blocks

can be covered by |Vr| legal tests with supports of size r.

Together with Lemma 2, this implies that |Vr| ≥ τ+(K) ≥ K − n+ 1. This will prove the
theorem, because then |V | ≥ (n− 1)(K − n+ 1) = Kn−K − (n− 1)2, which is ≥ 1

2nK
for K ≥ 3n, as desired.

So, the rest is devoted to the proof of Claim 1.
Fix an integer r ∈ {1, . . . , n − 1} and a node v ∈ Vr. Let Av ⊆ A be the set of inputs

a ∈ A whose optimal paths were stopped at v, that is, a ∈ Av if and only if v is the
last node of pa. Recall that the optimal path for each input a ∈ Av consists of its initial
segment pa and its final segment qa. Let

Ia = {i ∈ [n] : xi is tested along pa} and Ja = {i ∈ [n] : xi is tested along qa}.

Let also

Pa = {i ∈ Ia : ai is accepted along pa} and Qa = {i ∈ Ja : ai is accepted along qa} .

That is, Pa is the partial solution produced by the path pa on input a, and Qa is the partial
solution produced by the path qa on this input. Hence, |Pa| = r and |Qa| = n− r for every
a ∈ A. Moreover, Pa ∪ Qa is the solution for a produced by the entire s-t path (pa, qa),
and Pa ∩Qa = ∅ because we consider an 0-1 optimization problem (see Remark 1).

14

Take two arbitrary inputs a 6= b ∈ Av. The initial and final segments of the optimal
paths for a and b look like:

s • ◦v • t
pb

qapa

qb

By a combination of a pair (a, b) we will mean any input c ∈ [K]n such that ci = ai for
all i ∈ Ia \ Jb, ci = bi for all i ∈ Jb \ Ia, and ci ∈ {ai, bi} otherwise.

Claim 2 Let c be a combination of (a, b). Then c is consistent with the combined path

(pa, qb), and all items ci with i ∈ Ia ∩ Jb are rejected along pa.

In particular, by taking a combination c with ci = ai for all i ∈ Ia ∩ Jb, this implies
that all items ai with i ∈ Ia ∩ Jb must be rejected along pa as well.

Proof In the proof of this claim we will essentially use the consistency conditions (i) and
(ii) on dynamic BP. The condition (i) is on survival tests: along every path, the survival
tests on the same variable xi must be the same. The second condition (ii) is on decision
predicates: if an item is accepted on a path, then it cannot be rejected latter on that path.

We first show that input c is consistent with (pa, qb). We know that input a is consistent
with the first segment pa, and input b is consistent with the second segment qb. Thus, input
c passes all survival tests te(xi) made on variables xi such that i 6∈ Ia ∩ Jb. Take now an
i ∈ Ia∩Jb. Then the variable xi is tested at some contact e1 of pa, and then is re-tested at
some contact e2 of qb. We know that te1(ai) = 1 and te2(bi) = 1. So, regardless of what the
actual value of ci is (ci = ai or ci = bi), the consistency condition te1(xi) = te2(xi) implies
that te1(ci) = te2(ci) = 1. Hence, input c passes all tests on variables xi with i ∈ Ia ∩ Jb,
as well.

To show that all items ci with i ∈ Ia ∩ Jb are rejected along pa, suppose that there
is contact e1 of pa testing the i-th variable xi such that δe1(ci) = 1 (item ci is accepted
at e1). Since i ∈ Jb, the variable xi is re-tested at some contact e2 along the path qb.
The consistency condition (ii) implies 1 = δe1(ci) ≤ δe2(ci). Thus, along the combined s-t
path, the i-th item ci of c is accepted at least two times (at contacts e1 and e2), implying
that the solution produced by the that path on input c is not a feasible solution for c, a
contradiction. ⊓⊔

We now show that, on all inputs a ∈ Av, the initial segments pa produce the same
partial solution, and that the weight of this solutions is the same for all a ∈ Av. For a
path p and an input a consistent with it, let wp(a) =

∑

i∈Pa
ai denote the weight of this

path on input a, that is, the sum of weights of items of a accepted along this path.

Claim 3 For all a, b ∈ Av, we have Pa = Pb and wpa(a) = wpb(b).

Proof By Claim 2, we have that Pa ∩ Qb = ∅. Thus, the sets Pa ∪ Pb and Qa ∪ Qb are
disjoint. Together with |Pa| = |Pb| = r and |Qa| = |Qb| = n− r, this implies Pa = Pb.

To show that wpa(a) = wpb(b), assume w.l.o.g. that wpa(a) ≥ wpb(b). Consider a com-
bination c of (a, b) such that ci = bi for all i ∈ Jb, that is, we set ci = bi for all i ∈ Ia ∩ Jb.

15

Then clearly, wqb(c) = wqb(b). By Claim 2, for all i ∈ Ia ∩ Jb, the items ci = bi and ai
are rejected along pa. But on the remaining variables xi with i ∈ Ia \ Jb, the input c
coincides with a. Thus, for this particular combination c, we have that wpa(c) = wpb(a)
and wqb(c) = wqb(b).

Had we now a strict inequality wpa(a) > wpb(b), then the combined path (pa, qb) would
produce an solution for c of weight wpa(c) +wqb(c) ≥ wpa(a) +wqb(b) > wpb(b) +wqb(b) =
K. If our program solves the maximization (n,K)-knapsack problem, this would be an
infeasible solution for c. Thus, the equality wpa(a) = wpb(b) holds in this case. If the
program solves the minimization (n,K)-knapsack problem then the same equality follows
by interchanging the roles of inputs a and b. ⊓⊔

We can now finish the proof of Claim 1, and thus, the proof of Theorem 1 as follows.
Take a node v ∈ Vr. By Claim 3, we know that every path pa for a ∈ Av accepts the same
set S of |S| = r items of a, and all the weights wpa(a) =

∑

i∈S ai of these paths are the
same. Thus, every node v ∈ Vr gives a legal test (S, b) covering all partitions in Av. Since
the set A of all positive partitions of K into n blocks is the union of the sets Av with
v ∈ Vr, we can conclude that the set A can be covered by |Vr| legal tests, as desired. ⊓⊔

4 Lower Bound for General Dynamic Programs

We now consider dynamic branching programs where only survival tests of the form ”is
xi = d?” are allowed, but there are no other restrictions, in particular, there are no
consistency conditions. That is, along one path, two contradictory tests ”is xi = d1?” and
”is xi = d2?” for d1 6= d2 may be made. We, however, assume that there are no rectifiers,
that is, every wire has a survival test. Let us call such programs general dynamic BP. We
are going to prove a non-trivial lower bound on the number of wires in such a program.

For this purpose, it will be convenient to consider the minimization Knapsack problem.
Just as in the case of maximization Knapsack problem, the DP algorithm for the mini-
mization gives rise to a (read-once and oblivious) dynamic BP with at most nK2 wires.
We will now show that about nK logK wires are also necessary even in the class of general
dynamic BP.

We again consider the simplified version of the minimization Knapsack problem, where
the profit of each item is equal to its weight. That is, data items are integers in D =
{0, 1, . . . ,K}. As before, a solution for a problem instance a ∈ Dn is a subset I ⊆ [n].
Such a solution I is feasible, if

∑

i∈I ai > K. The goal is to minimize the sum
∑

i∈I ai
over all feasible solutions I (if there are any). We already know (see Example 4) that nK2

wires are enough, even in the class of oblivious read-once dynamic programs.

Theorem 2 Every general dynamic BP solving the minimization (n,K)-Knapsack prob-

lem must have Ω(nK logK) contacts.

Our proof will be based on a classical result of Hansel [13] stating that any monotone
contact scheme computing the threshold-2 function Thm2 (x1, . . . , xm) must have at least
Ω(m logm) contacts. Recall that Thm2 accepts a boolean vector if and only if it contains
at least two 1s.

16

Proof Let P (x1, . . . , xn) be a general dynamic BP solving the minimization Knapsack
problem. We assume that the number n of items is even, and the capacity K is an odd
number. To prove that P must have at least Ω(nK logK) contacts, it is enough to show
that, for every i = 1, . . . , n/2, the program P must contain at least Ω(K logK) contacts
responsible for variables x2i−1 and x2i. By symmetry, it is enough to show this only for
i = 1. That is, it is enough to show that the number of contacts responsible for x1 and x2
must be at least Ω(K logK).

As before, a path is consistent with an input string if this string passes all survival
tests along that path. With some abuse of notation, we will say that a dynamic program
“accepts” an input string a ∈ Dn if at least one s-t path is consistent with a, and “rejects”
a if no s-t path is consistent with a. Thus, our program P accepts an input a if an only if
∑n

i=1 ai > K.
Recall that our domain is D = {0, 1, . . . ,K}. Call a pair (u, v) ∈ D2 an even-odd pair,

if u+ v > K, u is even and v is odd. Let S ⊆ D be the second half of our domain, that is,
S = {⌈K/2⌉, ⌈K/2⌉+ 1, . . . ,K}. Our proof consists of the following two steps:

(i) Modify P (x1, . . . , xn) to obtain a program P ′(x1, x2) which accepts exactly even-odd
pairs.

(ii) Modify P ′(x1, x2) to obtain a monotone contact scheme Q(yu : u ∈ S) of m = |S| new
boolean variables which computes the threshold-d function Thm2 (yu : u ∈ S).

The modifications will not increase the total number of contacts: we only contract/remove
some of contacts and/or replace their labels. By Hansel’s result the scheme Q must have
Ω(m logm) contacts. Thus, at least so many contacts should have been responsible for
variables x1 and x2 in program P , as desired.

We obtain the program P ′(x1, x2) of step (i) from the program P as follows:

– Remove all contacts making a test xi = d for d 6= 0 and i ≥ 3.
– Remove all contacts making a test x1 = d for d odd, and all contacts making a test

x2 = d for d even.
– Contract all contacts making tests xi = 0 for i ≥ 3.

In this way, the program P ′(x1, x2) accepts a pair (u, v) ∈ D2 if and only if the following
holds: the program P accepted the input (u, v, 0, . . .), and u+ v > K, and u is even, and
v is odd. That is, P ′ accepts exactly even-odd pairs. Note that in P ′, only tests x1 = d for
d ∈ D even, and tests x2 = d for d ∈ D odd are made.

The monotone boolean contact scheme Q(yu : u ∈ S) of step (ii) is obtained from
P ′(x1, x2) as follows. First, remove from P ′ all decision predicates. Then replace the tests
x1 = d and x2 = K − d for d ∈ D even, by the (boolean) test

ymax{d,K−d} = 1 .

Note that, for all d ∈ D, u = max{d,K−d} belongs to S, implying that the obtained tests
are on the variables in our set {yu : u ∈ S}. Moreover, for all u ∈ S, ymax{d,K−d} = yu.
Thus, since K is odd, a test yu = 1 with u ∈ S can only be obtained from

x1 = u and x2 = K − u if u is even,
x1 = K − u and x2 = u if u is odd.

(1)

17

The monotone boolean contact scheme Q(yu : u ∈ S) computes the threshold-2 function
Thm2 (yu : u ∈ S). Since the scheme Q is monotone, it is enough to show that it accepts
all vectors with exactly two 1s, and rejects all vectors with exactly one 1. To show this,
take an arbitrary vector b ∈ {0, 1}S with one or two 1s.

Assume first that b contains two 1s in positions u 6= v in S. We have to show that
Q(b) = 1, that is, there exist an s-t path in Q along which only tests x1 = u and x2 = v
are made. For this, we use the fact that, if P ′(x1, x2) accepts the pair (u, v) then along at
least one s-t path in P ′ only tests x1 = u and x2 = v are made; moreover, each of these
tests must be made at least once, because otherwise P ′ would wrongly accept (u, 0) or
(0, v).

Case 1a: u is even and v is odd. Since u + v > K, the pair (u, v) is an even-odd pairs,
and program P ′ accepts it. That is, along at least one s-t path in P ′ only tests x1 = u
and x2 = v are made. By (1), along the corresponding path in Q only tests yu = 1 and
yv = 1 are made, implying that Q(b) = 1.

Case 1b: both u and v are even. Suppose u > v. Then u + (K − v) > K. Since K − v is
odd, the pair (u,K − v) is an even-odd pair, and program P ′ accepts it. That is, along
at least one s-t path in P ′ only tests x1 = u and x2 = K − v are made. By (1), along
the corresponding path in Q only tests yu = 1 and yv = 1 are made, implying that
Q(b) = 1.

Case 1c: both u and v are odd. Suppose u > v. Since K − v is even, the pair (K − v, u)
is an even-odd pair, and program P ′ accepts it. That is, along at least one s-t path in
P ′ only tests x1 = K − v and x2 = u are made. By (1), along the corresponding path
in Q only tests yv = 1 and yu = 1 are made, implying that Q(b) = 1.

Assume now that b contains exactly one 1 in some position u ∈ S. We have to show
that Q(b) = 0.

Case 2a: u is even. Suppose that Q(b) = 1. Then there is an s-t path in Q where only tests
yu = 1 are made. Since u is even, (1) implies that each such test could be obtained only
from the test x1 = u or from the test x2 = K − u. Thus, along the corresponding path
in P ′(x1, x2), only these tests are made, implying that P ′ wrongly accepts the input
(u,K − u), a contradiction.

Case 2b: u is odd. Suppose that Q(b) = 1. Then there is an s-t path in Q where only tests
yu = 1 were made. Since u is odd, (1) implies that each such test could be obtained
only from the test x1 = K − u or from the test x2 = u. Thus, along the corresponding
path in P ′(x1, x2), only these tests are made, implying that P ′ wrongly accepts the
input (K − u, u), a contradiction.

This completes the proof of Claim 4, and thus, the proof of Theorem 2. ⊓⊔

Remark 7 In our proof it was essential that no rectifiers (unlabeled wires) were allowed.
The reason is that using rectifiers, the threshold-2 function Thm2 can be computed using
only 2m− 2 contacts:

18

• ◦ ◦

◦ ◦ ◦

◦ ◦ ◦
...

...
...

◦ ◦ •

x1 x2

x2 x3

x3 x4

xm−1 xm

It would be interesting to prove a non-trivial lower bound for the Knapsack problem in
the general model where rectifiers are allowed. It would be also interesting to prove such
a bound on the number of nodes, not only wires. The proof above cannot give larger than
Ω(n logK) lower bound on the number of nodes, because the complete m-vertex graph
can be covered by O(logm) complete bipartite graphs, and hence, Thm2 can be computed
by a monotone contact scheme with O(logm) nodes.

5 Bounds for approximation

Approximation algorithms for the (general) knapsack problem with capacity K usually use
an additional “argmax” feature. Given an input (p1, s1), . . . , (pn, sn), one first constructs
a table of values

S(i, p) = min
{

∑

i∈I

si : I ⊆ {1, . . . , i} and
∑

i∈I

pi = p
}

. (2)

That is, S(i, p) is the smallest total size of a subset of the first i items whose total profit is
exactly p. Then one scans the last “row” S(n, 1), S(n, 2), . . . , S(n, p), . . . and outputs the
maximal p for which S(n, p) ≤ K. For every input, the running time of this algorithm is
O(n

∑

i pi) = O(n2maxi pi). Thus, for inputs with small profits, that is, with p1+· · ·+pn ≪
K, this algorithm is more efficient than the O(nK) algorithm we considered above.

In order to implement such algorithms, we can also add the “argmax” feature to dynamic
branching programs. Namely, we now allow the program to have more than one target
node t1, . . . , tN . When input string x comes, the value P (x) is now computed as follows.
As before, the value val(tp, x) computed at the node tp on input x is the minimum (or
maximum) of weights of s-tp paths consistent with x. After that, the program outputs the
maximal p for which val(tp, x) is at most some given in advance threshold K. That is,

P (x) = argmax
p

{val(tp, x) : val(tp, x) ≤ K} .

We also add yet another feature: we now allow that every survival text te(xi) can also
depend on the total sum of weights of all n items x1, . . . , xn. Let us call this extended
model an argmax dynamic BP.

Remark 8 It is not difficult to see that the lower bound, given in Theorem 1, remains true
also for argmax dynamic BP. The reason is that we have proved this lower bound on a
very special set A of inputs a such that a1 + · · ·+ an = K: we associated with every such
input an optimal path, and argued that not too many of these paths can meet in a node.

19

Now, on every input a ∈ A, the program will output the answer K = val(tK , a) computed
at one and the same target node tK . The dependence of survival tests on the the total
sum a1+ · · ·+an of weights is irrelevant, because this sum is the same for all a ∈ A. Thus,
when restricted to inputs in A, the argmax dynamic BP works just as a usual dynamic
BP with one source node s and one target node tK .

Proposition 2 If the sum of profits in every input for an n-dimensional knapsack problem

does not exceed t, then the problem can be solved by an argmax dynamic BP with O(nt)
nodes.

Proof The values S(i, p) defined in (2) can be computed recursively as follows. Each base
value S(1, p) equals s1 if p1 = p, and is infinite otherwise. The recursion is then

S(i, p) = minimum of S(i− 1, p) and S(i− 1, p− pi) + si for pi ≤ p.

Here i runs from 1 to n, and p runs from 0 to t. By using construction, similar to that
in Example 4, one can easily translate this algorithm into an argmax dynamic BP with
O(nt) nodes. A fragment of this BP is shown here:

S(i− 1, 1) · · · S(i− 1, k) · · · S(i− 1, p) · · ·

S(i, p)· · · · · ·

accept xi

is pi = p− k?
reject xi

Note that the value of a BP is here computed as the minimum (not the maximum) weight
of a consistent s-t path. ⊓⊔

This dynamic BP can be used to approximate the (n,K)-knapsack problem by relatively
small dynamic BPs with the argmax feature.

One says that an algorithm P (x) approximates a given maximization problem on a
given set A ⊆ Dn of inputs with the factor α, if P (a) ≥ α · opt(a) holds for all a ∈ A.
Clearly, the closer is α to 1, the better approximation we have.

Theorem 3 For every ε > 0, the (n,K)-knapsack problem can be approximated with the

factor 1 − ε by an argmax dynamic BP with O(n3/ε) nodes. Moreover, Ω(n/ε) nodes

necessary for every 3n ≤ K < 1/ε.

Proof We first prove the second claim (the lower bound Ω(n/ε)). For optimization prob-
lems whose values are integers and maximal optimal value is an integer K, we have the
following simple fact: if an algorithm approximates the problem with a factor > 1− 1/K,
then it solves the problem exactly.

To see this, suppose that the algorithm does not solve the problem exactly. Then there
must be an input instance a on which the algorithm produces a value strictly smaller than

20

opt(a) ≤ K. The next best integer solution is opt(a)− 1. So the best possible error ratio
the program can get is (opt(a)− 1)/opt(a) = 1− 1/opt(a) ≤ 1− 1/K.

Suppose now that an argmax dynamic BP approximates the (n,K)-knapsack problem
with the factor 1 − ε. If K < 1/ε, then 1 − ε > 1 − 1/K, implying that the program
must solve the problem exactly. Since K ≥ 3n, Theorem 1 and Remark 8 imply that the
program must have at least 1

2nK = Ω(n/ε) nodes.
We now turn to the proof of the upper bound O(n3/ε).
Recall that in the (n,K)-knapsack problem we are given a sequence a = (a1, . . . , an) of

natural numbers ai ≤ K, and the goal is to compute the optimal value opt(a) =
∑

i∈I ai
over all solutions I such that

∑

i∈I ai ≤ K. With every input a we associate its scaling
factor r = ε(a1+ · · ·+an)/n

2. The scaled version of a is the vector a′ = (a′1, . . . , a
′
n), where

a′i = ⌊ai/r⌋. By the scaled (n,K)-Knapsack problem we will mean the Knapsack problem
with profits (a′1, . . . , a

′
n) and sizes (a1, . . . , an), and the same capacity K.

Note that the total weight a′1 + · · · + a′n of every scaled input a′ does not exceed
t = (a1 + · · · + an)/r = n2/ε. By Proposition 2, there is an argmax dynamic BP P ′(x)
of size at most some constant times nt = n3/ε which solves the scaled (n,K)-Knapsack
problem (exactly). Important here is that the sets of feasible solutions in both problems
(original and scaled) are the same—only their values may differ.

The survival tests in P ′(x) are of the form xi = d for a natural number d. We modify
the program P ′(x) to a program P (x) by replacing all survival tests xi = d by tests
⌊xi/r⌋ = d, where the factor r = r(x) := ε(x1 + · · · + xn)/n

2 depends on input x. These
tests are legal since in an argmax BP we allow them to depend also on the total weight
x1+ · · ·+xn of the entire input. Note that an item ai passes the test ⌊xi/r⌋ = d in program
P if and only if the scaled item a′i = ⌊ai/r⌋ passes the test xi = d in program P ′. Thus,
all feasible solutions produced by the program P ′ on scaled inputs a′ are feasible solutions
for non-scaled input a produced by program P . Of course, optimal solutions for a′ may
not be optimal for a. Let us show that still P (a) ≥ (1− ε)opt(a) holds.

Let I ′ be an optimal solution produced by P ′(x) on the scaled input a′, and let I be
an optimal solution for input a. The solution I ′ is also a feasible solution for a, and is
produced by P (x) on input a. Since I ′ is optimal and I is feasible for a′, we have that
∑

i∈I′ a
′
i ≥

∑

i∈I a
′
i. Thus,

P (a) ≥
∑

i∈I′

ai ≥ r
∑

i∈I′

a′i ≥ r
∑

i∈I

a′i ≥
∑

i∈I

ai − r|I| ≥ opt(a)− rn .

Together with rn = ε(a1 + · · ·+ an)/n ≤ ε ·maxi ai ≤ ε · opt(a), the desired lower bound
P (a) ≥ (1− ε)opt(a) follows. ⊓⊔

6 Conclusion and Open Problems

In this paper we introduced a model of dynamic branching programs (dynamic BP)
which captures the power of so-called “incremental” dynamic programming algorithms,
and proved a matching lower bound for the Knapsack problem in this model. Still, many
questions remain open.

21

Late rejections The first natural question is to relax the consistency conditions (i) and (ii)
for dynamic BPs. Can the lower bounds in Theorem 1 be proved without the consistency
condition (ii) on the decision predicates? This condition allows that rejected items can
be accepted later, but it does not allow already accepted items be later rejected. That is,
dynamic BPs do not have this “late rejections” feature. It turns out that this feature may
substantially increase the power of dynamic BPs. In programs with this feature, a natural
way to define the solution produced by an s-t path as the set of items on which the last
decision was “accept”.

Consider the Maximum Weight Bipartite Matching problem. Inputs are n2 non-negative
weights of the edges of Kn,n, and the goal is to compute the maximum weight of a matching.
If we allow late rejections, then this problem can be solved by a dynamic BP with O(n3)
wires. Moreover, the resulting BP is static, i.e., has no survival tests. This is surprising
because it is proved in [11] that this problem requires priority BPs of exponential size,
even if the weights are restricted to 0 and 1.

The BP itself consists of n “acceptors” followed by n “rejectors”. Each acceptor corre-
sponds to one vertex u of Kn,n on the left side, and consists of n parallel wires between
two nodes that are responsible for all n edges incident to vertex u. All decisions here are
“accept”. Each rejector corresponds to one vertex v of Kn,n on the right side, and consists
of n node-disjoint paths of length n− 1. Wires of each of the paths are responsible for all
but one edge incident to v. All decisions here are “reject”.

Take now any s-t path is this BP. The acceptor part of this path accepts one incident
edge for each node on the left part. The rejector part rejects all but one incident edge for
each vertex on the right part of Kn,n. Thus, the solution produced by the entire path is a
matching. On the other hand, each perfect matching will be produced by at least one s-t
path, namely – by the path whose rejector part does not reject any of the edges in this
perfect matching. Thus, the BP solves the Maximum Weight Perfect Matching problem.
This example shows that the feature of late rejections may substantially increase the power
of dynamic BP. Can non-trivial lower bounds be proved for dynamic BPs with the late
rejections feature?

Null-chains Consistency condition (i) seems to be a more severe one. If we completely
remove this condition then, by Proposition 1, we will land into the realm of general model
of nondeterministic branching programs (NBP), where even larger than n lower bounds
on the number of nodes are not know so far. The consistency condition (i) results in
branching programs, known also as “null-chain-free” programs, and for them exponential
lower bounds are known [19].

Although allowing such “redundant” paths, followed by none of the inputs, seems to
be an overkill (why should we do this?), it is known that their presence can substantially
reduce the number of nodes (number of subproblems used). For example, as shown in
[17], there are boolean functions that require NBPs of exponential size, if null-chains are
forbidden, but can be computed by small NBPs when null-chains are allowed. Such is, for
example, the Exact Perfect Matching function, that is, a boolean function which accepts
a given 0-1 n × n matrix if and only if every row and every column has exactly one 1.
Without null chains,

(

n
n/2

)

= Ω(2n/
√
n) nodes are necessary, whereas already O(n3) wires

22

are enough if null-chains are allowed: just test whether every row has at least n − 1 0s,
and whether each column has at least one 1. Every s-t path in this program is either read
once, or is inconsistent, that is, makes two contradictory survival tests xij = 0 and xij = 1
on the same entry (i, j) of the input matrix.

It is therefore an interesting problem to understand the role of null-chains in dynamic
programming algorithms. In particular, can the presence of null-chains reduce the size of
DP algorithms solving “natural” optimization problems?

Read-k dynamic BPs? Another possible relaxation of the consistency condition could be
to allow inconsistent paths in a dynamic BP, but to require that along every path (be
it consistent of not) each item xi is queried at most some given number k of times. In
the case of boolean functions, such programs are known as (syntactic) read-k branching
programs, and several exponential lower bounds for them are known [23,8,17]. For branch-
ing programs computing functions f : Dn → {0, 1} for larger domains than D = {0, 1},
exponential lower bounds are known even for “semantic” read-k programs, where it is only
required that along every consistent path one item is queried at most k times [2,5,18].
Again, it would be interesting to prove strong lower bounds for read-k dynamic branching
programs solving some natural optimization problems.

More general survival tests In our proofs of lower bounds it was essential that the survival
tests te(xi) made on contacts e can only depend on one single data item xi. In some cases,
it is desirable to have more general survival tests, depending on more than one data item.
For example, in the interval scheduling problem a natural test is “Is the finish-time of the
i-th job smaller than the start-time of the j-th job?” Can some non-trivial lower bounds
be proved for dynamic BPs with more general survival tests?

Min-Plus and Max-Plus circuits The next interesting problem is to eliminate the “incre-
mental” restriction of BPs. Such a BP is just a (min,+) or (max,+) circuit in which the
use of +-gates is restricted: one of the two inputs must be a weight of a single item.

A prominent example of a “non-incremental” DP algorithm, which does not directly
translate to a dynamic BP, is the Floyd–Warshall algorithm for the all pairs shortest path
problem. As subproblems it takes Sk(i, j) = the length of a shortest paths from i to j that
only uses vertices 1, . . . , k as inner nodes. We set S0(i, j) = the weight of the edge (i, j).
The DP recursion is then Sk(i, j) = min{Sk−1(i, j), Sk−1(i, k) + Sk−1(k, j)}.

This algorithm gives us a (min,+)-circuit of size O(n3). On the other hand, it is known
(see [1, pp. 204–206]) that the complexity (number of arithmetic operations) of this problem
is of the same order of magnitude as the complexity of computing the product of two
matrices over the semiring (min,+). In this latter problem, we have two n × n matrices
A = (aij) and X = (xij). The goal is to compute their “product” M = AX where
M = (mij) is an n × n matrix with mij = min{ai1 + x1j , ai2 + x2j , . . . , ain + xnj}. It is
clear that n3 additions are always enough to compute M . On the other hand, Kerr [21]
showed that n3 additions are also necessary. This implies that, in the case when only Min
and Plus operations are allowed, the Floyd–Warshall all pairs shortest paths DP algorithm
is optimal!

23

Much fewer is known about the (min,+)-circuit complexity of the s-t shortest path
problem. It can be shown (see Example 1 below) that the Bellman–Ford algorithm for this
problem translates to a static BP with O(n3) wires. Hence, this problem can be solved
by a (min,+)-circuit with O(n3) gates. Does the shortest s-t path problem for n-vertex
graphs require Ω(n3) gates in (min,+)-circuits? The s-t shortest path problems is only a
special case of the more general all-pairs shortest paths problem, but no faster algorithms
for the former problem are known.

Relation to prioritized branching programs In our model of dynamic BP, each wire is
responsible for one data item xi of the input instance x = (x1, . . . , xn). This responsibility
is input independent, that is, does not depend on actual costs of the items. One can,
however, try to relax this condition and allow each wire e to have its responsibility function

inde : D
n → [n]. When an input x ∈ Dn comes, the wire e is responsible for the i-th item

of x if inde(x) = i.

Of course, we cannot allow arbitrary responsibility functions, for otherwise any 0-1
optimization problem would be solvable by very small static BP consisting of just one
path: for each input x, fix one of its optimal solutions Ix, and let the i-th wire of the path
be responsible for the i-th item in Ix.

In the model of prioritized BP, introduced in [11], non-constant responsibility functions
are allowed. Unlike dynamic BP, the description of this model is more “algorithmic”. The
model is specified by giving some set V of nodes (states), one of which is a source-node,
and some of which are sink-nodes. Each sink node v is assigned a real number val(v). Each
non-sink node has its associated total ordering �v of the set D of all data items, and a
transition function gv : D × {0, 1} → V × M , where M is the set of all monotone real
function on one argument. All these objects (values of sinks, orderings, and transition
functions) are input-independent.

The actual “branching program” P (x) is constructed only when an input x ∈ Dn comes.
We start at the source node, and do the following. Each non-sink node v is responsible
for that item xi in input instance x, which comes as the first in the ordering �v. Then we
follow the two outgoing wires: 0 (reject xi) and 1 (accept xi). These wires go to vertices
determined by transition function gv. The transition function gv also associates monotone
functions f0 and f1 with the outgoing wires. We stop the construction of P (x) when no
new non-sink node can be reached. The size of a pBP algorithm is the maximum, over all
inputs x ∈ Dn, of the number of nodes in P (x).

Note that (unlike dynamic BP) this model is “adversarial”: the program cannot see the
entire input string x but, after a node v gives an ordering �v, the adversary must reveal
the first item of x in this order. This is why lower bounds for pBP are obtained in [11]
using games played by a Solver (a pBP) and an Adversary.

The value P (x) on input x is computed backwards, by inductively assigning values to
nodes. The value of each sink node v is the value val(v) assigned by the algorithm (it
does not depends on x). Suppose now that the children v0 and v1 already have assigned
values val(v0) and val(v1). Let f0 and f1 be the monotone real functions assigned (by the
transition function gv) to the wires going to v0 and v1. Then the value of v is defined as the

24

maximum (or minimum, if we have a minimization problem) of f0(val(v0)) and f1(val(v1)).
The value output by the algorithm is then the value of the source node.

A pBP is boolean if sinks can only have values 0 or 1. In this case, the value of each
node is just an OR of values of its two children. That is, in this case all functions fi are
trivial identity functions. Using interesting probabilistic arguments, it is proved in [11]
that any boolean pBP computing the perfect matching function for bipartite graphs must
have exponential size (=number of nodes). More precisely, they show that, for every pBP
algorithm P , there exists an input instance (a bipartite n×n graph) for which the program

P (x) has at least 2Ω(n1/8) nodes.
The model of pBT (prioritized branching trees), introduced in [3], has a restriction

that the underlying graph of P (x) must be a tree. But it has an additional feature (not
present in pBP) that the transition function gv as well as the ordering �v may depend on
the items and decision about them made along the (unique) path to the node v. In [3] it
is shown that the (n,K)-knapsack problem with capacity K about n3n requires pBTs of

size
(n/2
n/4

)

. It is also shown that the Knapsack problem can be (1− ε)-approximated by a

pBT of size (1/ε)2, and that any such pBT must have size (1/ε)1/3.17, if ε ≥ 2−cn for some
constant c.

It is not clear whether one of the models—dynamic BP and pBP—includes the other.
Intuitively, the later model “should” subsume the power of the former, due to more general
responsibility functions. It would be interesting to formally prove or disprove this. It would
also be interesting to prove lower bounds for dynamic BPs themselves equipped with some
non-constant (say, priority-type) responsibility functions.

Acknowledgments

I am thankful to Joshua Buresh-Oppenheim, Russell Impagliazzo, Gerhard Paseman, and
Georg Schnitger for fruitful discussions.

References

1. A. Aho, J. Hopcroft, and J. Ullman: The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974. 22

2. M. Ajtai: Determinism versus non-determinism for linear time RAMs with memory restrictions.
J. Comput. Syst. Sci. 65(1), 2–37 (2002). 22

3. M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Magen: Toward a
model for backtracking and dynamic programming. Comput. Complexity 20(4), 679–740
(2011). Preliminary version in: Proc. of 20-th IEEE Conference on Computational Complexity,
pp. 308—322 (2005). 3, 23

4. S. Angelopoulos and A. Borodin: The power of prioritized algorithms for facility location and
set cover. Algorithmica 40(4), 271–291 (2004). 3

5. P. Beame, M. Saks, X. Sun, and E. Vee: Time-space trade-off lower bounds for randomized
computation of decision problems. Journal of ACM 50(2), 154–195 (2003). 22

25

6. R. Bellman: Combinatorial processes and dynamic programming. In: Proc. of the 10-th Symp.
in Applied Math. of the AMS, pp. 24—26 (1958). 3

7. A. Bompadre: Exponential lower bounds on the complexity of a class of dynamic programs
for combinatorial optimization problems. Algorithmica, 62(3-4), 659–700 (2012). 10

8. A. Borodin, A. Razborov, and R. Smolensky: On lower bounds for read-k times branching
programs. Computational Complexity 3, 1–18 (1993). 22

9. A. Borodin, M.N. Nielsen, and C. Rackoff: (Incremental) prioritized algorithms. Algorithmica
37(4), 295–326 (2003). 3

10. A. Borodin, J. Boyar, and K. S. Larsen: Priority algorithms for graph optimization problems.
In: Proc. of 2nd Int. Workshop on Approximation and Online Algorithms. LNCS, vol. 3351,
pp. 126—139. Springer, Berlin (2005). 3

11. J. Buresh-Oppenheim, S. Davis, R. Impagliazzo: A stronger model of dynamic programming
algorithms. Algorithmica 60(4), 938–968 (2011). 3, 7, 11, 21, 23

12. S. Davis, and R. Impagliazzo: Models of greedy algorithms for graph problems. Algorithmica
54(3), 269–317 (2009). 3

13. G. Hansel: Nombre minimal de contacts de fermeture necessaires pour realiser une function
booleenne symetrique de n variables, C. R. Acad. Sci. 258(25) (1964), 6037–6040 (in French).
16

14. P. Helman: A common schema for dynamic programming and branch and bound algorithms.
J. ACM 36(1), 97–128 (1989). 3

15. P. Helman and A. Rosenthal: A comprehensive model of dynamic programming. SIAM J.
Algebr. Discrete Methods 6, 319–334 (1985). 3

16. M. Jerrum and M. Snir: Some exact complexity results for straight-line computations over
semirings. J. ACM 29(3), 874–897 (1982). 10

17. S. Jukna: A note on read-k times branching programs, RAIRO Theoret. Informatics and Appl.
29(1), 75–83 (1995). 21, 22

18. S. Jukna, A nondeterministic space-time tradeoff for linear codes. Inf. Process. Lett. 109(5),
286–289 (2009). 22

19. S. Jukna: Boolean Function Complexity: Advances and Frontiers. Springer, 2012. 3, 21
20. R. Karp and M. Held: Finite state processes and dynamic programming. SIAM J. Appl. Math.

15, 693–718 (1967). 3
21. L.R. Kerr: The effect of algebraic structure on the computation complexity of matrix multi-

plications. PhD Thesis, Cornell Univ., Ithaca, N.Y. (1970). 22
22. E. I. Nechiporuk: On a Boolean function, Soviet Math. Dokl. 7(4), 999–1000 (1966). 11
23. E. A. Okolnishnikova: Lower bounds on the complexity of realization of characteristic functions

of binary codes by branching programs. In: Diskretnii Analiz, 51, pp. 61–83 (Novosibirsk, 1991),
in Russian. 22

24. O. Regev: Priority algorithms for makespan minimization in the subset model, Inf. Process.
Lett. 84(3), 153–157 (2002). 3

25. A. Rosenthal: Dynamic programming is optimal for nonserial optimization problems. SIAM J.
Comput. 11(1), 47–59 (1982). 3

26. I. Wegener: Branching Programs and Binary Decision Diagrams. SIAM, 2000. 3
27. G. J. Woeginger: When does a dynamic programming formulation guarantee the existence of

a fully polynomial time approximation scheme (fptas)? INFORMS J. Comput. 12(1), 57–74
(2000). 3

26

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

