Efficient Interactive Coding Against Adversarial Noise

Zvika Brakerski* Yael Tauman Kalai†

Abstract

In this work, we study the fundamental problem of constructing interactive protocols that are robust to noise, a problem that was originally considered in the seminal works of Schulman (FOCS ’92, STOC ’93), and has recently regained popularity. Robust interactive communication is the interactive analogue of error correcting codes: Given an interactive protocol which is designed to run on an error-free channel, construct a protocol that evaluates the same function (or, more generally, simulates the execution of the original protocol) over a noisy channel. As in (non-interactive) error correcting codes, the noise can be either stochastic, i.e. drawn from some distribution, or adversarial, i.e. arbitrary subject only to a global bound on the number of errors.

We show how to efficiently simulate any interactive protocol in the presence of constant-rate adversarial noise, while incurring only a constant blow-up in the communication complexity (CC). Our simulator is randomized, and succeeds in simulating the original protocol with probability at least $1 - 2^{-\Omega(\text{CC})}$.

Previous solutions are either inefficient or are resilient only to stochastic noise.

*Stanford University, zvika@stanford.edu. Supported by a Simons Postdoctoral Fellowship and by DARPA.
†Microsoft Research, yael@microsoft.com.
1 Introduction

The problem of errors in communication is very fundamental, and modern study of this problem dates back to the work of Shannon [Sha48]. Two types of errors are typically considered: Stochastic errors, which are assumed to be distributed according to some probability distribution; and adversarial errors, which are not governed by a probability distribution, but rather by the whims of an adversary. Today we know how to construct “good” error correcting codes: ones that encode k-bit messages using $O(k)$-bit codewords, and are decodable even with $\Omega(k)$ adversarial errors. In other words, codes with constant information rate and constant error rate. For more information on error correcting codes, see e.g. [Sud01] and references within.

In this work, we study the interactive analogue of error-correcting codes, a problem that was originally considered in an innovative sequence of works by Schulman [Sch92, Sch93]. We show how to efficiently convert any interactive protocol into one which is resilient to constant fraction of adversarial error, while increasing the communication complexity by at most a constant, and by increasing the computational complexity by at most a polynomial factor. (See Section 1.2 for more details on our results.)

It may seem that interactive error correction is implied by traditional (non-interactive) error correcting codes, by simply encoding each message of the interactive protocol using the code. However, this solution is often unsatisfactory. In the case of adversarial noise, the resulting error-rate will be very small. In particular, the error-rate will be smaller than $1/k$, where k is the number of messages transmitted in the protocol. This is the case since we cannot allow even a single message to be fully corrupted. Moreover, even in the case of stochastic noise, if the parties exchange many relatively short messages (say, one bit each), then applying an error-correcting code to each (short) message, will incur an undesirable large (super-constant) blowup in the communication complexity.

1.1 Related Work

As mentioned above, the study of error-resilient interactive communication started with a sequence of results by Schulman, where his objective was to construct a simulator (or a compiler), that given any interactive protocol π constructs an error-resilient version of π, that is robust to constant fraction of errors, and which has only a constant overhead in the communication complexity CC.

Schulman’s works offer solutions in a number of scenarios: First, in [Sch92] it is shown that if the parties communicate over a probabilistic channel (specifically, a BSC: binary symmetric channel) and share a large amount ($O(\text{CC}^2)$) of random bits, then the objective can indeed be met. Furthermore, in this case the resulting robust protocol is as efficient as the original one (up to polynomial factors). The pre-shared randomness could be replaced with local randomness at the cost of making the simulator inefficient. Then, in [Sch93], tree-codes were introduced: If the communicating parties are given access to a tree code of depth $O(\text{CC})$, then even the more challenging task of adversarial errors can be tackled deterministically. Schulman showed that such tree codes exist, but was unable to show an efficient implementation (even randomized).

Braverman and Rao [BR11] significantly improved the error rate in Schulman’s work, and show that tree codes can be used to protect against error rate of up to $1/8$ (in the binary case), and provide some evidence that protecting against error rate $1/4$ should be challenging. Their construction again inherits the inefficiency of the tree constructions. Consequently, Braverman [Bra12] showed how to construct and decode tree-codes in sub-exponential time, thus reducing the computation complexity of previous works from exponential time to sub-exponential time.
Gelles, Moitra and Sahai [GMS11] gave an efficient way to convert any interactive protocol into an error resilient one in the case of BSC (probabilistic channels). They use a relaxed notion of tree codes, which they show can be efficiently constructed and decoded over BSC.

Despite all this remarkable progress, the question of an efficient solution for adversarial channels remained open, and is addressed in this work.

1.2 Our Results

We present an efficient randomized simulator for interactive protocols over channels with adversarial noise. Naturally, our solution can also be applied towards probabilistic channels where the total number of errors is bounded with high probability. The properties of our simulator are described in the following theorem. (All of our protocols are over the binary alphabet.)

Theorem. There exists an efficient simulator \(S \) such that for any protocol \(\pi = (A, B) \) of communication complexity \(\text{CC}(\pi) \), the simulated protocol \(S^\pi = (S^A, S^B) \) computes \(\text{Trans}(\pi) \) (the transcript of \(\pi \)), has communication complexity \(O(\text{CC}(\pi)) \), and is robust, with probability \((1 - 2^{-\Omega(\text{CC}(\pi))}) \), to adversarial errors of rate \((1 - \epsilon) \eta/4 \), where \(\eta \) is the highest inefficiently-correctable error rate. The computational complexity of the simulator (given oracle access to the parties) is at most \(\text{poly}(\text{CC}(\pi)) \).

As in previous works, the convergence to the asymptotic error rate is inversely proportional to the overall communication complexity. Namely, to achieve error rate \((1 - \epsilon) \eta/4 \), the communication complexity of the simulator will be \(O\left(\frac{\text{CC}(\pi)}{\epsilon}\right)\).

The best currently known asymptotic value of \(\eta \) is \(1/8 \) due to [BR11], which implies asymptotic rate of \(1/32 \) for our simulator.

1.3 Our Techniques

Our starting point is the aforementioned exponential time deterministic simulator from either [Sch96, BR11, Bra12], that we use in a black-box manner.\(^1\) In order to use such a simulator and still achieve overall computational efficiency, we will use the simulator on logarithmic chunks of the protocol.

The basic idea is simple: Given a protocol \(\pi = (A, B) \) with an \(N \) bit transcript, divide its transcript into \(N/ \log N \) chunks of \(\log N \) bits each. Then run the exponential simulator chunk-by-chunk to reconstruct the entire transcript of \(\pi \) efficiently. This idea indeed seems to work in the stochastic model, where the errors are evenly distributes between the different chunks (though the failure probability will not be negligible).

However, in the adversarial setting this idea is prone to failure, since we are only guaranteed that the *average* error rate over the chunks is constant, but it can be very high for any particular chunk. Namely, if the adversary introduces high noise rate at a specific chunk, then it can make the parties get that chunk all wrong, which will ruin correctness, even if all other chunks are computed correctly. We thus have to introduce some control mechanism by which the parties can identify that such erroneous event occurred, rewind their state back to the point of agreement, and try again. (This is the high level logic governing all known solutions starting from [Sch92].)

\(^1\)This means that any future simulator, even non-tree based, can be used. In fact, we can also use probabilistic simulators with exponentially small error probability, but it would complicate the analysis somewhat.
As a first solution, we introduce a synchronization check before each chunk, where the two parties compare their internal states to see that they are in sync. String comparison is known to be efficiently possible using (private, non-shared) randomness: each party will draw a randomness-efficient universal hash function, apply it to its local copy of the (simulated) transcript, and send the outcome, together with the description of the hash function, to the other party.\footnote{Interestingly, [Sch92] also uses universal hashing to compare the internal state, however he could not afford to send the description of the hash function along with the output, so he had to use pre-shared randomness.} Using randomness efficient hash families [NN93, AGHP92], only $O(\log N)$ bits need to be sent to achieve good detection probability, and since the check only happens once for every $\log N$ bits chunk, its amortized effect on the information rate is constant.

However, this solution does not work as is: The adversary might realize that the string comparison is the soft underbelly of our construction, and introduce errors during that stage. On the face of it, even a small amount of error can completely ruin the comparison.

We overcome this problem by incorporating the synchronization check as part of the chunk that is being communicated. Namely, we consider a protocol that first sends (and receives) the synchronization information, and then the parties run the next chunk. We apply the exponential time simulator to this extended protocol, whose communication complexity is still logarithmic. This will ensure that an adversary who wants to cause harm at any part of the protocol needs to introduce at least $\Omega(\log N)$ errors (a constant fraction of the communication).

The parties will simulate this extended protocol (synchronization + next chunk) over the channel and end up with a transcript, which contains the information of whether they are in sync or not, as well as the $\log N$ bits of transcript corresponding to the current chunk. If they were in sync, then they will use the $\log N$ bits of transcript, and continue to the next chunk. If they were not in sync, then they discard this information, and go back to the previous chunk (to try to get in sync).

Still there is a fundamental problem, since the adversary can adopt the following line of attack: It can invest enough errors to corrupt the view of only one party, and corrupt the check accordingly. In such case, one party will revert to the previous chunk, while the other continues to the next. The protocol we described so far gives no mechanism to help the parties verify that they are computing the same chunk.

We therefore add an additional element to the synchronization check: in addition to the hash description and hash value, each party will also send its position in the simulated transcript, which comes at a tolerable cost of additional $O(\log N)$ bits (of course this is also incorporated into the protocol that is “protected” by the exponential simulator). Given this information, it is possible to efficiently detect and correct gaps.

To analyze this protocol, we can think about the error correcting protocol as a game where we try to make the adversary waste its allotted number of errors, without setting the protocol back by too much. Intuitively, so long as the adversary only sets us back by less than the amount of steps required to recuperate (up to a constant), then our simulator will succeed. In our protocol, the adversary needs to invest $\Omega(\log N)$ errors to create an initial inconsistency, and it needs to keep investing $\Omega(\log N)$ errors in each following step to prevent our synchronization mechanism from recovering. Our analysis shows that the adversary will run out of errors at some point, allowing our recovery mechanisms to complete the simulation of the transcript of π.

Our simulator is formally presented and analyzed in Section 3.
2 Preliminaries

The following simple claim is used in our analysis.

Claim 2.1. Let X_1, \ldots, X_n be i.i.d. random variables over $\{0, 1\}$ with expectation $\mathbb{E}[X_i] = 1 - \epsilon$, and let $X = \sum_{i\in[n]} X_i$. Then for any integer t,

$$\Pr[X \leq n - t] \leq 2^n \cdot \epsilon^t.$$

Proof. For $t < 0$ or $t > n$, the claim holds trivially. Otherwise, the event $X \leq n - t$ is exactly the event that at least t variables take a 0 value, therefore

$$\Pr[X \leq n - t] = \sum_{i=t}^{n} \binom{n}{i} \epsilon^i (1-\epsilon)^{n-i} \leq \sum_{i=t}^{n} \binom{n}{i} \epsilon^t \leq 2^n \cdot \epsilon^t,$$

and the claim follows. \qed

An immediate corollary is that Claim 2.1 also holds when t is any real number (by applying the original claim to $\lceil t \rceil$). This corollary is used in the proof of Lemma 3.4.

Let X, Y be real random variables. We say that $Y \geq X$ if $F_Y(z) \leq F_X(z)$ for all z, where $F_X(z) = \Pr[X \leq z]$ is the cumulative distribution function of X.

2.1 Interactive Protocols and Simulation

In this work, we consider simulators for interactive communication. A simulator produces a new protocol, that uses the original protocol as an oracle, and computes the transcript of the original protocol. Clearly, it is sufficient to simulate deterministic protocols with no input, since we can always hard-wire the randomness and input into the protocol. For such a protocol $\pi = (A,B)$, we let $\text{Trans}(\pi)$ denote the transcript of π.

All of the protocols we consider in this work are over the binary alphabet. Given a (partial) transcript T and integer n, we let $T_{\leq n}$ denote the n bit prefix of T. Concatenation of two transcripts is denoted by $T_1 || T_2$.

Given a transcript T, we let $X(T)$ denote the interactive machine whose initial internal state is the internal state of X right after producing T. If X cannot produce T then $X(T)$ is arbitrary. Note that it is easy to simulate $X(T)$ given X and T, by feeding T to X one message at a time until X is at the right internal state.

The following theorem asserts the existence of deterministic exponential time simulators for any interactive protocol.

Theorem 2.2 ([Sch96, BR11, Bra12]). There exist positive constants $\rho, \eta \in (0,1)$ and a deterministic interactive oracle machine Q (the simulator) such that for any protocol $\pi = (A,B)$ of communication complexity $\text{CC}(\pi)$, the protocol $Q^\pi = (Q^A, Q^B)$ computes $\text{Trans}(\pi)$, has communication complexity $\text{CC}(Q^\pi) \leq \text{CC}(\pi)/\rho$, and is robust (with probability 1) to adversarial error of rate η. The computational complexity of Q is at most $2^{O(\text{CC}(\pi))}$.

We assume w.l.o.g. that Q always terminates after communicating the same number of bits, and always outputs a bit string of length $\text{CC}(\pi)$, even when it is unsuccessful due to noise rate higher than η or due to the oracle aborting.
2.2 Hash Functions

Our simulator uses a randomness-efficient string comparison test. Such is provided by using the families of hash functions of either [NN93, AGHP92] (see in particular [NN93, Section 9]). In what follows, we denote \(\{0,1\}^n \triangleq \bigcup_{i \in [n]} \{0,1\}^i \).

Theorem 2.3 ([NN93, AGHP92]). There exists a constant \(q > 0 \) and an ensemble of hash families \(\{H_k\}_{k \in \mathbb{N}} \) such that for every \(k \in \mathbb{N} \) and for every \(h \in H_k \), \(h : \{0,1\}^{2^k} \rightarrow \{0,1\}^{\gamma k} \) is poly-time computable, it is efficient to sample \(h \leftarrow H_k \) using only \(q \cdot k \) random bits, and for all \(x \neq y \in \{0,1\}^{2^k} \) it holds that

\[
\Pr_{h \leftarrow H_k} [h(x) = h(y)] \leq 2^{-k}.
\]

Note that we assume w.l.o.g. that the seed length and output size of the hash function are identical (otherwise, define \(q \) according to the maximal of the two).

3 Error-Resilient Interactive Protocols

In this section, we show how to convert any interactive protocol \(\pi = (A, B) \) into one that is resilient to constant fraction of adversarial errors, and is efficient in the sense that it computes \(\text{Trans}(\pi) \) with a polynomial overhead in the time complexity. Recall that without loss of generality \(A, B \) are deterministic and don’t take any input.

More specifically we present an efficient simulator \(S \) that has oracle access to either \(A \) or \(B \), and simulates these parties in an error resilient manner, so that the new protocol \((SA, SB) \) computes \(\text{Trans}(\pi) \), even in the presence of constant fraction of adversarial errors. We often use \(X \) to indicate one of \(\{A, B\} \), in which case \(Y \) will denote the other party.

The simulator \(S \) is presented in Section 3.1 and analyzed in Section 3.2.

3.1 Simulator \(S^\pi \)

Let \(N \) be an upper bound on the communication complexity of \(\pi = (A, B) \), such that \(N \) is a power of 2. Throughout the simulation, party \(X \) maintains a local variable \(T_X \) that represents its current view on the partial transcript of \(\pi \). At the end of the algorithm, the \(N \)-prefix of \(T_X \) will be equal to \(\text{Trans}(\pi) \).

We consider the simulator \(Q \) from Theorem 2.2 with parameters \(\rho, \eta \), and the hash family from Theorem 2.3 with parameter \(q \). We define a parameter \(\tau \) which will be useful in the presentation of the algorithm and in the analysis:

\[
\tau \triangleq \frac{4q + 3}{\rho}.
\]

As outlined in Section 1.3, our simulator \(S^\pi = (SA, SB) \) (Figure 1) works in \(O(N/ \log N) \) rounds. Each round contains an execution of a logarithmic-communication subroutine \(\text{Chunk} \) (Figure 2), which is “protected” from channel errors using the exponential time simulator \(Q \). (Of course this protection can sometimes fail when there are too many errors, but we will show that the process converges nonetheless.) In total, each round communicates \(\tau \log N \) bits. We elaborate more on the subroutine and the use of \(Q \), below.

The subroutine \(\text{Chunk} \) communicates the synchronization information, as well as (what it believes to be) the next chunk of the transcript between the two parties. This subroutine is never
Simulator S^X

- **Input**: Oracle access to interactive machine X.
- **Output**: Transcript $T \in \{0,1\}^N$.
- **Operation**:
 1. Set $T:=\phi$.
 2. Repeat $cN/\log N$ times:
 (a) Sample $h_x \leftarrow \mathcal{H}_{\log N}$ (recall Theorem 2.3), and set $\sigma_x:=h_x(T)$.
 (b) Let X' be shorthand notation for the subroutine Chunk with the current variable values (T,h_x,σ_x). Formally: $X' \triangleq \text{Chunk}_{T,h_x,\sigma_x}^X$.
 (c) Use the simulator $Q^{X'}$ to simulate X'. The output of Q is a simulated transcript of the form: $(i,h_x,\sigma_x)\parallel(j,h_y,\sigma_y)\parallel L$, where $|L|=\log N$.
 (d) If the received (i,h_x,σ_x) are inconsistent with the local values of these parameters, then finish this iteration. Otherwise we proceed with one of the following cases:
 - If $(i>j)$ then set $T:=T_{\leq(i-1)\log N}$.
 - If $(i<j)$ then finish this iteration.
 - If $(i=j)$ and $(h_y(T) \neq \sigma_y)$ then set $T:=T_{\leq(i-1)\log N}$.
 - If $(i=j)$ and $(h_y(T) = \sigma_y)$ then set $T:=T\parallel L$.
 3. Output $T_{\leq N}$.

Figure 1: Our simulator.

“really” executed, but rather simulated by the exponential time simulator Q (Chunk only communicates $O(\log N)$ bits). Therefore we only care about the transcript of Chunk. The simulator Q returns a “protected transcript” of the execution of Chunk. This transcript may be that of a legal execution if there were not too many errors, or it can be completely arbitrary if there were.

Given the protected transcript, the parties can check if their states are in sync. If not, they can move towards rectifying the situation. If they were in sync, then the protected transcript indeed contains the next chunk of $\text{Trans}(\pi)$, which can be appended to the local copy of the transcript. Of course there is always the chance that the protected transcript is wrong, but our analysis shows that this does not set us back by too much.

Lastly, a parameter c controls the number of rounds of our simulator. The value of c determines the convergence of S to its asymptotic tolerable error rate. The larger c is, the closer the simulator gets to tolerating $\eta/4$ fraction of errors. We will assume w.l.o.g. that $cN/\log N$ is integer.

The simulator is presented in Figure 1. The subroutine Chunk is presented in Figure 2.

3.2 Analysis

The following theorem summarizes the properties of our simulator.

Theorem 3.1. For any protocol $\pi = (A,B)$ of communication complexity $\mathbb{C}(\pi)$, the protocol $S^\pi = (S^A,S^B)$ computes $\text{Trans}(\pi)$, has communication complexity $\mathbb{C}(S^\pi) = O(\mathbb{C}(\pi))$, and is
Subroutine Chunk$^X_{T,h_x,\sigma_x}$

i. Let $i := |T| / \log N$, represented as a bit string of length $\log N$.

ii. Send (i, h_x, σ_x) over the channel and receive (j, h_y, σ_y).

iii. Execute $X(T)$ for $\log N$ communication steps.

Figure 2: Subroutine to be fed into Q.

robust with probability $(1 - 2^{-\Omega(\mathbb{C}(\pi))})$ to adversarial channels of error rate $(1 - 5/c) \cdot (\eta/4)$. The computational complexity of S is at most $\text{poly}(\mathbb{C}(\pi))$.

The theorem will follow by combining Lemmas 3.2, 3.3, and Corollary 3.5 of Lemma 3.4. We recall the definition of τ from Eq. (1).

Lemma 3.2. It holds that

$$\mathbb{C}(S^\pi) \leq c\tau N = O(\mathbb{C}(\pi)).$$

Proof. The protocol S^π is composed of $c \cdot N / \log N$ rounds, each containing a simulation of X' which communicates $\frac{2(2q+1)\log N + \log N}{g} = \tau \log N$ bits. The communication complexity is therefore:

$$\mathbb{C}(S^\pi) = (cN / \log N) \cdot (\tau \log N) = c\tau N = O(N).$$

Lemma 3.3. The computational complexity of S^π is at most $\text{poly}(\mathbb{C}(\pi))$

Proof. The simulator S runs in $c \cdot N / \log N = O(N)$ rounds. In each, the simulator Q is called on a machine X' that communicates $2(2q+1)\log N + \log N = O(\log N)$ bits. The computational complexity of Q on such machines is $\text{poly}(N)$. All of the other operations are simple manipulations on the transcript.

The following lemma proves the success probability of our simulation over adversarial noisy channels. This is the heart of our analysis which is used to derive Corollary 3.5 below.

Lemma 3.4. When running S^π over a channel that makes at most

$$E = (c - 5) \cdot \frac{\eta\tau}{4} \cdot N$$

adversarial errors, S^π outputs $\text{Trans}(\pi)$ with probability at least $1 - 2^{-(1-o(1))N}$.

Proof. Let $\pi = (A, B)$ and consider an execution of $S^\pi = (S^A, S^B)$. For $X \in \{A, B\}$, we denote the internal variables of X by subscript X (e.g., T_A or i_B). We denote $i_X \triangleq |T_X| / \log N$ (note that this is always an integer).

We define the following (random) variables:

- Good transcript prefix (in chunks) g: This is the longest common prefix of T_A, T_B, rounded to whole chunks. Namely, if g' is the longest common prefix in bits, then $g = \lfloor g' / \log N \rfloor$.

- Gap values α_A, α_B: We define $\alpha_X \triangleq i_X - g$ (naturally, α_X is always non-negative).

- Error count e: This is the number of errors the adversary injected into the channel so far.
• Potential: We define a potential function

\[\varphi \triangleq (g - \alpha_A - \alpha_B) \cdot \log N + \frac{4}{\eta\tau} \cdot e, \]

where \(\tau \) is as defined in Eq. (1).

We show that when the algorithm terminates, it holds, with probability \(1 - 2^{-(1-o(1))N} \), that

\[\varphi \geq (c - 4)N. \]

This implies that

\[g \log N \geq \varphi - \frac{4}{\eta\tau} \cdot E \geq (c - 4)N - (c - 5)N = N, \]

which in turn means that the two parties agree on the prefixes \(T_{A \leq N} = T_{B \leq N} = \text{Trans}(\pi) \).

Our proof follows by showing that the potential function \(\varphi \) must grow by roughly \(\log N \) with every round of the protocol. Let \(\varphi_\ell \) denote the change in \(\varphi \) in iteration \(\ell \) (where \(\ell = 1, \ldots, cN/\log N \)). We use case analysis to lower-bound \(\varphi_\ell \):

• **Case 1:** The number of errors in the iteration is at most \(\eta\tau \log N \). In this case we are guaranteed that \(Q \) simulates \(A', B' \) correctly. Therefore the output of \(Q \) (for both parties) is the real transcript of the protocol \((A', B') \).

Again we have a few cases.

 - If \(i_A \neq i_B \), then both parties will get \(i \neq j \). In such case, it must be that for some \(X \), \(\alpha_X > \alpha_Y \geq 0 \). The larger \(\alpha_X \) necessarily belongs to the party with the larger \(i_X \), and this party will chop a chunk off its transcript. We conclude that \(\varphi_\ell \geq \log N \).

 - If \(i_A = i_B \) and \(T_A = T_B \), then this means that both partial transcripts agree. In this case, \(L \) is indeed the next chunk of the execution and both parties will append it to their transcripts. We conclude that \(\varphi_\ell \geq \log N \).

 - If \(i_A = i_B \) and \(T_A \neq T_B \), then the outcome depends on the randomness of the hash functions. Let \(D_\ell \) denote the event that \(h_A(T_A) \neq h_B(T_B) \). Then by Theorem 2.3 and the union bound, \(D_\ell \) happens with probability at least \(1 - 2/N \).

If \(D_\ell \) happens, then both \(\alpha_A, \alpha_B \) decrease by 1 and \(\varphi_\ell \geq 2 \log N \). If \(D_\ell \) doesn’t happen, then one or two of the parties might append a faulty \(L \), causing \(\alpha_A, \alpha_B \) to increase by 1, namely \(\varphi_\ell \geq -2 \log N \). We conclude that \(\varphi_\ell \geq 2 \log N (-1 + 2 \cdot 1_{D_\ell}) \).

• **Case 2:** The number of errors in the iteration is greater than \(\eta\tau \log N \). In this case, all bets are off and the expression \((g - \alpha_A - \alpha_B) \) can decrease by at most \(3 \) (the worst case is when \(g \) decreases by 1 and \(i_X \) increases by 1, causing \(\alpha_X \) to increase by 2, note that \(\alpha_Y = 0 \) in this case). We conclude that

\[\varphi_\ell \geq -3 \log N + \frac{4}{\eta\tau} \cdot (\eta\tau) \log N \geq \log N. \]
We conclude that either \(\varphi_\ell \geq \log N \) or \(\varphi_\ell \geq 2 \log N(-1 + 2 \cdot 1_{D_\ell}) \). Let \(k \) be the number of rounds for which the latter holds. Then
\[
\varphi = \sum_{\ell=1}^{cN/\log N} \varphi_\ell \\
\geq (cN/\log N - k) \log N + \sum_{\ell' = 1}^{k} 2 \log N(-1 + 2 \cdot 1_{D_{\ell'}}) \\
= cN - 3k \log N + 4 \log N \sum_{\ell' = 1}^{k} 1_{D_{\ell'}}.
\]
Since the variables \(D_{\ell'} \) are independent, then recalling Claim 2.1, we get
\[
\Pr \left[\sum_{\ell' = 1}^{k} 1_{D_{\ell'}} \leq k - N/\log N \right] \leq 2^k \cdot (2/N)^{N/\log N} \leq 2^{(c+1)N/\log N} \cdot 2^{-N} = 2^{(1-o(1))N}.
\]
If the above bad event does not happen, then
\[
\varphi \geq cN - 3k \log N + 4k \log N - 4N \geq (c - 4)N,
\]
and the lemma follows. \(\square \)

Finally, the error rate for which robustness holds follows immediately.

Corollary 3.5. \(S^\pi \) is robust with probability \(1 - 2^{(1- o(1))N} \) to adversarial channels of rate \((1 - 5/c) \cdot \eta/4 \).

Proof. Combining Lemma 3.2 and Lemma 3.4, it follows that with probability \(1 - 2^{(1 - o(1))N} \), the protocol \(S^\pi \) is robust to noise rate
\[
\frac{E}{\mathcal{CC}(S^\pi)} = \frac{(c-5)\eta \tau N}{4 \cdot ct N} = (1 - 5/c) \cdot \frac{\eta}{4}.
\]
\(\square \)

References

