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Abstract

We study the list-decodability of multiplicity codes. These codes, which are based on evaluations
of high-degree polynomials and their derivatives, have rate approaching 1 while simultaneously allowing
for sublinear-time error-correction. In this paper, we show that multiplicity codes also admit powerful
list-decoding and local list-decoding algorithms correcting a large fraction of errors. Stated simply, we
give algorithms for recovering a polynomial given several evaluations of it and its derivatives, where
possibly many of the given evaluations are incorrect.

Our first main result shows that univariate multiplicity codes over prime fields can be list-decoded
upto the so called “list-decoding capacity”. Specifically, we show that univariate multiplicity codes of
rate R over prime fields can be list-decoded from (1 − R − ε)-fraction errors in polynomial time. This
resembles the behavior of the Folded Reed-Solomon Codes of Guruswami and Rudra [GR08]. The list-
decoding algorithm is based on constructing a differential equation of which the desired codeword is a
solution; this differential equation is then solved using a power-series approach (a variation of Hensel
lifting) along with other algebraic ideas.

Our second main result is a list-decoding algorithm for decoding multivariate multiplicity codes
upto their Johnson radius. The key ingredient of this algorithm is the construction of a special family
of “algebraically-repelling” curves passing through the points of Fmq ; no moderate-degree multivariate
polynomial over Fmq can simultaneously vanish on all these curves. These curves enable us to reduce the
decoding of multivariate multiplicity codes over Fmq to several instances of decoding univariate multiplicity
codes over the big field Fqm , for which such list-decoding algorithms are known.

As a corollary, we show how multivariate multiplicity codes of length n and rate nearly 1 can be
locally list-decoded upto their Johnson radius in O(nε) time.
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1 Introduction

Reed-Solomon codes (which are codes based on univariate polynomials) and Reed-Muller codes (which are
codes based on multivariate polynomials) are classical families of error-correcting codes which have found
wide applicability within theoretical computer science. One of the crucial reasons for these codes being very
useful, apart from the fact that polynomials appear naturally in many basic settings, is that they admit very
good decoding algorithms.

In recent work [KSY11], a new family of polynomial codes called multiplicity codes was introduced. These
codes extend the classical polynomial codes; they are based on evaluating polynomials and their derivatives.
Briefly, the codewords of the order s m-variate multiplicity code of degree d polynomials over Fq are obtained
by taking an m-variate polynomial over Fq of degree at most d, finding all its derivatives upto order s, and
evaluating all of them on all the points of Fmq . A typical setting of interest is where Fq is taken to be a large
finite field, m, s are taken to be constants, and d is taken to be (1− δ)sq for some δ ∈ (0, 1) (then δ becomes
the minimum distance of this code). The augmentation of the derivatives allows one to consider polynomials
over Fq of degree larger than q, and this leads to much better tradeoffs in the rate and minimum distance of
these codes, while retaining the good local-decodability of Reed-Muller codes.

In this work, we study the list-decodability of multiplicity codes. Specifically, we study the problem of finding
the list of all codewords of the multiplicity code which are within a given distance from a given “received”
vector. We show two main results, showing that multiplicity codes of a given rate can be list-decoded from
a much larger fraction of errors than what is known for the corresponding classical code.

• Our first result shows that univariate multiplicity codes achieve “list-decoding capacity”. Specifically,
for every R, ε, there is a growing family of univariate multiplicity codes of rate R which can be list-
decoded from (1 − R − ε)-fraction errors in polynomial time. This thus provides a new (and perhaps
more natural) example of an explicit capacity-achieving list-decodable code, the only other example
being the original Folded Reed-Solmon codes of Guruswami and Rudra [GR08].

• Our second result shows how to list-decode multivariate multiplicity codes upto the Johnson bound.
Specifically, we give a polynomial time algorithm for list-decoding multivariate multiplicity codes of
minimum distance δ from (1−

√
1− δ)-fraction errors. In particular, this gives the first algorithm for

unique-decoding multivariate multiplicity codes upto half the minimum distance of the code.

As a corollary of our second result, we show that m-variate multiplicity codes of distance δ (which have rate
≈ (1− δ)m) can be locally list-decoded from (1−

√
1− δ − ε)-fraction errors in time O(nO(1/m)). This also

gives the first algorithm for local decoding of multivariate multiplicity codes upto half the minimum distance
(The local decoding algorithm of [KSY11] can at best decode from 1

4 the minimum distance). This gives the
best known tradeoff between rate, error-tolerance, and query complexity of local decoding.

One goal of this line of research is to develop good algorithms for supporting error-correction with multiplicity
codes. Multiplicity codes are currently the only known codes which achieve rate arbitrarily close to 1 while
supporting o(n)-time local decodability. Thus they could potentially be useful for real-life error-correction.
In addition, these codes are very closely related to the omnipresent (and omnipotent?) polynomial codes,
and they seem ripe for use in complexity theory and pseudorandomness applications.

The other motivation is that the actual algorithmic questions underlying these decoding questions are very
natural and basic; they amount to interpolating a polynomial given evaluations of it and its derivatives at
various points, even though some of the given evaluations may be wrong.

We now describe our results and methods in detail.
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1.1 List-decoding of univariate multiplicity codes

Our first result deals with univariate multiplicity codes. It is well known that for every R ∈ (0, 1), the largest
fraction of errors from which an error-correcting code of rate R can be list-decoded from, with polynomial
size lists, is less than (1 − R). We show that univariate multiplicity codes of rate R achieve “list-decoding
capacity”; they can be list-decoded from (1−R− ε)-fraction errors in polynomial time with polynomial size
lists. The first (and only known) example of such codes was given by Guruswami and Rudra [GR08].

Theorem A (Informal): For every R ∈ (0, 1) and every ε > 0, there is an s > 0 such that for every
sufficiently large prime q, the order s univariate multiplicity code over Fq of length n and rate R can be
list-decoded from (1−R− ε)-fraction errors in time poly(n).

At the core of this theorem is an algorithm for the following natural problem: given n tuples (αi, β
(0)
i , β

(1)
i , . . . , β

(s−1)
i )

in Fs+1
q , find all polynomials P (T ) of degree at most d such that for at least A values of i ∈ [n], we have

P (j)(αi) = β
(j)
i for each j < s.

Following earlier algorithms for list-decoding algebraic codes [Sud97, GS99, PV05, GR08], our algorithm is
based on first processing the tuples to find an equation which we know every such P (T ) satisfies, and then
finding all solutions of that equation.

For multiplicity codes the kind of equation that turns out to be appropriate is a differential equation.
Specifically we first uses the tuples to find a differential equation of the form

Q(T, P (T ), P (1)(T ), . . . , P (r)(T )) = 0

which every such P (T ) satisfies, where Q is a multivariate low-degree polynomial. This equation is found
by imposing constraints on Q that force it to vanish with a suitable “weighted-multiplicity” along certain
curves that come from the tuples.

Once we have done this, we need to solve the differential equation. Fortunately, it turns out that there are
classical techniques that can give us a grip on such equations. Next we give an overview of these classical
techniques and how these can be used to find all low-degree polynomials P (T ) which are solutions of the
differential equation.

1.1.1 Interlude: The Cauchy-Kowalevski Differential Equation

In characteristic 0, the differential equation

Q(T, P (T ), P ′(T )) = 0

and its higher order analogues, are well studied in analysis and mathematical physics. If P (T ) is assumed
to be analytic, then this is called the Cauchy-Kowalevski differential equation. One example of a situation
where such equations arise is the following: Let T be “time” and let P (T ) be the “position of some particle
at time T”. Then P ′(T ) is the velocity at time T . The equation above expresses some invariant maintained
in the evolution of the particles position and velocity over time. The familiar “ 1

2mv
2 + mgh = C” is an

example of such a differential equation.

The classical analysis approach to such equations (see e.g. [Fol95]) is based on power series expansions. To
begin, suppose one is given some initial conditions T = t0, P (t0) = α0, P ′(t0) = α1. If these initial conditions
are “nonsingular” (which roughly means that the initial conditions uniquely specify a particular solution of
the differential equation), one can simply recover P (T ) as a power series in T − t0 by iteratively considering
the equation mod (T − t0), mod (T − t0)2, mod (T − t0)3, etc.; at each iteration we get one new coefficient
of the power series representation of P (T ). This method works essentially verbatim even when we work over
finite fields (Over C, the nontrivial part is to show that this power series is convergent, but this does not
bother us when we work with formal power series).
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We thus know how to find the solution P (T ) if we are given nonsingular initial conditions consistent with
P (T ). This motivates the following algorithm: try various choices of the initial conditions, and whenever the
initial conditions are nonsingular, recover the power series expansion of the solution with the given initial
conditions. For any given P (T ), if we chance upon initial conditions that are nonsingular and consistent
with P (T ), this algorithm will recover P (T ).

Quite unfortunately, there can be “very singular” situations; P (T ) could be such that no matter which initial
conditions we consider, those initial conditions are singular. At this point an algebraic phenomenon specific
to our setting (and nonexistent in the analytic setting) comes to the rescue. It turns out that in the case where
P (T ) is a low degree polynomial, which is the case we are interested in, the very singular situation happens
only when P (T ) also satisfies a certain related differential equation Q∗(T, P (T ), P ′(T )) = 0. Furthermore,
Q∗ is of lower degree; and thus we have reduced our problem to that of solving a simpler differential equation.
Iterating this, we arrive at the complete list of all the low degree P (T ) that satisfy the original differential
equation.

1.1.2 Related Work

Theorem A was independently discovered by Guruswami and Wang [GW11]. The method of proof and the
algorithm there are simpler than ours, but our approach yields a slightly better list-decoding radius for each
fixed multiplicity code (This is similar to the relationship that Vadhan’s simpler version, see Chapter 5 of
[Vad12], of the list-decoding of Folded Reed-Solomon codes has to the original algorithm of Guruswami and
Rudra [GR08]). Very recently, even better list-decodable error-correcting codes were constructed by [Gur11,
DL12], which allow list-decoding from (1−R− ε)-fraction errors in time cε · nO(1), with lists of size Cε.

1.2 List-decoding of multivariate multiplicity codes

Our second result deals with general multiplicity codes. Recall that the Johnson bound states that for every
code of distance δ, the list-size for list-decoding from (1−

√
1− δ)-fraction errors is at most a polynomial in

the length of the code. We show that for multiplicity codes, this can be made algorithmic; we can find that
list in polynomial time.

Theorem B (Informal): For m, s = O(1), every order s m-variate multiplicity code of length n and
distance δ can be list-decoded from (1−

√
1− δ)-fraction errors in time poly(n).

When s = 1 (the classical polynomial code case), this result was previously shown by Guruswami-Sudan [GS99]
and Pellikaan-Wu [PW04]. When m = 1 (the univariate case), this result was previously shown by
Guruswami-Sudan [GS99] and Guruswami-Sahai-Sudan [GSS00] (this is based on the fact that univari-
ate multiplicity codes are a special case of ideal-based error-correcting codes [Sud01]). Also note that when
m = 1 and q is prime, Theorem A is stronger than Theorem B.

Theorem B is also the first algorithm for decoding multivariate multiplicity codes upto half the minimum
distance.

All the known algorithms for decoding classical multivariate polynomial codes upto half their minimum
distance are quite indirect and specialized1. We briefly recall one of these algorithms, which proceeds via a
reduction to decoding univariate polynomial codes. Here one is given a received word r : Fmq → Fq, and one
wants to find a multivariate polynomial Q(X1, . . . , Xm) of degree at most d such that Q(a) = r(a) for many
a ∈ Fmq . One first finds a special kind of low-degree curve γ which maps the finite field Fqm bijectively to the
vector space Fmq . Using γ, we get a function r ◦ γ : Fqm → Fq. By the bijectivity of γ, every Q(X1, . . . , Xm)

1To illustrate this, we note that it is unknown how to efficiently decode multivariate polynomial codes from half the minimum
distance when the set of evaluation points is S × S, where S is an arbitrary subset of Fq ; it is only known for certain special
sets S such as S = Fq . This is quite odd, since the principle on which the minimum distance of these codes is proved has a
proof which does not depend on the specific choice of S.

4



which has high agreement with r will also have the univariate polynomial Q ◦ γ(T ) having high agreement
with r ◦ γ. Since Q ◦ γ(T ) is a low-degree univariate polynomial (by the low-degreeness of Q and γ), we
have reduced to the problem of finding all univariate polynomial that has high agreement with r ◦ γ. This
is precisely the problem of list-decoding univariate polynomial codes; tracing the parameters through, an
algorithm for list-decoding univariate polynomial codes upto their Johnson radius gives an algorithm for
decoding multivariate polynomial codes codes upto their Johnson radius (and the same statement holds for
decoding upto half the minimum distance).

While dealing with multiplicity codes, the possibility that the multivariate polynomials we are dealing with
have degree > q starts causing difficulties. It turns out that there can be exponentially many polynomials
Q(X1, . . . , Xm) of degree 2q (say) such that the compositions Q◦γ(T ) are all the same univariate polynomial.
Thus composing with a curve γ no longer preserves the original decoding problem unambiguously.

To bypass this, we use a special family of “algebraically repelling” curves from Fqm to Fmq . More concretely,
we will construct a collection of curves γi : Fqm → Fmq which have the property that for any low degree
polynomial Q(X1, . . . , Xm) of degree less than sq, the collection of univariate polynomials Q ◦ γi uniquely
determines Q. Equivalently, if Q formally vanishes on all the γi, then Q itself must be identically 0.

Given these curves, the decoding algorithm for multivariate multiplicity codes does the following. Using the

received word r : Fmq → F(m+s−1
m )

q for the multivariate multiplicity code, one comes up with a collection or
received words ri : Fqm → (Fqm)s (in spirit, ri is the composition of r with γi) for a univariate multiplicity
code. Then via a univariate multiplicity code decoder, we find low degree univariate polynomials Pi which
have high agreement with the ri. Then using the above mentioned property of the γi, we there is a unique
Q(X1, . . . , Xm) such that Q ◦ γi = Pi for each i. Q is then our decoded multivariate polynomial.

1.3 Local Decoding and Local List-Decoding of Multiplicity Codes

The above list-decoding algorithm for multivariate multiplicity codes (in particular the bivariate case) enables
improved local decoding and local list-decoding algorithms for multiplicity codes.

Theorem C (Informal): For every ε > 0 and integers m, s = O(1), every order s m-variate multiplicity
code of length n and distance δ can be:

• locally decoded from ( δ2 − ε)-fraction errors, and

• locally list-decoded from (1−
√

1− δ − ε)-fraction errors,

in nO(1/m) time, using nO(1/m) queries.

The local decoding algorithm follows the original [KSY11] approach, using planes instead of lines. The reason
planes allows for better local decoding than lines is the following simple fact: for a fixed point a ∈ Fmq and a
fixed set S ⊆ Fmq (which will correspond to the erroneous coordinates), if we pick a uniformly random plane

P passing through a, with high probability P samples S well: |P∩S||P | ≈
|S|
|Fm

q |
. This fact allows us decode

the corrected value of a corrupted multiplicity codeword at a point a ∈ Fmq by decoding several bivariate
multiplicity codewords; this is where the algorithm of Theorem B gets used.

The local list-decoding algorithm for multiplicity codes follows the the the basic outline of the Arora-
Sudan [AS03] and Sudan-Trevisan-Vadhan [STV99] local list-decoders for multivariate polynomial codes
(specifically the analysis from [BK09] which uses decoding on planes).

1.4 Interpolating sets for Multiplicity codes

Finally, we also give a construction of explicit interpolating sets for multiplicity codes.
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Multiplicity codes are most naturally “locally-correctable”. To make them locally-decodable in the strictest
sense we need to specify an encoding map E, as well as a local decoding algorithm which when given access
to a corrupted version of E(m), finds any given symbol of the original message m. The existence of such
an encoding map follows easily from the linearity of the code. Such a map can be made explicit using
advice which is of length polynomial in the length of the code. Thus multiplicity codes have non-uniform
local-decoding algorithms which run in sublinear time.

To make the local decoding fully uniform, we need to be able to explicitly describe the encoding map. This
can be done by giving an interpolating set: a set of coordinates of the multiplicity code such that if we
specify symbols arbitrarily on those coordinates, there is a unique codeword of the multiplicity code that
extends this. We give an explicit description of an interpolating set for multiplicity codes.

Theorem D (Informal): There are explicit interpolating sets for multiplicity codes. Thus, multiplicity
codes can be locally decoded in uniform sublinear time.

The interpolating sets we find are simple combinations of standard interpolating sets for multivariate poly-
nomial codes. They are based on representing high-degree multivariate polynomials as appropriate linear
combinations of multivariate polynomials with individual degrees bounded by q − 1.

Organization of this paper: In the next section we introduce some notation related to codes, polyno-
mials, derivatives, multiplicities and multiplicity codes. In Section 3 we state our main results formally. In
Section 4 we prove Theorem A. In Section 5 we prove Theorem B. Theorem C and Theorem D are proved
in the appendix. We conclude with some open problems.

2 Preliminaries

2.1 Codes

Let Σ be a finite set and let n be an integer. We will endow Σn with a metric called the (normalized)
Hamming distance ∆, defined by:

∆(x, y) = Pr
i∈[n]

[xi 6= yi].

A code of length n over the alphabet Σ is simply a subset C of Σn. The rate of the code is defined to be:

R =
log|Σ| |C|

n
.

The minimum distance of the code C is defined to be the smallest value of ∆(c, c′) for distinct elements c, c′

of C.

List Decoding In the problem of list-decoding the code C from η-fraction errors, we are given as input
r ∈ Σn, and we wish to compute the set

L = {c ∈ C | ∆(r, c) < η}.

The maximum possible value of |L| as r varies over all elements of Σn is called the list-size for list-decoding
C from η fraction errors.
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2.2 Polynomials and Derivatives

We use [m] to denote the set {1, . . . ,m}. For a vector i = 〈i1, . . . , im〉 of non-negative integers, its weight,
denoted wt(i), equals

∑m
j=1 ij .

For a field F, let F[X1, . . . , Xm] = F[X] be the ring of polynomials in the variablesX1, . . . , Xm with coefficients
in F.

For a vector of non-negative integers i = 〈i1, . . . , im〉, let Xi denote the monomial
∏m
j=1X

ij
j ∈ F[X]. The

(c1, . . . , cm)-weighted degree of this monomial is defined to be
∑m
j=1 cjij . The (c1, . . . , cm)-weighted degree

of a polynomial is defined to be the maximum (c1, . . . , cm)-degree of any of its nonzero monomials. A special
case of interest is the total degree of a monomial/polynomial, which is defined to be the (1, 1, . . . , 1)-
weighted degree of that monomial/polynomial. We use the term degree to denote the total degree when
there is no confusion.

We now define derivatives and the multiplicity of vanishing at a point, and then state a basic bound on
the total number of zeroes (counting multiplicity) that a polynomial can have on a product set Sm. An
elementary proof of this lemma can be found in [DKSS09].

Definition 1 ((Hasse) Derivative) For P (X) ∈ F[X] and non-negative vector i, the ith (Hasse) derivative

of P , denoted P (i)(X), is the coefficient of Zi in the polynomial P̃ (X,Z)
def
=P (X + Z) ∈ F[X,Z].

Thus,

P (X + Z) =
∑
i

P (i)(X)Zi. (1)

Definition 2 (Multiplicity) For P (X) ∈ F[X] and a ∈ Fn, the multiplicity of P at a ∈ Fn, denoted
mult(P,a), is the largest integer M such that for every non-negative vector i with wt(i) < M , we have
P (i)(a) = 0 (if M may be taken arbitrarily large, we set mult(P,a) =∞).

Lemma 3 Let P ∈ F[X] be a nonzero polynomial of total degree at most d. Then for any finite S ⊆ F,∑
a∈Sn

mult(P,a) ≤ d · |S|n−1.

In particular, for any integer s > 0,

Pr
a∈Sn

[mult(P,a) ≥ s] ≤ d

s|S|
.

2.3 Multiplicity Codes

Now we recall the definition of multiplicity codes and the formulas for their rate and minimum distance.

Definition 4 (Multiplicity code [KSY11]) Let s, d,m be nonnegative integers and let q be a prime power.

Let Σ = F(m+s−1
m )

q = F{i:wt(i)<s}
q . For P (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm], we define the order s evaluation of

P at a, denoted P (<s)(a), to be the vector 〈P (i)(a)〉wt(i)<s ∈ Σ.

We define the multiplicity code of order s evaluations of degree d polynomials in m variables over Fq as
follows. The code is over the alphabet Σ, and has length qm (where the coordinates are indexed by elements
of Fmq ). For each polynomial P (X) ∈ Fq[X1, . . . , Xm] with deg(P ) ≤ d, there is a codeword in C given by:

Encs,d,m,q(P ) = 〈P (<s)(a)〉a∈Fm
q
∈ (Σ)q

m

.
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Lemma 5 (Rate and distance of multiplicity codes [KSY11]) Let C be the multiplicity code of order
s evaluations of degree d polynomials in m variables over Fq. Then C has minimum distance δ = 1− d

sq and

rate
(d+m

m )
(s+m−1

m )qm
, which is at least(

s

m+ s

)m
·
(
d

sq

)m
≥
(

1− m2

s

)
(1− δ)m .

3 Main Theorems

We first consider the problem of list-decoding univariate multiplicity codes.

Theorem 6 (List-decodability of Univariate Multiplicity Codes) Let r, s be integers with 0 ≤ r <
s = O(1). Let δ ∈ (0, 1) be a constant, and let R = 1− δ.

For every prime q, let d = (1 − δ)sq and let Cq be the multiplicity code of order s evaluations of degree d
polynomials in 1 variable over Fq. Thus Cq has rate R and minimum distance δ.

There is an algorithm that can list-decode Cq from

1−
(

s

s− r
·R
) r+1

r+2

+
2s2

q

fraction errors in time qO(rs) with lists of size qO(rs).

We prove this theorem in the Section 4.

Next we consider the problem of list-decoding multivariate multiplicity codes.

Theorem 7 Let s,m = O(1). Let δ ∈ (0, 1) be a constant.

For every prime power q, let d = (1− δ)sq and let Cq be the multiplicity code of order s evaluations of degree
d polynomials in m variables over Fq. Thus Cq has minimum distance δ.

There is an algorithm that can list-decode Cq from

1−
√

1− δ − ε

fraction errors in time qO(1), with lists of size poly(1
ε ). If ε = 0, the the list size is qO(1).

The proof of this theorem appears in Section 5.

As a corollary of this, we show the local list-decodability of multivariate multiplicity codes.

Theorem 8 Let s,m = O(1). Let δ ∈ (0, 1) be a constant.

For every prime power q, let d = (1− δ)sq and let Cq be the multiplicity code of order s evaluations of degree
d polynomials in m variables over Fq. Thus Cq has minimum distance δ.

There is an algorithm that can locally list-decode Cq from

1−
√

1− δ − ε

fraction errors in time O(q6), using O(q2) queries, with lists of size poly(1
ε ).

The proof of this theorem is sketched in the Appendix.
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4 List Decoding Univariate Multiplicity Codes

Let S = {(αi, β(0)
i , β

(1)
i , . . . , β

(s−1)
i ) | i ∈ [n]} be a collection of n distinct points in Fs+1

q . We will use β
(<s)
i

to denote (β
(0)
i , β

(1)
i , . . . , β

(s−1)
i ) ∈ Fsq.

We are interested in polynomials P (T ) ∈ Fq[T ] of degree d which have “high agreement” with S. Define:

agree(P, S) = |{i ∈ [n] | P (<s)(αi) = β
(<s)
i }|.

Theorem 9 Let r be an integer with 0 ≤ r < s and r < d
2 . Let ε be a real number such that ε > 2s2n

q2 and

ε > 2s2n
dq . Let A0 =

(
n ·

∏r
j=0(d−j)∏r
j=0(s−j)

) 1
r+2

. Let A = A0 · (1 + ε).

Let L be the set of polynomials that have more than A points of agreement with S:

L = {P (T ) ∈ Fq[T ] | deg(P ) ≤ d, agree(P, S) > A}.

Then
|L| ≤ (r + 1) · qO(r d

q +r+1),

and there is an algorithm that can compute L in time qO(rd/q+r+1).

This theorem will be derived from the following two theorems. The first one finds a differential equation for
which P (T ) is a solution.

Theorem 10 There exists a polynomial Q(X,Y0, . . . , Yr) ∈ Fq[X,Y0, . . . , Yr], such that:

1. degYj
(Q) ≤ 2ns2

εd for each j,

2. The (1, d, d− 1, . . . , d− r)-weighted degree of Q is ≤ A · 2s2

ε .

3. For every P (T ) ∈ L, we have
Q(T, P (T ), . . . , P (r)(T )) = 0.

Furthermore, Q can be found in time poly
(
n ·
(
s
ε

)r · log q
)

The next theorem shows how to find all solutions to such differential equations.

Theorem 11 Let t > 0 be an integer.

Suppose Q(X,Y0, . . . , Yr) ∈ Fq[X,Y0, . . . , Yr] is such that:

1. degYj
(Q) ≤ t < q for each j,

2. The (1, d, d− 1, . . . , d− r)-weighted degree of Q is < q2.

Then the set of all P (T ) ∈ Fq[T ] with degree at most d such that

Q(T, P (T ), P (1)(T ), . . . , P (r)(T )) = 0

has cardinality at most t · (r + 1) · q2r·bd/qc+4r+4.

Furthermore, this set can be found in time qO(r+ rd
q +1).
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Combining these two theorems, we complete the proof of Theorem 9.

Proof of Theorem 9: We first apply Theorem 10 to obtain polynomial Q(X,Y0, . . . , Yr).

This Q will satisfy the hypothesis of Theorem 11 (with t = q − 1) if we have

• 2ns2

εd < q,

• A · 2s2

ε < q2.

Our conditions on ε precisely imply these conditions (here we may assume A < n, since otherwise L is
trivially empty).

Thus we may apply Theorem 11, and get the desired list L. The running time of the algorithm and the list
size bound follow immediately.

We may now complete the proof of the main theorem on list-decoding univariate multiplicity codes.

Proof of Theorem 6: We have C ⊆ ΣFq , where Σ = Fsq. Suppose we are given a received word r : Fq → Σ.

We think of r as a tuple of functions r = (r(0), r(1), . . . , r(s−1)) : Fq → Fsq.

Now let
S = {(α, r(0)(α), . . . , r(s−1)(α)) | α ∈ Fq}.

We want to apply Theorem 9 to this set S.

We have n = |S| = q. We may choose ε = 2s2

q . Then by Theorem 9, we can find all codewords c ∈ C such
that

∆(c, r) ≤ 1− A

q
≤ 1− (1 + ε)

(
q ·
(

d
s−r

)r+1
) 1

r+2

q
≤ 1−

(
s

s− r
·R
) r+1

r+2

+
2s2

q
,

in time qO(rs). This completes the proof of the theorem.

4.1 Finding a differential equation

Proof of Theorem 10:

Choose parameters B = (r + 1)(s− r
2 ) + 1, M = d 2B

ε e and D = bAMc − 1. Observe that we have:

D

M
< A, (2)

D

M +B
> A0. (3)

The polynomial Q will be chosen to satisfy some “weighted-multiplicity” vanishing conditions. We now give
these conditions.

Fix i ∈ [n].

Define Ri(T ) =
∑s−1
j=0 β

(j)
i (T − αi)

j . Notice that if P (T ) ∈ Fq[T ] is such that P (<s)(αi) = β
(<s)
i , then

P (T ) = Ri(T ) mod (T − αi)s. Furthermore, in this case we have for each 0 ≤ j < s:

P (j)(T ) = R
(j)
i (T ) mod (T − αi)s−j . (4)

10



Let Mi,e,e0,...,er (X,Y0, . . . , Yr) ∈ Fq[X,Y0, . . . , Yr] be the polynomial:

Mi,e,e0,...,er (X,Y0, . . . , Yr) = (X − αi)e
r∏
j=0

(Yj −R(j)
i (X))ej .

• Condition Ci: The polynomial Q(X,Y0, . . . , Yr) lies in the ideal I of Fq[X,Y0, . . . , Yr] generated by

{Mi,e,e0,...,er | e+

r∑
j=0

((s− j) · ej) = M}.

Observe that every polynomial in Fq[X,Y0, . . . , Yr] can be uniquely represented as an Fq-linear combination
of the polynomials:

{Mi,e,e0,...,er | e, e0, . . . , er ≥ 0}.

Asking that Q(X,Y0, . . . , Yr) lies in I is equivalent to asking that for each (e, e0, . . . , er) such that e +∑r
j=0((s− j) · ej) < M , the coefficient of Me,e0,...,er in this unique representation the equals 0. Thus, this

condition Ci imposes at most |{(e, e0, . . . , er) | e+
∑r
j=0((s−j) ·ej) < M}| independent Fq-linear constraints

on the coefficients of Q.

Letting i vary in [n], we get that the total number of independent Fq-linear constraints imposed on the
coefficients of Q is at most

n · |{(e, e0, . . . , er) | e+

r∑
j=0

((s− j) · ej) < M}| ≤ n · (M +B)r+2

(r + 2)!
∏r
j=0(s− j)

.

A polynomial Q(X,Y0, . . . , Yr) of (1, d, d− 1, . . . , d− r)-weighted degree D which satisfies all the conditions
Ci will exist if the dimension of the space of such polynomials is larger than the number of independent
Fq-linear constraints imposed by the Ci. This dimension is at least

Dr+2

(r + 2)! ·
∏r
j=0(d− j)

.

Thus, such a polynomial exists if the following condition holds:

Dr+2

(r + 2)! ·
∏r
j=0(d− j)

> n · (M +B)r+2

(r + 2)!
∏r
j=0(s− j)

,

which follows from

D

M +B
>

(
n ·
∏r
j=0(d− j)∏r
j=0(s− j)

) 1
r+2

= A0,

and we know this (3).

Furthermore, this polynomial Q can be found in time poly( Dr+2

(r+2)!·
∏r

j=0(d−j) · log q) = poly
(
n ·
(
s
ε

)r · log q
)

by

solving the system of linear equations.

We now show that Q has the desired properties.

The (1, d, d− 1, . . . , d− r) weighted degree of Q is at most D < AM ≤ A · Bε ≤ A ·
2s2

ε . Because of this, we

have that the degYj
(Q) ≤ D

d−j ≤
D
d−r ≤

2D
d ≤ A ·

4s2

εd .
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Now fix any P (T ) ∈ L. Let A be the set of agreement points:

A = {i ∈ [n] | P (<s)(αi) = β
(<s)
i }.

Consider the polynomial H(T ) = Q(T, P (T ), P (1)(T ), . . . , P (r)(T )). Notice that deg(H) ≤ D. We now show
that for each point of agreement i ∈ A, H(T ) vanishes at αi with multiplicity at least M . Indeed, for every
i ∈ A, H(T ) can be written in the form

Q(T, P (T ), . . . , P (s−1)(T )) =
∑

e,e0,...,er|e+
∑

((s−j)ej)=M

Bi,e,e0,...,er (T )Mi,e,e0,...,er (T, P (T ), . . . , P (r)(T )).

Recall that Mi,e,e0,...,er (T, P (T ), . . . , P (r)(T )) equals (T −αi)e
∏r
j=0(P (j)(T )−R(j)

i (T ))ei , which for i ∈ A, is

divisible by (T −α)e+
∑

((s−j)·ej) (because of (4)). Thus for each i ∈ A, H(T ) vanishes at αi with multiplicity
at least M .

Thus H(T ) vanishes with multiplicity at least M on |A| points. Since M · |A| ≥ M · A > D (by (2)), we
conclude that H(T ) = 0.

This completes the proof of the theorem.

4.2 Solving the differential equation

We now prove Theorem 11. The main idea is to consider the power series expansion of the potential solution.
If a suitable nonsingularity condition holds, this approach will succeed. This is the content of the following
theorem. Later we will see that if the nonsingularity condition does not hold, we will be able to make
progress by solving a related differential equation.

For technical reasons, we may have to work with power series over the extension field Fq2 of Fq. We therefore
state the next theorem over a general field F.

Theorem 12 Let F be a field of characteristic p.

Let Q(X,Y0, . . . , Yr) ∈ F[X,Y0, . . . , Yr]. Let k be an integer such that p does not divide
(
k+r
r

)
. Suppose

f(T ) ∈ F[T ] and α ∈ F are such that:

1. ∂Q
∂Yr

(α, f(α), f (1)(α), . . . , f (r)(α)) 6= 0,

2.
Q(T, f(T ), f (1)(T ), . . . , f (r)(T )) = 0 mod (T − α)k.

Then there exists a unique γ ∈ F such that the function g(T ) = f(T ) + γ · (T − α)k+r satisfies:

Q(T, g(T ), g(1)(T ), . . . , g(r)(T )) = 0 mod (T − α)k+1.

Furthermore, this γ can be found efficiently.

Proof Since
Q(T, f(T ), f (1)(T ), . . . , f (r)(T )) = 0 mod (T − α)k,

we know that
Q(T, f(T ), f (1)(T ), . . . , f (r)(T )) = β · (T − α)k mod (T − α)k+1

for some β ∈ F.

12



Let g(T ) = f(T ) + γ · (T − α)k+r.

By Taylor expansion, we can write Q(T, g(T ), g(1)(T ), . . . , g(r)(T )) as:

Q(T, f(T ), . . . , f (r)(T )) +

r∑
i=0

∂Q

∂Yi
(T, f(T ), . . . , f (r)(T )) · γ

(
k + r

i

)
(T − α)k+r−i

Considering this equation mod (T − α)k+1, we get:

Q(T, g(T ), g(1)(T ), . . . , g(r)(T )) = (T − α)k ·
(
β +

∂Q

∂Yr
(T, f(T ), . . . , f (r)(T )) · γ

(
k + r

r

))
mod (T − α)k+1

= (T − α)k ·
(
β +

∂Q

∂Yr
(α, f(α), . . . , f (r)(α)) · γ

(
k + r

r

))
mod (T − α)k+1.

Note that ∂Q
∂Yr

(α, f(α), . . . , f (r)(α)) ·
(
k+r
r

)
is nonzero in F (by the hypotheses of the theorem), and thus there

is unique γ that makes Q(T, g(T ), g(1)(T ), . . . , g(r)(T )) equal 0 mod (T − α)k+1, namely:

γ = − β
∂Q
∂Yr

(α, f(α), . . . , f (r)(α)) ·
(
k+r
r

) .

This theorem lets us start with an “initial solution” of the differential equation mod (T−α), and successively
improve it to find solutions mod (T − α)2, (T − α)3 etc., till we get all solutions of degree d. We record this
below.

Corollary 13 Let F be a finite field of characteristic p. Let Q(X,Y0, . . . , Yr) ∈ F[X,Y0, . . . , Yr].

Let α, β(0), β(1), . . . , β(r) ∈ F. Suppose that ∂Q
∂Yr

(α, β(0), ..., β(r)) 6= 0.

Let L be the set of all polynomials P (T ) ∈ F[T ] of degree at most d satisfying

Q(T, P (T ), P (1)(T ), . . . , P (r)(T )) = 0,

and the initial conditions:

P (α) = β(0), P (1)(α) = β(1), . . . , P (r)(α) = β(r).

Then |L| ≤ |F|r·bd/pc+r, and L can be found in time |F|O(r·bd/pc+r).

Proof We describe an algorithm to find L. From the description of the algorithm, the bound on |L| will
be clear.

Start with f0(T ) = β(0) + β(1)(T − α) + . . .+ β(r)(T − α)r.

1. Let Lr = {f0(T )}.

2. For i = r + 1, r + 2, . . . , d, do:

(a) If
(
i+r
r

)
is relatively prime to p,

• For each f(T ) ∈ Li−1, let g(T ) = f(T ) + γ · (T − α)i be what is given by Theorem 12, and
include g(T ) into Li.

(b) Otherwise,

13



• For each f(T ) ∈ Li−1 and for each γ ∈ F, let g(T ) = f(T ) + γ · (T − α)i, and include g(T )
into Li.

3. Let L∗ = {P (T ) ∈ Ld | Q(T, P (T ), P (1)(T ), ..., P (r)(T )) = 0}.

4. Output L∗.

The correctness of this algorithm follows easily from Theorem 12. The invariant maintained is that Li ⊇
{P (T ) mod (T − α)i+1 | P (T ) ∈ L}.

To understand |L|, we observe that |L| = |L∗| ≤ |Ld|, |Lr| = 1, and for each i ≤ d, we have |Li| = |Li−1| if(
i+r
r

)
is relatively prime to p, and |Li| = |F| · |Li−1| otherwise.

This implies that |L| ≤ |F|c, where c is the number of integers i in {r + 1, . . . , d} such that
(
i+r
r

)
is divisible

by p. This implies the claimed bounds on the running time of the algorithm and the size of the output list.

We can now prove the main theorem on the solvability of polynomial differential equations, Theorem 11.

Proof of Theorem 11: We give the algorithm below, the bound on the number of solutions will follow
from the analysis of the algorithm.

Algorithm SOLVE(Q):
Here Q(X,Y0, . . . , Yr) ∈ Fq[X,Y0, . . . , Yr] is a nonzero polynomial with degYi

(Q) < q for each i.

1. Initialize L = ∅.

2. If Q(X,Y0, . . . , Yr) does not depend on any of Y0, . . . , Yr, return L and exit.

3. Let r∗ be the largest j such that Q(X,Y0, . . . , Yr) depends on Yj .

4. For each (α, β0, . . . , βr∗) ∈ Fr
∗+2
q2 , do the following:

• If Q(α, β0, . . . , βr∗) = 0 and ∂Q
∂Yr∗

(α, β0, . . . , βr∗) 6= 0, then using the algorithm of Corollary 13,

find all P (T ) ∈ Fq[T ] of degree at most d with P (j)(α) = βj for 0 ≤ j ≤ r∗, satisfying
Q(T, P (T ), P (1)(T ), . . . , P (r∗)(T )) = 0.

• Include all such P (T ) in the list L.

5. Let Q#(X,Y0, . . . , Yr∗) = ∂Q
∂Yr∗

(X,Y0, . . . , Yr∗).

6. Let L# = SOLVE(Q#).

7. Output L ∪ L#.

Correctness We will now prove correctness of the algorithm. Namely, every solution of degree at most d
of the polynomial-differential equation

Q(T, P (T ), P (1)(T ), . . . , P (r)(T )) = 0

is included in the output of the algorithm.

Let r∗ be the largest j such that Q(X,Y0, . . . , Yr) depends on Yj . We prove the correctness of the algorithm
by induction on r∗ and degYr∗

(Q).

If Q does not depend on any of Y0, . . . , Yr, then the algorithm outputs ∅, which is correct.
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Now suppose we know correctness of the algorithm for all polynomials Q which depend on only (some
subset of) Y0, . . . , Yr∗−1, and for all polynomials Q which depend on only (some subset of) Y0, . . . , Yr∗ with
degYr∗

(Q) < D.

We now show that the algorithm is correct for all polynomials Q which depend on (some subset of) Y0, . . . , Yr∗

and with degYr∗
(Q) ≤ D. Suppose P̂ (T ) ∈ Fq[T ] is a polynomial of degree at most d such that

Q(T, P̂ (T ), P̂ (1)(T ), . . . , P̂ (r∗)(T )) = 0.

• Case 1: Suppose P̂ (T ) also satisfies the differential equation

∂Q

∂Yr∗
(T, P̂ (T ), P̂ (1)(T ), . . . , P̂ (r∗)(T )) = 0.

Note that since 0 < degYr∗
(Q) < q, the polynomial ∂Q

∂Yr∗
(X,Y0, . . . , Yr) is nonzero. Then by the

induction hypothesis applied to the polynomial ∂Q
∂Yr∗

(X,Y0, . . . , Yr), P̂ (T ) will be included in the list

L#, and hence in the output of the algorithm.

• Case 2: Otherwise, we know that P̂ (T ) is such that:

H(T ) =
∂Q

∂Yr∗
(T, P̂ (T ), P̂ (1)(T ), . . . , P̂ (r∗)(T )) 6= 0.

Note that the degree of H(T ) is less than q2.

Thus there is some α ∈ Fq2 such thatH(α) 6= 0. For that α, we haveQ(α, P̂ (α), P̂ (1)(α), . . . , P̂ (r∗)(α)) 6=
0. Thus in the iteration of Step 4 of the algorithm in which we take:

β(0) = P̂ (α), β(1) = P̂ (1)(α), . . . β(r∗) = P̂ (r∗)(α),

P̂ (T ) will be included in the list L, and hence in the output of the algorithm.

Thus in either case P̂ (T ) appears in the output of the algorithm, as desired.

Running time The running time of Step 4 of the algorithm can be bounded by q2(r+2) · qO( d
q ·r+r) =

qO(r+ dr
q ). The total number of recursive calls of the algorithm is bounded by

∑r
j=0(degYj

(Q)+1) ≤ (r+1)·q.

Thus the total running time of the algorithm can be bounded by qO(r+ dr
q ).

List Size The total number of solutions to the differential equation found by Step 4 is bounded by

q2(r+2)+2r·b dq c+2r. Unravelling the recursion, we get that the total number of solutions found by the al-
gorithm is at most

(r + 1) · t · q2(r+2)+2r·b dq c+2r.
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5 List-Decoding Multivariate Multiplicity Codes

In this section, we will prove Theorem 7 on the list-decoding of multivariate multiplicity codes over Fmq .

The main technical result is the following, which reduces the problem of list-decoding of multivariate multi-
plicity codes over Fmq to several instances of list-decoding univariate multiplicity codes over Fqm .

Theorem 14 Suppose there exists an algorithm A which runs in time T and list-decodes the multiplicity
code of order s evaluations of degree dqm−1 polynomials in 1 variable over Fqm from η fraction errors with
list-size at most L.

Then there exists an algorithm that list-decodes the multiplicity code of order s evaluations of degree d
polynomials in m variables over Fq from η fraction errors, which runs in time

T ·
(
m+ s− 1

m

)
+ poly

(
qm,

(
d+m

m

))
· L(m+s−1

m ),

and has list-size at most L(m+s−1
m ).

Given this, we now complete the proof of Theorem 7.

Proof of Theorem 7: The main input that we need is a good list-decoding algorithm for univariate
multiplicity codes. Such an algorithm follows from [GSS00]. In particular, this says that every order s
univariate multiplicity code over Fq with distance δ can be list-decoded from (1 −

√
1− δ)-fraction errors

with list-size O(q) in time poly(qs), and from (1−
√

1− δ − ε)-fraction errors with list-size poly( 1
ε ) in time

poly(qs). (The same algorithm, in more a explicit form, is given by the r = 0 case of Theorem 6, but the
analysis in Theorem 11 has to be done more carefully to get the claimed list-size bound).

Combining this list-decoding algorithm for univariate multiplicity codes with Theorem 14, we get the desired
list-decoding algorithm. Explicitly, it gives an algorithm that list-decodes order s m-variate multiplicity codes
of degree d polynomials over Fq with the following two sets of parameters:

1. • from
(

1−
√

1− d·qm−1

s·qm

)
-fraction errors

• with list-size q(m+O(1))·(m+s−1
m )

• in time poly(qm) ·
(
m+s−1
m

)
+ poly(qm) · qm·(

m+s−1
m )

2. • from
(

1−
√

1− d·qm−1

s·qm − ε
)

-fraction errors

• with list-size

(
1
ε

O((m+s−1
m ))

)
• in time poly(qm) ·

(
m+s−1
m

)
+ poly(qm) ·

(
1
ε

)O((m+s−1
m ))

Noting that d·qm−1

s·qm = δ, this completes the proof of the theorem.

The rest of this section is devoted to a proof of Theorem 14.
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5.1 Fqm and Fm
q

Let Tr : Fqm → Fq denote the finite field trace:

Tr(t) = t+ tq + . . .+ tq
m−1

.

We also use Tr to denote the associated polynomial:

Tr(T ) = T + T q + . . .+ T q
m−1

∈ Fqm [T ].

We will be working with bases for Fqm over Fq. Abusing notation, we will say that a = (α1, α2, . . . , αm) ∈ Fmqm
is a basis for Fqm over Fq if {α1, α2, . . . , αm} is a basis for Fqm over Fq.

Definition 15 (s-general position) Let a1, a2, . . . , aM ∈ Fmqm be bases for Fqm over Fq. We say that
a1, . . . , aM are in s-general position if for every R(X1, . . . , Xm) ∈ Fqm [X1, . . . , Xm] with deg(R) < s, there
is some j ∈ [M ] such that R(aj) 6= 0.

Lemma 16 If s ≤ qm − qm−1, and M ≥
(
m+s−1
m

)
, there exists a collection of bases a1, . . . , aM ∈ Fmqm in

s-general position. Furthermore, such a collection can be found in time poly
(

(qm)(
m+s−1

m )
)

.

Proof Note that the property of being in s-general position is monotone, and so it will suffice to prove
the lemma with M =

(
m+s−1
m

)
.

Let B ⊆ Fmqm be the set of all bases of Fqm over Fq. It is a well known fact that B can be described as the
set of non-zeroes of a certain degree qm−1 polynomial as follows:

B = {(x1, . . . , xm) ∈ Fmqm | Z(x1, . . . , xm) 6= 0},

where:

Z(X1, . . . , Xm) = det


X1 X2 . . . Xm

Xq
1 Xq

2 . . . Xq
m

Xq2

1 Xq2

2 . . . Xq2

m
...

...
. . .

...

Xqm−1

1 Xqm−1

2 . . . Xqm−1

m

 .

The space of all R(X1, . . . , Xm) ∈ Fqm [X1, . . . , Xm] with deg(R) < s is
(
m+s−1
m

)
dimensional. To each such

polynomial R, we associate a vector vR ∈ FBqm , where the coordinate of vR corresponding to (x1, . . . xm) ∈ B
equals R(x1, . . . , xm).

Now we will show that the dimension of {vR | R(X1, . . . , Xm) ∈ Fqm [X1, . . . , Xm],deg(R) ≤ s} also equals(
m+s−1
m

)
. Otherwise, there should exist some nonzero polynomial R(X1, . . . , Xm) such that R(x1, . . . , xm) =

0 for every (x1, . . . , xm) ∈ B. Thus the polynomial R ·Z(X1, . . . , Xm) would vanish on every (x1, . . . , xm) ∈
Fmqm , which is impossible since deg(R · Z) < s+ qm−1 ≤ qm.

Therefore, there is a subset A = {a1, . . . , a(m+s−1
m )} of B of size

(
m+s−1
m

)
such that the set of restrictions of

the vectors vR to coordinates in A also has dimension
(
m+s−1
m

)
. This implies that for every nonzero R, the

R must be nonzero on at least one of a1, . . . , a(m+s−1
m ).

This argument can be made an algorithm for finding the ai by considering the matrix whose rows consist of
the vR, and then finding a maximal collection of linearly independent columns of it.
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Explicit bases in s-general position: Though not required for the list-decoding application, we remark
that it is possible to construct bases in s-general position in time poly(q,m), provided s < q. Let S ⊆ Fmq be
an interpolating set for degree < s polynomials (there are many known simple constructions of such sets).
Let a ∈ Fmqm be a basis for Fqm over Fq. Then {v + a | v ∈ S} ⊆ Fmqm is a set of bases in s-general position.

5.2 Curves parametrizing Fm
q

We will be interested in certain curves parametrizing Fmq . Associated to every basis of Fqm over Fq, there is
one such curve. Let a = (α1, . . . , αm) ∈ Fmqm be a basis for Fqm over Fq. Define the curve γa : Fqm → Fmq
given by

γa(t) = (Tr(α1t),Tr(α2t), . . . ,Tr(αmt)).

We also view γa as tuple of polynomials:

γa(T ) = (Tr(α1T ),Tr(α2T ), . . . ,Tr(αmT )) ∈ (Fqm [T ])m.

We now list the salient features of the curve γa.

Lemma 17 (Properties of γa) Let a, γa be as above. Then:

• γa parametrizes Fmq : γa(Fqm) = Fmq . In particular γa gives a bijection between Fqm and Fmq .

• γa is Fq-linear: For α1, α2 ∈ Fq, we have

γa(α1T1 + α2T2) = α1γa(T1) + α2γa(T2).

• γa looks linear mod T q: In the ring Fqm [T ], we have γa(T ) ≡ aT mod T q.

These properties of γa allow us to relate the evaluations of a multivariate polynomial and its derivatives over
Fmq to the evaluations of a univariate polynomial and its derivatives over Fqm . We do this in the following
lemma.

Lemma 18 Let Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] and let P (T ) ∈ Fqm [T ] be given by P (T ) = Q ◦ γa(T ).
Then for every t ∈ Fqm and every j < q:

P (j)(t) =
∑

i:wt(i)=j

Q(i)(γa(t))ai.

Proof By definition of derivatives, we have:

P (t+W ) =
∑
j

P (j)(t)W j ,

Q(γa(t) +X) =
∑
i

Q(i)(γa(t))Xi.

By linearity, γa(t+W ) = γa(t) + γa(W ). So

P (t+W ) = Q ◦ γa(t+W )

= Q(γa(t) + γa(W ))

=
∑
i

Q(i)(a)(γa(W ))i
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Taking this equation mod W q, we get the following equation:∑
j<q

P (j)(t)W j =
∑

i:wt(i)<q

Q(i)(γa(t))(aW )i mod W q

For j < q, note that the coefficient of W j in the right hand side of this equation equals
∑

i:wt(i)=j Q
(i)(γa(t))ai.

On the other hand, the coefficient of W j in the left hand side of the equation equals P (j)(t). We therefore
conclude that for each j with 0 ≤ j < q, we have

P (j)(t) =
∑

i:wt(i)=j

Q(i)(γa(t))ai.

5.3 Reducing Multivariate Decoding to Univariate Decoding

Using the γa parametrization of Fmq , we will now see how to reduce decoding of multivariate multiplicity
codes over Fmq to several instances of decoding univariate multiplicity codes over Fqm .

Proof of Theorem 14: We first describe the list-decoding algorithm, and then we analyze it.

Algorithm for Reducing Multivariate Decoding to Univariate Decoding

1. Let M =
(
m+s−1
m

)
. Pick bases a1, a2, . . . , aM ∈ Fmqm in s-general position.

2. For each i ∈ [M ], define `i : Fqm → Fsq as follows. For each j with 0 ≤ j < s, let

(`i(t))j =
∑

i:wt(i)=j

r(i)(γai
(t)) · aii.

3. Using algorithm A, compute the set Li of all P (T ) ∈ Fqm [T ] of degree at most dqm−1 such that
∆(Encs,dqm−1,1,qm(P ), `i) < η.

4. For every (P1(T ), P2(T ), . . . , PM (T )) ∈
∏M
i=1 Li, find allQ(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] with deg(Q) ≤

d such that for each i ∈ [M ],
Q ◦ γai

(T ) = Pi(T ).

(This is a system of linear equations over Fqm with
(
d+m
m

)
variables and (d+ 1) ·M constraints).

5. Output the list of all such Q(X1, . . . , Xm).

We first show that in step 4 of the algorithm, there can be at most one Q satisfying the given system of
equations. This immediately implies that the algorithm runs in the claimed time and has the claimed list-size
bound.

Suppose there were two distinct polynomials Q1(X1, . . . , Xm) and Q2(X1, . . . , Xm) which satisfied the system
of linear equations in Step 4 of the algorithm. Then their difference Q(X1, . . . , Xm) would have the property
that for each i ∈ [M ], the univariate polynomial Q ◦ γai

(T ) is identically 0. By the following theorem, we
get that Q must be identically 0, contradicting the distinctness of Q1 and Q2.

Theorem 19 Let s < q. Let Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] be a polynomial of degree d < sq.

Let a1, . . . , aM ∈ Fmqm be bases of Fqm over Fq in s-general position.

Suppose that for each i ∈ [M ], the polynomial Q ◦ γai(T ) ∈ Fqm [T ] equals 0. Then Q(X1, . . . , Xm) = 0.
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We postpone the proof of this theorem to the end of this section.

Now we show correctness of the algorithm. Namely, we show that for any Q̂(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm],

such that ∆(Encs,d,m,q(Q̂), r) < η, the algorithm will include Q̂(X1, . . . , Xm) in its output.

We say a ∈ Fmq is a point of agreement if Q̂(<s)(a) = r(a).

Fix i ∈ [M ]. Let P̂i(T ) = Q̂ ◦ γai(T ). We will show that ∆(Encs,dqm−1,1,qm(P̂i), `i) < η. Recall that
γai

: Fqm → Fmq is a bijection. Thus for a ∈ Fmq there is a unique ta ∈ Fqm such that γai
(ta) = a. Now for

every point of agreement a, we have that for every j with 0 ≤ j < s:

(P̂i)
(j)(ta) =

∑
i:wt(i)=j

Q(i)(γai
(ta))aii by Lemma 18,,

=
∑

i:wt(i)=j

Q(i)(a)aii

=
∑

i:wt(i)=j

r(i)(a)aii since a is a point of agreement,

=
∑

i:wt(i)=j

r(i)(γai(ta))aii

= (`i(ta))j .

Thus every point of agreement a gives rise to an agreement (P̂i)
(<s)(ta) = `i(ta), and therefore

∆(Encs,dqm−1,1,qm(P̂i), `i) < η.

Thus when we finish Step 3 of the algorithm, we know that P̂i ∈ Li for each i ∈ [M ]. Thus when we execute
Step 4 of the algorithm with Pi = P̂i for each i ∈ [M ], Q̂ will be a solution to the system of linear equations
(By the earlier discussion, it will in fact be the unique solution).

Thus Q̂ will be in the output of the algorithm, as desired.

We now prove Theorem 19.

Proof of Theorem 19: We will show that for each a ∈ Fmq , mult(Q,a) ≥ s. Then by Lemma 3 (recalling
that deg(Q) < sq), we can conclude that Q(X1, . . . , Xm) = 0.

Fix i ∈ [M ]. We have Q ◦ γai
(T ) = 0. By Lemma 18, we conclude that for every t ∈ Fqm ,∑

i:wt(i)=j

Q(i)(γai
(t))aii = 0.

Thus for every a ∈ Fmq and every i ∈ [M ] ∑
i:wt(i)=j

Q(i)(a)aii = 0.

For 0 ≤ j < q, let Ra,j(Y) be the polynomial
∑

wt(i)=j Q
(i)(a)Yi.

We just showed that for each i ∈ [M ] and j < q, we have Ra,j(ai) = 0.

By the general position hypothesis on ai, this implies that for each j < s, the polynomial Ra,j(Y) is itself
identically 0.

But the coefficients of Ra,j(Y) are Q(i)(a), for i satisfying wt(i) = j. Thus Q(i)(a) = 0 for each a and each
i with wt(i) < s.

Therefore mult(Q,a) ≥ s for each a ∈ Fmq , as desired.
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6 Open Questions

1. Can univariate multiplicity codes be list-decoded from list-decoding capacity with constant list-size?
The results of Guruswami, Guruswami-Wang and Dvir-Lovett imply that a carefully chosen (nonlinear)
subset of univariate multiplicity codes does have this property.

2. Can bivariate multiplicity codes of minimum distance δ be list-decoded from δ − ε fraction errors
with constant list-size? This would automatically translate into a strong local list-decodability for
multivariate multiplicity codes. In particular, this would give for every fixed integer m, codes of
arbitrarily long length n, rate (1 − δ)m and distance δ, which are locally list-decodable from δ − ε
fraction errors in time O(n2/m).

3. Does list-decoding of multiplicity codes have applications in complexity theory? List-decoding tradi-
tional polynomial codes (in many variables) has many applications. At first glance, the advantages of
multiplicity codes over polynomial codes seem to be significant only when the number of variables is
much smaller.
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A Interpolating Sets for Multiplicity Codes

In this section, we describe an explicit interpolating set for multiplicity codes. Concretely, for a given
d, s,m, q, we find a set S ⊆ Fmq × {i | wt(i) < s} such that for every f : S → Fq, there is exactly

one Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] of degree at most d such that for each (a, i) ∈ S, Q(i)(a) = f(a, i).
By simple linear-algebra arguments it can be seen that such sets S exist, and any such set S must have
|S| =

(
d+m
m

)
. Our goal here is to describe an explicit such set; this will enable the local decoding of

multiplicity codes in uniform sublinear time.

The main fact that we will need is that there are explicit interpolating sets for traditional multivariate
polynomial codes. Specifically, for each d < mq, there is an explicit set Sd ⊆ Fmq such that for every
f : Sd → Fq, there is exactly one A(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] of degree at most d and individual degree
< q, such that A(a) = f(a) for each a ∈ Sd.

Before solving the problem in full generality, let us consider a simple special case where we can see what is
actually going on. Suppose we have m = 2 and s = 2; thus are dealing with bivariate polynomials of degree
≤ d < 2q and we want to find 3 sets of points S0, SX , SY ⊆ F2

q such that if we learn the values of a degree

d polynomial Q on S0, the values of ∂Q
∂X on SX and the values of ∂Q

∂Y on SY , we will be able to uniquely
recover Q. Now Q(X,Y ) can be written uniquely as

Q(X,Y ) = A(X,Y ) + (Xq −X)B(X,Y ) + (Y q − Y )C(X,Y ),
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where A,B,C all have X and Y degrees ≤ q−1, and the total degree of A is at most d, and the total degrees
of B,C are at most d−q. Given this representation of Q, the coordinates of the codeword of the multiplicity
code corresponding to Q are easy to compute (using the product rule):

Q(a) = A(a)

∂Q

∂X
(a) =

∂A

∂X
(a)−B(a),

∂Q

∂Y
(a) =

∂A

∂Y
(a)− C(a).

This motivates the following choice for S0, SX and SY . We pick S0 to be an interpolating set for polynomials
of total degree ≤ d and individual degree ≤ q−1. We pick SX and SY to be interpolating sets for polynomials
of degree ≤ d− q and individual degree2 at most ≤ q − 1. Given evaluations of Q on S0, we get evaluations
of A on S0, and thus we can recover A by choice of S0. Once we have A, the evaluations of ∂Q

∂X at the points
of SX give us the evaluations of B on SX , and thus we can recover B. Similarly we can recover C. Putting
this all together, we just found A,B and C, and hence we found Q. Thus we found an interpolating set in
this special case. The ideas here generalize quite easily to the general case.

For each vector of nonnegative integers k = (k1, . . . , km), introduce the polynomial

Vk(X) =

m∏
j=1

(Xq
j −Xj)

kj .

For every i = (i1, . . . , im), a simple calculation shows that unless i ≥ k coordinate-wise, we have that for
every a ∈ Fmq :

(Vk)(i)(a) = 0. (5)

Furthermore,

(Vk)(k)(a) = (−1)wt(k). (6)

Let Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] be a polynomial of degree ≤ d. Then Q can be written as

Q(X) =
∑

k:wt(k)≤ d
q

Ak(X) · Vk(X),

for some polynomials Ak(X) with individual degrees at most q − 1 and total degree at most min(m · (q −
1), d− wt(k) · q). Conversely, any collection of such Ak(X) gives a Q(X) of degree ≤ d.

We now show how the polynomials Ak(X), and hence the polynomial Q(X), can be recovered from certain
explicit evaluations of Q and its derivatives.

We have:

Q(i)(X) =
∑
k

(Ak · Vk)
(i)

(X)

=
∑
k

∑
j+j′=i

(Ak)(j)(X) · (Vk)(j′)(X),

where the last step follows from the product rule for higher order Hasse derivatives [HKT08, Pages 144-155].

2In our special case this latter condition is vacuous.
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Substituting a ∈ Fmq into this equation, and using Equation (5) and Equation (6), we get:

Q(i)(a) =
∑
k

∑
j+j′=i,j′≥k

(Ak)(j)(a)(Vk)(j′)(a) (7)

= (−1)wt(i) ·Ai(a) +
∑
k6=i

k≤i

∑
j′

i≥j′≥k

(Ak)(i−j′)(a)(Vk)(j′)(a). (8)

Thus we can find the evaluation of Ai(X) at the point a of Fmq if we know

• Q(i)(a),

• the polynomial Ak(X) for each k < i.

This motivates the following construction of an interpolating set for the multiplicity code of order s evalua-
tions of degree d polynomials in m variables over Fq.

• For each i with wt(i) ≤ d
q , we choose a set Si ⊆ Fmq which is an interpolating set for the space of all

polynomials with individual degree at most q − 1 and total degree at most d− wt(i)q.

• Then the interpolating set S is defined by:

S =
⋃

i:wt(i)<s

Si × {i}.

We now show that for every f : S → Fq, there is exactly one Q(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] of degree at
most d such that f(a, i) = Q(i)(a) for each (a, i) ∈ S.

We do this by giving a procedure to find Q given Q(i)(a) for (a, i) ∈ S.

1. Let i vary in the set {i | wt(i) < d/q} in non-decreasing order.

2. By the time we come to a given i, we would have already found Ai′(X) for every i′ < i.

3. Via (8), using the known values of Q(i)(a) for a ∈ Si and the known polynomials Ai′(X) (i′ < i), we
can find the evaluations of Ai(a) for each a ∈ Si.

4. By the interpolation property of Si, this suffices to find Ai(X).

This procedure gives us Ai(X) for each i with wt(i) ≤ d/q, and thus Q(X) is uniquely determined.

B Local Decoding and Local List-Decoding

In this section, we point out some corollaries to local decoding and local list-decoding of multiplicity codes.

Using the algorithm for unique-decoding of bivariate multiplicity codes of distance δ from δ
2 -fraction errors,

we will get a local-decoding algorithm for decoding m-variate multiplicity codes of distance δ from ( δ2 − ε)-
fraction errors for every constant ε > 0. Given a received word r : Fmq → Σ, let us show how to locally correct
it at the coordinate a ∈ Fmq . Suppose Q is the polynomial of degree ≤ d whose corresponding codeword of

the multiplicity code is within distance δ
2 − ε from r.

Local Decoder:
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• Let M =
(
m+s−1
m

)
.

• Pick lines `1, . . . , `M passing through a uniformly and independently.

• For each `i, let pi be a uniformly random 2-dimensional plane containing `i.

• By querying all the points of pi, and decoding from δ
2 -fraction errors, recover the restriction of Q to

the plane pi.

• Using this, we get the restriction of Q to each `i.

• Use this to recover Q(<s)(a).

We briefly sketch the analysis. For any i ∈ [M ], notice that pi is a uniformly random plane passing through
a. Thus with high probability, pi will have < δ

2 - fraction errors on it. By the union bound, this will in
fact happen for all the i ∈ [M ] simultaneously with high probability, and thus all the computations of Q
restricted to pi and `i will be correct, and thus so will the computation of Q(<s)(a) (provided the `i are in
general enough position). Making this analysis formal can be done easily following the analogous analysis
in [KSY11].

The local list-decoding algorithm involves a little more work. Recall that a local list-decoding algorithm uses
oracle access to a received word r and outputs a collection of oracles, such that for each codeword in the list
of codewords near r, some oracle in the output locally computes that codeword. We describe the algorithm
below:

Local List-decoder:

1. Set M =
(
m+s−1
m

)
.

2. Pick lines `1, . . . , `M uniformly at random in Fmq .

3. For each i ∈ [M ], list-decode the univariate multiplicity code on r|`i from (1 −
√

1− δ − ε
2 )-fraction

errors to get the list of univariate polynomials Ri.

4. For each (R1, ...RM ) ∈
∏
i∈[M ]Ri, output the oracle Correct(A(`1,...,`M ),(R1,...,RM )).

Here Correct is the local correcting algorithm of [KSY11]; when given as input an oracle which computes a
received word within distance 0.1 · δ from a codeword of a multiplicity code, it simulates an oracle which
computes that codeword with high probability.

Next we descibe the oracle A. It takes as advice a collection of lines and a collection of univariate polynomials
restricted to those lines, and simulates oracle access to a function that is supposed to be � 0.1 · δ-close to
a codeword of the multiplicity code; specifically it is supposed to compute the unique codeword (if any) in
the list of codewords close to r whose restriction to line `i equals the univariate polynomial Ri.

Oracle A(`1,...,`M ),(R1,...,RM )(a)

1. For each i ∈ [M ]:

(a) Consider the plane pi containing `i and a.

(b) List-decode r|pi
from (1−

√
1− δ− ε

2 )-fraction errors to obtain a list Li of bivariate polynomials
defined on pi.

(c) Choose the unique element (if any) of the list whose restriction to `i equals Ri; call that bivariate
polynomial Pi.

2. Output the unique value of Q(<s)(a) that is consistent with the equations Q|pi
= Pi.
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The analysis of this algorithm is a combination of the local decoding algorithm for multiplicity codes [KSY11]
and the local list-decoding algorithms for Reed-Muller codes [AS03, STV99, BK09]. The use of planes in the
decoding is to allow for decoding from (1−

√
1− δ+ ε)-fraction errors, and not (1−

√
2(1− δ)− ε)-fraction

errors which is what decoding along lines seems to give (this is the extra ingredient in [BK09] which removes
the 2 that appears in [STV99]; for codes of rate approaching 1, the removal of the 2 is crucial for this
algorithm to be nontrivial).

We sketch the analysis now. Let Q̂(X) ∈ Fq[X] be a polynomial corresponding to a codeword of the

multiplicity code. The first step is to show that with high probability, for each i ∈ [M ], Q̂|`i ∈ Ri. This
follows easily from the fact that random lines in Fmq “sample well”. The second step is to show that with
high probability over the choice of `1, . . . , `M , the oracle B := A(`1,...,`M ),(Q̂|`1 ,...,Q̂|`M ) computes a function

which is (εΩ(1))-close (and hence � (0.1δ)-close) to Q̂. To see this, we take a random a ∈ Fmq , and show

that the probability (over the choice of the `i) that B(a) = Q̂(<s)(a) is at least 1 − εΩ(1). Now the event
“B(a) = Q̂(<s)(a)” will occur if: (1) Q̂|pi

appears in Li, (2) no other element of Li equals Q̂|`i when restricted
to `i, and (3) the pi are in general enough position. The probability of (1) is 1− εΩ(1) because pi is a random
plane containing a, and hence it “samples well”. The probability of (2) is also 1−εΩ(1), because we can think
of this event as choosing pi first and then `i within it, and then its probability is bounded by the probability
that some two elements of Li, which we know is of size ≤ poly( 1

ε ), agree on the uniformly random line `i.
This is small by a general bound on the number of lines on which two distinct bivariate polynomials can
agree. The probability of (3) is 1 − o(1). Summing up, we see that the probability of B(a) = Q̂(<s)(a) is
at least 1 − εΩ(1), and hence we have the desired property of B. Thus the self-corrected oracle Correct(B)
will agree with Q̂ on all points of Fmq , and so the codeword of the multiplicity code corresponding to Q̂ will
appear in the list of output oracles with high probability, as desired.
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