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Abstract

Probabilistically-Checkable Proofs (PCPs) form the algorithmic core that enables fast
verification of long computations in many cryptographic constructions. Yet, despite the
wonderful asymptotic savings they bring, PCPs are also the infamous computational bottle-
neck preventing these powerful cryptographic constructions from being used in practice. To
address this problem, we present several results about the computational efficiency of PCPs.

We construct the first PCP where the prover and verifier time complexities are quasi-
optimal (i.e., optimal up to polylogarithmic factors). The prover and verifier are also higly-
parallelizable, and these computational guarantees hold even when proving and verifying the
correctness of random-access machine computations. Our construction is explicit and has
the requisite properties for being used in the cryptographic applications mentioned above.

Next, to better understand the efficiency of our PCP, we propose a new efficiency measure
for PCPs (and their major components, locally-testable codes and PCPs of proximity). We
define a concrete-efficiency threshold that indicates the smallest problem size beyond which
the PCP becomes “useful”, in the sense that using it is cheaper than performing naive
verification (i.e., rerunning the computation); our definition accounts for both the prover and
verifier complexity.

We then show that our PCP has a finite concrete-efficiency threshold. That such a PCP
exists does not follow from existing works on PCPs with polylogarithmic-time verifiers.

As in [Ben-Sasson and Sudan, STOC ’05], PCPs of proximity for Reed–Solomon (RS) codes
are the main component of our PCP. We construct a PCP of proximity that reduces the
concrete-efficiency threshold for testing proximity to RS codes from 2683 in their work to 243,
which is tantalizingly close to practicality.
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1 Introduction

The study of probabilistically-checkable proofs (PCPs) [AS98, ALM+98] was initiated by Babai
et al. [BFLS91] and Feige et al. [FGL+96] with two very different motivations. Babai et al.
focused on “positive” applications of PCPs: enabling fast verification of long computations.
Instead, Feige et al. focused on “negative” applications of PCPs: proving inapproximability
results. In this paper, we study properties of PCPs that are relevant to positive applications.

1.1 Motivation

Given a program P (say, written in C++ or some other random-access memory model), input x,
and time bound T , a verifier wishes to check whether a witness w makes P(x, w) accept within
T time steps. Without the help of a prover and only having access to w, the verifier can only
perform the naive verification procedure: run P(x, w) for at most T steps and see if it halts and
accepts.

As [BFLS91] showed, a PCP saves the verifier the cost of performing this naive verification
procedure, and enables instead a faster probabilistic verification procedure: a PCP verifier can
run in only poly(|P| + |x| + log T ) time when having oracle access to a PCP proof string π of
length poly(|P|+ |x|+ T ) generated by a PCP prover (who is given w as auxiliary input). More
recent works [BSS08, BSGH+05, Mie09] achieved proof length T · poly(|P|+ |x|+ log T ). As T
grows larger (and viewing |P| and |x| as relatively small) the saving in running time becomes
more dramatic, and at some point running the PCP verifier is much cheaper than performing
naive verification.

Due to these properties, PCPs have been used as the “verification engine” in many crypto-
graphic protocols that enable various flavors of fast verification of long computations, includ-
ing succinct interactive arguments [Kil92, Mic00, BG08], succinct non-interactive arguments
(SNARGs) [DCL08, BCCT12a, DFH12, GLR11], and proof-carrying data [CT10, CT12].

Unfortunately, PCPs are also the notorious computational bottleneck of all these crypto-
graphic protocols: despite the great practical potential of fast verification of long computa-
tions, any construction relying on PCPs is dismissed as impractical.1 Indeed, known PCP
constructions with poly(|P|+ |x|+log T )-time verifiers have huge overheads, indicating that real
savings are made only for prohibitively large T . Moreover, the PCP prover must convert the
computation-transcript (which is of length T ) into a PCP proof for the PCP verifier. This cost
is at least as large as the length of a PCP proof but — if not generated via efficient algorithms
— can be much larger, so much so as to kill any prospect of using a PCP system in practice.

Therefore, two crucial parameters of interest from the point of view of using PCPs for fast
verification of long computations are the prover running time and the verifier running time.2

While these times can be traded off against each other (e.g., increasing proof length, and thus
prover running time, enables the design of more “robust” tests with faster verifiers), we want
them instead to simultaneously be as short as possible.

This sets the ground for the basic (informal) question that motivates our work. A galac-
tic algorithm is an algorithm with great asymptotics that, however, is never used to actually

1See Appendix A for a summary of flavors of solutions to the problem of fast verification of long computations.
2The running time of the verifier depends on the target soundness. Our convention is to consider a target

soundness of 1/2. Then, k-fold sequential repetition results in soundness 2−k and a multiplicative blowup in
running time of k. (We are not interested in randomness-efficient repetition, such as that of [BSS08, Proposition
2.9].)
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compute anything in practice [Lip10]. Are all PCPs galactic algorithms or are there PCPs with
“terrestrial” efficiency?

In this paper we present several promising results on the computational efficiency of PCPs,
both in the asymptotic and concrete senses. We discuss these next.

1.2 Asymptotic Time Efficiency

Previous PCP constructions with polylogarithmic-time verifiers [BFLS91, BSGH+05, Mie09,
Mei09] did not obtain quasilinear-time provers.

Our first main theorem is obtaining the first PCP system where the time complexity of both
the prover and verifier is quasi-optimal (i.e., optimal up to polylogarithmic factors).

This PCP system has two additional desirable features. First, both the prover and verifier are
highly parallelizable; especially in the prover, low parallel complexity is very desirable, because
it corresponds to the “lag time” for generating the PCP proof, relative to the completion time
of the original computation. Second, these computational guarantees hold even when proving
and verifying the correctness of programs (more precisely, random-access machines).

Overall, our result thus establishes that, from an asymptotic viewpoint, the time complexity
of PCPs is essentially as good as one might hope for.

Theorem 1 (informal). There is a PCP system where, to prove and verify that a program P
accepts the input (x, w) within T steps for some witness w (with |x|, |w| ≤ T ),

Sequential Time:

– given (P, x, T , w), the prover runs in time (|P|+ T ) · polylog(T );
– given (P, x, T ), the verifier runs in time (|P|+ |x|) · polylog(T ).

Parallel Time:

– the prover runs in parallel time O((log T )2), when also given as input the transcript of com-
putation of P on (x, w);

– the verifier runs in parallel time O((log T )2).

The construction of our PCP system relies and builds on the quasilinear-size Reed–Solomon
proximity proofs of [BSS08]. As discussed, our contribution lies in obtaining the aforementioned
efficiency properties in the prover and verifier algorithms. In order to obtain them, we show
how to suitably leverage computational properties of linearized polynomials [LN97, Section 2.5]
in finite field extensions of F2 [BSGH+05] and additive-FFT methods [Mat08].

The high-level proof strategy for the theorem is as follows. First, following and generalizing
[BSGH+05], we introduce a family of NEXP-complete succinct algebraic constraint satisfaction
problems (sACSPs); our definition of an sACSP attempts to simultaneously capture essential
ingredients that make the problem amenable to probabilistic checking as well as general enough
to allow for efficient reductions from less “structured” problems. In order to (efficiently) reduce
correctness of program computations to satisfiability of sACSPs, we rely on the reductions of
Ben-Sasson et al. [BSCGT13]. Second, we construct a PCP system, with the required efficiency,
to probabilistically check satisfiability of sACSP problems.

1.3 Defining Concrete Efficiency

An asymptotic understanding of PCPs, however, is insufficient for investigating the practical
feasibility of PCPs. For comparison, in coding theory, extensive research effort has been invested
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in optimizing codes for a given block length, rate, decoding radius, and so on [Ber68, HB98].
Similar questions arise for PCPs. We thus initiate the study of the concrete (as opposed
to asymptotic) efficiency of PCP constructions, from a perspective that is informed by the
efficiency concerns arising in positive applications of PCPs. In this direction, we present three
contributions: the first is a definitional one, the remaining two are of a mathematical nature.

We begin by defining the concrete-efficiency threshold B of a given PCP system. It is the
answer to the following natural question.

Question: What is the smallest T for which using the PCP system to verify com-
putations of length at least T is cheaper than naive verification?

To concretize our question, we need to agree on (i) the cost of using a PCP system and (ii) the
cost of naive verification.

(i) Cost of using a PCP system. A PCP system consists of two algorithms: a PCP
prover P and a PCP verifier V . As discussed, two important quantities are the prover running
time tP and the verifier running time tV . Because it is often possible to reduce one at the expense
of the other, a useful cost measure should simultaneously take into account both running times.
We therefore seek a bivariate cost function C capturing the combined cost.3 However, tP and
tV are not “on the same scale”: we expect tP to be always much larger than tV . To place
them on the same scale so that they can be combined “fairly”, we normalize them into unitless
multiplicative overhead numbers, and give these as input to the cost function C.

Specifically, in an ideal world where the verifier trusts the prover, the prover runs the
computation to deduce what is the answer bit (i.e., accept or not), and then communicates this
bit to the verifier; let iP and iV denote the running times of the prover and verifier in this ideal
world. Then iP and iV are the “natural units” of the prover and verifier respectively. We thus
give as input to C the two (unitless) ratios tP /iP and tV /iV .

(ii) Cost of naive verification. We reason similarly on how to compute the cost of naive
verification, i.e., the cost of verification without the use of PCPs. In the ideal world, the verifier
runs in time iV as before. In contrast, in a real world where the PCP system is not used (and
the verifier does not trust anyone but himself), the verifier is forced to conduct the computation
himself to figure out the answer bit; this takes time iP (i.e., the same time as that needed by
the prover in the ideal world). Thus, the natural unit of naive verification is iV , and its unitless
cost is thus iP /iV .

Concrete-efficiency threshold. Given (i) and (ii) above, we define the concrete-efficiency
threshold of a PCP system as the smallest problem size beyond which the (combined) cost
C(tP /iP , tV /iV ) is always smaller than the cost iP /iV . We summarize this via the following
informal definition:

Definition 1 (informal). A PCP system is B-efficient with respect to cost function C if B is
the smallest integer for which, for every true statement y of size at least B,

C

(
PCP proving

overhead for y
,

PCP verification
overhead for y

)
<

(
naive verification

overhead for y

)
.

If no such integer exists, B :=∞.

3Of course, prover and verifier running time are not the only important quantities. For instance, the parallel
complexity of the prover is also important, because it corresponds to the “lag time” of producing a PCP proof;
hence, it is also meaningful to let C take this quantity as a third input. Similarly other quantities of potential
interest, such as the space complexity of the prover. For simplicity, we study the most basic case where C takes
prover and verifier running time.
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Depending on the application, different choices of cost function C may be meaningful.4 In
this paper, we focus on polynomial cost functions, i.e., C(a, b) is a bivariate polynomial over the
reals (that is at least linear in both variables). We believe that polynomial cost functions are
rich enough to model many scenarios.

A model for concrete efficiency. In order formalize Definition 1, we still need to choose
(a) a computational model (through which PCP provers and verifiers are represented) as well
as (b) a “reference” complete problem relative to which a given PCP is constructed. However,
having moved from an asymptotic study of efficiency to a concrete one, we must be careful
about how we make these choices.

The issue of picking the “right” computational model does not arise in typical algorithmic
analysis because many algorithms are naturally associated with certain complexity measures
that are meaningful in both the asymptotic and concrete settings. E.g., matrix-multiplication
algorithms are naturally studied via the number of arithmetic operations they require, graph
algorithms are studied via number of vertex/edge queries, etc., and these complexity measures
are quite meaningful in concrete settings, for example, to answer questions analogous to ours:
“What is the smallest matrix size for which Strassen’s algorithm costs less than naive cubic-time
algorithm?”.

Returning to a PCP system, the natural objects on which it operates are programs (cf.
Theorem 1) specified to run on some machine. In the asymptotic setting it does not matter
which machine is used to execute them, provided it is universal. But moving to the concrete
world, fixing an arbitrary universal machine as a model computation would make the definition
of B meaningless. Indeed, if a PCP system has B <∞ when computing on a universal machine
U , then there is also a universal machine U ′ that has all problems of size less thanB precomputed
(and for larger sizes U ′ simulates U), and thus the same PCP system has B′ = 0 when choosing
U ′ as a computational model. This can be avoided by specifying a “natural” universal machine
explicitly ; however, this would result in a cumbersome and somewhat arbitrary definition.

We therefore suggest to study the concrete efficiency of PCP systems by using circuits. In
particular, in our Definition 1, we assume that (a) provers and verifiers are specified as Boolean
circuits, and (b) the PCP system is constructed for a NEXP-complete language, Succinct Cir-
cuit Sat (or sCSAT for short), which is the language of satisfiable circuits that are succinctly
represented.5 Indeed, circuits appear to be a natural and meaningful computational model for
studying concrete efficiency, especially because we can be explicit about the exact model of
computation without much work (e.g., by specifying a natural Boolean basis and settings for
fan-in and fan-out). See Section 2.2 for details.

Henceforth, our goal is to construct B-efficient PCP systems for sCSAT, with as small a B
as possible, for various polynomial cost functions C.

1.4 A PCP System with B <∞ for Every Polynomial Cost Function

Our first result about the concrete efficiency of PCPs is constructing a PCP system for sCSAT
that has finite concrete-efficiency threshold for every polynomial cost function C. Indeed,
Theorem 1 implies a PCP system for sCSAT with analogous quasi-optimal asymptotic efficiency

4E.g., if one is interested in studying the threshold corresponding to when the combined cost becomes less than
half (rather than merely less than) the cost of naive verification, one can use the cost function C′(a, b) := 2·C(a, b).

5Note that it is indeed essential to choose a language that gives the freedom to specify large constraint
satisfaction problems succinctly: the verifier should not be forced to read a given constraint satisfaction problem
in explicit form because then it would not have a chance to make any savings in running time!
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(where running time is replaced by circuit size and parallel time by circuit depth), from which
we can deduce:

Theorem 2 (informal). There exists a PCP system for sCSAT with concrete-efficiency thresh-
old B(C) <∞ for every polynomial cost function C.

Note that it is not a-priori clear that PCP systems with a finite efficiency threshold (even for
one polynomial cost function) exist. Indeed, PCP constructions designed for inapproximability
results (and most constructions fall under this category) have both prover and verifier running
in time that is at least T , and therefore have an infinite efficiency threshold (i.e., none exists)
[FGL+96, AS98, ALM+98, PS94, RS97, HS00, BSSVW03, BSGH+04, GS06, Din07, BSS08,
MR08, Mei12]. Turning to PCP constructions with polylogarithmic-time verifiers [BFLS91,
BSGH+05, Mie09, Mei09], these focus on minimizing the verifier’s running time, and only show
that the prover’s running time is bounded by a polynomial in T , which, once again, is not enough
to obtain a finite concrete-efficiency threshold. Another important issue is the dependence of
the running time of the prover or verifier on the statement size: if it is too large of a polynomial,
then again the concrete-efficiency threshold is ∞.

Having established via our Theorem 2 that it is indeed possible to obtain a finite concrete-
efficiency threshold, we wish to carefully optimize our PCP construction from the proof of
Theorem 2 with the goal of deriving as tight an analysis as possible to show a small value of
B. Deriving an upper bound on B, however, entails deriving concrete upper bounds on the
size of fairly-complicated circuits implementing the prover and verifier. Such a computation
seems infeasible without the aid of a full, working implementation. We propose instead a more
tractable, yet still meaningful, approach to study B, which we describe next.

1.5 Concrete Efficiency of PCPs of Proximity for Reed–Solomon Codes

Our PCP construction from the proof of Theorem 1 is an algebraic PCP whose technical heart
and “heaviest” component, like other algebraic PCPs, is a low-degree test : a verifier V is given
oracle access to a function f , and possibly also an auxiliary “proximity proof” π, and must test
proximity of f to some code of low-degree polynomials by querying (f, π) at a few places. A
low-degree test is a special case of a PCP of Proximity (PCPP) for a code ensemble.

As an intermediate step to computing the concrete-efficiency threshold of our PCP system
(which, as discussed, is quite challenging), we study the concrete-efficiency threshold of PCPPs
for Reed–Solomon codes over fields of characteristic 2; these, as in [BSS08, BSGH+05], lie at
the core of our PCP system. We thus propose a definition (analogous to Definition 1) for
the concrete efficiency of PCPP systems for code ensembles. In this new definition, instead of
computing a combined cost based on the proving and the verification overheads, we compute
a combined cost based on the rate of the codeword and its PCPP proof, and the number of
queries of the verifier.

Definition 2 (informal). A PCPP system for a given code ensemble E is B̂-efficient with
respect to cost function C if B̂ is the smallest integer such that for all k ≥ B̂,

C

(
n(k) + L(k)

k
,Q(k)

)
< k

where n(k) denotes the block-length, L(k) the length of the PCPP proof generated by the prover,
and Q(k) the query complexity of the verifier for codes in E of dimension k.
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Definition 2 is an “information-theoretic” version of Definition 1 as it disregards the compu-
tational cost of the PCPP prover for producing the proximity proof and of the PCPP verifier for
generating queries and examining answers, and focuses instead on information-theoretic mea-
sures (see Remark 2.8). In our PCPP construction (and, ultimately, also in our PCP construc-
tion), through the use of additive-FFT techniques, we ensure that the computational costs only
account for small additional logarithmic factors relative to the PCPP proof length and query
complexity; we thus believe that in our case it is meaningful to study the (cleaner) information-
theoretic efficiency measure of Definition 2, as a proxy for its computational equivalent, for the
PCPPs we construct.

As in [BSS08, BSGH+05], the relevant code ensemble for our PCP construction from the
proof of Theorem 2 is the ensemble ERS of Reed–Solomon (RS) codes evaluated over linear
subspaces of fields of characteristic 2.6 Let us denote B̂RS(C) the concrete-efficiency threshold
of a given PCPP system for ERS (relative to cost function C).

Our third main result is a PCPP system for ERS with an analysis that yields much smaller
B̂RS(C) than values implied by previous work; in fact, we can explicitly derive an upper bound
for the B̂RS(C) of our PCPP construction, for any (efficiently-computable) cost function C.7 Of
course, the value of B̂RS(C) changes from cost function to cost function. Thus, for concreteness,
we choose to state our theorem relative to the natural polynomial cost function C×(a, b) := a·b.8
In this case, the analysis of the PCPP system for Reed–Solomon in [BSS08] only shows an
efficiency threshold of B̂RS(C×) ≤ 2683, which is an astronomical upper bound.9 Our third
main theorem significantly improves on it and obtains a PCPP system with small(er) B̂RS(C×):

Theorem 3 (informal). There exists a PCPP system ERS with B̂RS(C×) ≤ 243.

Problem sizes on the order of 243 are tantalizingly close to practicality! We are thus very
optimistic about the prospect of improving further the concrete-efficiency thresholds of PCPP
systems for Reed–Solomon codes and, thus ultimately, of algebraic PCPs.

We emphasize that Theorem 3 does not follow from “experiments” or from exploiting “loop-
holes” of the new definition we have introduced. Instead, it originates from a much more refined
understanding of the soundness of testing proximity to RS codes; the soundness analysis is the
main technical challenge in this setting, and is a theoretical question that requires appropriate
proofs to address. Specifically, our proof strategy for proving Theorem 3 is in two steps: (a)
improve the Polishchuk–Spielman Bivariate Testing Theorem [PS94]; and (b) develop a class of
constructions that generalize the RS proximity testers of [BSS08] and provide for this class a
much tighter and explicit soundness analysis that allows us to numerically evaluate the sound-
ness of the verifier for any problem size and construction from the class. Armed with this
understanding, we can use Definition 2 to concisely express our improvement over the status
quo.

6More precisely, for computational reasons, we shall work in the slightly more general setting of affine sub-
spaces.

7See http://people.csail.mit.edu/alexch/research/tppcp/ for a Mathematica notebook that, given any
(efficiently-computable) cost function C, computes B̂RS(C) for our construction and (as a comparison) for the
construction in [BSS08].

8The other natural polynomial cost function is C+(a, b) := a + b. Since C+(a, b) ≤ C×(a, b), we choose C×
because it is a tougher requirement to meet.

9In a preprint version of this paper, we claimed threshold computations that were smaller for both [BSS08] and
our construction, since we computed the threshold by dividing by the block length n(k) instead of the dimension
k. This has been corrected.
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1.6 Properties for Cryptographic Constructions

We further show that our PCP construction from the proof of Theorem 1 has the requisite
properties for use in cryptographic constructions. Indeed, a PCP system itself is not used
“as is” in positive applications, because one needs to somehow ensure that the verifier has
oracle access to a fixed PCP string. Instead, the PCP system is plugged into cryptographic
constructions that leverage the PCP soundness guarantees — but these constructions often
require the PCP system itself to satisfy additional properties.

Perhaps the most important positive application of PCPs is the construction of succinct
arguments [Kil92, Mic00, BG08]. In a succinct argument, a verifier again wishes to check
whether a witness w causes P(x, w) to accept within T time steps, for a given program P, input
x, and time bound T . By interacting with a computationally-bounded prover running in time
poly(κ + |P| + |x| + T ), where κ denotes the security parameter, the verifier can check such a
statement by running in time merely poly(κ+ |P|+ |x|+ log T ).

One additional property that is often essential in constructions of succinct arguments is proof
of knowledge, which makes it possible to delegate “cryptographic computations” [BCCT12a] and
to recursively compose non-interactive proofs [Val08, CT10, BSW12, BCCT12b, CT12]. It is
used in constructions of computationally-sound proofs of knowledge in the random-oracle model
[Mic00, Val08], SNARKs [BCCT12a], and proof-carrying data [CT10, CT12].

Some applications require even more properties. For example, the construction of universal
arguments by Barak and Goldreich [BG08] requires, beyond proof of knowledge, also a non-
adaptive verifier and the existence of an efficient reverse sampler for the PCP queries.

Focusing on such positive applications of PCPs, our third theorem states that our PCPs
indeed have the requisite additional properties.

Theorem 4 (informal). The PCPs from Theorem 1 satisfy the requisite properties for the con-
struction of a weaker (yet still useful) variant of universal arguments [BG08]. In particular, our
PCPs also satisfy the requisite properties for the construction of computationally-sound proofs
of knowledge [Mic00, Val08], SNARKs [BCCT12a], and proof-carrying data [CT10, CT12].

Furthermore, due to the quasi-optimal running times of the PCP prover and verifier from
Theorem 1, we obtain the first constructions of the aforementioned cryptographic primitives in
which the prover and verifier have quasi-optimal time complexity.

1.7 Algorithmic Specifications

Beyond the mathematical results, we offer an additional technical contribution: we include a
complete and detailed algorithmic specification of every non-elementary algorithm used by the
verifier and the prover in our PCP construction. This provides a reference for others wishing
to study the practical efficiency of PCPs.

The specification makes it clear how the various components of our construction come to-
gether, and how we leverage the computational properties of linearized polynomials [LN97,
Section 2.5] in finite field extensions of F2 and additive-FFT methods [Mat08] for ensuring
the efficiency properties of our construction. We also provide a detailed complexity analysis
of the proof length, randomness, and query complexity. For more details see Appendix B and
Appendix C.
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1.8 The Road Onwards

The ultimate goal of our work is to make the vision of Babai et al. a reality via practical PCP
implementations. The quest for practical PCPs reveals a mostly-uncharted landscape, whose
exploration is an intriguing research direction that we believe will lead to interesting insights
and techniques, with the potential of great impact in light of the many useful cryptographic
constructions that crucially rely on PCPs. For instance, we believe that the notion of a concrete-
efficiency threshold could provide a new efficiency measure for the study of PCPs, one that is
different than other traditional efficiency measures (such as query and randomness complexity)
and better captures what we look for in a PCP that is to be used in positive applications.

2 Main Results

In the previous section we discussed our main results at high level. We now formally state these;
along the way, we shall give pointers to the relevant technical sections, which contain their
proofs. We begin by stating our first main result about a PCP system for RAM computations
(Section 2.1); we then give the definition of the concrete-efficiency threshold of a PCP system
(Section 2.2); we then state our second main result about the existence of a PCP system with
finite concrete-efficiency threshold (Section 2.3); we then define the concrete-efficiency threshold
for PCPPs and state our third main result about PCPPs for Reed–Solomon codes (Section 2.4);
finally, we discuss cryptographic properties of the PCPs we construct (Section 2.5).

2.1 Theorem 1: Quasi-Optimal PCPs For RAMs

In Section 1.2 we informally stated our first main result. We now give a formal statement of
the theorem; its proof is in Section 5.

Define BHRAM to be the language consisting of all triples (M, x, T ), where M is a random-
access machine [CR72, AV77], x is an input, and T is a time bound (with |x| ≤ T ), for which
there exists a witness w (with |w| ≤ T ) such that M accepts (x, w) after at most T time steps.10

Theorem 1 (restated). There exists a PCP system (PRAM, VRAM) for BHRAM where: for every
(M, x, T ) ∈ BHRAM with a witness w,

• PRAM(M, x, T , w) runs in sequential time (|M |+T )·polylog(T ) and parallel time O((log T )2)
when given the transcript of computation of M on (x, w).

• VRAM(M, x, T ) runs in sequential time (|M |+|x|)·polylog(T ) and parallel time O((log T )2).

2.2 Defining the Concrete-Efficiency Threshold of a PCP System

In Section 1.3 we informally introduced the concrete-efficiency threshold of a PCP system (see
Definition 1). We now give a formal definition for it.

As discussed, we use Boolean circuits with only NAND gates as our model of computation.
A (Boolean) circuit C is a directed acyclic graph with fan-in and fan-out equal to 2; its size is

10While the witness w for an instance y = (M, x, t) has size at most t, there is no a-priori polynomial bounding
t in terms of |x|. Also, the restriction that |y|, |w| ≤ t simplifies notation but comes with essentially no loss of
generality: see [BSCGT13] for a discussion of how to deal with “large inputs” (i.e., x or w much larger than t, in
the model where M has random access to them).
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the number of vertices in this graph. If the graph has n sources and m sinks, then we say that
the circuit has n inputs and m outputs. The circuit C then computes a corresponding Boolean
function fC from {0, 1}n to {0, 1}m in the natural way: the evaluation of an input x ∈ {0, 1}n
is performed by placing each bit of x at the corresponding source of the graph (when taking
sources, say, in lexicographic order) and then, by considering every non-source non-sink vertex
as a NAND gate, a bit for each sink is computed by evaluating the circuit in some topological
order; the output y ∈ {0, 1}m is the string of bits at the sinks (when taken, say, in lexicographic
order). The circuit C is satisfiable if there is some input x that makes the first bit of the output
of fC(x) equal to 1. We assume a canonical representation of circuits as strings.

We now need to specify a “reference” complete language relative to which to construct PCPs.
As discussed, we choose the language Succinct Circuit Sat (sCSAT for short); informally,
sCSAT is the language of all satisfiable Boolean circuits C over 2n gates that are succinctly
represented via a descriptor circuit F having (roughly) n inputs and n outputs. Formally:

Definition 2.1. Let n ∈ N, f : {0, 1}n+2 → {0, 1}n. The circuit corresponding to f , denoted
Cf , is the circuit with 2n gates, each labeled with an n-bit string, such that: for each gate
s ∈ {0, 1}n, letting s00 = f(s00), s01 = f(s01), s10 = f(s10), and s11 = f(s11), gates s00 and
s01 have wires going into s, and gate s has wires going into s10 and s11; if s = s00 = s01 then
s is an input gate; if s = s10 = s11 then s is an output gate. (And if f Cf is not “valid”, i.e. a
gate receives more than two wires, then Cf is the circuit with no wires.)

The language Succinct Circuit Sat, or sCSAT for short, is the language of all circuit
descriptors F such that the Boolean function f computed by F is of the form f : {0, 1}n+2 →
{0, 1}n and Cf is satisfiable. (Note that we can assume without loss of generality that |F | ≤ 2n.)

Informally, a PCP system for sCSAT is a pair consisting of a prover P and a verifier V that
works as follows. The prover receives as input a circuit descriptor F describing a circuit C and
an assignment w for C, and outputs a PCP proof π for the claim “w is a satisfying assignment
of C”. The verifier receives as input the circuit descriptor F and a string of random bits, and
has two outputs: a set of indices (indicating the bits of the proof that are to be read) and a
predicate (which decides whether the answers to the queries are satisfactory); we assume that
the verifier is non-adaptive, i.e., all queries depend only on the input of the verifier and not on
the answers provided by the prover. Because our computational model is that of circuits, P and
V are represented as circuit families, each indexed by two integers n and k where, e.g., Pn,k is
the circuit that is “specialized” for descriptor circuits F of size k describing circuits of size 2n.

Thus, analogously to previous definitions of PCP systems (with polylogarithmic-time veri-
fiers) [BFLS91, BSGH+05, Mie09], we have the following definition:

Definition 2.2. Let P = {Pn,k}n,k∈N and V = {(Qn,k, Dn,k)}n,k∈N be circuit families. We call
(P, V ) a PCP system for sCSAT if the following conditions hold:
• Completeness. For every (F,w) with F : {0, 1}n+2 → {0, 1}n and w is witness to F ∈ sCSAT,

Pr
r

[
Dn,|F |(r, F, π|~q) = 1

∣∣∣∣ π ← Pn,|F |(F,w)

~q ← Qn,|F |(r, F )

]
= 1 ,

where ~q is interpreted as a vector of indices and π|~q is the substring of π induced by ~q.
• Soundness. For every F : {0, 1}n+2 → {0, 1}n such that F 6∈ sCSAT and every π̃,

Pr
r

[
Dn,|F |(r, F, π̃|~q) = 1

∣∣∣ ~q ← Qn,|F |(r, F )
]
<

1

2
.
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The following definition is the main notion guiding our study of concrete efficiency. Infor-
mally, given a PCP system (P, V ) for sCSAT, its concrete-efficiency threshold B (relative to a
cost function C) is the smallest n such that, for every circuit F describing a circuit C of size
at least 2n, the (combined) cost of using the PCP system (P, V ) on input F is less than the
naive verification overhead of C, when the combined cost is computed with C taking as input
the PCP proving overhead and PCP verification overhead.

Definition 2.3. Let (P, V ) be a PCP system for sCSAT (see Definition 2.2). The concrete-
efficiency threshold of (P, V ) for a cost function C is the smallest integer B(C) such that
for every circuit F computing a Boolean function of the form f : {0, 1}n+2 → {0, 1}n with
n ≥ B(C),

C

( |Pn,|F ||
|F | · 2n

,
|Qn,|F ||+ |Dn,|F ||

|F |

)
<
|F | · 2n

|F |
. (1)

If no such integer exists, the concrete-efficiency threshold of (P, V ) is infinite (i.e., B(C) :=∞).

In the formal definition above we have instantiated the intuitive quantities that appearing
in the informal Definition 1 and the discussion preceding it: given a circuit descriptor F of size
k describing a circuit C of size 2n (which takes the role of the statement y),
• the proving time, tP , is given by |Pn,k|, which is the size of the relevant prover circuit; while

the verification time, tV , is given by |Qn,k|+ |Dn,k|, because |Qn,k| and |Dn,k| are the sizes of
the relevant query and decision circuits;
• the ideal proving time, iP , is given by k · 2n, because C has 2n gates and computing the

input/output wires of each gate of C requires evaluating F , of size k, on appropriate inputs;
while the ideal verification time, iV , is given by k, because the statement at hand is F and it
has size k.

Remark 2.4. The use of two parameters n and k in Definition 2.3 is necessary: omitting one
of them would make Definition 2.3 satisfiable only with B(C) = ∞, when C is a polynomial
cost function. This is because a circuit of size 2n can have a descriptor circuit that can itself
be as large as 2n. Similarly, a descriptor circuit of size k can describe a circuit of size between
k and 2k. If only one parameter is used, say k, we would need the verifier to be of size 2k even
though in some cases a circuit described by k bits has size poly(k). This would imply that no
finite concrete-efficiency threshold exists.

2.3 Theorem 2: A B-efficient PCP for sCSAT with B <∞

In Section 1.4 we informally stated our second main theorem. We now give a formal statement
of the theorem; its proof is in Section 6.

Theorem 2 (restated). There exists a PCP system for sCSAT (see Definition 2.2) with finite
concrete-efficiency threshold (see Definition 2.3) for every polynomial cost function.

In light of Definition 2.3, it is indeed not clear that such a PCP system exists. For example,

if
|Pn,|F ||
|F |·2n = Ω(2n), then the cost is Ω(2n), and thus B(C) =∞ for any polynomial cost function

C. Similarly if
|Pn,|F ||
|F |·2n = Ω(|F |) or

|Qn,|F ||+|Dn,|F ||
|F | = Ω(|F |).

Thus the efficiency requirements imposed on a PCP system so to fulfill Definition 2.3 with
any finite concrete-efficiency threshold B(C) (not to mention a small B(C)) are already quite
stringent.
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2.4 Theorem 3: Concrete Efficiency of Proximity Testing to Reed–Solomon

In Section 1.5 we informally discussed the concrete-efficiency threshold of a PCPP system for a
code ensemble (see Definition 2) and then informally stated our third main theorem. We now
give a formal definition and a formal statement of the theorem.

Recall that an [n, k, d]q-linear error correcting code (or, simply, [n, k, d]q-code) is a k-
dimensional subspace C of Fnq , where Fq denotes the finite field with q elements and q is a
prime power, such that every pair w 6= w′ of members of C differ on at least d positions. (Later
on we shall focus on a special ensemble of codes, namely, Reed–Solomon codes over fields of
characteristic 2.) In what follows, let (Fnq )≤Q denote the set of vectors in Fnq with at most Q
nonzero entries.

Definition 2.5. Given L,Q ∈ N, an (L,Q)-PCPP system for an [n, k, d]q-code C is a pair
(P, V ) where P is a linear mapping from Fkq to FLq and V is a distribution supported on (Fnq )≤Q

satisfying the following conditions:
• Completeness. For every codeword w ∈ C and π := P (w) (its associated “proof of proximity”),

Pr
v←V

[
n+L∑
i=1

vi · (w ◦ π)i = 0

]
= 1 ,

where w ◦ π is the concatenation of w and π and arithmetic operations are carried in Fq.
• Soundness. For every non-codeword w that is d/3-far from C and every π ∈ FLq ,

Pr
v←V

[
n+L∑
i=1

vi · (w ◦ π)i = 0

]
<

1

2
.

If C has a (0, Q)-PCPP we say C is a Q-query LTC.
Furthermore, for functions L and Q, an (L,Q)-PCPP system for a (linear) code en-

semble E is a pair (P, V ) where, for each C ∈ E, (PC , VC) is a (L(C), Q(C))-PCPP system for
C. If L(C) = 0 for all C ∈ E, then E is called an ensemble of LTCs and V is a tester for E.

Remark 2.6. The definition above includes a number of simplifying assumptions and arbitrarily
fixed constants. We fix the soundness to be 1/2 for a proximity parameter that is one-third of
the minimal distance of the code. The definition is stated only for linear codes. The mapping
sending a message to the PCPP for its codeword is assumed to be linear. The verifier is defined
to be non-adaptive, its decision predicate is linear, and it has perfect completeness. Although
the latter set of assumptions holds without loss of generality for linear LTCs (see [BSHR05,
Theorem 3.3]), this is not known to hold for general PCPPs, even assuming the code is linear.
Since all these assumptions apply to the codes that we study, we prefer a concrete and simple
definition to one that holds in greatest generality (which can anyways be easily deduced from
Definition 2.5).

We now provide a definition for a concrete-efficiency threshold for PCPPs for linear code
ensembles; this definition is “information-theoretic”, i.e., it does not impose constraints on
the computational resources required by the prover and verifier. This is in stark contrast to
Definition 2.3 and we discuss the rationale behind this difference below.

Definition 2.7. Let E be a linear-code ensemble and (P, V ) a PCPP system for E (see Defi-
nition 2.5). The concrete-efficiency threshold of (P, V ) relative to cost function C is the
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smallest integer B̂(C) such that for every linear code C ∈ E that is an [n, k, d]q-code with
k ≥ B̂(C) it holds that

C

(
n+ L(C)

k
, Q(C)

)
< k . (2)

If no such integer exists, the concrete-efficiency threshold of (P, V ) is infinite (i.e., B̂(C) :=∞).

Remark 2.8. The cost in Definition 2.3 takes into consideration the computational complexity
of the prover and verifier, whereas the cost in Definition 2.7 above only takes into account proof
length and query complexity (disregarding the computational complexity required to produce
the proof, to sample a query tuple, and then to verify the query answers). We believe that
transitioning to this cleaner information-theoretic definition is justified in our case because,
through a suitable use of additive-FFT techniques, we can ensure that the computational costs
only account for small additional logarithmic factors.

Case of interest: additive Reed–Solomon. The quasilinear-size PCPs of [BSS08] are based
on PCPPs for the ensemble of Reed–Solomon codes over additive subgroups of finite fields of
characteristic 2. We define these codes next, for the more convenient case of domains that are
shifts of such additive subgroups. Recall that a degree-` extension of the two-element field F2

is also an `-dimensional linear space over F2.

Definition 2.9. Given a finite field Fq, subset S of Fq, and degree bound d, the Reed–Solomon
code RS(Fq, S, d) is the [|S|, d+1, |S|− (d+1)]q-code whose codewords are functions f : S → Fq
computed by degree-d polynomials.

The ensemble of Reed–Solomon codes over additive subgroups of fields of char-
acteristic 2, denoted ERS, is defined to be the ensemble of RS-codes RS(Fq, S, d) where q is a
power of 2 (i.e., char(Fq) = 2), S is an F2-affine-subspace, and d = |S|/8− 1.

We can now formally restate our third main theorem:

Theorem 3 (restated). There exists a PCPP system (see Definition 2.5) for the code ensemble
ERS (see Definition 2.9) having a concrete-efficiency threshold B̂RS(C×) ≤ 243 (see Defini-
tion 2.7).

The proof of Theorem 3, along with a longer discussion of the proof strategy, is given in
Section 9.

2.5 Theorem 4: Properties for Cryptographic Constructions

In Section 1.6 we informally stated our fourth main theorem. We now further discuss it. Our
Theorem 4 states that the PCPs we construct in the proof of Theorem 1 satisfy properties that
are needed in several cryptographic constructions. Specifically, we prove that the PCPs we
construct satisfy the following three properties:

(A) “Explicit” PCP proof of knowledge. We show that whenever the PCP verifier is
convinced with sufficiently large probability, the PCP proof can be decoded to a valid witness
by running a knowledge extractor that runs in time proportional to the size of the witness.

Note that we cannot expect the existence of a knowledge extractor that is able to locally
decode bits of the witness by having oracle access to a PCP proof. The lack of local decoding here
is inherent because our PCPs, as those of [BSS08, BSGH+05], rely on “univariate techniques”
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(see Remark 12.39). Thus, because we do not achieve a knowledge extractor that is an implicit
representation of the valid witness, we call the knowledge property we achieve explicit PCP
proof of knowledge.

(B) Non-adaptivity of the PCP verifier. We show that the PCP verifier can be split into
a query algorithm and a decision algorithm. It is rather obvious from our PCP construction
that this is the case, but working out these algorithms for the more complex components of
the construction is quite non-trivial. We explicitly carry out this separation and provide an
algorithmic specification for the query and decision algorithms of our PCP verifier (in addi-
tion to the algorithmic specification of the “non-split” verifier already contained Appendix B).
This provides a reference for others wishing to study the concrete efficiency of cryptographic
constructions where the query and decision algorithms are invoked.

(C) Efficient reverse-samplability of the PCP verifier. We show that there is an efficient
algorithm that, given a query number and an index into the PCP oracle, is able to output a
string that is uniformly distributed among those that could indeed have produced the index
when given as input the query number — this algorithm is thus an efficient reverse sampler.
That our PCP construction is reverse samplable is not obvious; we show that it is by constructing
an efficient reverse sampler for it.11

Using our PCPs in cryptographic constructions. The explicit PCP proof of knowledge
mentioned above falls short of the one needed in the construction of universal arguments [BG08],
where a knowledge extractor that is able to perform local decoding of the witness is needed.
Nonetheless, we show that the same construction as [BG08, Construction 3.4] still gives us
succinct interactive arguments of knowledge for NP.

More precisely, our result is stronger than just stated: we obtain universal arguments where
the knowledge extractor may run in time that is polynomial (rather than polylogarithmic as in
[BG08]) in the witness length — we call these almost universal arguments. (In particular, for
example, with a mild superpolynomial-hardness assumption, we can obtain universal arguments
for NP.) Once again, this limitation is only natural in light of the fact that our PCPs can only
satisfy an “explicit” proof-of-knowledge property, with no local decoding of the witness.

Nonetheless, the aforementioned limitation is actually not a problem because succinct argu-
ments of knowledge for NP suffice for most “positive” applications of PCPs, where the relevant
computations to be verified anyways “lie in NP” (see Remark 12.2).

The properties that we use in the construction of almost universal arguments, following
[BG08, Construction 3.4], are a superset of the properties required of PCPs in other crypto-
graphic applications such as [Mic00, Val08, CT10, BCCT12a, CT12]. Thus, in the proof, it will
suffice to focus on the construction of almost universal arguments.

The proof of Theorem 4 is given in Section 12.

3 Open Questions

We briefly discuss intriguing questions about the computational efficiency of PCPs that our
work leaves unanswered.

Complexity-preserving PCPs. Our Theorem 1 guarantees the existence of a PCP system
in which the prover and verifier respectively run in time (|P| + T ) · polylog(T ) and (|P| + |x|) ·

11This fact was already by Mie [Mie09] for a special case of the proximity testers underlying our PCPs; he used
their efficient reverse samplability for showing a verifier-efficient construction of gap amplification [Din07].
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polylog(T ), when proving and verifying that a program P accepts (x, w) for some w. These
running times are quasi-optimal. However, the running time of the prover is achieved via the
use of FFT-like methods, which means that its space complexity is Ω(T ) regardless of the
space complexity of P. Let us define a PCP system to be complexity preserving if it has the
aforementioned running times and, in addition, the prover runs in space (|M |+|x|+S)·polylog(T )
when P uses at most space S. Do complexity-preserving PCPs exist? Bitansky and Chiesa
[BC12] have constructed a complexity-preserving multi-prover interactive proof, but it is unclear
whether complexity-preserving PCPs can be constructed or not.

Limits of concrete efficiency. We have introduced new efficiency measures for PCPs that
attempt to capture how “soon” a PCP becomes useful, and have shown progress relative to
these complexity measures. How far can the concrete efficiency of PCPs be pushed?

A natural starting point would be to develop an even more precise understanding of the
Bivariate Testing Theorem of Polishchuk and Spielman [PS94], e.g., by understanding what is
the optimal value of the universal constant of bivariate testing. Concretely, we believe that
Proposition 9.2 can be further improved and it is an important open problem to do so: even
small improvements (e.g., relaxing the requirement in the statement from 1 > d

m + e
n + 2δ to

2 > d
m + e

n + 2δ) eventually translate into tremendous improvements to the concrete-efficiency
thresholds of PCPP systems for Reed–Solomon codes.

We are optimistic that additional work in this direction will discover surprisingly efficient
PCP constructions.

Local decoding of PCPs. Our Theorem 4 states that the PCPs from our Theorem 1 can
be used to construct a weaker variant of universal arguments [BG08]. As discussed, the single
reason why we do not obtain (full) universal arguments is that our PCPs, being based on tech-
niques that use univariate polynomials, do not enjoy good local decoding properties. Are there
universal arguments where the prover and verifier running times are quasi-optimal? Bitansky
and Chiesa [BC12] use their complexity-preserving MIP construction to obtain complexity-
preserving universal arguments with private coins, but the public-coin case (often crucial in
applications [Bar01, PR05]) remains open (even without posing requirements on the space com-
plexity of the prover).
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4 Definitions

We present formal definitions for the basic notions that we use throughout this paper.

4.1 Reed–Solomon and Reed–Muller Codes

Definition 4.1. Let F be a field and S a subset of F. The evaluation of a polynomial P (x) =∑d
i=0 aix

i over S is the function p : S → F defined by p(s) = P (s) for all s ∈ S. The formal
sum P (x) is called the polynomial corresponding to (the function) p. Similar definitions hold
for multivariate polynomials.

Definition 4.2. Let F be a field and d ≥ 0. A polynomial P (x) over F has degree d if the
degree of P in x is at most d.

Definition 4.3. Let F be a field, S a subset of F, and d ≥ 0. The Reed–Solomon code of
degree d over F evaluated at S is the set of functions

RS(F, S, d) := {p : S → F s.t. p is an evaluation of a polynomial of degree at most d over S} .

Definition 4.4. Let F be a field, S and H subsets of F, and d ≥ 0. The H-vanishing Reed–
Solomon code of degree d over F evaluated at S is the set of functions

VRS(F, S,H, d) := {p ∈ RS(F, S, d) s.t. the polynomial corresponding to p vanishes on H} .

Definition 4.5. Let F be a field and d, e ≥ 0. A polynomial P (x, y) over F has degree (d, e)
if the degree of P in x is at most d and the degree of P in y is at most e.

Definition 4.6. Let F be a field, W a subset of F × F, and d, e ≥ 0. The bivariate Reed–
Muller code of degree (d, e) over F evaluated at W is the set of functions

RM
(
F,W, (d, e)

)
:=

{
p : W → F s.t.

p is an evaluation of a bivariate polynomial
of degree at most (d, e) over W

}
.

4.2 Notions of Distance

Next, we recall the notions of fractional (or relative) distance between strings and to low-degree
polynomials. (In general, when we say “close” we shall mean “≤” and when we say “far” we
shall mean “>”.)

The fractional (or relative) Hamming distance between two strings is the ratio between the
number of positions where the two strings differ divided by their length:

Definition 4.7. Let Σ be a finite alphabet and N a positive integer. For any two Σ-strings
a and b in ΣN , the fractional (Hamming) distance over the alphabet Σ between a and b,
denoted ∆N (a, b), is equal to the number of positions where a and b differ divided by N ,

∆N (a, b) :=

∣∣{i ∈ N : ai 6= bi}
∣∣

N
.

The definition easily extends to functions from N to Σ, as it is possible to think of the Σ-strings
a and b as functions ã, b̃ : N → Σ where ã(i) = ai and b̃ = bi for each i ∈ N .
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The fractional Hamming distance between two functions allows to define the fractional
Hamming distance of a function to low-degree polynomials:

Definition 4.8. Let F be a field, V a subset of F, f : V → F a univariate function, and d ≥ 0.

We denote by δ
(d)
V (f) the fractional Hamming distance of f to RS(F, V, d), i.e.,

δ
(d)
V (f) := inf

P∈F[x]
degx(P )≤d

∆V (f, P ) .

Definition 4.9. Let F be a field, W a subset of F × F, f : W → F a bivariate function, and

d, e ≥ 0. We denote by δ
(d,e)
W (f) the fractional Hamming distance of f to RM(F,W, (d, e)), i.e.,

δ
(d,e)
W (f) = inf

Q∈F[x,y]
degx(Q)≤d
degy(Q)≤e

∆W (f,Q) .

Furthermore, we denote by δ
(d,∗)
W (f) the fractional distance when the degree in y is unrestricted,

and by δ
(∗,e)
W (f) the fractional distance when the degree in x is unrestricted.

Univariate low-degree polynomials form a code with a certain distance:

Lemma 4.10. Fix a field F, a subset S ⊆ F, and an integer d ∈ N. For any two distinct
polynomials P, P ′ : F→ F of degree at most d, it holds that ∆S(P, P ′) > 1− d

|S| .

In particular, we can deduce the “unique decoding radius” for univariate low-degree poly-
nomials:

Lemma 4.11. Fix a field F, a subset S ⊆ F, an integer d ∈ N, and δ ∈ [0, 1]. If a function
p : S → F is δ-close to RS(F, S, d) and 1 − d

|S| > 2δ then there is a unique polynomial P of
degree at most d whose evaluation over S is δ-close to p.

Recall that Reed–Solomon codes have an efficient decoding procedure (e.g., via the Welch–
Berlekamp algorithm [WB86, GS92]):

Claim 4.12 (Decoding Reed–Solomon Codes). There exists a polynomial-time algorithm DecodeRS
that, on input (the representation of) a finite field F, a subset S of F, a degree d (presented in
unary), and a function p : S → F, outputs a polynomial P : F → F of degree at most d whose
evaluation over S is closest to p, provided that p lies in the unique decoding radius.

4.3 PCPs and PCPPs

We formally introduce probabilistically-checkable proofs and probabilistically-checkable proofs of
proximity, as well as the functions that will help us keep track of their various complexity
parameters.

PCPs. We first recall the standard definition of a probabilistically-checkable proof (PCP). For
functions r, q : N → N we say that a probabilistic oracle machine V is a (r, q)-PCP verifier if,
on input a binary string x of length n and given oracle access to a binary string π, V runs in
time 2O(r(n)), tosses r(n) coins, makes q(n) queries to π, and outputs either 1 (“accept”) or 0
(“reject”).
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Definition 4.13. Let s ∈ [0, 1] and r, q : N→ N. A language L belongs in the class PCPs[r(n), q(n)]
if there exists a (r, q)-PCP verifier VL such that the following holds:

1. (Perfect) Completeness: If x ∈ L then there exists π such that PrR[V π
L (x;R) = 1] = 1.

2. Soundness: If x 6∈ L then for every π it holds that PrR[V π
L (x;R) = 1] ≤ s.

PCPs of Proximity. A PCP of Proximity (PCPP) [BSGH+06] (also known as an assignment
tester [DR04]) is a strengthening of a PCP where the input comes in two parts (x, y), where x,
the explicit input, is given explicitly to the verifier and y, the implicit input, is only given as an
oracle to the verifier (and queries to it are counted as part of the query complexity); the explicit
input is of the form x = (x′, N) and N is the length of y. Because now the verifier may not
see the input in its entirety, it only make sense to require verifiers to test theorems for being
“close” to true theorems.

More precisely, one considers pair languages (which are simply binary relations). For a pair
language L and a binary string x, we define Lx to be all the N -bit strings y such that (x, y) ∈ L.
Then, for an arbitrary y, we define ∆(y, Lx) to be 1 if Lx = ∅ else to be the smallest fractional
Hamming distance of y to any element in Lx.

For functions r, q : N → N we say that a probabilistic oracle machine V is a (r, q)-PCPP
verifier if, given an explicit input x = (x′, N ′) with |x′| = n and oracle access to an N -bit
implicit input y and proof π, V runs in time 2O(r(n)), tosses r(n) coins, makes q(n) queries to
(y, π), and outputs either 1 (“accept”) or 0 (“reject”).

Definition 4.14. Let s, δ ∈ [0, 1] and r, q : N → N. A pair language L belongs to the class
PCPs,δ[r(n), q(n)] if there exists a (r, q)-PCPP verifier VL such that the following holds:

1. (Perfect) Completeness: If (x, y) ∈ L then there exists π such that PrR[V
(y,π)
L (x;R) =

1] = 1.

2. Soundness: If ∆(y, Lx) ≥ δ then for every π it holds that PrR[V
(y,π)
L (x;R) = 1] ≤ 1− s.

We call δ the proximity parameter.

We also consider a stronger notion of PCPPs, where the probability of rejection is propor-
tional to the distance of y from Lx.

Definition 4.15. Let s ∈ (0, 1]×N→ (0, 1] and r, q : N→ N. A pair language L belongs to the
class Strong-PCPs(δ,n)[r(n), q(n)] if there exists a (r, q)-PCPP verifier VL such that the following
holds:

1. (Perfect) Completeness: If (x, y) ∈ L then there exists π such that PrR[V
(y,π)
L (x;R) =

1] = 1.

2. Soundness: For every π it holds that PrR[V
(y,π)
L (x;R) = 1] ≤ 1− s(∆(y, Lx), n).

Complexity parameters Throughout we will denote by rand(·) the randomness complexity,
by query(·) the query complexity, and by length(·) the proof length of the various PCPs and
PCPPs that we will consider.12 (The arguments to these functions will change from verifier to
verifier, but will be given explicitly each time, and will be clear what they are.)

12More precisely, for PCPs of Proximity, the length will not account for the length of the object being tested.

20



5 Proof of Theorem 1

In this section we prove Theorem 1, discussed in Section 1.2 and formally stated in Section 2.1.

High-level strategy. It is useful to break the problem of constructing PCPs for BHRAM

with stringent efficiency requirements into two different subproblems: (a) constructing a very
efficient PCP system for some “PCP-friendly” NEXP-complete problem P, and (b) constructing
tight reductions from BHRAM to P. Indeed, PCPs are only known to exist for certain prob-
lems having strong algebraic or combinatorial structure. Typically, one also defines a flexible
interface between the two aforementioned subproblems (a) and (b), in order to create some
“modularity”. Following and generalizing [BSGH+05], we thus introduce a family of succinct
algebraic constraint satisfaction problems (sACSP) attempting to simultaneously capture the
essential ingredients that make a problem amenable to (“direct”) probabilistic checking as well
as be general enough to make it easy to reduce from less structured (natural) problems (such
as BHRAM).13 In other words, we choose P := sACSP. This choice “decouples” (a) and (b),
and progress can be made independently on each subproblem.14 In light of the aforementioned
decoupling, our proof of Theorem 1 relies on two ingredients: (a) an algebraic PCP construc-
tion for sACSP, and (b) the use of reductions of Ben-Sasson et al. [BSCGT13] from BHRAM

to sACSP.

The family of succinct algebraic constraint satisfaction problems sACSP is introduced and
defined in Section 7. Following is the proof of Theorem 1.

Proof of Theorem 1. For a random-access machine M , let |M | denote the size of the transition
function of M when viewed as a Boolean circuit and deg(M) the total degree of this circuit
when viewed as a polynomial. We begin by establishing the following claim:

Claim 5.1. There is a PCP system (P ′RAM, V
′
RAM) where, in order to verify that a random-access

machine M accepts (x, w), for some w, within T steps (with |x|, |w| ≤ T ),
• the prover runs in sequential time |M | · T · polylog(T ) · deg(M) and parallel time O((log T +

log deg(M))2) when given a transcript of computation of M on (x, w), and
• the verifier in sequential time (|M |+ |x|) · polylog(T + deg(M)) and parallel time O((log T +

log deg(M))2).

Proof. Ben-Sasson et al. [BSCGT13] study reductions from bounded-halting problems on random-
access machines, denoted BHRAM, to sACSP. Specifically, for a given random-access machine
M , BHRAM(M) is the language of pairs (x, T ) such that the random-access machine M non-
deterministically accepts x within T steps (with |x| ≤ T ). It is convenient to assume without
loss of generality that all instances (x, T ) have T that is a positive power of 2, so that we can
represent an instance (x, 2t) via the string (x, 1t).

A reduction from BHRAM to sACSP is a pair (Φ,Ψ) of efficient transformations such that:

13We shall thus focus on algebraic PCPs. The reason is that present PCP technology suggests greater flexibility
and understanding of computational aspects of such PCPs; e.g., we know of quasilinear-size PCPs only via
algebraic techniques [BSS08], and have a good picture of computational aspects of algebra [vzGG03]. (Also see
Remark 8.10.)

14We think that such a decoupling is a significant simplification of the problem of constructing practical PCPs
in general, given the amount of work that goes towards satisfying solutions of either subproblem and given that
the two subproblems are different in flavor and thus demand for quite different sets of techniques.
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• For every random-access machine M ,

parM := Φ(M) =
(
f, (mH, tH,H), (cN, tN, sN,N), (tP, sP,P), (tI, I)

)
is a choice of parameters for sACSP; in other words, parM specifies, for each positive
integer t, what algebraic constraints are to be used to verify membership of instances of
the form (x, 1t). (See Definition 7.1 in Section 7 for the formal definition of sACSP.)

• For every random-access machineM and instance (x, 1t), it holds that (x, 1t) ∈ BHRAM(M)
if and only if (x, 1t) ∈ sACSP(parM ).

• For every random-access machine M and instance (x, 1t), if w is a witness to the fact
that (x, 1t) ∈ BHRAM(M), then A := Ψ(M, w) is a witness to the fact that (x, 1t) ∈
sACSP(parM ).

At high level, the construction of the PCP system (P ′RAM, V
′
RAM) consists of first invoking

the reductions of Ben-Sasson et al. [BSCGT13] from BHRAM to sACSP and then invoking the
PCP system (PsACSP, VsACSP) for sACSP guaranteed by our Theorem 8.1 from Section 8.15 More
precisely, the PCP prover P ′RAM and the PCP verifier V ′RAM work as follows.

• P ′RAM, on input a random-access machine M , instance (x, 1t), and witness w such that
M(x, w) accepts within 2t, performs the following steps:

1. compute parM := Φ(M);
2. compute A := Ψ(M, w);
3. compute π := PsACSP

(
(x, 1t), A

)
, with choice of parameters parM ;

4. output π.

• V ′RAM, on input a random-access machine M and instance (x, 1t), and with oracle access
to a PCP oracle π, performs the following steps:

1. compute parM := Φ(M);
2. compute b := V π

sACSP

(
(x, 1t)

)
, with choice of parameters parM ;

3. output b.

Due to the soundness guarantees of the reduction Φ, (P ′RAM, V
′
RAM) is a PCP system for bounded-

halting problems on random-access machines. We are thus only left to argue its efficiency.
The reductions of Ben-Sasson et al. [BSCGT13] generate choices of parameters parM that

are “natural”, so that Theorem 8.1 ensures that PsACSP runs in time sP(1t) · 2f(t) · poly(f(t)) and
VsACSP runs in time

(
|x| + sP(1t)

)
· poly(f(t)). (See Remark 8.2.) Furthermore, in Ben-Sasson

et al. [BSCGT13], it holds that sP(1t) = |M | · poly(f(t)) and 2f(t) = 2t · polylog(2t) · deg(M).
Putting these two facts together yields the desired sequential efficiency for (P ′RAM, V

′
RAM). The

parallel efficiency can be similarly argued.

We now return to the proof of Theorem 1. We can fix a universal random-access machine U
where both |U | and deg(U) are on the order of polylog(T ), and then simulate a given random-
access machine M (computing on a given (x, w)) on U step by step. The overhead at each step

15Ultimately, when proving Theorem 4, we will in fact need Levin reductions, where we are additionally
guaranteed the existence of an “inverse” to the witness reduction Ψ, so to ensure that the knowledge property of
our PCP system (PsACSP, VsACSP) is preserved by the reductions. The reductions of Ben-Sasson et al. [BSCGT13]
are Levin reductions, so this is not a problem; see the proof of Theorem 4 and Remark 12.1 in Section 12.
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is polynomial in the register sizes, which is only O(log T ). Thus, overall, simulating M on U is
only polylog(T ) slower than running M directly. Combining this with Claim 5.1 yields a PCP
system (PRAM, VRAM) satisfying the properties claimed in the theorem statement.
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6 Proof of Theorem 2

In this section we prove Theorem 2, discussed in Section 1.4 and formally stated in Section 2.3.

Proof sketch of Theorem 2. To construct a PCP system for sCSAT with B(C) < ∞ for any
polynomial cost function C, it suffices to construct a PCP system for sCSAT where the prover
runs in time |F | · 2n · poly(n) and the verifier runs in time |F | · poly(n). So let M∗ be the
random-access machine that, on input a circuit descriptor F , will non-deterministically verify
that F ∈ sCSAT; note that this can be done in time T := O(|F | ·2n) when F describes a circuit
of size 2n. We can now use the PCP system from Theorem 1 on the random-access machine
M∗. Doing so yields a PCP system for sCSAT where the prover runs in time |F | · 2n · poly(n)
and the verifier runs in time |F | · poly(n), as desired.

Remark 6.1 (are RAMs necessary?). In the proof of Theorem 2 we relied on Theorem 1,
whose proof, among other things, relies on fast reductions from random-access machines. We
note that attempting to prove Theorem 2 via a “direct” reduction from sCSAT to sACSP
through a naive use of the techniques contained in [BSCGT13] will not work. Indeed, if we were
to simply route the circuit represented by F using De Bruijn graphs (in a similar manner as in
[PS94], by also paying attention to the succinctness of the reduction) and then arithmetize the
resulting coloring problem, it will not work; the reason is that the degree of F when viewed as a
polynomial may be too high and cause the reduction to be too expensive (e.g., quadratic). The
“right” way to do this without relying on random-access machines would be to route a universal
circuit that performs a computation similar to the random-access machine M∗ that we chose;
by ensuring that the universal circuit has a highly-structured topology, the description of the
universal circuit would be shallow, and thus this description, when viewed as a polynomial,
would have low enough degree for the reduction to work out. But this direct reduction path
is unnecessarily complicated, and taking a path, as we do, through random-access machines is
more natural and cleaner.
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7 A Succinct Algebraic Constraint Satisfaction Problem

sACSP is a class of succinct algebraic constraint satisfaction problems, each specified by a
list of parameters, for univariate polynomials over finite field extensions of GF(2). Roughly,
sACSP is simply a class of succinct graph-coloring problems that must respect certain algebraic
constraints.

Each particular sACSP problem simultaneously allows for the construction of PCPs with
quasilinear-time prover and polylogarithmic-time verifier (as we will show in Section 8) and is
flexible enough to support (several) fast reductions from high-level languages such as computa-
tions on random-access machines, as shown by Ben-Sasson et al. [BSCGT13].

Informally, a choice par of parameters of sACSP consists of the following:

• A field size function f : N→ N, inducing a finite field family {FT }T∈N := {GF(2f(T ))}T∈N.

• A family {HT }T∈N, where each HT is an affine subspace of FT .

• A family { ~NT }T∈N, where each ~NT is a vector of neighbor polynomials.

• A family {PT }T∈N, where each PT is a constraint polynomial.

• A family {~IT }T∈N, where each ~IT is a vector of affine subspaces each contained in HT .

A certain algebraic relation constrains which parameters are possible. A reduction to sACSP
will concretely instantiate a choice of the above parameters.

A pair (x, T ) is a member of the language sACSP(par) if it fulfills the following: there exists
a low-degree assignment polynomial A : FT → FT that “colors” elements of the field FT such
that (1) for every element α of the subspace HT , the constraint polynomial PT , when given
as input the colors in the “ ~NT -induced neighborhood” of α, is satisfied; and (2) the colors of
elements in the (log |x|)-th affine subspace in ~IT are consistent with x.

Crucially, for each of the families in par, the T -th object must be able to be “understood”
in time polylog(T ) (e.g., generating an element in HT , generating an arithmetic circuit for
each polynomial in ~NT , etc.); this is the requirement of succinctness of the problem. Addi-
tional properties that are essential for us to construct PCPs with a quasilinear-time prover and
polylogarithmic-time verifier include, for example, the fact that HT is an affine subspace (so
that one may leverage the computational properties of linearized polynomials [LN97, Section
2.5]).

In the formal discussions, it will in fact be more convenient to index the above families by
t, where the t-th elements will correspond to problems of size T ≈ 2t.

Formally:

Definition 7.1 (Succinct Algebraic Constraint Satisfaction). Consider the following parame-
ters:

1. a field size function f : N→ N, inducing a family of finite fields
{
Ft
}
t∈N where Ft = F2(x)

and x is the root of It, which is the irreducible polynomial of degree f(t) over F2 output
by FindIrrPoly(1f(t));

2. two proper functions associated with the family H in Parameter 3:

(a) a dimension function mH : N→ N, and
(b) a time function tH : N→ N.
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3. a family H = {Ht}t∈N such that:

(a) Ht is an mH(t)-dimensional affine subspace of Ft specified by a basis BHt and an
offset OHt for all t ∈ N, and

(b) there exists a tH-time algorithm FindH such that (BHt ,OHt) = FindH(1t) for all
t ∈ N;

4. three proper functions associated with the family N in Parameter 5:

(a) a neighborhood size function cN : N→ N,
(b) a time function tN : N→ N, and
(c) a size function sN : N→ N;

5. a family N = { ~Nt}t∈N such that:

(a) ~Nt = (Nt,i : Ft → Ft)
cN(t)
i=1 is a vector of cN(t) neighbor polynomials over Ft, and

(b) there exists a tN-time algorithm FindN such that [Nt,i]
A = FindN(1t, i) is an sN-size

Ft-arithmetic circuit computing Nt,i for all t ∈ N and i ∈ {1, . . . , cN(t)};

6. two proper functions associated with the family P in Parameter 7:

(a) a time function tP : N→ N, and
(b) a size function sP : N→ N;

7. a family P = {Pt}t∈N such that:

(a) Pt : F
1+cN(t)
t → Ft is a constraint polynomial, and

(b) there exists a tP-time algorithm FindP such that [Pt]
A = FindP(1t) is a sP-size

Ft-arithmetic circuit computing Pt for all t ∈ N;

8. a proper function associated with the family I in Parameter 9:

(a) a time function tI : N→ N.

9. a family I = {~It}t∈N such that:

(a) ~It = (It,m)tm=1 is a vector of affine subspaces each contained in Ht specified by a
basis BIt,m of m elements and an offset OIt,m for all t ∈ N, and

(b) there exists a tI-time algorithm FindI such that (BIt,m ,OIt,m) = FindI(1t, 1m) for
all t ∈ N and m ∈ {1, . . . , t}.

The following algebraic constraint must hold:

∀ t ∈ N , deg
(
Pt

(
x, x(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t))

))
≤ 2f(t)−2 . (3)

The language sACSP, with respect to a choice parsACSP

parsACSP =
(
f, (mH, tH,H), (cN, tN, sN,N), (tP, sP,P), (tI, I)

)
of the above parameters, consists of instances (x, 1t), where x is a binary input string and t ∈ N
with |x| ∈ {2, . . . , 2t}, such that there exists an assignment polynomial A : Ft → Ft of degree
less than 2mH(t) for which the following two conditions hold:
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(i) Satisfiability of constraints. For every element α ∈ Ht,

Pt

(
α,
(
A ◦Nt,1

)
(α), . . . ,

(
A ◦Nt,cN(t)

)
(α)
)

= 0Ft .

If so, we say that the assignment polynomial A satisfies the constraint polynomial Pt.

(ii) Consistency with the input. Letting αi be the i-th element in It,log |x| for every index
i ∈ {1, . . . , |x|},

x = bit
(
A(α1)

)
· · · bit

(
A(α|x|)

)
,

where bit : Ft → {0, 1,⊥} maps 0Ft to 0, 1Ft to 1, and anything else to ⊥. If so, we say
that the assignment polynomial A is consistent with the input x.

Remark 7.2. Definition 7.1 follows related definitions that have appeared in [BSS08] and
[BSGH+05]. We briefly discuss here how our definition compares to the previous ones.

The definition of Ben-Sasson and Sudan [BSS08, Definition 3.6] considers low-degree poly-
nomials vanishing at every affine neighborhood of a certain subset of a finite field; however,
their definition (as is clear from its compactness!) does not require succinctness (for example,
the subset H need not be an affine subspace) because their paper does not attempt to con-
struct PCP verifiers that are succinct in time. (Also note that, in the non-succinct case, the
“consistency with the instance” requirement disappears.)

The later paper of Ben-Sasson et al. [BSGH+05], which constructs efficient PCP verifiers,
does indeed give a definition [BSGH+05, Definition 6.1] for a succinct problem about polyno-
mials (similar to the previous one of Ben-Sasson and Sudan [BSS08, Definition 3.6]), but is
specific for the parameters obtained when reducing from bounded halting problems on Turing
machines.

Definition 7.1 is thus a generalization of [BSGH+05, Definition 6.1] that leaves unspecified
degrees of freedom that we believe important for “supporting” a variety of reductions from other
models of computation.16

Remark 7.3. Ben-Sasson et al. [BSGH+05] also consider a family of problems about multivari-
ate polynomials [BSGH+05, Definition 6.3]. We could have also considered a generalization to
their definition, analogous to our Definition 7.1 that generalizes the univariate case [BSGH+05,
Definition 6.1].

We choose to leave the investigation of such a definition (along with the possibility of finding
even better reductions from natural problems “above” it, and better PCPs “below” it) for future
work.

16A technical difference of our Definition 7.1 compared to [BSGH+05, Definition 6.1] that is not a generalization
is the form of the instance consistency check: in Definition 7.1, the instance consistency check is taken to be of
a very specific form, namely, equality. This restriction simplifies our PCP construction for sACSP (discussed in
Section 8). While we could construct (somewhat more complex) PCPs to account for an instance consistency
check of a more general form (see Remark 8.7), we do not believe that such a gain in generality is justified,
because this degree of freedom is not exploited in the reductions of Ben-Sasson et al. [BSCGT13].
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8 A PCP for sACSP

We denote by VRS and VVRS two PCPP verifiers that respectively test proximity to RS and
VRS over affine subspaces of finite field extensions of F2; we denote by PRS and PVRS their
corresponding PCPP provers.

In this section we show how to use these four algorithms to construct a PCP system
(PsACSP, VsACSP) for the language sACSP(par), for a given choice par of parameters.

When this construction is instantiated with our constructions of VRS and VVRS (see Algo-
rithm 13 and Algorithm 12 and their soundness analysis in Section 11) and PRS and PVRS (see
Algorithm 4 and Algorithm 3), we obtain a PCP system with quasilinear-time prover and suc-
cinct verifier (that only depends quasilinearly on the input instance). This PCP system is used
in the proof of Theorem 1 in Section 5.

8.1 The Construction At High Level

Our construction follows and extends the one of Ben-Sasson and Sudan [BSS08]. Concretely,
Ben-Sasson and Sudan showed how to test proximity to the Reed–Solomon code over additive
subgroups of extension fields of F2 with quasilinear-size proximity proofs; using these, they then
showed how to construct PCPs of quasilinear size for an algebraic constraint satisfaction problem
that is a special case of sACSP, for the case where the verifier does not have to be succinct
in time and without studying the prover complexity. Later, Ben-Sasson et al. [BSGH+05]
developed techniques that allow the verifier in [BSS08] to run succinctly. (See Remark 8.9 for
more details.)

As in [BSGH+05], we also need to ensure the succinctness of the verifier even if we ask the
verifier to probabilistically check membership in sACSP(par), which involves probabilistically-
checking properties of univariate polynomials with huge degrees.17 Moreover, we also need to
ensure that the verifier does not perform expensive computations on F , the “explicit” input
(circuit descriptor) at hand. Furthermore, in our case we also need to ensure that the prover
also runs very fast.

We extend and improve [BSS08, BSGH+05] as follows:

• We use additive FFT techniques [Mat08] and computational properties of linearized poly-
nomials to construct a generalization of the PCPP verifiers for Reed–Solomon codes of
[BSS08] (together with a tighter soundness analysis that will allow us to show much better
concrete efficiency, as was discussed in Section 2.4) where the prover runs in quasilinear
time and the verifier runs succinctly.

• Given a Reed–Solomon proximity testing system such as the one discussed in the previ-
ous bullet, we show how to construct a PCP system for sACSP(par) where, roughly, the
prover runs in T ·poly(T ) time and the verifier runs in |x| ·polylog(T ) time. The definition
of sACSP will ensure that the verifier is able to succinctly generate appropriate repre-
sentations for all the relevant objects (such as a small arithmetic circuit computing the
constraint polynomial PT ) as well as providing the appropriate additive subgroup struc-
ture necessary to leverage the proximity testing machinery for Reed–Solomon over sets
with such a structure.

17This, for example, is a difficulty that usually does not arise within algebraic PCPs using multivariate tech-
niques; however such techniques are not known to yield quasilinear-size proofs (but only almost-linear [MR08]).
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The construction is roughly as follows.
First recall from Section 7 that in order to verify whether a given instance (x, T ) is a member

in sACSP(par), for a given choice of parameters par, one needs to establish whether there is a
low-degree assignment polynomial A that satisfies two conditions: (i) when “composed” with the
constraint polynomial PT , A vanishes everywhere on HT ; and, moreover, (ii) A is “consistent”
with x.

To check the first condition, the PCP verifier VsACSP works as follows. The verifier VsACSP

asks the prover to provide an evaluation p0 of A along with a proximity proof π0, in order to
test proximity of p0 to the appropriate Reed–Solomon code by invoking VRS. The verifier VsACSP

also asks the prover to provide an evaluation p1 of B, the polynomial that one obtains when
composing A with PT , along with a proximity proof p1, in order to test proximity of p1 to the
appropriate Vanishing Reed–Solomon code on the affine subspace HT by invoking VVRS. After
this, the verifier VsACSP performs a consistency check between p0 and p1 by verifying that the
correct relation (i.e., as dictated by PT ) holds between p0 and p1.

To check the second condition, the verifier VsACSP works as follows. The verifier VsACSP asks
the prover to further provide a proximity proof πc for the proximity of p0−px to an appropriate
Vanishing Reed–Solomon code on the (log |x|)-th affine subspace in ~IT , where px is a function
depending on x that can be easily evaluated by the verifier. Intuitively, this will ensure that p0

takes on the bits of x, as required, on the (log |x|)-th affine subspace in ~IT . (In our case, x will
be the circuit description F which is given as input to the random-access machine.) The fact
that consistency with the instance is done on an affine subspace is important to ensure that the
prover and verifier can run in time quasilinear in the instance size.

Thus, the PCP prover PsACSP, on input the witness polynomial A, will produce a PCP oracle
π consisting of two pairs of strings (p0, π0) and (p1, π1) and a third string πc such that:

• (p0, π0) is a pair consisting of an implicit input and a proximity proof attesting to the
fact that A is of low-enough degree; concretely, p0 is the evaluation table of A and π0 is
a proximity proof of p0 to a Reed–Solomon code with appropriate parameters;

• (p1, π1) is a pair consisting of an implicit input and a proximity proof attesting to the fact
that the polynomial B computed from A and PT is of low-enough degree and vanishes
on HT ; concretely, p1 is the evaluation table of B and π1 is a proximity proof of p1 to a
Vanishing Reed–Solomon code with appropriate parameters;

• πc is a proximity proof attesting to the fact that p0−px, where px is a function depending
on the input x, is of low-enough degree and vanishes on the (log |x|)-th affine subspace in
~IT .

8.2 The Construction In Detail

Formally, we prove the following theorem:

Theorem 8.1 (PCPs for sACSP). Fix the language sACSP with a choice of parameters given
by

par =
(
f, (mH, tH,H), (cN, tN, sN,N), (tP, sP,P), (tI, I)

)
.

There exists a PCP system (PsACSP, VsACSP) for sACSP(par) with perfect completeness and sound-
ness 1/2. Moreover:
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• PsACSP runs in sequential time

setups(1
t) +

|x|+
sP(1t) +

cN(t)∑
i=1

sN(1t, i)

 · 2f(t)

 · poly(f(t))

and parallel time setupp(1
t) +O(f(t)2).

• VsACSP runs in sequential time

setups(1
t) +

|x| ·
cN(t)∑

i=1

deg(Nt,i)

+

sP(1t) +

cN(t)∑
i=1

sN(1t, i)

 · poly(f(t))

and parallel time setupp(1
t) +O(f(t)2).

Above, setups(1
t) is the setup sequential time to instantiate the parameters with index t and equals

timeFindIrrPoly(f(t)) + tH(1t) +

cN(t)∑
i=1

tN(1t, i)

+ tP(1t) + tI(1
t, 1log |x|) ,

where timeFindIrrPoly(f(t)) is the time for generating an irreducible polynomial of degree f(t)
(see Algorithm 17); setupp(1

t) is the corresponding setup parallel time.

Remark 8.2. For “natural” choices of parameters par (e.g., those generated by the reductions
of Ben-Sasson et al. [BSCGT13] from random-access machines),

setups(1
t) = sP(1t) · poly(f(t))

setupp(1
t) = O(f(t)2) ,

cN(t)∑
i=1

deg(Nt,i) = poly(f(t)) ,

cN(t)∑
i=1

sN(1t, i) = poly(f(t)) ,

In such a case, recalling that |x| ≤ 2t ≤ 2f(t),

• PsACSP runs in sequential time sP(1t) · 2f(t) · poly(f(t)) and parallel time O(f(t)2),

• VsACSP runs in sequential time
(
|x|+ sP(1t)

)
· poly(f(t)) and parallel time O(f(t)2).

Moreover, the degree of the field extension f(t) (which induces the corresponding field size 2f(t))
is the main measure of complexity, since usually sP(1t) = poly(f(t)).

We recall that in Appendix B we give a complete and detailed algorithmic specification for
(PsACSP, VsACSP). To the best of our knowledge, this is the first explicit construction of a PCP
system with short proofs (and, in our case, fast provers) and polylogarithmic-time verifiers,
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and provides a valuable starting point for studying the efficiency of PCPs from a practical
perspective.18

In this section, we give the construction of (PsACSP, VsACSP), in terms of VRS and VVRS and their
corresponding provers PRS and PVRS, and then prove its completeness and soundness properties.
(More precisely, we shall use the “amplified versions” VaRS and VaVRS of VRS and VVRS that allow
us to control the proximity and soundness parameters; see Remark 11.2, and Algorithm 11 and
Algorithm 10 for more details.)

Details for PCP system construction. We now give the details for the construction of the
PCP system:

• in Construction 8.3 we describe the PCP prover PsACSP,

• in Definition 8.4 we define the “format” of the PCP oracle, and

• in Construction 8.5 we describe the PCP verifier VsACSP.

Concise pseudo-code listings for the PCP prover PsACSP and PCP verifier VsACSP can also be found
in Algorithm 2 and Algorithm 9 respectively.

The PCP prover PsACSP for sACSP is as follows:

Construction 8.3 (PCP Prover for sACSP). The PCP prover for sACSP, with respect to a
choice

par =
(
f, (mH, tH,H), (cN, tN, sN,N), (tP, sP,P), (tI, I)

)
of parameters, is denoted PsACSP and has hard-coded in it this choice of parameters. On input an
instance (x, 1t) and an assignment polynomial A : Ft → Ft that is a witness to the membership
of (x, 1t) in sACSP (see Definition 7.1), the PCP prover PsACSP performs the following steps:

1. Parameter instantiation:

(a) Generate the field extension Ft of F2: compute the degree f(t), then compute the irre-
ducible polynomial It := FindIrrPoly

(
1f(t)

)
with a root x, and let Ft := F2(x). (See

Parameter 1 in Definition 7.1.) A basis for Ft is given by BFt :=
(
1, x, . . . , xf(t)−1

)
.

(b) Find the basis and offset for the affine subspace Ht of Ft by computing (BHt ,OHt) :=
FindH(1t). (See Parameter 3 in Definition 7.1.)

(c) Find the polynomials (Nt,i(x))
cN(t)
i=1 that induce the “neighborhood” of each element

in Ft: for i = 1, . . . , cN(t), compute [Nt,i]
A := FindN(1t, i). (See Parameter 5 in

Definition 7.1.)
(d) Find the constraint polynomial by computing [Pt]

A := FindP(1t). (See Parameter 7
in Definition 7.1.)

(e) Find the basis and offset for the (log |x|)-th affine subspace It,log |x| in ~It by computing

(BIt,log |x| ,OIt,log |x|) := FindI(1t, 1log |x|). (See Parameter 9 in Definition 7.1.)

2. Generate a proof that A has low degree:

18 We shall not conduct in this paper a detailed analysis of the prover time and space complexities and the
verifier time and space complexities. While the algorithms that we present in Appendix B will fulfill the promise of
a quasilinear-time prover and polylogarithmic-time verifier (with small exponents “in the polylog” and quasilinear
running time in the input instance), we believe that a detailed analysis of these performance measures is best
studied when accompanied with a code implementation. Instead, in this paper, we shall concentrate on giving a
detailed analysis of the query complexity, randomness complexity, and proof length; we do so in Appendix C.
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(a) Let p0 be the evaluation table of A on Ft:

p0 :=
{(
α,A(α)

)
: α ∈ Ft

}
.

(b) Compute a proof of proximity π0 for p0 to RS(Ft,Ft, 2mH(t) − 1):

π0 := PRS

(
It,BFt , 0Ft , 2mH(t) − 1, A

)
.

3. Generate a proof that A satisfies the constraint polynomial:

(a) Define the polynomial B(x) := Pt
(
x,A(Nt,1(x)), . . . , A(Nt,cN(t)(x))

)
.

(b) Let p1 be the evaluation table of B on Ft:

p1 :=
{(
α,B(α)

)
: α ∈ Ft

}
.

(c) Define d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))).

(d) Compute a proof of proximity π1 for p1 to VRS(Ft,Ft, Ht, d):

π1 := PVRS

(
It,BFt , 0Ft ,BHt ,OHt , d, B

)
.

4. Generate a proof that A is consistent with (x, 1t):

(a) Define Ax to be the low-degree extension of the function fx : It,log |x| → {0, 1} defined
by fx(αi) := xi where αi is the i-th element in It,log |x|.

(b) Define A′ := A−Ax.

(c) Compute a proof of proximity πc for the evaluation ofA′ to VRS(Ft,Ft, It,log |x|, 2
mH(t)−

1):
πc := PVRS

(
It,BFt , 0Ft ,BIt,log |x| ,OIt,log |x| , 2

mH(t) − 1, A′
)
.

5. Set π := (p0, π0, p1, π1, πc) and output π.

The PCP prover PsACSP from Construction 8.3 allows us to define the format of a PCP proof
for membership into the language sACSP:

Definition 8.4 (PCP Proof for sACSP). A PCP proof of membership into sACSP, with
respect to a choice

par =
(
f, (mH, tH,H), (cN, tN, sN,N), (tP, sP,P), (tI, I)

)
of parameters, for an instance (x, 1t) is a string π = (p0, π0, p1, π1, πc), where:

1. p0 : Ft → Ft is a function,
2. π0 is a proof of proximity for p0 to RS(Ft,Ft, 2mH(t) − 1),
3. p1 : Ft → Ft is a function,
4. π1 is a proof of proximity for p1 to VRS(Ft,Ft, Ht, d) where the degree bound d is defined

by d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))), and

5. πc is a proof of proximity for p0 − px to VRS(Ft,Ft, It,log |x|, 2
mH(t) − 1), where px is the

low-degree extension of x over It,log |x| and It,log |x| is the (log |x|)-th affine subspace in ~It.

The PCP verifier VsACSP for sACSP is as follows:
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Construction 8.5 (PCP Verifier for sACSP). The PCP verifier for sACSP, with respect to
a choice

par =
(
f, (mH, tH,H), (cN, tN, sN,N), (tP, sP,P), (tI, I)

)
of parameters, is denoted VsACSP and has hard-coded in it this choice of parameters. On input
an instance (x, 1t) and with oracle access to a proof π following the format of Definition 8.4,
the verifier VsACSP does the following:

1. Parameter instantiation:

(a) Generate the field extension Ft of F2: compute the degree f(t), then compute the irre-
ducible polynomial It := FindIrrPoly

(
1f(t)

)
with a root x, and let Ft := F2(x). (See

Parameter 1 in Definition 7.1.) A basis for Ft is given by BFt :=
(
1, x, . . . , xf(t)−1

)
.

(b) Find the basis and offset for the affine subspace Ht of Ft by computing (BHt ,OHt) :=
FindH(1t). (See Parameter 3 in Definition 7.1.)

(c) Find the polynomials (Nt,i(x))
cN(t)
i=1 that induce the “neighborhood” of each element

in Ft: for i = 1, . . . , cN(t), compute [Nt,i]
A := FindN(1t, i). (See Parameter 5 in

Definition 7.1.)
(d) Find the constraint polynomial by computing [Pt]

A := FindP(1t). (See Parameter 7
in Definition 7.1.)

(e) Find the basis and offset for the (log |x|)-th affine subspace It,log |x| in ~It by computing

(BIt,log |x| ,OIt,log |x|) := FindI(1t, 1log |x|). (See Parameter 9 in Definition 7.1.)

2. Proximity of p0 to RS:

Invoke the (already “amplified”) PCPP-verifier VaRS for the Reed–Solomon code, with

proximity parameter δRS := (8
∑cN(t)

i=1 deg(Nt,i))
−1 and soundness s′RS := 1/2, on explicit

input (Ft,Ft, 2mH(t) − 1), implicit input p0, and proof of proximity π0; that is, verify that

V
(p0,π0)
aRS

(
BFt ,BFt , 0Ft , 2mH(t) − 1, δRS, s

′
RS

)
accepts.

3. Proximity of p1 to VRS:

Invoke the (already “amplified”) PCPP-verifier VaVRS for the Vanishing Reed–Solomon
code, with proximity parameter δVRS := 1/8 and soundness s′VRS := 1/2, on explicit input
(Ft,Ft, Ht, d), implicit input p1, and proof of proximity π1; that is, verify that

V
(p1,π1)
aVRS

(
BFt ,BFt , 0Ft ,BHt ,OHt , d, δVRS, s

′
VRS

)
accepts. Here d := deg(Pt(x, x

(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))).

4. Consistency between p0 and p1:

(a) Draw a random α ∈ Ft.
(b) For i = 1, . . . , cN(t), compute αi := [Nt,i]

A(α).
(c) Query p0 at the following points: α1, . . . , αcN(t).
(d) Query p1 at the point α.
(e) Compute [Pt]

A := FindP(1t).
(f) Compute ω := [Pt]

A
(
α, p0(α1), . . . , p0(αcN(t))

)
.
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(g) Verify that p1(α) = ω.

5. Consistency of p0 with the instance (x, 1t):

Define Ax to be the low-degree extension of the function fx : It,log |x| → {0, 1} defined by
fx(αi) := xi where αi is the i-th element in It,log |x| and It,log |x| is the (log |x|)-th affine

subspace in ~It; let px be the evaluation of Ax on Ft.
Invoke the (already “amplified”) PCPP-verifier VaVRS for the vanishing Reed–Solomon

code, with proximity parameter δc := (8
∑cN(t)

i=1 deg(Nt,i))
−1 and soundness s′c := 1/2, on

explicit input (Ft,Ft, It,log |x|, 2
mH(t)−1), implicit input p0−px, and proof of proximity πc;

that is, verify that

V
(p0−px,πc)
aVRS

(
BFt ,BFt , 0Ft ,BIt,log |x| ,OIt,log |x| , 2

mH(t) − 1, δc, s
′
c

)
accepts.

Now we prove the correctness of the above constructions:

Proof of Theorem 8.1. We prove that the PCP verifier VsACSP from Construction 8.5 has perfect
completeness and soundness 1/2, and, moreover, that the PCP prover PsACSP from Construc-
tion 8.3, when provided with a valid witness, fulfills the perfect completeness of VsACSP. The
analysis of the query complexity, randomness complexity, and proof length complexity of the
PCP system (PsACSP, VsACSP) is given in Appendix C (see Lemma C.8).

Completeness. We begin by proving that VsACSP has perfect completeness. So suppose that
(x, 1t) ∈ sACSP, and let A : Ft → Ft be an assignment polynomial that witnesses this.

Let p0 : Ft → Ft be the evaluation on Ft of the assignment polynomial A. Recall that, by
Definition 7.1, the degree of A is must be less than 2mH(t); hence, p0 ∈ RS(Ft,Ft, 2mH(t) − 1).
Invoking the completeness property of the PCPP verifier VaRS, we deduce that there exists a

string π0 that makes V
(p0,π0)
aRS

(
BFt ,BFt , 0Ft , 2mH(t) − 1, δRS, s

′
RS

)
accept with probability 1. We

conclude that the same string π0 makes the first subtest of VsACSP accept with probability 1,

because the first subtest of VsACSP is the test V
(p0,π0)
aRS

(
BFt ,BFt , 0Ft , 2mH(t) − 1, δRS, s

′
RS

)
. (See

Step 2 of VsACSP.)
Let p1 : Ft → Ft be the evaluation on Ft of the polynomial B : Ft → Ft defined as follows:

B(x) := Pt

(
x,A

(
Nt,1(x)

)
, . . . , A

(
Nt,cN(t)(x)

))
.

Notice that the degree of B can be upper bounded as follows:

deg(B) ≤ d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))) ;

furthermore, because A is a witness for (x, 1t) ∈ sACSP, due to Item (i) in Definition 7.1, we
know that B vanishes on the affine subspace Ht; hence, p1 ∈ VRS(Ft,Ft, Ht, d). Invoking the
completeness property of the PCPP verifier VaVRS, we deduce that there exists a string π1 that

makes V
(p1,π1)
aVRS

(
BFt ,BFt , 0Ft ,BHt ,OHt , d, δVRS, s

′
VRS

)
accept with probability 1. We conclude that

the same string π1 makes the second subtest of VsACSP accept with probability 1, because the

second subtest of VsACSP is the test V
(p1,π1)
aVRS

(
BFt ,BFt , 0Ft ,BHt ,OHt , d, δVRS, s

′
VRS

)
. (See Step 3 of

VsACSP.)
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Moreover, by construction of p0 and p1, for every α ∈ Ft,

p1

(
α
)

= B
(
α
)

= Pt

(
α,A

(
Nt,1(α)

)
, . . . , A

(
Nt,cN(t)(α)

))
= Pt

(
α, p0

(
Nt,1(α)

)
, . . . , p0

(
Nt,cN(t)(α)

))
so that the third subtest of VsACSP succeeds with probability 1. (See Step 4 of VsACSP.)

Finally, because A is a witness for (x, 1t) ∈ sACSP, due to Item (ii) in Definition 7.1,
we know that A is consistent with the instance (x, 1t), i.e., we know that A(αi) = xi for
i = 1, . . . , |x|, where αi is the i-th element of It,log |x| and It,log |x| is the (log |x|)-th affine sub-

space in ~It. Hence, letting Ax be the low-degree extension of the function fx : It,log |x| → {0, 1}
defined by fx(αi) := xi where αi is the i-th element in It,log |x|, and px the evaluation of

Ax on Ft, we know that p0 − px is in VRS(Ft,Ft, It,log |x|, 2
mH(t) − 1). Once again invok-

ing the completeness property of the PCPP verifier VaVRS, we deduce that there exists a

string πc that makes V
(p0−px,πc)
aVRS

(
BFt ,BFt , 0Ft ,BIt,log |x| ,OIt,log |x| , 2mH(t) − 1, δc, s

′
c

)
accept with

probability 1. We conclude that the same string πc makes the fourth subtest of VsACSP ac-
cept with probability 1, because the fourth (and last) subtest of VsACSP is simply the test

V
(p0−px,πc)
aVRS

(
BFt ,BFt , 0Ft ,BIt,log |x| ,OIt,log |x| , 2mH(t) − 1, δc, s

′
c

)
. (See Step 5 of VsACSP.)

Thus, we have established that VsACSP has perfect completeness.
Finally, note that the PCP prover PsACSP, on input (x, 1t) and A, does indeed construct a

proof π = (p0, π1, p1, π1, πc) that makes VsACSP accept with probability 1 — by providing the
correct evaluation tables p0 and p1 and running the PCPP provers for RS and VRS with the
appropriate inputs.

Soundness. Next, we prove that VsACSP has soundness 1/2. As before, let It,log |x| be the (log |x|)-
th affine subspace in ~It, Ax be the low-degree extension of the function fx : It,log |x| → {0, 1}
defined by fx(αi) := xi where αi is the i-th element in It,log |x|, and px the evaluation of Ax on

Ft. Also let d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))).

Suppose that (x, 1t) 6∈ sACSP. We distinguish between four cases:

• Case 1: the function p0 is (8
∑cN(t)

i=1 deg(Nt,i))
−1-far from RS(Ft,Ft, 2mH(t) − 1).

Recall that the first subtest of VsACSP (Step 2) tests proximity of p0 to RS(Ft,Ft, 2mH(t)−1)

using the (amplified) RS verifier VaRS with proximity parameter δRS = (8
∑cN(t)

i=1 deg(Nt,i))
−1

and soundness s′RS = 1/2; thus, in this case the first subtest of VsACSP rejects with probability
at least 1/2.

• Case 2: the function p1 is 1/8-far from VRS(Ft,Ft, Ht, d).

Recall that the second subtest of VsACSP (Step 3) tests proximity of p1 to VRS(Ft,Ft,
Ht, d) using the (amplified) VRS verifier VaVRS with proximity parameter δVRS = 1/8 and
soundness s′VRS = 1/2; thus, in this case the second subtest of VsACSP rejects with probability
at least 1/2.

• Case 3: the function p0−px is (8
∑cN(t)

i=1 deg(Nt,i))
−1-far from VRS(Ft,Ft, It,log |x|, 2

mH(t)−
1).

Recall that the fourth subtest of VsACSP (Step 5) tests proximity of p0 − px to VRS(Ft,Ft,
It,log |x|, 2

mH(t) − 1) using the (amplified) VRS verifier VaVRS with proximity parameter
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δc = (8
∑cN(t)

i=1 deg(Nt,i))
−1 and soundness s′c = 1/2; thus, in this case the second subtest

of VsACSP rejects with probability at least 1/2.

• Case 4: neither of the above three cases hold.

Let A : Ft → Ft be a polynomial of degree less than 2mH(t) whose evaluation table
over Ft is closest to p0, and let B : Ft → Ft be the polynomial defined as B(x) :=
Pt
(
x,A(Nt,1(x)), . . . , A(Nt,cN(t)(x))

)
. Note that A is unique, because 1− (2mH(t)− 1)/|Ft|

is larger than 2δRS = (4
∑cN(t)

i=1 deg(Nt,i))
−1. (See Lemma 4.11.)

Observe that p0− px is (8
∑cN(t)

i=1 deg(Nt,i))
−1-close to the evaluation table of A−Ax over

Ft. Let A′ : Ft → Ft be a polynomial of degree less than 2mH(t) vanishing on It,log |x| whose
evaluation table over Ft is closest to p0− px. Note that A′ = A−Ax because both A′ and

A−Ax are polynomials of degree less than 2mH(t) that are (8
∑cN(t)

i=1 deg(Nt,i))
−1-close to

p0 − px and 1− (2mH(t) − 1)/|Ft| is larger than (4
∑cN(t)

i=1 deg(Nt,i))
−1. (See Lemma 4.11.)

Thus we deduce that A is consistent with the instance (x, 1t), i.e., satisfies Item (ii) in
Definition 7.1.

Because p0 is (8
∑cN(t)

i=1 deg(Nt,i))
−1-close to the evaluation table of A over Ft, we deduce

that, for i = 1, . . . , cN(t), p0◦Nt,i is
deg(Nt,i)

8
∑cN(t)
i=1 deg(Nt,i)

-close to the evaluation table of A◦Nt,i.

Define the function p2 : Ft → Ft by

p2(x) := Pt

(
x, p0

(
Nt,1(x)

)
, . . . , p0

(
Nt,cN(t)(x)

))
.

We deduce then, via a union bound, that p2 must be 1/8-close to the evaluation table of
B(x) over Ft.
Now let B′ : Ft → Ft be a polynomial of degree at most d vanishing on Ht whose evaluation
table over Ft is closest to p1. Again note that B′ is unique, because 1−d/|Ft| is larger than
2δVRS = 1/4. (See Lemma 4.11.) Now, B and B′ must be distinct for, otherwise, B would
vanish on Ht, implying that A would satisfy the constraint polynomial Pt, which would
in turn imply (together with the fact that A is consistent with the instance (x, 1t)) that
(x, 1t) ∈ sACSP — a contradiction. Thus, since both B and B′ are (distinct) polynomials
of degree at most d ≤ |Ft|/4, their evaluation tables over Ft may agree on at most a 1/4
fraction of their entries. Thus, by a union bound, the third subtest of VsACSP (Step 4)
accepts with probability at most 1/8 + 1/8 + 1/4 = 1/2.

This completes the proof of the soundness property.

Remark 8.6. More generally, the soundness analysis would have also worked for any proximity
parameter δRS for VaRS and proximity parameters δVRS and δc for VaVRS as long as the following

conditions hold: letting d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))),

1− 2mH(t) − 1

|Ft|
> 2δRS , (to ensure uniqueness of A)

1− 2mH(t) − 1

|Ft|
> δRS + δc , (to ensure uniqueness of A′ and A′ = A−Ax)

1− d

|Ft|
> 2δVRS , (to ensure uniqueness of B′)
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cN(t)∑
i=1

deg(Nt,i)

 δRS + δVRS +
d

|Ft|
≤ 1

2
.

For example, for the specific choices of

δRS = δc =
1

8
∑cN(t)

i=1 deg(Nt,i)
and δVRS =

1

8

that we used in the proof of Theorem 8.1, all of the above constraints are implied by the sACSP
algebraic constraint from Equation 3 of Definition 7.1.

Remark 8.7. The consistency with the instance requirement in the definition of sACSP (i.e.,
Item (ii) of Definition 7.1) is quite “special”: it specifically requires that the concatenation of
the vector of field elements (A(α1), . . . , A(α|x|)) is, when properly converted to bits, equal to
x. This specific form of instance consistency enables us to use a simple test for verifying this
requirement: namely, we can use a test of proximity to the appropriate Vanishing Reed–Solomon
code. (See Step 5 of VsACSP.)

It is possible to extend our construction to support more general forms of instance con-
sistency where, for example, we are given some predicate that takes as input both x and
(A(α1), . . . , A(α|x|)) and decides whether the two are “consistent” or not (via a criterion that
is perhaps different than mere equality between the two). To support any such a predicate, we
would need to (1) account for the complexity of the predicate when viewed as a polynomial
when specifying constraints on the field size, and (2) perform tests that are more complicated
than simply testing proximity to an appropriate Vanishing Reed–Solomon code and are instead
similar to how we verify that the constraint polynomial Pt is satisfied. (However, such an
extension would complicate the PCP construction without much justification; see Footnote 16.)

Remark 8.8. While the techniques used to construct the PCP for sACSP can be used to also
construct a PCP of Proximity [DR04, BSGH+06] for sACSP, we do not work out the details.

For suppose that the instance (x, 1t) is such that x is long, and one wishes to separate an
offline and online phases of a verifier, where during the offline phase the verifier may run in
time proportional to |x|, but not during the online phase. In such a case PCPPs could help.
However, we believe that there is a solution that (only comes at the expense of assuming the
existence of one-way functions and) is more convenient in many settings: one can invoke the
Untrusted Input Lemma of Ben-Sasson et al. [BSCGT13].19

Indeed, PCPs of Proximity have the disadvantage that one must have oracle access to the
long input x. Depending on the application, this may be quite inconvenient (especially if one
wishes to conduct several computations on x). On the other hand, the reduction in [BSCGT13]
allows one to “move the input x to the witness” and replace x with a much shorter digest of it
(which can be reused across multiple computations). Moreover, from an efficiency standpoint,
enhancing our construction to a PCP of Proximity would make it somewhat less efficient,
whereas the reduction in [BSCGT13] is much lighter.

So from both a convenience and efficiency perspective, a reduction like that in [BSCGT13]
seems to be preferable for the purposes of handling long inputs.

19Such an invocation requires the PCP to satisfy a knowledge property; we prove that this is the case for our
PCPs in the proof of our Theorem 4.
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Remark 8.9. Ben-Sasson and Sudan constructed PCPs for an algebraic constraint satisfaction
problem [BSS08, Section 3.3.1], which they call ALGEBRAIC-CSPk,d, as part of the proof of
their main theorem [BSS08, Theorem 2.2], which gives PCPs for NTIME(t) languages with
quasilinear proof-length complexity and polylogarithmic randomness and query complexity.
Our construction roughly follows their approach, but necessitates additional work for the PCP
system to handle the more general language sACSP, to ensure that the verifier is succinct, and
to ensure that the prover runs in quasilinear-time (and, moreover, that both verifier and prover
run quasilinearly relative to the instance size).

The construction of this section implies as a special case a proof of a theorem left implicit
in [BSGH+05], where a special case of the language sACSP was considered for the purpose of
constructing polylogarithmic-time verifiers for the PCPs of Ben-Sasson and Sudan. As discussed
before, in our case, we also need to concentrate on the construction of the prover (to ensure
that it runs in quasilinear time) and the complexity of the prover and verifier in terms of the
input instance (which we will also ensure is quasilinear). These concerns were not addressed
before, and are ultimately crucial to prove our Theorem 1.

Remark 8.10 (combinatorial techniques). While the early results on PCPs exploited predom-
inantly algebraic techniques [BFLS91, AS98, ALM+98], by now also a combinatorial proof is
known [Din07]. However, despite the recent improvements in the understanding of verifier-
efficient PCPs [Mei09], combinatorial techniques seem to still lag behind algebraic techniques in
potential for practical PCPs. For example, it is still not known how to generate quasilinear-size
PCP proofs using combinatorial techniques (though recent progress was shown by [Mei12]).
Moreover, the current understanding of practical implementations of expander constructions
and algorithmic implementations of graph operations does not seem stand up to the current
understanding of efficient algebraic computation. Indeed, when it comes to polynomial arith-
metic, we already possess a quite good understanding of how to multiply, evaluate, interpolate
very fast in practice via FFT methods — such extensive algorithmic knowledge seems crucial
for practical implementations of PCPs.
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9 Proof of Theorem 3

In this section we prove Theorem 3, discussed in Section 1.5 and formally stated in Section 2.4.
The theorem states the existence of a PCPP system (see Definition 2.5) for the code ensemble
ERS (see Definition 2.9) having a concrete-efficiency threshold B̂RS(C×) ≤ 243 (see Defini-
tion 2.7).

Recall that our proof strategy is in two steps; we describe these two steps in Section 9.1 and
Section 9.2 respectively. We then concisely summarize the proof of the theorem in Section 9.3.
Throughout, it will be useful to keep in mind the definitions from Section 4. Furthermore,
because we are (for convenience) concentrating on B̂RS(C×), we shall simply write B̂RS.

9.1 Step 1: Improving the Universal Constant of Bivariate Testing

The first step is to improve the value of the universal constant of bivariate testing. Let us
explain.

Testing proximity to bivariate low-degree polynomials via a “random row or column test”
forms the basis of the PCPP verifier for Reed–Solomon codes of Ben-Sasson and Sudan [BSS08]
as well as of its generalization constructed and analyzed in this paper. Specifically, the soundness
analysis of [BSS08] relied on the following fact:

Lemma 9.1. Let F be a field. There exists a universal constant c0 such that the following holds:
for every two finite subsets A and B of F, every two d, e ≥ 0 with d ≤ |A|/4 and e ≤ |B|/8, and
every function g : A×B → F, it is the case that

δ
(d,e)
A×B(g) ≤ c0 ·

(
δ

(d,∗)
A×B(g) + δ

(∗,e)
A×B(g)

)
,

Recall that δ
(d,∗)
A×B(f), δ

(∗,e)
A×B(f), and δ

(d,e)
A×B(f) respectively denote the (fractional) distance of

the function f to bivariate polynomial evaluations over A×B with degree in x at most d (and
arbitrary degree in y), degree in y at most e (and arbitrary degree in x), and degree in x at
most d and in y at most e. (See Definition 4.9.)

In other words, Lemma 9.1 says that testing proximity of a function g : A × B → F to
RM

(
F, A × B, (d, e)

)
, which is the Reed–Muller code over A × B of degree (d, e) (see Defini-

tion 4.6), can be done by examining the values of g over a random line in the first coordinate
(i.e., a random “column”) and over a random line in the second coordinate (i.e., a random
“row”). The lemma is a corollary to the Bivariate Testing Theorem of Polishchuk and Spielman
[PS94][Spi95, Theorem 4.2.19].

The crucial aspect of Lemma 9.1 that ultimately allows for the construction of quasilinear-
size proximity proofs in [BSS08] (via a recursive construction) is the fact that the fractional
degree (i.e., the ratio of the degree over the domain size) in both coordinates is constant, that
is, the domain size need only be a constant larger than the degree — this is unlike, e.g., the
corresponding theorem in [AS98] where the size of the domain had to quadratically depend on
the degree.

Another aspect of Lemma 9.1, which is very important from our perspective of concrete
efficiency, is the value of the universal constant of bivariate testing c0; specifically, the
smaller a value one can show for c0 the better soundness one can show for testing proximity
to the Reed–Solomon code and, thus, ultimately construct PCPs with better soundness. (We
shall discuss this in Section 9.2.) In [BSS08], it was shown that one can take c0 = 128.
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We show that one can take c0 = 10.24. In fact, we state and prove the lemma in a more
general form, letting c0 depend on the fractional degree of each coordinate.

Theorem 9.2 (improved universal constant of bivariate testing). Let F be a field. Let d,m, e, n ∈
N be such that 1 > d

m + e
n + 2δ for some positive δ. Define

c0 := max
{

3, inf
{
δ−2 : δ > 0 and 1 > d

m + e
n + 2δ

}}
.

Then, for every two finite subsets A and B of F of respective sizes m and n and every function
g : A×B → F, it is the case that

δ
(d,e)
A×B(g) ≤ c0 ·

(
δ

(d,∗)
A×B(g) + δ

(∗,e)
A×B(g)

)
.

By setting d
m := 1

4 and e
n := 1

8 as in Lemma 9.1, we recover the (improved) constant c0 = 10.24,
as opposed to the previous value c0 = 128.

The proof of the theorem is given in Section 10.
The above lemma can now also be invoked with different settings of d

m and e
n , other than

the d
m = 1

4 and e
n = 1

8 originally used in Lemma 9.1. Different settings of d
m and e

n , eventually
correspond (as can be seen by inspecting how Theorem 9.2 is eventually invoked in the soundness
analysis in Section 11) to changing the “rate” of the proof of proximity; for example, with d

m = 1
8

and e
n = 1

8 , we obtain the smaller constant c0 = 64/9 ≈ 7.1 at the cost of decreasing the rate.
More generally, it is possible to decrease c0 further if one is willing to decrease either the ratio
d
m or e

n (or both); doing so is possible, but will increase the length of the proof of proximity (i.e.,
decreasing the rate). The point is that the lemma stated in this way allows us to easily deduce
what constant c0 to use for different choices of rate; it will also enable us to find optimal choices
of parameters for a given concrete problem size. Explicitly having these degrees of freedom
will ultimately be crucial to enable us to find a construction with a good concrete-efficiency
threshold.

We believe that Theorem 9.2 can be further improved, and we believe it is an important
open problem to do so: even small improvements (e.g., relaxing the requirement in the theorem
from 1 > d

m + e
n + 2δ to 2 > d

m + e
n + 2δ) eventually translate into tremendous improvements

to the concrete-efficiency thresholds of PCPP systems for Reed–Solomon codes.

9.2 Step 2: Improving the Soundness Analysis of the Recursive Construction

In general, the verifier of a PCPP system consists of the sequential repetition of a simpler
“basic” verifier, and the number of repetitions is inversely proportional to the soundness of this
basic verifier; the soundness may be a function of various parameters.

The second step in our proof of Theorem 3 is to provide a class of constructions that
generalize the basic verifiers of [BSS08] for testing proximity to the Reed–Solomon code, and
deduce for this class a much tighter and explicit soundness analysis. Obtaining as good a
soundness as possible is critical for improving concrete efficiency, because worse (i.e., lower)
soundness directly translates into a greater number of repetitions needed to bring the soundness
up to, say, 1/2; each repetition costs more queries, random coins, and, most importantly, running
time.

Concretely, the second step of our theorem consists of much tighter soundness analyses for
generalizations of the (strong) PCPP verifiers (see Definition 4.15) testing proximity to RS
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and VRS (see Definition 4.3 and Definition 4.4) constructed by Ben-Sasson and Sudan [BSS08]
based on Lemma 9.1; we respectively denote these two PCPP verifiers by VRS and VVRS. While
of course in our case we start with a “stronger and more general foundation” (namely, our
Theorem 9.2 that strengthens and generalizes Lemma 9.1, as discussed in Section 9.1), we still
seek a much more careful (and generalized) analysis of the soundness of the recursive algorithms
underlying VRS and VVRS. We indeed do so and our end result is formally given in Theorem 11.1
and proved in Section 11.

The focus of our effort is improving the soundness of VRS,=, which is the PCPP verifier
responsible for testing proximity to the code ensemble ERS (see Definition 2.9). Indeed, VVRS

can be constructed based on VRS; VRS invokes one of three PCPP verifiers, VRS,>, VRS,<, or VRS,=,
depending on whether the fractional degree to be tested is (roughly) greater than, less than, or
equal to 1/8 respectively; both of the PCPP verifiers VRS,> and VRS,< consist of few invocations
of VRS,=. So, again, the technical heart of the construction of VRS and VVRS is VRS,= and, while
we also take the care to tighten the soundness analysis of VRS,<, VRS,>, VRS, VVRS, improving the
soundness analysis of VRS,= is where most of our effort goes. See Figure 1; as discussed, VRS,= is
“at the bottom of the stack”.

It is for this reason that we have chosen to state Theorem 3 for the code ensemble ERS, and
thus henceforth our discussion will concentrate on VRS,=. The relevant lemma for VRS,= from
[BSS08] (stated for affine rather than linear subspaces) is:

Lemma 9.3. There exists a constant c ≥ 1 such that for every positive integer κ and every
positive ε the following holds: if for a function p : S → F2`, a string π, an integer `, and a
κ-dimensional affine subspace L ⊆ F2` it holds that

Pr
[
V

(p,π)
RS,=

(
F2` , L, |L|/8− 1

)
= 1
]
> 1− ε ,

then
∆L

(
p,RS

(
F2` , L, |L|/8− 1

))
≤ clog κ · ε .

Recall that ∆L denotes the fractional Hamming distance for strings/functions defined over
the set (in this case, affine subspace) L. (See Definition 4.7.) Also recall that a PCPP verifier is
given as input an explicit input and is granted oracle access to an implicit input and a proximity
proof ; in the case of VRS,=, the explicit input specifies the desired Reed–Solomon code and the
implicit input is the function p that needs to be tested, with the aid of the proximity proof
π. (Of course, the explicit input is suitably represented: F2` is represented via an irreducible
polynomial and L via a basis and offset.)

Lemma 9.3 says that the (strong) PCPP verifier VRS,= has a soundness function sRS,= (see
Definition 4.15) that can be lower bounded as follows:

sRS,=(δ, n) ≥ δ

κlog c
.

Roughly, this means that VRS,= needs κlog c/δ sequential repetitions to have constant soundness
(with proximity parameter δ). We have fixed δ = 1/3 as a convention. (See Definition 2.5.)

Note that one cannot hope in an analysis showing that s(O(1), n) ≥ κ−o(1), because VRS,=

in [BSS08] and in our case consists of O(log κ) recursive invocations of a constant-soundness
low-degree test (namely, the “random row or column test” mentioned in Section 9.1), so that
we indeed expect s(O(1), n) ≤ κ−O(1).
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Therefore, the parameter of interest here is the constant c, and thus our goal of obtaining a
better soundness analysis for VRS,= can now be technically restated as:

find the smallest possible c such that Lemma 9.3 holds.

The Ben-Sasson–Sudan Analysis. Ben-Sasson and Sudan proved Lemma 9.3 for

c =
(
64(c0 + 2/3)

) 1
log(8/7) 20

and c0 = 128. (As mentioned, the universal constant of bivariate testing c0 affects the soundness
analysis of VRS,=). This yields log c ≈ 67.5, which is a very large value. Indeed, with this analysis,
one can only show that B̂RS(C×) ≤ 2683. (Since values of c are quite large, we shall always give
its binary logarithm when computing bounds for it.)

Even when invoking our Theorem 9.2 to obtain the smaller value c0 = 10.24 to use in their
soundness analysis, we get log c ≈ 49.0 — still very large.

Our Asymptotic Analysis. Without modifying the construction of [BSS08], we give an
improved soundness analysis of VRS,= showing that we can take

c =

(
16

3
(1 + c0) + 8 + 2

√
16 +

64

3
(1 + c0)

) 1
log(8/7)

so that, using c0 = 10.24, we get log c ≈ 34.5. Unfortunately, log c ≈ 34.5 is still very large.
To tackle this problem, we develop an analysis that lets us efficiently explore a class of con-

structions for VRS,= related to the one in [BSS08]. Concretely, we parametrize several quantities
in the construction of VRS,= (namely, the fractional degree to be tested, the query complexity,
and how the recursion in VRS,= is “balanced”) and we are able to deduce an explicit expression
for the constant c in terms of all of these parameters. We are then in a position to identify
better tradeoffs among these parameters.

Concretely, see Theorem 11.3 (and Corollary 11.4) in Section 11.1 for the formal statement
giving the expression for c in terms of four parameters (η, κ0, γ, µ), where 2−η (roughly) denotes
the fractional degree to be tested, 2κ0 the number of queries of VRS,=, γ how the affine subspace
L is split in the recursion of VRS,=, and µ what is the “overlap” between the two subspaces of L
in the recursion of VRS,=. In [BSS08], η = 3, κ0 = 6, γ = 0, µ = 2. In contrast, we can choose
any setting of (η, κ0, γ, µ) satisfying a certain set of conditions (see Equation 6). (In particular,
our improved analysis also enables us to say something about the case η = 2, whereas previously
the analysis was not strong enough to show any soundness for this setting; when η = 2, the
fractional degree is roughly 1/4 and yields a proximity proof shorter than tat in [BSS08].)

As an example, in Table 1, we give values for log c as we change η and κ0 (and using an
optimal choice of γ and µ for each choice of η and κ0).

In particular, we are able to obtain log c ≈ 16.0 for a different construction than that in
[BSS08] (that has the same proof length and number of queries). Unfortunately, log c ≈ 16.0 is
still very large, and only lets us show B̂RS(C×) ≤ 2156.

20Note that [BSS08, Equation 15] is incorrect when κ = 8, so that, in [BSS08], they should have chosen c1 to
equal ĉlog(8/7)/2 instead of ĉlog(7/6)/2; thus, the exponent in the expression for c should indeed be 1

log(8/7)
instead

of 1
log(7/6)

.
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log c κ0 = 4 κ0 = 5 κ0 = 6 κ0 = 7 κ0 = 8 κ0 = 9 κ0 = 10

η = 2 29.0 29.0 19.0 19.0 16.0 16.0 14.0
η = 3 25.0 25.0 16.0 16.0 13.0 13.0 11.0
η = 4 n/a n/a 29.0 29.0 18.0 18.0 14.0
η = 5 n/a n/a 35.0 35.0 21.0 21.0 16.0

Table 1: Trade-offs in the choice of parameters for VRS,=: increasing η and κ0

respectively increases the PCP oracle length and the query complexity; the
value log c ≈ 16.0 for the setting η = 3 and κ0 = 6 (in bold) corresponds to
what we obtain for (a fine tuning of) the construction in [BSS08], improving
on the original log c ≈ 67.5. (Cells with “n/a” correspond to parameter
choices for which the construction is not defined.)

Our Instance-Size Specific Analysis. We do not know how to push further our asymptotic
analysis mentioned in the previous paragraph. To go beyond it, we depart from the “standard”
asymptotic perspective, and instead seek to perform an analysis that is tailored to the specific
instance size, i.e., tailored to the specific dimension κ of the affine subspace L.

Starting from our asymptotic analysis, we show how to derive an efficiently-computable
recursive function D(·) that lets us numerically compute a lower bound on the soundness for
any given problem size: namely, s(δ, κ) ≥ δ/D(κ) holds for all dimensions κ. See Section 11.1.4
(specifically, Equation 25) for our result.

We discover that D(κ) approaches very slowly our asymptotic upper bound of κlog c. For
instance, we can define

log c̃
def
= max

k∈{1,...,2100}

logD(κ)

log κ
,

to be the “effective” log c for instances of size up to 2100. As an example, in Table 2, we
give values for log c̃ for the same choices of parameters that we used in Table 1; we see great
improvements throughout the table. For instance, we obtain that log c̃ ≤ 5.8, which is much
less than log c ≈ 16.0 obtained in the asymptotic analysis.

log c̃ κ0 = 4 κ0 = 5 κ0 = 6 κ0 = 7 κ0 = 8 κ0 = 9 κ0 = 10

η = 2 9.0 8.1 7.6 7.3 6.8 6.4 6.3
η = 3 8.0 6.8 5.8 5.3 5.1 4.8 4.5
η = 4 n/a n/a 5.8 5.3 5.0 4.6 4.1
η = 5 n/a n/a 7.4 6.3 5.1 4.9 4.6

Table 2: Values of the “effective” log c for practical problem sizes, for dif-
ferent choices of parameters for VRS,=. For the setting η = 3 and κ0 = 6 (in
bold), log c improved from the asymptotic value 16.0 to the effective value
log c̃ ≈ 5.8. (Cells with “n/a” correspond to parameter choices for which the
construction is not defined.)
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9.3 Step 3: Putting Things Together

The PCPP verifier VRS,= with a choice of parameters (η, κ0, γ, µ) tests proximity to the ensemble

E(η) def
=
{

RS(F2` , L, d)
∣∣∣ L is an affine subspace of F2` , d = 2−η|L| − 1

}
. (4)

Any code C ∈ ERS is thus fully specified by `, L, and d. With Definition 2.7 in mind, we can
define

B̂(η)(C)
def
= arg min

B̂′∈N

{
B̂′
∣∣∣∣ ∀ [n, k, d]2`-code C ∈ E(η) with k ≥ B̂′ , C

(
n+ L(C)

k
, Q(C)

)
< k

}
,

where L(C) is the length of the PCPP proof for codewords in C and Q(C) is the query com-
plexity for testing proximity (with soundness 1/2) of non-codewords that are sufficiently far from
C (specifically, as mentioned, we use a proximity parameter of 1/3).

Recall that, in Theorem 3, we consider the specific case of testing proximity to the code
ensemble ERS = E(3) (see Definition 2.9) and upper bounding the concrete-efficiency threshold
for the cost function C×(a, b) := a · b (i.e., upper bounding B̂(3)(C×)). As mentioned, these
choices are only for concreteness, because our analysis lets us upper bound B̂(η)(C) for any η
and any polynomial cost cost function C (in fact, any efficiently-computable cost function too).

Therefore, we now explain how the two steps described in the previous two subsections come
together to give a proof of Theorem 3, while keeping most of the proof in the general case.

Proof of Theorem 3. Recall from Definition 2.7 that, in order to compute B̂(η)(C) for a given
PCPP system testing proximity to E(η), we need to be able to compute (or at least upper
bound), for any code C ∈ E(η), both L(C) and Q(C).

As discussed, we have developed a class of proximity testers E(η). For the member of this
class corresponding to a choice (η, κ0, γ, µ) of parameters, and for each C ∈ E(η) with block
length 2κ:

• we can either use the bound L(C) ≤ 2κ ·κ1+max{−γ+µ+1,γ} (see Lemma C.1) or numerically
compute L(C) (see Lemma C.10);

• we can either use the bound Q(C) ≤ 2κ0 · 3κlog c(η,κ0,γ,µ), where log c(η, κ0, γ, µ) is the
asymptotic value from Theorem 11.3, or rely on our instance-size specific analysis to
numerically compute D(κ) (see Equation 25) such that Q(C) ≤ 2κ0 · 3D(κ). (Note that
the number of queries 2κ0 of VRS,= has been multiplied to take into account the fact that
we need to amplify soundness to 1/2 and have proximity parameter 1/3; see Remark 11.2.)

Either way, we obtain some bound L(η,κ0,γ,µ) for L(C) and some bound Q(η,κ0,γ,µ) for Q(C).
Recalling that n = |L| = 2κ and k = 2−η|L| = 2κ−η, if

C

(
2κ + L(η,κ0,γ,µ)

2κ−η
, Q(η,κ0,γ,µ)

)
< 2κ−η

then

C

(
n+ L(C)

k
, Q(C)

)
< k .

We can then compute a bound for B̂(η)(C) for any choice of (η, κ0, γ, µ).
For example, using the parameters (η, κ0, γ, µ) = (3, 15, 1, 2), we get B̂RS = B̂(3)(C×) ≤ 243,

as claimed. (In contrast, using the original parameters (η, κ0, γ, µ) = (3, 6, 0, 2) and the bound
log c ≈ 67.5 obtained in [BSS08], we only get B̂RS(C×) ≤ 2683.)
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See http://people.csail.mit.edu/alexch/research/tppcp/ for a Mathematica note-
book that contains most of the computations carried out in this section and enables one, given
η and C, to compute B̂(η)(C) for both our construction (and, for comparison, the one in
[BSS08]).
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10 Improved Universal Constant of Bivariate Testing

After recalling some basic lemmas about polynomials from [Spi95] (Section 10.1), we prove
Theorem 9.2 in two steps (respectively in Section 10.2 and Section 10.3); as an example, we
then show how to obtain the improved universal constant of bivariate testing c0 = 10.24 (Sec-
tion 10.4).

10.1 Some Basic Lemmas

Let us recall some basic lemmas needed for the proof of the theorem.

Lemma 10.1 ([Spi95, Proposition 4.2.9]). Let A = {α1, . . . , αm} ⊆ F, B = {β1, . . . , βn} ⊆ F,
d < m, and e < n. Let f : A × B → F be a function such that for every α ∈ A it holds that
f(α, y) agrees with some polynomial over F of degree d and for every β ∈ B it holds that f(x, β)
agrees with some polynomial over F of degree e. Then there exists a polynomial P (x, y) over F
of degree (d, e) such that f agrees with P everywhere on A×B.

Proof sketch. By “stringing together” e + 1 low-degree row polynomials via Lagrange interpo-
lation in one variable.

Lemma 10.2 ([Spi95, Lemma 4.2.13]). Let F be a field, A = {α1, . . . , αm} ⊆ F, and B =
{β1, . . . , βn} ⊆ F. Let S ⊆ A × B be a set of size at most δ2mn. Then there exists a non-zero
polynomial E(x, y) over F of degree (δm, δn) such that E(α, β) = 0 for all (α, β) ∈ S.

Proof sketch. The “evaluation map” is a linear operator; in this case, the domain is a vector
space of dimension (bδmc + 1)(bδnc + 1) and the range is a vector space of dimension δ2mn;
hence the kernel contains more than one element and, in particular, a non-zero solution.

Lemma 10.3 ([Spi95, Lemma 4.2.14]). Let F be a field, A = {α1, . . . , αm} ⊆ F, and B =
{β1, . . . , βn} ⊆ F. Let E(x, y), P (x, y), R(x, y), C(x, y) be polynomials over F of respective de-
grees (δm, δn), (d + δm, e + δn), (d, n), (m, e) such that for every (α, β) ∈ A × B it holds that
P (α, β) = R(α, β)E(α, β) = C(α, β)E(α, β). If |A| > d + δm then for all α ∈ A it holds that
E(α, y) divides P (α, y). If |B| > e+ δn then for all β ∈ B it holds that E(x, β) divides P (x, β).

Proof sketch. For any α ∈ A, P (α, y) and R(α, y)E(α, y) agree on |B| > e+δn points, and thus
they are equal as formal polynomaials. Similarly for the other coordinate.

Lemma 10.4 ([Spi95, Lemma 4.2.18]). Let F be a field, A = {α1, . . . , αm} ⊆ F, and B =
{β1, . . . , βn} ⊆ F. Let E(x, y) and P (x, y) be polynomials over F of respective degrees (δm, εn)
and (δ′m+ δm, ε′n+ εn). Suppose that for every α ∈ A and β ∈ B it holds that E(α, y) divides
P (α, y) and E(x, β) divides P (x, β). If 1 > δ′ + ε′ + δ + ε then E(x, y) divides P (x, y).

Proof sketch. The proof is non-trivial; it uses resultants and their derivatives. (An alternate
proof using dimensions of vector spaces can be found in [Sze05].)

10.2 The PS Bivariate Testing Theorem

We begin by stating and proving the Polishchuk Spielman Bivariate Testing Theorem with our
slightly improved parameters:
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Theorem 10.5. Let F be a field, A = {α1, . . . , αm} ⊆ F, and B = {β1, . . . , βn} ⊆ F. Let
R(x, y) be a polynomial over F of degree (d, n) and let C(x, y) be a polynomial over F of degree
(m, e). Suppose that

Pr
(α,β)∈A×B

[R(α, β) 6= C(α, β)] < δ2 and 1 >
d

m
+
e

n
+ 2δ .

Then there exists a polynomial Q over F of degree (d, e) such that

Pr
(α,β)∈A×B

[R(α, β) 6= Q(α, β) or C(α, β) 6= Q(α, β)] < 2δ2 .

The improvement is in that we relax the original requirement 1 > 2
(
d
m + e

n + δ
)

to the new

requirement 1 > d
m + e

n + 2δ, by simply being more careful in the original proof and combining
it with another proof of the theorem appearing in [Sze05, Theorem 5.30].

Proof of Theorem 10.5. Let S = {(α, β) ∈ A×B s.t. R(α, β) 6= C(α, β)}; by assumption, |S| <
δ2mn. By Lemma 10.2, there exists a (non-zero) polynomial E(x, y) over F of degree (δm, δn)
such that E(S) = {0}. Note that R(x, y)E(x, y) is a polynomial of degree (d+ δm, n+ δn) and
C(x, y)E(x, y) is a polynomial of degree (m+ δm, e+ δn).

By Lemma 10.1, there exists a polynomial P (x, y) over F of degree (d + δm, e + δn) such
that for every (α, β) ∈ A×B it holds that P (α, β) = R(α, β)E(α, β) = C(α, β)E(α, β).

By hypothesis we know that m > d + δm and n > e + δn; therefore by Lemma 10.3 we
deduce that for all α ∈ A it holds that E(α, y) divides P (α, y) and for all β ∈ B it holds that
E(x, β) divides P (x, β).

By hypothesis we know that 1 > δ′ + ε′ + δ + ε, where we define δ′ := d
m , ε′ := e

n , ε := δ;
therefore by Lemma 10.4 we deduce that E(x, y) divides P (x, y).

So define Q(x, y) := P (x, y)/E(x, y), and note that Q(x, y) is of degree (d, e) and for every
(α, β) ∈ A×B it holds that Q(α, β)E(α, β) = R(α, β)E(α, β) = C(α, β)E(α, β).

Let T = {(α, β) ∈ A×B s.t. R(α, β) = C(α, β) 6= Q(α, β)}. Note that{
(α, β) ∈ A×B s.t. R(α, β) 6= Q(α, β) or C(α, β) 6= Q(α, β)

}
⊆ T ∪ S .

We now argue that |T | ≤ δ2mn. (And doing so will complete the proof, since |S| < δ2mn by
assumption.)

Indeed, assume by way of contradiction that |T | > δ2mn. Then either A1 := {α ∈
A s.t. ∃β ∈ B with (α, β) ∈ T} has size greater than δm or B1 := {β ∈ B s.t. ∃α ∈
A with (α, β) ∈ T} has size greater than δn.

Suppose that |A1| > δm. Fix any α ∈ A1. Note that R(α, y) and Q(α, y) are distinct
polynomials. However, we know that Q(α, y)E(α, y) and R(α, y)E(α, y) agree everywhere on
B. Since |B| = n > e + δn ≥ degy Q + degy E, we deduce that E(α, y) is identically zero,
and thus (x − α) is a factor of E. We conclude that

∏
α∈A1

(x − α) divides E, but this is a
contradiction because |A1| > δm and degxE ≤ δm.

Suppose that |B1| > δn instead. We can then argue in the same way. Namely, fix any β ∈ B1.
Note that R(x, β) and Q(x, β) are distinct polynomials. However, we know that Q(x, β)E(x, β)
and R(x, β)E(x, β) agree everywhere on A. Since |A| = m > d + δm ≥ degxQ + degxE, we
deduce that E(x, β) is identically zero, and thus (y − β) is a factor of E. We conclude that∏
β∈B1

(y − β) divides E, but this is a contradiction because |B1| > δn and degy E ≤ δn.
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10.2.1 Barriers to further improvements

It is not clear whether one can relax further the requirement that 1 > d
m+ e

n+2δ in Theorem 10.5.
So let us briefly discuss how this requirement arises in the proof of Theorem 10.5. There are
three main places:

(i) Having found E such that P (α, β) = R(α, β)E(α, β) = C(α, β)E(α, β) for every (α, β) ∈
A×B, we use the fact that 1 > d

m + δ and 1 > e
n + δ to deduce (via Lemma 10.3) that for

every α ∈ A and β ∈ B it holds that E(α, y) divides P (α, y) and E(x, β) divides P (x, β).

(ii) Then, we use the fact that 1 > d
m + e

n + 2δ to deduce (via Lemma 10.4) that E(x, y)
divides P (x, y).

(iii) Later in the proof, we use (again) the fact the 1 > d
m + δ and 1 > e

n + δ, to deduce that
|T | ≤ δ2mn.

The requirement in (ii) is the more stringent one and, in our view, is the one that one should
be able to relax further. We now briefly describe prospects of improving it.

A limit to Lemma 10.4. In the proof of Theorem 10.5 we are given the set of “errors” S
(i.e., those places where the row polynomial R differs from the column polynomial C), and need
to find an error-locator polynomial E vanishing on S for which we can show that E divides the
induced P . Roughly, the way this is currently done is to ensure that E has low-degree in both
variables (namely, δm and δn respectively, enough to ensure that one always exists) and then
invoking the “Bézout-type” argument of Lemma 10.4.

It is easy to note, however, that the requirement 1 > δ′ + ε′ + δ + ε in Lemma 10.4 (which
translates into the requirement 1 > d

m+ e
n+2δ of (ii)) cannot be improved beyond 2 > δ′+ε′+δ+ε

(which would translate into the relaxed requirement 2 > d
m + e

n + 2δ). Indeed, consider the
choice of polynomials

P (x, y) =

(
m∏
i=1

(x− αi)

)(
n∏
i=1

(y − βi)

)
and E(x, y) = x− y ;

even though E does divide P in every row and column (as P is zero), it is not the case that E
divides P . (In this example, we would have δ = 1

m , ε = 1
n , δ′ = m−1

m , and ε′ = n−1
n , in which

case δ′ + ε′ + δ + ε = 2.)
Nonetheless, this observation is not discouraging at all, as improving Theorem 10.5 to a

requirement such as 2 > d
m + e

n + 2δ would be great, and in fact seems a reasonable goal.

10.3 The Universal Constant for Bivariate Testing

We re-prove Lemma 9.1 via a case analysis that is a slight refinement of the case analysis
originally used in [BSS08, proof of Lemma 6.12]. Specifically, the two analyses differ in that we

split the two cases according to a bound on the sum of δ
(d,∗)
A×B(g) and δ

(∗,e)
A×B(g), while [BSS08]

split according to a bound on each of the two quantities; this improves the constant by a factor
of two.

In fact, we state and prove the (improved) lemma of Ben-Sasson and Sudan in a more general
form, by using the generic fractional degrees d

m and e
n (as opposed to 1

4 and 1
8 as in the original

lemma).
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Define Φ(δ, d,m, e, n) to be a “δ-monotone” predicate denoting whether Theorem 10.5 holds
for the proximity parameter δ > 0 and fractional degrees d

m and e
n .21 (For example, we can

take 1
?
> d

m + e
n + 2δ as the predicate Φ(δ, d,m, e, n).)

Lemma 10.6. Let F be a field. Let d,m, e, n ∈ N be such that Φ(δ, d,m, e, n) = 1 for some
positive δ. Then we can take

c0 := max
{

3, inf
{
δ−2 : δ > 0 and Φ(δ, d,m, e, n) = 1

}}
in Lemma 9.1. That is, for every two finite subsets A and B of F of respective sizes m and n
and every function g : A×B → F, it is the case that

δ
(d,e)
A×B(g) ≤ c0 ·

(
δ

(d,∗)
A×B(g) + δ

(∗,e)
A×B(g)

)
.

Proof of Lemma 10.6. We distinguish between two cases:

Case 1. Suppose that δ
(d,∗)
A×B(g) + δ

(∗,e)
A×B(g) < 1/c0. Fix any ε with 0 < ε < 1/c0− δ(d,∗)

A×B(g)−
δ

(∗,e)
A×B(g). Let R(x, y) be the polynomial corresponding to a codeword in RM(F, A×B, (d, |B|−

1)) closest to g; note that ∆A×B(g,R) = δ
(d,∗)
A×B(g). By the triangle inequality,

δ
(d,e)
A×B(g) = ∆A×B

(
g,RM(F, A×B, (d, e))

)
≤ ∆A×B(g,R) + ∆A×B

(
R,RM(F, A×B, (d, e))

)
= δ

(d,∗)
A×B(g) + ∆A×B

(
R,RM(F, A×B, (d, e))

)
.

Let C(x, y) be the polynomial corresponding to a codeword in RM(F, A×B, (|A|−1, e)) closest

to g; note that ∆A×B(g, C) = δ
(∗,e)
A×B(g). By the triangle inequality,

δ
(d,e)
A×B(g) = ∆A×B

(
g,RM(F, A×B, (d, e))

)
≤ ∆A×B(g, C) + ∆A×B

(
C,RM(F, A×B, (d, e))

)
= δ

(∗,e)
A×B(g) + ∆A×B

(
C,RM(F, A×B, (d, e))

)
.

For the choice δε =
√
δ

(d,∗)
A×B(g) + δ

(∗,e)
A×B(g) + ε <

√
1/c0, note that the following two conditions

hold:

Pr
(α,β)∈A×B

[
R(α, β) 6= C(α, β)

]
= ∆A×B(R,C)

≤ ∆A×B(R, g) + ∆A×B(g, C)

= δ
(d,∗)
A×B(g) + δ

(∗,e)
A×B(g)

< δ2
ε

and
Φ(δε, d,m, n, e) = 1 .

21By “δ-monotone” we mean that if Φ(δ, d,m, e, n) = 1 for some δ then for any δ′ ∈ (0, δ) we also have
Φ(δ′, d,m, e, n) = 1.
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(Indeed, letting δ̄ := sup{δ : δ > 0 and Φ(δ, d,m, e, n) = 1}, we see that c0 = max{3, 1/δ̄2}.
Since δε <

1√
c0

, we deduce that δε <
1√

max{3,1/δ̄2}
≤ 1√

1/δ̄2
= δ̄, so that Φ(δε, d,m, n, e) = 1 as

we just claimed.)
Hence, invoking Theorem 10.5 with the F, A, B, d, m, e, n, R, and C of this proof, and

using δ = δε, we deduce that ∆A×B
(
R,RM(F, A × B, (d, e))

)
< 2δ2

ε and ∆A×B
(
C,RM(F, A ×

B, (d, e))
)
< 2δ2

ε ; combining with the two upperbounds on δ
(d,e)
A×B(g) derived earlier, we obtain

δ
(d,e)
A×B(g) =

δ
(d,e)
A×B(g)

2
+
δ

(d,e)
A×B(g)

2
≤
δ

(d,∗)
A×B(g)

2
+
δ

(∗,e)
A×B(g)

2
+ 2δ2

ε =
5δ

(d,∗)
A×B(g)

2
+

5δ
(∗,e)
A×B(g)

2
+ ε .

Choosing ε small enough, we get δ
(d,e)
A×B(g) ≤ 3 ·

(
δ

(d,∗)
A×B(g) + δ

(∗,e)
A×B(g)

)
.

Case 2. Suppose that δ
(d,∗)
A×B(g) + δ

(∗,e)
A×B(g) ≥ 1/c0. Then the upperbound on δ

(d,e)
A×B(g) holds

trivially:

δ
(d,e)
A×B(g) ≤ 1 = c0 ·

1

c0
≤ c0 ·

(
δ

(d,∗)
A×B(g) + δ

(∗,e)
A×B(g)

)
.

In either case, we have shown the desired upper bound on δ
(d,e)
A×B(g).

10.4 Putting Things Together

Combining Theorem 10.5 and Lemma 10.6, we obtain Theorem 9.2.

For example, by using the best predicate Φ(δ, d,m, e, n) we could prove (namely, 1
?
> d

m +
e
n +2δ as the predicate Φ(δ, d,m, e, n) from Theorem 10.5) and by setting d

m = 1/4 and e
n = 1/8

as in Lemma 9.1, we recover the (improved) constant c0 = 10.24, as opposed to the previous
value c0 = 128.
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11 Improved Soundness for VRS and VVRS

We prove a much tighter soundness analysis for the verifiers VRS and VVRS (see Algorithm 13 and
Algorithm 12), which respectively are supposed to test proximity to RS and VRS over affine
subspaces of finite field extensions of F2. We show the following theorem:

Theorem 11.1. The (strong) PCPP verifiers VRS and VVRS have respective soundness functions

sRS(δ, n) ≥ 1

1 + 2η+1+κlog c

1−2−η

δ and

sVRS(δ, n) ≥ 1

2 + 2η+1+κlog c

1−2−η

δ ,

where n = 2κ, (η, κ0, γ, µ) are any integers satisfying

min
{⌊

κ0+1
2

⌋
− γ ,

⌈
κ0+1

2

⌉
+ γ
}
≥ 1

max
{⌊

κ0+1
2

⌋
− γ + µ+ 1 ,

⌈
κ0+1

2

⌉
+ γ
}
≤ κ0

min
{⌊

κ0+1
2

⌋
− γ + µ+ 1 ,

⌈
κ0+1

2

⌉
+ γ
}
≥ η + 1

κ0 + 3+(−1)κ0 mod 2

2 >

⌊
κ0+

3+(−1)κ0 mod 2

2
2

⌋
− γ + µ+ 1

κ0 + 1+(−1)κ0 mod 2

2 >

⌊
κ0+

1+(−1)κ0 mod 2

2
2

⌋
+ γ

µ+ 1 ≥ η ≥ max{2, µ+ 1}
µ ≥ γ

,

and

c
def
=

(
a+

b

2
+

√
b(b+ 4a)

2

) 1
min{e1,e2}

, where



c0
def
= 4(

1− 1
2η−1−

1
2η

)2
a

def
=

2η+1(1 + c0)

2η−1 − 1
> 0

b
def
= 2µ+2 > 0

e1
def
= log

(
κ0+

3+(−1)κ0 mod 2

2

b(κ0+
3+(−1)κ0 mod 2

2
)/2c−γ+µ+1

)
e2

def
= log

(
κ0+

1+(−1)κ0 mod 2

2

d(κ0+
1+(−1)κ0 mod 2

2
)/2e+γ

)
.

(Alternatively, for any given problem size n = 2κ, one can use the method discussed in Sec-
tion 11.1.4 to compute an “effective” c, which is usually much better than the expression given
above that simultaneously works for all n.)

We perform our improved soundness analyses “from bottom to top” (see the lowermost five
“verifier boxes” in Figure 1 for dependencies):
• in Section 11.1 we analyze the soundness of VRS,=;
• in Section 11.2 we analyze the soundness of VRS,<;
• in Section 11.3 we analyze the soundness of VRS,>;
• in Section 11.4 we analyze the soundness of VRS; and
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• in Section 11.5 we analyze the soundness of VRS.

Remark 11.2 (From Strong PCPPs to “Weak” PCPPs). The PCPPs obtained in Theorem 11.1
are of the “strong” kind, i.e., follow Definition 4.15, instead of the weaker Definition 4.14.

In general, (naive) sequential repetition of a strong PCPP verifier with soundness function
s : (0, 1] × N → (0, 1] to obtain a (“weak”) PCPP verifier with proximity parameter δ ∈ [0, 1]
and soundness parameter s′ ∈ [0, 1] requires a number of repetitions ms,δ,s′(n) such that

ms,δ,s′(n) =

⌈
log(1− s′)

log
(
1− s(δ, n)

)⌉ , (5)

where n is the length of the explicit input.
We are not interested in randomness-efficient sequential repetition (see [BSS08, Proposition

2.9]), because we are not concerned with saving randomness and naive sequential repetition is
much more efficient computationally. Hence, we shall always perform naive sequential repetition
for the purpose of soundness amplification.

In particular, for the specific case s′
def
= 1/2, we get that

ms,δ, 1
2
(n) =

⌈
−1

log
(
1− s(δ, n)

)⌉ ≤ ⌈ 1

s(δ, n)

⌉
.

Thus, we can bound the number of repetitions of VRS and VVRS required for soundness s′RS :=
s′VRS := 1/2 and proximity parameters δRS and δVRS respectively as follows:⌈

log(1− s′RS)

log(1− sRS(δRS, 2κ)
)

⌉
≤
⌈

1

sRS(δRS, 2κ)

⌉
≤
⌈

1

δRS

(
1 +

2η+1 + κlog c

1− 2−η

)⌉
and ⌈

log(1− s′VRS)

log(1− sVRS(δVRS, 2κ)
)

⌉
≤
⌈

1

sVRS(δVRS, 2κ)

⌉
≤
⌈

1

δVRS

(
1 +

2η+1 + κlog c

1− 2−η

)⌉
.

In general, we denote by
VaRS and VaVRS

the amplified versions of VRS and VVRS: they each take the same inputs as the non-amplified
version, as well as the two additional inputs respectively specifying the target soundness and
proximity parameter. See Algorithm 11 and Algorithm 10 for more details.

11.1 Soundness Analysis of VRS,=

The “engine” for testing proximity to RS is the verifier VRS,=, whose job is to test proximity to
RS
(
F2` , L, |L|/8− 1

)
where L is some κ-dimensional affine subspace of F2` .

As mentioned in the introduction, we have generalized the construction of VRS,= (its code
is given in Algorithm 16) and we shall provide a much tighter soundness analysis, provided by
the following theorem:
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Theorem 11.3. Consider a construction of VRS,= parametrized by integers (η, κ0, γ, µ) as de-
scribed above, with

min
{⌊

κ0+1
2

⌋
− γ ,

⌈
κ0+1

2

⌉
+ γ
}
≥ 1

max
{⌊

κ0+1
2

⌋
− γ + µ+ 1 ,

⌈
κ0+1

2

⌉
+ γ
}
≤ κ0

min
{⌊

κ0+1
2

⌋
− γ + µ+ 1 ,

⌈
κ0+1

2

⌉
+ γ
}
≥ η + 1

κ0 + 3+(−1)κ0 mod 2

2 >

⌊
κ0+

3+(−1)κ0 mod 2

2
2

⌋
− γ + µ+ 1

κ0 + 1+(−1)κ0 mod 2

2 >

⌊
κ0+

1+(−1)κ0 mod 2

2
2

⌋
+ γ

µ+ 1 ≥ η ≥ max{2, µ+ 1}
µ ≥ γ

. (6)

There exists a constant c ≥ 1 such that for every positive integer κ and every positive ε the
following holds: if for a function p : L → F2`, a string π, an integer `, and a κ-dimensional
affine subspace L ⊆ F2` it holds that

Pr
[
V

(p,π)
RS,=

(
F2` , L, |L|/2η − 1

)
= 1
]
> 1− ε (7)

then
∆L

(
p,RS

(
F2` , L, |L|/2η − 1

))
≤ clog κ · ε . (8)

In fact, we can take c to be the following value:

c
def
=

(
a+

b

2
+

√
b(b+ 4a)

2

) 1
min{e1,e2}

, where



c0
def
= 4(

1− 1
2η−1−

1
2η

)2
a

def
=

2η+1(1 + c0)

2η−1 − 1
> 0

b
def
= 2µ+2 > 0

e1
def
= log

(
κ0+

3+(−1)κ0 mod 2

2

b(κ0+
3+(−1)κ0 mod 2

2
)/2c−γ+µ+1

)
e2

def
= log

(
κ0+

1+(−1)κ0 mod 2

2

d(κ0+
1+(−1)κ0 mod 2

2
)/2e+γ

)
.

(In particular, we are forced to choose µ = η − 1 and we can optimally choose γ as the integer,
among those allowed by Equation 6, minimizing 1

min{e1,e2} .)

The above theorem simply says that VRS,= is a (strong) PCPP verifier with inverse-polylogarithmic
soundness:

Corollary 11.4. The (strong) PCPP verifier VRS,= has soundness function

sRS,=(δ, n) ≥ δ

κlog c
.

We first prove some lemmas (Section 11.1.1) and introduce basic notation and facts for
the proof (Section 11.1.2), then provide the asymptotic analysis of the soundness function
(Section 11.1.3), and after that we explain how our analysis lets us numerically compute a
better lower bound on the soundness for any given dimension (Section 11.1.4).
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Throughout, for a subset W of F2` ×F2` , we call the β-row of W the set Wβ = {α : (α, β) ∈
W} and the α-column of W the set Wα = {β : (α, β) ∈W}; given a function g : W → F2` ×F2`

the restriction of g to the β-row of W is denoted g|↔β and the restriction of g to the α-column

of W is denoted by g|lα.

11.1.1 Some lemmas

We begin by proving some lemmas needed for the soundness analysis of VRS,= in Section 11.1.3.
The first two lemmas state that the relative distance of a function to bivariate polynomials

whose degree is restricted in only one of the two variables can be understood as the “average” of
the distance of the restriction of the function to a column to univariate low-degree polynomials:

Lemma 11.5. Let F be a finite field, A and B subsets of F, g : A×B → F a function, and d a
positive integer. Then:

δ
(d,∗)
A×B(g) = E

b∈B

[
δ

(d)
A (g|↔b )

]
, (9)

where g|↔b : A→ F denotes the restriction of g to the b-th row.

Lemma 11.6. Let F be a finite field, A and B subsets of F, g : A×B → F a function, and e a
positive integer. Then:

δ
(∗,e)
A×B(g) = E

a∈A

[
δ

(e)
B (g|la)

]
, (10)

where g|la : B → F denotes the restriction of g to the a-th column.

The proofs of these lemmas were left implicit in [BSS08]. For completeness, we give the
proof of Lemma 11.5; an analogous argument can be carried out to prove the (symmetric)
Lemma 11.6.

Proof of Lemma 11.5. Re-writing the left-hand side of Equation 9:

δ
(d,∗)
A×B(g) = min

Q∈F[x,y]
degx(Q)≤d

∆A×B(g,Q)

= min
Q∈F[x,y]

degx(Q)≤d

∣∣∣{(a, b) ∈ A×B : g(a, b) 6= Q(a, b)
}∣∣∣

|A| · |B|

=
1

|A| · |B|
· min
Q∈F[x,y]

degx(Q)≤d

∑
b∈B

∣∣{a ∈ A : g(a, b) 6= Q(a, b)}
∣∣ . (11)

Re-writing the right-hand side of Equation 9:

E
b∈B

[
δ

(d)
A (g|↔b )

]
=

1

|B|
·
∑
b∈B

δ
(d)
A (g|↔b )

=
1

|B|
·
∑
b∈B

min
Q∈F[x]

degx(Q)≤d

∆A(g|↔b , Q)

=
1

|B|
·
∑
b∈B

min
Q∈F[x]

degx(Q)≤d

∣∣∣{a ∈ A : g(a, b) 6= Q(a)
}∣∣∣

|A|
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=
1

|A| · |B|
·
∑
b∈B

min
Q∈F[x]

degx(Q)≤d

∣∣∣{a ∈ A : g(a, b) 6= Q(a)
}∣∣∣ . (12)

Let P be a bivariate polynomial over F (with degree in x at most d) that minimizes the
summation in Equation 11; hence,

δ
(d,∗)
A×B(g) =

1

|A| · |B|
·
∑
b∈B

∣∣∣{a ∈ A : g(a, b) 6= P (a, b)
}∣∣∣ .

For every b ∈ B: define the univariate polynomial Pb over F by Pb(x) := P (x, b); note that the
degree of Pb is at most d; observe that∣∣∣{a ∈ A : g(a, b) 6= P (a, b)

}∣∣∣ =
∣∣∣{a ∈ A : g(a, b) 6= Pb(x)

}∣∣∣
≥ min

Q∈F[x]
degx(Q)≤d

∣∣∣{a ∈ A : g(a, b) 6= Q(a)
}∣∣∣ .

Thus,

δ
(d,∗)
A×B(g) =

1

|A| · |B|
·
∑
b∈B

∣∣∣{a ∈ A : g(a, b) 6= P (a, b)
}∣∣∣

≥ 1

|A| · |B|
·
∑
b∈B

min
Q∈F[x]

degx(Q)≤d

∣∣∣{a ∈ A : g(a, b) 6= Q(a)
}∣∣∣

= E
b∈B

[
δ

(d)
A (g|↔b )

]
. (13)

We now prove the other inequality, necessary to deduce equality. For every b ∈ B: let Rb be
the univariate polynomial over F (with degree in x at most d) that minimizes the b-summand
in the summation of Equation 12, so that

E
b∈B

[
δ

(d)
A (g|↔b )

]
=

1

|A| · |B|
·
∑
b∈B

∣∣∣{a ∈ A : g(a, b) 6= Rb(a)
}∣∣∣ .

Letting, for every b ∈ B, Sb denote any univariate polynomial over F such that Sb(b) = 1 and
Sb(B − {b}) = {0}, define the bivariate polynomial P over F by P (x, y) :=

∑
b∈B Sb(y)Rb(x);

note that the degree of P in x is at most d. Observe that∑
b∈B

∣∣∣{a ∈ A : g(a, b) 6= Rb(a)
}∣∣∣ =

∑
b∈B

∣∣∣{a ∈ A : g(a, b) 6= Sb(b)Rb(a)
}∣∣∣

=
∑
b∈B

∣∣∣{a ∈ A : g(a, b) 6= P (a, b)
}∣∣∣

≥ min
Q∈F[x,y]

degx(Q)≤d

∑
b∈B

∣∣∣{a ∈ A : g(a, b) 6= Q(a, b)
}∣∣∣ .

Thus,

E
b∈B

[
δ

(d)
A (g|↔b )

]
=

1

|A| · |B|
·
∑
b∈B

∣∣∣{a ∈ A : g(a, b) 6= Rb(a)
}∣∣∣
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≥ 1

|A| · |B|
· min
Q∈F[x,y]

degx(Q)≤d

∑
b∈B

∣∣∣{a ∈ A : g(a, b) 6= Q(a, b)
}∣∣∣

= δ
(d,∗)
A×B(g) . (14)

From Equation 13 and Equation 14, we deduce Equation 9, as desired.

The next lemma highlights some properties of vanishing polynomials for affine subspaces,
generalizing those presented in [BSS08, Proposition 6.4].

Lemma 11.7. Let L be an affine subspace of F2` with a basis BL = (a1, . . . , aκ) and offset OL,
and let j ∈ {1, . . . , κ− 1}. Define:

L∗0 := span(a1, . . . , aj)
L0 := L∗0 +OL

and
L∗1 := span(aj+1, . . . , aκ)
L1 := L∗1 +OL

.

Let ZL0 be the vanishing polynomial of L0, i.e., ZL0(x) :=
∏
α∈L0

(x− α). Then:

• The polynomial ZL0 is an F2-affine map and its kernel is L0.

• ZL0(L) = ZL0(L1) and ZL0(L1) is a linear subspace of dimension dim(L1).

• ZL0 is a one-to-one map from L1 to ZL0(L1).

• ZL0 is a |L0|-to-one map from L to ZL0(L1); moreover the affine subspace L0 +β+OL is
mapped to ZL0(β) for each β ∈ L1.

Proof. The above properties follow from observations on the form of ZL0 ; see Algorithm 21.
More precisely, ZL0(x) = ZL∗0(x) + ZL∗0(OL), where ZL∗0 is the vanishing polynomial of L∗0;

moreover, ZL∗0(x) =
∑j

i=0 βix
2i for some coefficients β1, . . . , βj , so that ZL∗0 is an F2-linear map

with kernel equal to L∗0. We deduce that ZL0 is an F2-affine map and its kernel is L0.
Next, since L = (L∗0 ⊕ L∗1) +OL, we know that

ZL0(L) =ZL0

(
(L∗0 ⊕ L∗1) +OL

)
=ZL∗0

(
(L∗0 ⊕ L∗1) +OL

)
+ ZL∗0(OL)

=ZL∗0
(
L∗1 +OL

)
+ ZL∗0(OL)

=ZL0(L1) ;

moreover, the above derivation tells us that ZL0(L1) = ZL∗0(L∗1), which is a linear subspace of
dimension dim(L∗1) = dim(L1).

Next, it is easy to show that ZL∗0 is a one-to-one map from L∗1 to ZL∗0(L∗1) and that ZL∗0 is
a |L∗0|-to-one map from L∗0 ⊕L∗1 to ZL∗0(L∗1). From these facts we immediately deduce that ZL0

is a one-to-one map from L1 to ZL0(L1) and ZL0 is a |L0|-to-one map from L to ZL0(L1).
Finally, for β ∈ L1,

ZL0(L0 + β +OL) =ZL0

(
(L∗0 +OL) + β +OL

)
=ZL∗0

(
(L∗0 +OL) + β +OL

)
+ ZL∗0(OL)

=ZL∗0
(
β
)

+ ZL∗0(OL)

=ZL0(β) ,

as desired.
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11.1.2 Basic notation

We introduce basic notation and facts needed for the soundness analysis of VRS,= in Sec-
tion 11.1.3.

Let (a1, . . . , aκ) be any basis for the given affine subspace L; let O be the offset of L. Define
the affine subspaces L0, L′0, L1, Lβ of L as follows:

L0 := span(a1, . . . , abκ/2c−γ) +O , so that dim(L0) = bκ2 c − γ ;

L′0 := span(a1, . . . , abκ/2c−γ+µ) +O , so that dim(L′0) = bκ2 c − γ + µ ;

∀β ∈ L1, Lβ :=

{
span(a1, . . . , abκ/2c−γ+µ, abκ/2c−γ+µ+1) +O β ∈ L′0
span(a1, . . . , abκ/2c−γ+µ, β +O) +O β 6∈ L′0

, so that dim(Lβ) = bκ2 c − γ + µ+ 1 ;

L1 := span(abκ/2c−γ+1, . . . , aκ) +O , so that dim(L1) = dκ2 e+ γ .

Note that L0, L′0, L1, Lβ are defined similarly to [BSS08, Definition 6.4], with the exception
of the additional parameters γ and µ that we introduce to control their sizes and the fact that
we work with affine (rather than linear) subspaces. Essentially, γ lets us choose a different
decomposition of L into L0 and L1 (originally, γ = 0), and µ lets us control how much bigger is
L′0 as compared to L0 (originally, µ = 2). Also, Equation 6 guarantees that L0, L′0, L1, Lβ all
have positive dimension and all have dimension less than κ (that is, at most κ to make sense,
and in fact strictly less than it so we make “progress”).

Define the linearized polynomial ZL0 to be the vanishing polynomial of L0; more precisely,
since ZL0 is a vanishing polynomial of an affine (rather than linear) subspace, the polynomial
ZL0 is an affine (rather than linear) map. (See Lemma 11.7.)

Define the two disjoint subsets T and S of F2` × F2` as follows:

T :=
⋃
β∈L1

(
(L0 + β +OL)× {ZL0(β)}

)
and S :=

 ⋃
β∈L1

(
Lβ × {ZL0(β)}

)− T .

We now introduce the “format” of a proximity proof π expected by V
(p,π)
RS,=

(
F2` , L, |L|/2η−1

)
;

this format is defined by induction on κ and generalizes [BSS08, Definition 6.4]. If κ ≤ κ0,
then π is empty. Otherwise, π = (f,Π) where f is a partial bivariate function over partial
domain S and Π is a sequence of proximity proofs for Reed–Solomon codes over smaller affine
subspaces. Concretely, Π has a subproof π↔β′ for a Reed–Solomon codeword over Lβ for each

β′ = ZL0(β) ∈ ZL0(L1) and has a subproof π
l
α for a Reed–Solomon codeword over ZL0(L1) for

each α ∈ L′0; thus, overall, Π = {π↔β′ : β′ ∈ ZL0(L1)} ∪ {πlα : α ∈ L′0}.
The next lemma extends [BSS08, Proposition 6.5] to affine subspaces, showing that S ∪ T

can be decomposed into rows and columns that are affine subspaces of size approximately
√
|L|.

Lemma 11.8. The set S∪T is the disjoint union of ZL0(β)-rows taken over β ∈ L1; moreover,
the ZL0(β)-row of S ∪ T is the affine subspace Lβ. Similarly, for every α ∈ L′0, the α-column
of S ∪ T is the affine (in fact, linear) subspace ZL0(L1).

Proof. Fix β ∈ L1. By the last property of Lemma 11.7, the ZL0(β)-row of T is equal to L0+β+
OL; by the definition of Lβ, L0 +β+OL ⊆ Lβ. We deduce that S∪T = ∪β∈L1

(
Lβ×{ZL0(β)}

)
.

In particular, S ∪ T is indeed a disjoint union of ZL0(β)-rows, where each ZL0(β)-row is
equal to Lβ.
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Now fix α ∈ L′0. For every β ∈ L1, we have L′0 ⊆ Lβ and Lβ × {ZL0(β)} ⊆ S and thus
(α,ZL0(β)) ∈ S; hence, ZL0(β) is a subset of the α-column. However, the only non-empty rows
in S ∪ T are the ZL0(β)-rows, so that the α-column of S ∪ T is precisely ZL0(L1).

The proximity proof π = (f,Π) as in [BSS08, Definition 6.4]. Finally, recall the definition
of the two (partial) bivariate functions p̂ : T → F2` and f̂ : S ∪ T → F2` ,

p̂(α, β′) := p(α) and f̂(α, β′) :=

{
f(α, β′) if (α, β′) ∈ S
p̂(α, β′) if (α, β′) ∈ T

.

Finally,
Given the above notation,

11.1.3 The proof by induction

We proceed to the proof of Theorem 11.3. Our proof follows the approach of Ben-Sasson and
Sudan, which is described at high level in [BSS08, Section 6.1]; in fact, we make an explicit effort
to structure our proof in the same way as was done by Ben-Sasson and Sudan, so as to benefit
from their intuitive discussions (of both the algorithm and the proof), which will apply here
too. For the construction of our generalized VRS,=, see Algorithm 16; throughout, we assume
basic familiarity with VRS,=.

Without loss of generality, we assume that ε is chosen so that ε < c− log κ, for otherwise
there is nothing to prove because the relative distance ∆L is at most 1.

Proof of Theorem 11.3. The proof is by induction on κ, the dimension of L.
The base case κ ≤ κ0 is immediate: by construction, VRS,= accepts the implicit input

p : L → F2` if and only if p ∈ RS
(
F2` , L, |L|/2η − 1

)
, because VRS,= queries all the values of p,

and then verifies that the polynomial corresponding to p (obtained via interpolation) has degree
at most |L|/2η − 1.

If instead κ > κ0, assume that the lemma is true for all κ′ ∈ N less than κ. Our goal is now
to prove that the lemma holds for κ as well. So assume that the oracle pair (p, π) is accepted
with probability greater than 1−ε (Equation 7); we want to show that there exists a polynomial
P of degree at most |L|/2η − 1 such that its evaluation over L is at distance at most D(κ) · ε
from p (Equation 8), and want the smallest c such that D(κ) ≤ clog κ.

Recall that V
(p,π)
RS,=

(
F2` , L, |L|/2η−1

)
will, with equal probability, do one of the following two

tests:

• row test: choose a random β ∈ L1 and recurse on V
(f̂ |↔

ZL0
(β)
,π↔
ZL0

(β)
)

RS,=

(
F2` , Lβ, |Lβ|/2η − 1

)
, or

• column test: choose a random α ∈ L′0 and recurse on V
(f̂ |lα,π

l
α)

RS,=

(
F2` , ZL0(L1), |ZL0(L1)|/2η−1

)
.

Step 1: restricting the bivariate function f̂ to a product set L′
0 × ZL0(L1). Define

the following quantities:

• for every β ∈ L1, ε(β) is the probability that the inner verifier rejects (f̂ |↔ZL0
(β), π

↔
ZL0

(β));

• for every α ∈ L′0, ε(α) is the probability that the inner verifier rejects (f̂ |lα, πlα);
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• εrow := Eβ∈L1 [ε(β)];

• εcol := Eα∈L′0 [ε(α)];

• d := |Lβ|/2η − 1 (d is the same regardless of the choice of β ∈ L1);

• e := |ZL0(L1)|/2η − 1.

Note that, by construction of VRS,=, ε = (εrow+εcol)/2 (as a random row test or a random column
test is performed, with equal probability); in particular, εrow, εcol ≤ 2ε. Also, by Lemma 11.8,
we deduce that:

• for every β ∈ L1, f̂ |↔ZL0
(β) has domain Lβ × {ZL0(β)};

• for every α ∈ L′0, f̂ |lα has domain {α} × ZL0(L1).

Using the inductive assumption, we deduce that:

E
β∈L1

[
δ

(d)
Lβ

(f̂ |↔ZL0
(β))
]
≤ E

β∈L1

[
D(dimLβ) · ε(β)

]
= D(bκ2 c − γ + µ+ 1) · εrow and

E
α∈L′0

[
δ

(e)
ZL0

(L1)(f̂ |
l
α)
]
≤ E

α∈L′0

[
D(dimZL0(L1)) · ε(α)

]
= D(dκ2 e+ γ) · εcol .

Define the function f ′ : L′0 ×ZL0(L1)→ F2` by f ′ := f̂ |L′0×ZL0
(L1), i.e., f ′ is the restriction of f̂

to the product set L′0 × ZL0(L1). Then:

• Using Lemma 11.5, as well as the facts that L′0 ⊆ Lβ and |L′0| = |Lβ|/2, we deduce that

δ
(d,∗)
L′0×ZL0

(L1)
(f ′) = E

β∈L1

[
δ

(d)
L′0

(f ′|↔ZL0
(β))
]
≤ E

β∈L1

[
2·δ(d)

Lβ
(f̂ |↔ZL0

(β))
]
≤ 2·D(bκ2 c−γ+µ+1)·εrow .

• Using Lemma 11.6, as well as the fact that f ′|lα = f̂ |lα, we deduce that

δ
(∗,e)
L′0×ZL0

(L1)
(f ′) = E

α∈L′0

[
δ

(e)
ZL0

(L1)(f
′|lα)
]

= E
α∈L′0

[
δ

(e)
ZL0

(L1)(f̂ |
l
α)
]
≤ D(dκ2 e+ γ) · εcol .

Observing that

d = |Lβ|/2η − 1 ≤ |L′0|/2η−1 and e = |ZL0(L1)|/2η − 1 ≤ |ZL0(L1)|/2η ,

we can now invoke Theorem 9.2 with m = |L′0|, n = |ZL0(L1)|, A = L′0, B = ZL0(L1),
g = f ′, and the d and e of this proof (indeed, because η ≥ 2 from Equation 6, we get that
d
m + e

n ≤
1
4 + 1

2 < 1, so that the hypothesis of the theorem is satisfied), we get:

δ
(d,e)
L′0×ZL0

(L1)
(f ′) ≤c0 ·

(
δ

(d,∗)
L′0×ZL0

(L1)
(f ′) + δ

(∗,e)
L′0×ZL0

(L1)
(f ′)

)
≤c0 ·

(
2 ·D(bκ2 c − γ + µ+ 1) · εrow +D(dκ2 e+ γ) · εcol

)
,

where

c0 = max

3,
4(

1− 1

2η−1
− 1

2η

)2

 =
4(

1− 1

2η−1
− 1

2η

)2 .

Step 2: Extending the analysis to the bivariate function p̂. We make the following
definitions:
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• let Q(x, y) be the polynomial over F2` corresponding to a codeword in RM(F2` , L
′
0 ×

ZL0(L1), (d, e)) closest to f ′; in particular, δ
(d,e)
L′0×ZL0

(L1)
(f ′) = ∆L′0×ZL0

(L1)(f
′, Q);

• for every β ∈ L1, define the function f̂ |↔′ZL0
(β) : L′0 → F2` by f̂ |↔′ZL0

(β) := (f̂ |↔ZL0
(β))|L′0 (and

recall that Lβ is the domain of f̂ |↔ZL0
(β), L

′
0 ⊆ Lβ, and |L′0| = |Lβ|/2); and

• for every β ∈ L1, let QZL0
(β)(x) be the polynomial over F2` corresponding to a codeword

in RS(F2` , Lβ, d) closest to f̂ |↔ZL0
(β); in particular, δ

(d)
Lβ

(f̂ |↔ZL0
(β)) = ∆Lβ (f̂ |↔ZL0

(β), QZL0
(β)).

For every β′ ∈ ZL0(L1), we say that β′ is good if Qβ′(x) = Q(x, β′); otherwise we say that β′ is
bad. Define Tgood := {(α, β′) ∈ T : β′ is good}.

We now bound the probability that, over a random (α, β′) ∈ T , p̂(α, β′) 6= Q(α, β′):

Pr
(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′)

]
= Pr

(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′)

∣∣∣β′ is bad
]
· Pr
β′∈ZL0

(L1)

[
β′ is bad

]
+ Pr

(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′)

∣∣∣β′ is good
]
· Pr
β′∈ZL0

(L1)

[
β′ is good

]
≤ 1 · Pr

β′∈ZL0
(L1)

[
β′ is bad

]
+ Pr

(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′)

∣∣∣β′ is good
]
· 1

= Pr
β′∈ZL0

(L1)

[
β′ is bad

]
+ Pr

(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′)

∣∣∣β′ is good
]
.

(15)

We begin with a bound on the first summand Equation 15. Observe that, for every β′ ∈ ZL0(L1),
if β′ is bad, then Qβ′(x) 6= Q(x, β′); since the degrees of both Qβ′(x) and Q(x, β′) are at most
d = |Lβ|/2η − 1 ≤ |L′0|/2η−1, then Qβ′(x) and Q(x, β′) may agree on at most a 1/2η−1 fraction
of the points in L′0. Therefore, by the triangle inequality,

2η−1 − 1

2η−1
≤ ∆L′0

(
Qβ′(x), Q(x, β′)

)
≤ ∆L′0

(
Qβ′(x), f̂ |↔′ZL0

(β)

)
+ ∆L′0

(
f̂ |↔′ZL0

(β), Q(x, β′)
)
.

For reasons that will become clear shortly, we try to understand the expectation, taken over a
random β′ ∈ ZL0(L1), of the above two distances.

From L′0 ⊆ Lβ and |L′0| = |Lβ|/2, we obtain that

∆L′0

(
QZL0

(β)(x), f̂ |↔′ZL0
(β)

)
≤ 2 ·∆Lβ

(
QZL0

(β)(x), f̂ |↔ZL0
(β)

)
= 2 · δ(d)

Lβ
(f̂ |↔ZL0

(β)) ,

so that
E

β∈L1

[
∆L′0

(
QZL0

(β)(x), f̂ |↔′ZL0
(β)

)]
≤ 2 · E

β∈L1

[
δ

(d)
Lβ

(f̂ |↔ZL0
(β))
]
.

Next, observe that, for every β′ ∈ ZL0(L1), f̂ |↔′β′ = f ′|↔β′ , because f ′ is simply the restriction

of f̂ to L′0 × ZL0(L1) and f̂ |↔′β is the restriction of f̂ |↔β to L′0. Hence, for every β′ ∈ ZL0(L1):

it holds that ∆L′0

(
f̂ |↔′β′ , Q(x, β′)

)
= ∆L′0

(
f ′|↔β′ , Q(x, β′)

)
, so that

E
β′∈ZL0

(L1)

[
∆L′0

(
f̂ |↔′β′ , Q(x, β′)

)]
= E

β′∈ZL0
(L1)

[
∆L′0

(
f ′|↔β′ , Q(x, β′)

)]
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=
1

|ZL0(L1)|
·

∑
β′∈ZL0

(L1)

∆L′0

(
f ′|↔β′ , Q(x, β′)

)

=
1

|ZL0(L1)|
·

∑
β′∈ZL0

(L1)

∣∣∣{α ∈ L′0 : Q(α, β′) 6= f ′|↔β′ (α)
}∣∣∣

|L′0|

=
1

|ZL0(L1)|
·

∑
β′∈ZL0

(L1)

∣∣∣{α ∈ L′0 : Q(α, β′) 6= f ′(α, β′)
}∣∣∣

|L′0|

=

∣∣∣{(α, β′) ∈ L′0 × ZL0(L1) : Q(α, β′) 6= f ′(α, β′)
}∣∣∣

|L′0| · |ZL0(L1)|
= ∆L′0×ZL0

(L1)(f
′, Q)

= δ
(d,e)
L′0×ZL0

(L1)
(f ′) .

Hence, we get:

Pr
β∈L1

[
ZL0(β) is bad

]
≤ Pr

β∈L1

[
∆L′0

(
QZL0

(β)(x), f̂ |↔′ZL0
(β)

)
+ ∆L′0

(
f̂ |↔′ZL0

(β), Q(x, ZL0(β))
)
≥ 2η−1 − 1

2η−1

]
≤ 2η−1

2η−1 − 1
· E
β∈L1

[
∆L′0

(
QZL0

(β)(x), f̂ |↔′ZL0
(β)

)
+ ∆L′0

(
f̂ |↔′ZL0

(β), Q(x, ZL0(β))
)]

(via Markov’s inequality)

≤ 2η−1

2η−1 − 1
· E
β∈L1

[
∆L′0

(
QZL0

(β)(x), f̂ |↔′ZL0
(β)

)
+ ∆L′0

(
f̂ |↔′ZL0

(β), Q(x, ZL0(β))
)]

=
2η−1

2η−1 − 1
·
(

E
β∈L1

[
∆L′0

(
QZL0

(β)(x), f̂ |↔′ZL0
(β)

)]
+ E
β∈L1

[
∆L′0

(
f̂ |↔′ZL0

(β), Q(x, ZL0(β))
)])

≤ 2η−1

2η−1 − 1
·
(

2 · E
β∈L1

[
δ

(d)
Lβ

(f̂ |↔ZL0
(β))
]

+ δ
(d,e)
L′0×ZL0

(L1)
(f ′)

)
≤ 2η−1

2η−1 − 1
·
(

2 ·D(bκ2 c − γ + µ+ 1) · εrow + c0 ·
(

2 ·D(bκ2 c − γ + µ+ 1) · εrow +D(dκ2 e+ γ) · εcol
))

=
2η−1

2η−1 − 1
·
(

(2 + 2c0) ·D(bκ2 c − γ + µ+ 1) · εrow + c0 ·D(dκ2 e+ γ) · εcol
)

=
2η−1

2η−1 − 1
·
(

(2 + 2c0) ·D(bκ2 c − γ + µ+ 1) · εrow − c0 ·D(dκ2 e+ γ) · εrow + 2 · c0 ·D(dκ2 e+ γ) · ε
)

≤ 2η−1

2η−1 − 1
·

 (2 + 2c0) ·D(bκ2 c − γ + µ+ 1) · 2ε if
(2 + 2c0) ·D(bκ2 c − γ + µ+ 1) · εrow

≥ c0 ·D(dκ2 e+ γ) · εrow
2 · c0 ·D(dκ2 e+ γ) · ε otherwise


≤ 2η

2η−1 − 1
·max

{
(2 + 2c0) ·D(bκ2 c − γ + µ+ 1) , c0 ·D(dκ2 e+ γ)

}
· ε ,

which is our upper bound for the first summand of Equation 15.
We now bound the second summand of Equation 15. First, recalling that the function

p̂ : T → F2` agrees with f̂ : S ∪ T → F2` on the set T ⊆ S ∪ T , we get:

Pr
(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′)

∣∣∣β′ is good
]
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=
Pr(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′) ∧ β′ is good

]
Pr(α,β′)∈T

[
β′ is good

]
=

∣∣∣{(α, β′) ∈ T : p̂(α, β′) 6= Q(α, β′) ∧ β′ is good
}∣∣∣∣∣∣{(α, β′) ∈ T : β′ is good

}∣∣∣
=

∣∣∣{(α, β′) ∈ T : p̂(α, β′) 6= Q(α, β′) ∧ β′ is good
}∣∣∣∣∣S ∪ T ∣∣ ·

∣∣S ∪ T ∣∣∣∣∣{(α, β′) ∈ T : β′ is good
}∣∣∣

≤

∣∣∣{(α, β′) ∈ S ∪ T : f̂(α, β′) 6= Q(α, β′) ∧ β′ is good
}∣∣∣∣∣S ∪ T ∣∣ ·

∣∣S ∪ T ∣∣∣∣∣{(α, β′) ∈ T : β′ is good
}∣∣∣

= Pr
(α,β′)∈S∪T

[
f̂(α, β′) 6= Q(α, β′)

]
·
∣∣S ∪ T ∣∣
|Tgood|

≤ min
{
δ

(d,∗)
S∪T (f̂) , δ

(∗,e)
S∪T (f̂)

}
·
∣∣S ∪ T ∣∣
|Tgood|

≤ δ(d,∗)
S∪T (f̂) ·

∣∣S ∪ T ∣∣
|Tgood|

= E
β∈L1

[
δ

(d)
Lβ

(f̂ |↔ZL0
(β))
]
·
∣∣S ∪ T ∣∣
|Tgood|

≤ D(bκ2 c − γ + µ+ 1) · εrow ·
∣∣S ∪ T ∣∣
|Tgood|

≤ 2 ·D(bκ2 c − γ + µ+ 1) · ε ·
∣∣S ∪ T ∣∣
|Tgood|

.

For every β ∈ L1:

• by the definition of T , the ZL0(β)-row of T is L0 +β+OL, an affine shift of L0 by β+OL;
and

• by Lemma 11.8, the ZL0(β)-row of S ∪ T is Lβ;

hence, from L0 + β + OL ⊆ Lβ and |Lβ| = 2µ+1|L0|, we deduce that |S ∪ T |/|Tgood| = 2µ+1.
Therefore,

|S ∪ T |
|Tgood|

=
|S ∪ T |
|T |

· |T |
|Tgood|

= 2µ+1· 1

Prβ′∈ZL0
(L1)

[
β′ is good

] = 2µ+1· 1

1− Prβ′∈ZL0
(L1)

[
β′ is bad

] .

Thus, the second summand of Equation 15 can be upper bounded as follows:

Pr
(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′)

∣∣∣β′ is good
]
≤

2µ+2 ·D(bκ2 c − γ + µ+ 1)

1− Prβ′∈ZL0
(L1)

[
β′ is bad

] · ε .
In conclusion, we have established that:

Pr
(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′)

]
≤ Pr

β′∈ZL0
(L1)

[
β′ is bad

]
+

2µ+2 ·D(bκ2 c − γ + µ+ 1)

1− Prβ′∈ZL0
(L1)

[
β′ is bad

] · ε , (16)
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where

Pr
β′∈ZL0

(L1)

[
β′ is bad

]
≤ 2η

2η−1 − 1
·max{(2+2c0) ·D(bκ2 c−γ+µ+1) , c0 ·D(dκ2 e+γ)} ·ε . (17)

Now recall that we have assumed that D(κ) ≤ clog κ; we now seek the smallest c for which we
can show that

Pr
(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′)

]
≤ clog κ · ε . (18)

We observe that, because κ > κ0,

D(bκ2 c − γ + µ+ 1) ≤ clog(bκ
2
c−γ+µ+1) ≤ clog κ

c
log

 κ0+
3+(−1)κ0 mod 2

2

b(κ0+
3+(−1)κ0 mod 2

2 )/2c−γ+µ+1

 =
clog κ

ce1
(19)

and

D(dκ2 e+ γ) ≤ clog(dκ
2
e+γ) ≤ clog κ

c
log

 κ0+
1+(−1)κ0 mod 2

2

d(κ0+
1+(−1)κ0 mod 2

2 )/2e+γ

 =
clog κ

ce2
. (20)

We have also used the fact (from Equation 6) that µ ≥ γ,
κ0+

3+(−1)κ0 mod 2

2

b(κ0+
3+(−1)κ0 mod 2

2
)/2c−γ+µ+1

> 1, and

κ0+
1+(−1)κ0 mod 2

2

d(κ0+
1+(−1)κ0 mod 2

2
)/2e+γ

> 1.

Next, combining Equation 16 and Equation 17, by substituting the upper bounds from
Equation 19 and Equation 20, and recalling that by assumption clog κ · ε ≤ 1, we get:

Pr
(α,β′)∈T

[
p̂(α, β′) 6= Q(α, β′)

]
≤
(

2η

2η−1 − 1
·max{(2 + 2c0) · c−e1 , c0 · c−e2}

+
2µ+2 · c−e1

1− 2η

2η−1−1
·max{(2 + 2c0) · c−e1 , c0 · c−e2}

)
· clog κ · ε , (21)

So, noting that

max{(2 + 2c0) · c−e1 , c0 · c−e2} ≤ (2 + 2c0)cmax{−e1 ,−e2} = (2 + 2c0)c−min{e1 , e2} ,

it suffices to require that

a

x(c)
+

b · 1
x(c)

1− a
x(c)

≤ 1 , where


a

def
=

2η+1(1 + c0)

2η−1 − 1
> 0

b
def
= 2µ+2 > 0

x(c)
def
= cmin{e1 , e2} > a

. (22)

Solving the (second-degree) inequality in x(c), we obtain that the solutions with x(c) > a are:

x(c) ≥ a+
b

2
+

√
b(b+ 4a)

2
. (23)
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Therefore, we choose c so that x(c) = a+ b
2 +

√
b(b+4a)

2 . In other words, we choose c such that

c
def
=

(
a+

b

2
+

√
b(b+ 4a)

2

) 1
min{e1 , e2}

, (24)

and this choice of c will ensure that Equation 18 is satisfied.

Step 3: From bivariate p̂ to univariate p. Let P (x) be the polynomial over F2` defined by
P (x) := Q(x, ZL0(x)); its degree is at most |L|/2η−1, as is possible to see by direct computation:

degP = degx(Q) + deg(ZL0) · degy(Q)

≤ d+ |L0| · e

=

(
|Lβ|
2η
− 1

)
+ |L0| ·

(
|ZL0(L1)|

2η
− 1

)
=

(
|Lβ|
2η
− 1

)
+ |L0| ·

(
|L1|
2η
− 1

)
=
(

2dim(Lβ)−η − 1
)

+ 2dim(L0) ·
(

2dim(L1)−η − 1
)

=
(

2bκ/2c−γ+µ+1−η − 1
)

+ 2bκ/2c−γ ·
(

2dκ/2e+γ−η − 1
)

= (2κ−η − 1) + (2bκ/2c−γ+µ+1−η − 2bκ/2c−γ)

= (2κ−η − 1) + 2bκ/2c−γ · (2µ+1−η − 1) (from Equation 6, µ+ 1 ≤ η)

≤ (2κ−η − 1) + 0

=
|L|
2η
− 1 .

We have also used the fact, guaranteed by Equation 6, that b(κ0 + 1)/2c − γ + µ + 1 > η and
d(κ0 + 1)/2e+ γ > η. Thus, the evaluation of P on L is a codeword in RS

(
F2` , L, |L|/2η − 1

)
,

and, to finish the proof, it suffices to show that the fractional distance of p to the evaluation of
P on L is at most clog κ · ε.

And, indeed, from the upperbound provided by Equation 18 and from the definition of T
as the set T = {(τ, ZL0(τ)) : τ ∈ L}, we deduce that for all but at most a (clog κ · ε)-fraction of
the elements in L it holds that

p(τ) = p̂(τ, ZL0(τ)) = Q(τ, ZL0(τ)) = P (τ),

meaning that p and the evaluation of P on L do agree on all but at most a (clog κ · ε)-fraction
of the elements in L, as desired.

Remark 11.9 (Completeness). In the above proof, we have not used the constraint µ+ 1 ≥ η
from Equation 6. This constraint in fact comes from the completeness proof, which can be
easily carried out in our more generic case by following the proof (in the special case) of [BSS08,
Proposition 6.9]. We need to show that:

If p : L → F2` is the evaluation of a polynomial P (x) of degree less than |L|/2η, then

there exists a proximity proof π for which V
(p,π)
RS,=

(
F2` , L, |L|/2η − 1

)
always accepts.
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We argue by induction, constructing a (partial) bivariate function f : S → F2` for which the
function f̂ : S∪T → F2` is such that the ZL0(β)-row of f̂ is a codeword of RS(F2` , Lβ, |Lβ|/2η−1)

and the α-column of f̂ is a codeword of RS(F2` , ZL0(L1), |ZL0(L1)|/2η − 1) for every β ∈ L1

and α ∈ L′0.
Let Q(x, y) := P (x) mod y − ZL0(x), where ZL0 is the vanishing polynomial of L0, so that:

• P (x) = Q(x, ZL0(x)), and

• degx(Q) < |L0| and degy(Q) = b deg(P )
deg(ZL0

)c < (|L|/2η)/|L0| = |L1|/2η = |ZL0(L1)|/2η.

We can then set f(α, β′) = Q(α, β′) for every (α, β′) ∈ S. Then, observe that f̂ is the evaluation
of Q on S ∪ T : indeed, whenever (α, β′) ∈ S this follows from f̂(α, β′) = f(α, β′) = Q(α, β′);
and, whenever (α, β′) ∈ T , we have that β′ = ZL0(α), so that

p̂(α, β′) = p̂(α,ZL0(α)) = p(α) = P (α) = Q(α,ZL0(α)) = Q(α, β′) .

Therefore:

• for each β ∈ L1, the ZL0(β)-row of S ∪ T is Lβ and, by construction, the restriction of f̂
to Lβ is the evaluation of Q(x, ZL0(β)) over Lβ; hence, because µ+ 1 ≥ η,

deg(Q(x, ZL0(β))) ≤ degx(Q) < |L0| =
|Lβ|
2µ+1

≤
|Lβ|
2η

.

• for each α ∈ L′0, the α-column of f̂ is ZL0(L1) and, by construction, the restriction of f̂
to ZL0(L1) is the evaluation of Q(α, y) on ZL0(L1); hence,

deg(Q(α, y)) ≤ degy(Q) <
|ZL0(L1)|

2η
.

This completes the proof of completeness.

11.1.4 Soundness for concrete dimensions

While the soundness analysis of Section 11.1.3 provides vast improvements in the asymptotic
constant c in the exponent of κ in the soundness lower bound sRS,=(δ, n) ≥ δ

κlog c
, we seek more.

This time, however, we shall turn to a concrete analysis, and only worry for soundness of all
practical problem sizes — our asymptotic analysis was set up in a way that it could easily also
yield a concrete soundness analysis.

Our starting point is Equation 16 and Equation 17. From these two equations, we deduce
that we wish D(κ) to be the smallest function that satisfies the following recursive inequality:

2η

2η−1 − 1
·max{(2 + 2c0) ·D(bκ2 c − γ + µ+ 1) , c0 ·D(dκ2 e+ γ)}

+
2µ+2 ·D(bκ2 c − γ + µ+ 1)

1− 1
D(κ) ·

2η

2η−1−1
·max{(2 + 2c0) ·D(bκ2 c − γ + µ+ 1) , c0 ·D(dκ2 e+ γ)}

≤ D(κ) .

Furthermore, we must have D(κ) > 2η

2η−1−1
·max{(2+2c0) ·D(bκ2 c−γ+µ+1) , c0 ·D(dκ2 e+γ)}.

Solving the inequality and then picking the smallest valid solution (in a similar manner to the
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way we solved the inequality in Section 11.1.3), we obtain the following recursive definition for
D(κ):

D(κ) =

 if κ ≤ κ0 : 1

if κ > κ0 : a(κ) +
b(κ)

2
+

√
b(κ)(b(κ) + 4a(κ))

2

, (25)

where

a(κ) :=
2η

2η−1 − 1
·max{(2 + 2c0) ·D(bκ2 c − γ + µ+ 1) , c0 ·D(dκ2 e+ γ)}

b(κ) := 2µ+2 ·D(bκ2 c − γ + µ+ 1)

The above recursive function lets us, for any given dimension κ, efficiently compute the “effec-
tive” log c for κ as follows:

log c(κ)
def
=

logD(κ)

log κ
. (26)

The behavior of log c(κ) is pleasantly well below the asymptotic bound for all practical sizes
(e.g., for κ up to 100 or 200).

11.2 Soundness Analysis of VRS,<

The (strong) PCPP verifier VRS,< (see Algorithm 15) tests proximity to RS(F, S, d) for d <
|S|/2η − 1; it is constructed using the (strong) PCPP verifier VRS,=.

The soundness of VRS,< was already analyzed (in the special case η = 3) in [BSS08, Propo-
sition 6.13]. We give here a tighter analysis of the soundness of VRS,<, where, compared to
[BSS08, Proposition 6.13], (beyond keeping track of the parameter η) we improve on the re-
duction from the soundness of VRS,= by almost a factor of 2 in the distance argument of the
soundness function.

Lemma 11.10. If VRS,= has monotone soundness function sRS,=(δ, n), then VRS,< has soundness
function

sRS,<(δ, n) ≥ sRS,=

(
2η − 1

2η+1
δ, n

)
.

Proof. Fix an explicit input (F, S, d) and an implicit input p : S → F to VRS,< such that d < dκ,η,
where dκ,η := |S|/2η − 1. Also let π = (π1, π2) be any proximity proof given to VRS,<. Define
δ := ∆S

(
p,RS(F, S, d)

)
and assume that δ > 0.

Consider a parameter µ ∈ (0, 1) that we will optimize later. We distinguish between two
cases:

• Case 1: ∆S

(
p,RS(F, S, dκ,η)

)
> µδ.

Then, by the soundness of VRS,= and the monotonicity of sRS,=, the first subtest of V
(p,π)
RS,< ,

which is V
(p,π1)
RS,= (F, S), rejects with probability at least sRS,=(µδ, n).

• Case 2: ∆S

(
p,RS(F, S, dκ,η)

)
≤ µδ.

Then, p is both δ-far from RS(F, S, d) and µδ-close to RS(F, S, dκ,η). Therefore, there
exists a polynomial P : F → F such that d < deg(P ) ≤ dκ,η and whose evaluation table
over S is µδ-close to p. Define the polynomial Q : F → F by Q(x) := xdκ,η−d, let q be its
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evaluation table over S, and define the function p′ : S → F by p′ = q ·p. Then, p′ is µδ-close
to the evaluation over S of the polynomial P ′ : F → F defined by P ′(x) := Q(x) · P (x);
note that deg(P ′) ≤ (dκ,η − d) + d = dκ,η. Since dκ,η = |S|/2η − 1, the evaluation table of
P ′ over S is 2η−1

2η -far from RS(F, S, dκ,η), so that p′ is
(

2η−1
2η −µδ

)
-far from RS(F, S, dκ,η).

Hence, by the soundness of VRS,=, the second subtest of V
(p,π)
RS,< , which is V

(p′,π2)
RS,= (F, S),

rejects with probability at least sRS,=

(
2η−1

2η − µδ, n
)
, which, by the monotonicity of sRS,=,

is at least sRS,=

(
2η−1

2η δ − µδ, n
)
.

Letting µ = 2η−1
2η+1 (the solution to µ = 2η−1

2η − µ) completes the proof of the lemma.

Corollary 11.11. The (strong) PCPP verifier VRS,< has soundness function

sRS,<(δ, n) ≥ 2η − 1

2η+1
· δ

κlog c
.

Proof. Immediate from Corollary 11.4 and Lemma 11.10.

11.3 Soundness Analysis of VRS,>

The (strong) PCPP verifier VRS,> (see Algorithm 14) tests proximity to RS(F, S, d) for d >
|S|/2η − 1; it is constructed using the (strong) PCPP verifiers VRS,= and VRS,<.

The soundness of VRS,> was already analyzed (in the special case η = 3) in [BSS08, Proposi-
tion 6.13]. We give here a tighter analysis of the soundness of VRS,>, where, compared to [BSS08,
Proposition 6.13], (beyond keeping track of the parameter η) we improve on the reduction from
the soundness of VRS,= and VRS,< by optimizing over how the case analysis is split.

Lemma 11.12. If VRS,= and VRS,< have monotone soundness functions sRS,=(δ, n) and sRS,<(δ, n),
then, for any τ ∈ (0, 1), VRS,> has soundness function

sRS,>(δ, n) ≥ min
{

(1− τ)δ , sRS,=

( τ
2η
δ, n
)
, sRS,<

( τ
2η
δ, n
)}

.

Proof. Fix an explicit input (F, S, d) and an implicit input p : S → F to VRS,> such that d > dκ,η,
where dκ,η := |S|/2η−1. Without loss of generality, d < |S| = 2η(dκ,η+1), otherwise p is always
in RS(F, S, d). Also let π =

(
(p0, π0), . . . , (p2η−1, π2η−1)

)
be any proximity proof given to VRS,>.

Define δ := ∆S

(
p,RS(F, S, d)

)
and assume that δ > 0.

Define the function q : S → F by q(α) =
∑2η−1

i=0 αi(dκ,η+1)pi(α) for all α ∈ S. For any
τ ∈ (0, 1), we distinguish between two cases:

• Case 1: ∆S(p, q) > (1− τ)δ.

Then, by construction, the second subtest of VRS,> rejects with probability at least (1−τ)δ.

• Case 2: ∆S(p, q) ≤ (1− τ)δ.

Then, there exists some pi such that pi is τδ
2η -far from RS(F, S, di). If di = dκ,η, then the

first subtest of V
(p,π)
RS,> , which includes the test V

(pi,πi)
RS,= (F, S), rejects with probability at

least sRS,=

(
τδ
2η , n

)
; if instead di < dκ,η, then the first subtest of V

(p,π)
RS,> , which includes the

test V
(pi,πi)
RS,< (F, S, di), rejects with probability at least sRS,<

(
τδ
2η , n

)
.

Thus the soundness is given by the minimum among the three possible rejection probabilities.

67



Corollary 11.13. The (strong) PCPP verifier VRS,> has soundness function

sRS,>(δ, n) ≥ 1

1 + 2η+1+κlog c

1−2−η

δ .

Proof. From Lemma 11.10, we know that sRS,<(δ, n) ≤ sRS,=(δ, n), so, from Lemma 11.12, we
know that sRS,>(δ, n) ≥ min{(1− τ)δ , sRS,<( τ2η δ, n)}. Moreover, from Corollary 11.11, we know

that sRS,<( τ2η δ, n) ≥ τ
2η

2η−1
2η+1

δ
κlog c

.

Therefore, we need to (optimally) choose τ ∈ (0, 1) to ensure that (1 − τ)δ = τ
2η

2η−1
2η+1

δ
κlog c

;

the equality is achieved for τ = 1
1+a , where a = 1−2−η

2η+1klog c
which, once plugged back in (1− τ)δ

gives the claimed lower bound for sRS,>(δ, n).

11.4 Soundness Analysis of VRS

The (strong) PCPP verifier VRS (see Algorithm 13) tests proximity to RS(F, S, d) with no re-
strictions on d; it is constructed using the (strong) PCPP verifiers VRS,=, VRS,<, and VRS,>.

The soundness analysis of VRS (implicit in [BSS08]) is trivial:

Lemma 11.14. If VRS,=, VRS,<, and VRS,> have respective soundness functions sRS,=, sRS,<, and
sRS,>, then VRS has soundness function

sRS(δ, n) ≥ min
{
sRS,=(δ, n) , sRS,<(δ, n) , sRS,>(δ, n)

}
.

Proof. The verifier VRS simply calls VRS,<, VRS,=, or VRS,>, depending on whether the input degree
d is less than, equal to, or greater than dκ,η := |S|/2η− 1. Hence, the soundness function of VRS

is no worse than the minimum among the soundness functions of VRS,<, VRS,=, and VRS,>.

Corollary 11.15. The (strong) PCPP verifier VRS has soundness function

sRS(δ, n) ≥ 1

1 + 2η+1+κlog c

1−2−η

δ .

Proof. From Lemma 11.10 and Lemma 11.12 we know that sRS,<(δ, n) ≤ sRS,=(δ, n) and sRS,>(δ, n) ≤
sRS,<(δ, n) respectively. Hence, from Lemma 11.14, we know that sRS(δ, n) ≥ sRS,>(δ, n), which
can be lower bounded by Corollary 11.13, yielding the claimed lower bound. (And thus we have
established the first lower bound from Theorem 11.1.)

11.5 Soundness Analysis of VVRS

The (strong) PCPP verifier VVRS (see Algorithm 12) tests proximity to VRS(F, S,H, d) with no
restrictions on d; it is constructed using the (strong) PCPP verifier VRS.

The soundness of VVRS was already analyzed (in the special case η = 3) in [BSS08, Lemma
3.12]. We give here a tighter analysis of the soundness of the soundness of VVRS, where, compared
to [BSS08, Lemma 3.12], (beyond keeping track of the parameter η) we improve on the reduction
from the soundness of VRS by optimizing over how the case analysis is split.

Lemma 11.16. If VRS has monotone soundness function sRS(δ, n), then, for any τ ∈ (0, 1),
VVRS has soundness function

sVRS(δ, n) ≥ min
{
sRS(τδ, n) , (1− τ)δ

}
.
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Proof. Fix an explicit input (F, S,H, d) and an implicit input p : S → F to VVRS. Also let
π = (p̃, π̃) be any proximity proof given to VVRS. Define δ := ∆S

(
p,VRS(F, S,H, d)

)
and

assume that δ > 0.
We distinguish between two cases:

• Case 1: ∆S

(
p̃,RS(F, S, d− |H|)

)
> τδ.

Then, by the soundness of VRS and the monotonicity of sRS, the first subtest of V
(p,π)
VRS ,

which is V
(p̃,π̃)
RS (F, S, d− |H|), rejects with probability at least sRS(cδ, n).

• Case 2: ∆S

(
p̃,RS(F, S, d− |H|)

)
≤ τδ.

Then, there exists a polynomial Q : F→ F of degree at most d−|H| such that its evaluation
table q over S is τδ-close to p̃. Let ZH : F→ F be the vanishing polynomial for the subspace
H (see Algorithm 21), and let zH be its evaluation over S. Observe that the function zH ·q
is a codeword in VRS(F, S,H, d); moreover, ∆S(zH · p̃, zH · q) ≤ τδ. Therefore,

δ = ∆S

(
p,VRS(F, S,H, d)

)
≤∆S

(
p, zH · p̃

)
+ ∆S

(
zH · p̃,VRS(F, S,H, d)

)
= ∆S

(
p, zH · p̃

)
+ ∆S

(
zH · p̃, zH · q

)
≤∆S

(
p, zH · p̃

)
+ τδ ,

so that p is at least (1− τ)δ-far from zH · p̃, and thus the second subtest of V
(p,π)
VRS rejects

with probability at least (1− τ)δ.

Thus the soundness is given by the minimum among the two possible rejection probabilities.

Corollary 11.17. The (strong) PCPP verifier VVRS has soundness function

sVRS(δ, n) ≥ 1

2 + 2η+1+κlog c

1−2−η

δ .

Proof. From Lemma 11.16, know that sVRS(δ, n) ≥ min{sRS(τδ, n) , (1 − τ)δ}. Moreover, from
Corollary 11.15, we know that sRS(δ, n) ≥ 1

1+ 2η+1+κlog c

1−2−η
δ.

We need to (optimally) choose τ ∈ (0, 1) to ensure that (1 − τ)δ = τ 1

1+ 2η+1+κlog c

1−2−η
δ; the

equality is achieved for τ = 1
1+a , where a = 1

1+ 2η+1+κlog c

1−2−η
which, once plugged back in (1− τ)δ

gives the claimed lower bound for sVRS(δ, n). (And thus we have established the second lower
bound from Theorem 11.1.)
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12 Proof of Theorem 4

In this section we prove Theorem 4, discussed in Section 1.6 and formally stated in Section 2.5.

Proof of Theorem 4. Because the reductions of [BSCGT13] preserve the properties we are going
to prove (see Remark 12.1), it suffices to concentrate on our PCP construction for sACSP from
the proof of Theorem 8.1.

We thus proceed as follows. We formally introduce universal arguments, along with our
relaxation of almost universal arguments (Section 12.1). We then prove that the PCPs from
Theorem 8.1 have the relatively-efficient oracle construction property (Section 12.2), have the
non-adaptive verifier property (Section 12.3), have the efficient reverse-sampling property (Sec-
tion 12.4), and the “explicit” proof of knowledge property (Section 12.5). Finally, we show how
to construct almost universal arguments using PCPs with these four properties (Section 12.6).
Throughout, when providing pseudocode, we freely use procedures defined in Section B.3.

Also, it suffices to prove that our PCP construction for sACSP can be used to construct
almost universal arguments, because [Mic00, Val08, CT10, BCCT12a, CT12] only need a subset
of the properties needed for almost universal arguments.22

We note that if one wishes to use a PCP system without an efficient reverse sampler, not all
is lost: as in prior analyses [Kil92, Mic00], one can still obtain succinct arguments of knowledge
for NP by assuming the existence of strong collision-resistant hash functions.

Remark 12.1 (choice of computation model). It suffices to prove the four required properties
for our PCP system for (an arbitrary choice of parameters for) sACSP, because any reasonable
Levin reduction to sACSP will preserve the four properties;23 in particular, so will the Levin
reductions from bounded halting problem on RAMs studied by Ben-Sasson et al. [BSCGT13].
Therefore, our focus will be on the PCP system (PsACSP, VsACSP) that we construct for sACSPs,
and so we will prove our results relative to it, assuming that any reductions have already been
applied by both the prover and verifier. We thus fix an arbitrary choice of parameters for
sACSP.

Remark 12.2 (examples of positive applications). Succinct arguments for NP have been used
to achieve cryptographic tasks potentially very useful in practice. Indeed, most such “positive”
applications of succinct arguments only consider the verification of computations that lie in NP;
in particular, the “full power” of universal arguments (or even almost universal arguments) is
usually not needed.24

Theorem 4 can thus be interpreted as alleviating the “succinct-argument bottleneck” that
is currently preventing real-world practicality of many desirable cryptographic constructions.
Examples of such constructions include:

22More precisely, these latter works require a stronger notion of a non-adaptive verifier than what is required
for universal arguments. Namely, (standard) non-adaptivity only requires that the verifier algorithm can be split
into a query algorithm and a decision algorithm. A stronger notion of adaptivity further requires that the query
algorithm only needs as input a bound on the computation (rather than the actual statement to be proved). Our
PCP construction for sACSP does enjoy this stronger notion of “statement-oblivious” non-adaptivity.

23Even computational Levin reductions, when properly defined, will preserve these properties; see [BSCGT13].
24An exception is the work of Chase and Visconti [CV12], who have shown how to “boost” the knowledge prop-

erty of a universal argument in order to obtain a secure implementation of a database commitment functionality
that hides the input size.
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• Delegation of computation. In a delegation of computation scheme, a weak party
wishes to delegate the computation of a function F on an input x to a another (untrusted)
more powerful party (who may or may not be allowed to contribute his own input to
the computation). If one insists on avoiding expensive offline precomputations, succinct
arguments are essentially the only tool for constructing such schemes.25

• Proof-carrying data. Chiesa and Tromer [CT10, CT12] have shown how to construct
non-interactive succinct arguments of knowledge that can be “recursively composed”,26

using any (constant-round public-coins) succinct argument in a model where parties have
access to a signature functionality. They then show how to use these to construct a
proof-carrying data system, a cryptographic primitive that is able to dynamically compile
a distributed computation into one where a given “local” security property is enforced.
Proof-carrying data systems naturally address a number of integrity concerns that arise
in systems security, and it would be great if such a powerful primitive could be made more
practical.

• Computationally-sound checkers. Micali [Mic98] showed how non-interactive suc-
cinct arguments that are publicly verifiable give rise to computationally-sound checkers, a
cryptographic primitive that is capable of certifying NP heuristics.

Succinct arguments are also one of the most powerful and beautiful combinations of complexity-
theoretic tools (such as PCPs) and cryptographic tools (such as collision-resistant hash func-
tions), and investigating their efficiency is a very exciting research direction with great impact
potential to practice.

Remark 12.3 (computational overheads). The construction of universal arguments starting
from a PCP system (with certain properties) and a collision-resistant hash-function family
[BG08] introduces very little additional computational overhead on top of the PCP system.

Therefore, establishing that almost universal arguments can be constructed, via the same
construction as in [BG08], using a PCP system with a certain concrete-efficiency threshold B
essentially means constructing almost universal arguments with a concrete-efficiency threshold
B′ not much greater than B.27

Other constructions of succinct arguments from PCPs are not as “light”; for example, in
[DCL08, BCCT12a, DFH12, GLR11], one must also use a private information retrieval scheme.

12.1 Universal Arguments and Our Relaxation

A succinct argument for NP is a computationally-sound interactive proof for NP where, for a
given NP language L, in order to check membership of a given instance y in L, the verifier only
needs to run in time that is bounded by p(κ, |y|) and the prover only needs to run in time that is

25Sometimes one is also interested in privacy. Such a property can be achieved by properly combining the suc-
cinct argument with a fully-homomorphic encryption scheme [Gen09]. Fully-homomorphic encryption is another
computationally-heavy primitive, whose efficiency has been studied by, e.g., [GH11b, GH11a, BGV12, GSS12b,
GSS12a]. However, quasilinear-time reductions that are compatible with fully-homomorphic encryption are not
known; see [BSCGT13].

26Also called succinct hearsay arguments: succinct arguments that can prove statements based on “hearsay”,
namely, based on previous proofs.

27It is of course possible to extend the discussion of Section 2.2 about concrete-efficiency thresholds to the case
of succinct arguments.
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bounded by p(κ, T ), where T is the time to (non-deterministically) evaluate the NP verification
relation for L on input y, p is a fixed polynomial independent of L, and κ is a security parameter
that determines the soundness error. A succinct argument of knowledge for NP is a succinct
argument for NP where soundness is strengthened to a proof-of-knowledge property.

Roughly, a universal argument [BG08] is a succinct argument of knowledge for NEXP, where,
in order to check membership of an instance y in L ∈ NEXP, the verifier only needs to run in
time that is bounded by p(κ, |y|, log T ) and the prover only needs to run in time that is bounded
by p(κ, T ), where T is the time to (non-deterministically) evaluate the verification relation for
L on input y, p is a fixed polynomial independent of L, and κ is a security parameter.

The difference between universal arguments and almost universal arguments, achieved by
our PCPs, relates to the efficiency of the knowledge extractor. Details follow.

Barak and Goldreich [BG08] consider a language defined as follows (once adapted to the
case of random-access machines):

Definition 12.4 (Universal Set). The universal set, denoted SU , is the set of all triples
y = (M, x, T ) such that M is (the description of) a two-tape random-access machine, x is a
binary string, and T is a binary integer such that there is a binary string w for which M accepts
(x, w) within T steps (where x is written on the input tape and w on the witness tape). We denote
by RU the witness relation of the universal set SU , and by RU (y) the set of valid witnesses for
a given triple y.

The name “universal” comes from the fact that every language L in NP is linear-time
reducible to SU by mapping every instance x to the triple (ML, x, 2

|x|), where ML a two-tape
random-access machine that decides L, so SU can uniformly handle all NP statements.

A universal argument is simply an efficient interactive argument of knowledge for the uni-
versal set:

Definition 12.5. A universal argument system is a pair of machines (PUA, VUA) that satisfies
the following conditions:

1. Efficient verification: There exists a polynomial p such that for any y = (M, x, T ), the
total time spent by the (probabilistic) verifier strategy VUA, on common input y, is at most
p(|y|) = p(|M |+ |x|+ log T ). In particular, all messages exchanged during the interaction
have length that is at most p(|y|).

2. Completeness via a relatively-efficient prover: For every
(
(M, x, T ), w

)
∈ RU ,

Pr
[
〈PUA(w), VUA〉(M, x, T ) = 1

]
= 1 .

Furthermore, there exists a polynomial p such that for every ((M, x, T ), w) ∈ RU the total
time spent by PUA(w), on common input (M, x, T ), is at most

p
(
|M |+ |x|+ timeM (x, w)

)
≤ p
(
|M |+ |x|+ T

)
.

3. Computational soundness: For every family of polynomial-size prover circuits {P̃κ}κ∈N
and every positive constant c, for all sufficiently large κ ∈ N, for every (M, x, T ) ∈
{0, 1}κ − SU ,

Pr
[
〈P̃κ, VUA〉(M, x, T ) = 1

]
<

1

κc
.
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4. Weak proof of knowledge: Implies computational soundness, and is stated below in Defi-
nition 12.6.

Definition 12.6 (Weak Proof of Knowledge). For every two positive polynomials sUA and pUA
there exist a positive polynomial qUA and a probabilistic polynomial-time weak knowledge extractor
EUA such that for every family of sUA-size prover circuits P̃UA = {P̃UA,κ}κ∈N, for all sufficiently
large κ ∈ N, for every instance y = (M, x, T ) ∈ {0, 1}κ the following holds:

Suppose that the prover circuit P̃UA,κ convinces VUA to accept y with probability greater than
pUA(κ)−1 (taken over a random choice of internal randomness for VUA).

Then, with probability greater than qUA(κ)−1 taken over a random choice of internal random-
ness r for EUA, the weak knowledge extractor EUA, with oracle access to the code of P̃UA,κ and on
input y, is an implicit representation of a valid witness w for y.

In symbols:

∀ sUA ∀ pUA ∃ qUA ∃EUA ∀ sUA-size P̃UA ∃K ∀κ > K ∀ y = (M, x, T ) ∈ {0, 1}κ

if

Pr
[
〈P̃UA,κ, VUA〉(y) = 1

]
>

1

pUA(κ)
,

then

Pr
r

[
there exists w = w1 · · · wT ∈ RU (y) such that, ∀ i ∈ [T ] , E

〈P̃UA,κ〉
UA (y, i ; r) = wi

]
>

1

qUA(κ)
.

Note that, in the definition of the weak proof-of-knowledge property, the knowledge extractor
EUA is required to run in probabilistic polynomial-time, while, on the other hand, the size of
the witness for a particular instance y = (M, x, T ) may be superpolynomial in |y|; therefore, we
can only require that the knowledge extractor is an “implicit representation” of a valid witness.
Moreover, both EUA and p′ may depend on p, so that the proof of knowledge is “weak” in the
sense that it does not imply the standard (or, “strong”) proof of knowledge [BG93].

Barak and Goldreich prove the following theorem:

Theorem 12.7 ([BG08]). If (standard) collision-resistant hashing schemes exist, then there
exist (four-message, public coin) universal arguments.

The weaker form of proof of knowledge that we consider does not insist that the knowledge
extractor is an implicit representation of the witness, and thus we call this property explicit
weak proof of knowledge:

Definition 12.8 (Explicit Weak Proof of Knowledge). For every two positive polynomials sUA
and pUA there exist a positive polynomial qUA and a probabilistic polynomial-time weak knowledge
extractor EUA such that for every family of sUA-size prover circuits P̃UA = {P̃UA,κ}κ∈N, for all
sufficiently large κ ∈ N, for every instance y = (M, x, T ) ∈ {0, 1}κ the following holds:

Suppose that the prover circuit P̃UA,κ convinces VUA to accept y with probability greater than
pUA(k)−1 (taken over a random choice of internal randomness for VUA).

Then, with probability greater than qUA(k)−1 taken over a random choice of internal random-
ness r for EUA, the weak knowledge extractor EUA, with oracle access to the code of P̃UA,k and on
input (y, 1T ), outputs a valid witness w for y,
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In symbols:

∀ sUA ∀ pUA ∃ qUA ∃EUA ∀ sUA-size P̃UA ∃K ∀κ > K ∀ y = (M, x, T ) ∈ {0, 1}κ

if

Pr
[
〈P̃UA,κ, VUA〉(y) = 1

]
>

1

pUA(κ)
,

then

Pr
r

[
w ∈ RU (y)

∣∣∣E〈P̃UA,κ〉
UA (y, 1T ; r) = w

]
>

1

qUA(κ)
.

We thus define almost universal arguments as universal arguments where the proof of knowl-
edge property is relaxed to that of Definition 12.8.

Definition 12.9. An almost universal argument system (PUA, VUA) satisfies [BG08, Defini-
tion 2.1], except that the (implicit) weak proof-of-knowledge property is replaced by the explicit
weak proof-of-knowledge property.

As discussed already in Remark 12.1 in Section 2, we will not consider a “natural” universal
language (such as the universal language relative to random-access machines or relative to
Turing machines), but we will concentrate on sACSPs because the properties we shall prove
will remain “invariant” under appropriate Levin reductions. In such a case, instances consist
of triples y = (parsACSP, x, 1

t), where parsACSP is a choice of parameters for sACSP and (x, 1t) ∈
sACSP(parsACSP). Throughout, we fix a choice of parsACSP, so that it will suffice to specify the
pair (x, 1t).

12.2 Relatively-Efficient Oracle Construction

The first property considered by Barak and Goldreich [BG08, Definiton 3.2, first item] for a
PCP verifier is the existence of an efficient prover that is able to produce accepting PCP oracles
whenever they exist:

Definition 12.10 (Relatively-Efficient Oracle Construction). A PCP verifier V has the relatively-
efficient oracle construction property if there exists a polynomial-time algorithm P such
that, on input any (x, w) ∈ R, algorithm P outputs an oracle πx that makes V always accept.

We remark the PCP verifier VsACSP does satisfy the definition above:

Claim 12.11. The PCP verifier VsACSP has the relatively-efficient oracle construction property
for the relation induced by the language sACSP.

Proof. From Theorem 8.1 we know that the PCP prover PsACSP does run in polynomial time.

Clearly, this first property is the easiest property to establish because it is natural to most
PCP constructions and, in our specific case, comes “for free” from our previous discussions
(indeed, we have worked hard to make the PCP prover not only efficient but also fast!).
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12.3 Non-Adaptive Verifier

The second property considered by Barak and Goldreich [BG08, Definiton 3.2, second item] for
a PCP verifier is the non-adaptivity of the queries:

Definition 12.12 (Non-Adaptive PCP Verifier). A PCP verifier V is non-adaptive if its
queries are based only on the input and its internal coin tosses, independently of the an-
swers given to previous queries. That is, V can be decomposed into a pair of algorithms
Q and D such that on input x and a random tape r, the verifier makes the query sequence
Q(x, r, 1), . . . , Q(x, r, p(|x|)), obtains the answers b1, . . . , bp(|x|), and decides according to the de-
cision of D(x, r, b1 · · · bp(|x|)), where p is some fixed polynomial.

We prove that the PCP verifier VsACSP does satisfy the definition above. While, at high level,
this may be easy to see by inspection of the construction of VsACSP, we believe it necessary to
spell out in careful detail the proof that this is the case, because the “decomposition” of the
verifier VsACSP into a query algorithm and a decision algorithm is needed if one is interested in
studying the concrete efficiency of universal arguments.

Claim 12.13. The PCP verifier VsACSP is a non-adaptive PCP verifier.

The construction of VsACSP is quite complicated, so we will have to proceed one step at a
time. To begin with, as VsACSP is constructed using (both standard and strong) PCPP verifiers,
we also need to specify what we mean by a non-adaptive PCPP verifier:

Definition 12.14 (Non-Adaptive PCPP Verifier). A PCPP verifier V is non-adaptive if its
queries are based only on the explicit input and its internal coin tosses, independently of the
answers given to previous queries. That is, V can be decomposed into a pair of algorithms
Q and D such that on explicit input x and a random tape r, the verifier makes the query
sequence Q(x, r, 1), . . . , Q(x, r, p(|x|)), obtains the answers b1, . . . , bp(|x|), and decides according
to D(x, r, b1 · · · bp(|x|)), where p is some fixed polynomial.

Our proof will be “bottom up”. Please refer to Figure 1 for an algorithmic reference of
the construction of VsACSP. (More specific references will be given in each of the proofs.) Also,
throughout, we fix a specific choice of parameters (η, κ0, γ, µ), which parametrize VsACSP. Finally,
we will not carry out a complexity analysis for the “non-adaptively decomposed” verifiers, as a
detailed analysis for the “non-decomposed” verifiers was already carried out in Section C.

Remark 12.15. Note that the alphabet of proof oracles (as well as implicit inputs) are elements
of a finite field F2` , and not bits. Thus, our descriptions of Q and D will reason about indexing
into strings of such field elements. The departure from binary oracles is mostly inconsequential,
with the exception of a minor note that will come up later in the proof of almost universal
arguments. (See Remark 12.41.)

12.3.1 Non-Adaptivity of VRS,=

Lemma 12.16. VRS,= is a non-adaptive (strong) PCPP verifier.

Proof. The explicit input of VRS,= is (I`,BL,OL), where I` is an irreducible polynomial over F2 of
degree ` with root x, which induces the field extension F2` := F2(x), and BL = (a1, . . . , aκ) and
OL are the basis and the offset of a κ-dimensional affine subspace L ⊆ F2` ; the implicit input
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of VRS,= is a function p : L→ F2` . (For more details on the algorithm VRS,=, see Algorithm 16.)
The proof of proximity π of VRS,= is parsed as a pair (f,Π), where f is a bivariate function over
a subset of F2` × F2` and Π is a sequence of proofs of proximity for Reed–Solomon codes over
(smaller) affine subspaces ; see Algorithm 7 (and references therein) for the formal definition
and for the algorithm that computes the proof of proximity.28 Finally, see Lemma C.1 for
queryRS,=(`, κ), randRS,=(`, κ), and lengthRS,=(`, κ).

The algorithm VRS,= is recursive, and all its queries to the implicit input and proof of
proximity are made during its “base case”, which occurs when dim(L) ≤ κ0; the base case
queries every value of the function found in the implicit input, thus obtaining a codeword
α1 · · ·α2κ , and then directly verifies whether α1 · · ·α2κ is in RS(F2` , L, |L|/2η − 1) or not (and
accepts or rejects accordingly), where dκ,η := |L|/2η − 1 = 2k−η − 1; since dim(L) ≤ κ0, there
are at most 2κ0 values to query.

Therefore, at high level, the query algorithm QRS,= will be the algorithm that produces all
the queries of the base case, while the decision algorithm DRS,= will be the logic used by the
base case to accept or reject, when given the answers to the (at most 2κ0) queries.

However, in the case of QRS,=, the recursive nature of VRS,= makes things slightly more
complicated, because the implicit inputs used by recursive calls are “simulated” by the callers;
thus, we must recursively “translate” queries, starting from the base case, to understand what
“real” queries are made by the top-level algorithm (whose implicit input is not simulated by
any other procedure), thus allowing us to write down QRS,=. (Note that, unlike implicit inputs,
proofs of proximity for recursive calls are already contained in the proof of proximity of the
caller, and thus have no need to be simulated; consequently, we do not have to worry about
translating queries to them.)

Similarly, also in the case of DRS,=, the recursive nature of VRS,= makes things slightly more
complicated, because the interpolation performed by DRS,= (as part of its verification test) needs
to know which affine subspace of F2` is the domain of the function contained in the implicit
input; this information depends on which recursive calls occurred starting from the top-level
algorithm all the way down to the base case.

We now proceed to a detailed description of the algorithm QRS,=, and then for the algorithm
DRS,=.

The “hard work” (mainly, bookkeeping) in QRS,= is carried out by an iterative procedure
that we call Translate; on input an irreducible polynomial I` of degree `, a basis BL and
offset OL for a κ-dimensional affine subspace L ⊆ F2` , a random string r ∈ {0, 1}randRS,=(`,κ)

for the verifier, and an index i ∈ {1, . . . , queryRS,=(`, κ)}, the procedure Translate outputs a
triple (text, elt, j), where j ∈ {1, . . . , |L| + lengthRS,=(`, κ)} is an index into the concatenation
of the implicit input and proximity proof (which is a string of field elements) corresponding
to the i-th query performed by VRS,= on input (I`,BL,OL) and random string r; the other
two components, text ∈ {“implicit-input”, “proximity-proof”} and elt ∈ L ∪ {S ∪ T}, are
additional information used by the iterative procedure.

Thus, the algorithm QRS,= is as follows:

28 In fact, for the purpose of this proof, we change slightly the definition of the proof of proximity. Specifically,
we let f be a bivariate function over S∪T , as opposed to only over S; the values of f on T will never be used, but
including them facilitates bookkeeping of indices. (Bhattacharyya [Bha05] already employed this slight change
in his implementation of VRS,=, as can be verified by inspection of his code, and as reflected in the proof length
analysis in [Bha05, Section 2.2.2], where the function f is reported to require space |L1| · |Lβ | = |L1| · (8 · |L0|) =
2dκ/2e · (8 · 2bk/2c), instead of |L1| · |Lβ − (L0 + β +OL)| = |L1| · (7 · |L0|).)
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QRS,=

(
(I`,BL,OL), r1 · · · rrandRS,=(`,κ), i

)
≡

1. Compute (text, elt, j) := Translate(I`,BL,OL, r, i).
2. Output j.

The algorithm for Translate is the simple strategy that keeps track of index translation (cf.
index translation in [BSS08, Section 6.3]) and indexes into the concatenation of the implicit
input and proximity proof:

Translate
(
I`,BL,OL, r1 · · · rrandRS,=(`,κ), i

)
≡

1. If κ ≤ κ0, then do the following:
(a) αi := GetEltWithIndex(I`,BL,OL, i);
(b) text := “implicit-input”;
(c) elt := αi;
(d) output (text, elt, i).

2. If κ > κ0, then do the following:
(a) BL0

:= (a1, . . . , abκ/2c−γ), OL0
:= OL;

(b) BL′0 := (a1, . . . , abκ/2c−γ+µ), OL′0 := OL;
(c) [ZL0

]A := FindSubspPoly(I`,BL0
,OL0

);
(d) if r1 = 0, then do row test translation:

i. m := 1 + dκ/2e+ γ;
ii. BL1

:= (abκ/2c−γ+1, . . . , aκ), OL1
:= OL;

iii. β := GetRandElt(I`,BL1
,OL1

; r2 · · · r1+dκ/2e+γ);
iv. β′ := [ZL0

]A(β);
v. ιβ := GetIndexOfElt(I`,BL1 ,OL1 , β);
vi. if β ∈ L′0, then BLβ := (a1, . . . , abκ/2c−γ+µ, abκ/2c−γ+µ+1);

vii. if β 6∈ L′0, then BLβ := (a1, . . . , abκ/2c−γ+µ, β +OL′0);
viii. OLβ := OL′0 ;

ix. (text′, elt′, ι) := Translate(I`,BLβ ,OLβ , rm+1 · · · rrandRS,=(`,κ), i);
x. if text′ = “implicit-input”, then:

A. parse elt′ as an element α ∈ Lβ ;
B. α′ := [ZL0 ]A(α);
C. if α′ = β′, then:

– text := “implicit-input”;
– elt := α;
– i := GetIndexOfElt(I`,BL,OL, α);
– output (text, elt, i);

D. if α′ 6= β′, then:
– text := “proximity-proof”;
– elt := (α, β′);
– i := |L|+ |Lβ | · (ιβ − 1) + ι;
– output (text, elt, i);

xi. if text′ = “proximity-proof”, then:
A. text := text′;
B. elt := elt′;
C. i = (ι− |Lβ |+ |L|) + |Lβ | · |L1|+ (ιβ − 1) · lengthRS,=(`,dimLβ);
D. output (text, α, i);

(e) if r1 = 1, then do column test translation:
i. m := 1 + bκ/2c − γ + µ;

ii. α := GetRandElt(I`,BL′0 ,OL′0 ; r2 · · · r1+bκ/2c−γ+µ);
iii. α′ := [ZL0 ]A(α);
iv. ια := GetIndexOfElt(I`,BL′0 ,OL′0 , α);
v. BZL0

(L1) := ([ZL0
]A(abκ/2c−γ+1) + [ZL0

]A(0F
2`

), . . . , [ZL0
]A(aκ) + [ZL0

]A(0F
2`

));
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vi. OZL0
(L1) := [ZL0

]A(OL1
);

vii. (text′, elt′, ι) := Translate(I`,BZL0
(L1),OZL0

(L1), rm+1 · · · rrandRS,=(`,κ), i);
viii. if text′ = “implicit-input”, then:

A. parse elt′ as an element β′ ∈ ZL0(L1);
B. if α′ = β′, then:

– text := “implicit-input”;
– elt := α;
– i := GetIndexOfElt(I`,BL, α);
– output (text, elt, i);

C. if α′ 6= β′, then:
– text := “proximity-proof”;
– elt := (α, β′);
– i := |L|+ |Lβ | · (ι− 1) + ια;
– output (text, elt, i);

ix. if text′ = “proximity-proof”, then:
A. text := text′;
B. elt := elt′;
C. i = (ι − |ZL0

(L1)| + |L|) + |Lβ | · |L1| + |L1| · lengthRS,=(`,dimLβ) + (ια − 1) ·
lengthRS,=(`,dimZL0

(L1));
D. output (text, α, i).

The algorithm for DRS,= is somewhat simpler than the one for QRS,=, because we only need
to keep track of the domain of the function in the implicit input.

DRS,=

(
(I`,BL,OL), r1 · · · rrandRS,=(`,κ), α1 · · ·α2κ

)
≡

1. If κ ≤ κ0, then:
(a) dκ,η = 2κ/2η − 1;
(b) P := SubspaceInterp(I`,BL,OL, (α1, . . . , α2κ))
(c) d̃ := deg(P )
(d) if d̃ ≤ dκ,η, output 1, else output 0

2. If κ > κ0, then:
(a) BL0 := (a1, . . . , abκ/2c−γ), OL0 := OL;
(b) [ZL0 ]A := FindSubspPoly(I`,BL0 ,OL0);
(c) BL′0 := (a1, . . . , abκ/2c−γ+µ), OL′0 := OL;
(d) if r1 = 0, then do row test recursion:

i. m := 1 + dκ/2e+ γ;
ii. BL1 := (abκ/2c−γ+1, . . . , aκ), OL1 := OL;

iii. β := GetRandElt(I`,BL1 ,OL1 ; r2 · · · r1+dκ/2e+γ);
iv. if β ∈ L′0, then BLβ := (a1, . . . , abκ/2c−γ+µ, abκ/2c−γ+µ+1);
v. if β 6∈ L′0, then BLβ := (a1, . . . , abκ/2c−γ+µ, β +OL′0);

vi. OLβ := OL′0 ;

vii. output DRS,=

(
(I`,BLβ ,OLβ ), rm+1 · · · rrandRS,=(`,κ), α1 · · ·α2κ

)
;

(e) if r1 = 1, then do column test recursion:
i. m := 1 + bκ/2c − γ + µ;
ii. α := GetRandElt(I`,BL′0 ,OL′0 ; r2 · · · r1+bκ/2c−γ+µ);

iii. BZL0
(L1) := ([ZL0 ]A(abκ/2c−γ+1)+[ZL0 ]A(0F

2`
), . . . , [ZL0 ]A(aκ)+[ZL0 ]A(0F

2`
));

iv. OZL0
(L1) := [ZL0 ]A(OL1);

v. output DRS,=

(
(I`,BZL0

(L1),OZL0
(L1)), rm+1 · · · rrandRS,=(`,κ), α1 · · ·α2κ

)
.

78



The correctness of both QRS,= and DRS,= easily follows by inspection of the algorithms and the
above discussion.

12.3.2 Non-Adaptivity of VRS,<

Lemma 12.17. VRS,< is a non-adaptive (strong) PCPP verifier.

Proof. The explicit input of VRS,< is (I`,BS ,OS , d), where I` is an irreducible polynomial over F2

of degree ` with root x, which induces the field extension F2` := F2(x), BS = (a1, . . . , aκ) and OS
are a basis and offset of a κ-dimensional affine subspace S ⊆ F2` , and d is a positive integer that
is less than dκ,η := |S|/2η − 1 = 2κ−η − 1; the implicit input of VRS,< is a function p : S → F2` .
(For more details on the algorithm VRS,<, see Algorithm 15.) The proof of proximity π of VRS,< is
parsed as a pair (π1, π2), where both π1 and π2 are proofs of proximity to RS(F2` , S, dκ,η); again,
see Algorithm 6 for more details and for the algorithm that computes the proof of proximity.
Finally, see Lemma C.2 for queryRS,<(`, κ, d), randRS,<(`, κ, d), and lengthRS,<(`, κ, d).

The algorithm VRS,< simply calls VRS,= twice with different inputs, and hence makes at most
queryRS,<(`, κ, d) := 2 · queryRS,=(`, κ) queries. Thus, the algorithm QRS,< calls QRS,= and then,
depending on whether the query was in the first set of queryRS,=(`, κ) queries or in the second
set of queryRS,=(`, κ) queries, does not shift or shifts by the right amount the index output by
QRS,=.29

Thus, the algorithm QRS,< is defined as follows:

QRS,<

(
(I`,BS ,OS , d), r1 · · · rrandRS,<(`,κ,d), i

)
≡

1. If i ∈ {1, . . . , queryRS,=(`, κ)}, then:
(a) r′1 · · · r′randRS,=(`,κ) := r1 · · · rrandRS,=(`,κ);

(b) j := QRS,=((I`,BS ,OS), r′1 · · · r′randRS,=(`,κ), i);

(c) output j.
2. If ι ∈ {1, . . . , queryRS,=(`, κ)}, where ι := i− queryRS,=(`, κ), then:

(a) r′′1 · · · r′′randRS,=(`,κ) := r1 · · · rrandRS,=(`,κ);

(b) j0 := QRS,=((I`,BS ,OS), r′′1 · · · r′′randRS,=(`,κ), ι);

(c) if 0 < j0 ≤ |S|, then j := j0;
(d) if |S| < j0 ≤ |S|+ lengthRS,=(`, κ), then j := lengthRS,=(`, κ) + j0;
(e) output j.

(Note that it just so happens that QRS,= is independent of d.) Note that, in Step 2, we need
to “shift left” the query by queryRS,=(`, κ) before feeding it to QRS,= and, after invoking QRS,=,
we may need to “shift right” its output index, depending if it is to the explicit input or the
proximity proof.

The corresponding algorithm DRS,= is defined as follows:

DRS,<

(
(I`,BS ,OS , d), r1 · · · rrandRS,<(`,κ,d), α1 · · ·αqueryRS,<(`,κ,d)

)
≡

29Note that VRS,< uses its own implicit input as the implicit input to the first call of VRS,=, while it simulates
the implicit input to the second call of VRS,=; it turns out that this simulation for the second call of VRS,= does
not require us to modify the indices returned by QRS,= for queries in the second set of queryRS,=(`, κ) queries
(besides, shifting the indices by the right amount, that is). (Indeed, simulating a query to p′(α) = p(α) · Q(α)
by querying p(α) and multiplying the result by Q(α) has the obvious property that the values of p′ and those of
p appear in the same order in the evaluation tables of either.)

79



1. Parse α1 · · ·αqueryRS,<(`,κ,d) as α′1 · · ·α′queryRS,=(`,κ)α
′′
1 · · ·α′′queryRS,=(`,κ).

2. r′1 · · · r′randRS,=(`,κ) := r1 · · · rrandRS,=(`,κ).

3. b1 := DRS,=((I`,BS ,OS), r′1 · · · r′randRS,=(`,κ), α
′
1 · · ·α′queryRS,=(`,κ)),

4. r′′1 · · · r′′randRS,=(`,κ) := r1 · · · rrandRS,=(`,κ).

5. dκ,η := |S|/2η − 1.
6. For i = 1, . . . , queryRS,=(`, κ), do the following:

(a) j0 := QRS,=((I`,BS ,OS), r′′1 · · · r′′randRS,=(`,κ), i);

(b) if 0 < j0 ≤ |S|, then:
i. γj0 := GetEltWithIndex(I`,BS ,OS , j0);

ii. reset α′′i to the new value γ
dκ,η−d
j0

α′′i .
7. b2 := DRS,=((I`,BS ,OS), r′′1 · · · r′′randRS,=(`,κ), α

′′
1 · · ·α′′queryRS,=(`,κ)).

8. b := b1 ∧ b2.
9. Output b.

(Note that it just so happens that DRS,< is independent of d.) Note that DRS,< is given as input
two sets of query answers α′1 · · ·α′queryRS,=(`,κ) and α′′1 · · ·α′′queryRS,=(`,κ), and invokes DRS,= once

on each; also, before invoking DRS,= on the second set α′′1 · · ·α′′queryRS,=(`,κ), DRS,< has to first

multiply the values to simulate answers from the function p · xdκ,η−d instead of p.
The correctness of both QRS,< and DRS,< easily follows by inspection of the algorithms and

the above discussion, as well as Lemma 12.16.

12.3.3 Non-Adaptivity of VRS,>

Lemma 12.18. VRS,> is a non-adaptive (strong) PCPP verifier.

Proof. The explicit input of VRS,> is (I`,BS ,OS , d), where I` is an irreducible polynomial over F2

of degree ` with root x, which induces the field extension F2` := F2(x), BS = (a1, . . . , aκ) and OS
are a basis and offset of a κ-dimensional affine subspace S of F2` , and d is a positive integer that
is greater than dκ,η := |S|/2η−1 = 2κ−η−1; the implicit input of VRS,> is a function p : S → F2` .
(For more details on the algorithm VRS,>, see Algorithm 14.) The proof of proximity π of VRS,> is
parsed as a 2η-tuple of pairs ((p0, π0), . . . , (p2η−1, π2η−1)), where p0, . . . , p2η−1 are functions from
S to F2` and π0, . . . , π2η−1 are proofs of proximity to RS(F2` , S, d0), . . . ,RS(F2` , S, d2η−1), where
d0, . . . , d2η−1 are the 2η unique non-negative integers such that a polynomial P (x) of degree
d < |S| = 2η(dκ,η+1) can be written as a sum

∑2η−1
i=0 xi(dκ,η+1)Pi(x) with degPi = di ≤ dκ,η; see

Algorithm 5 (and the references therein) for more details and for the algorithm that computes
the proof of proximity. Finally, see Lemma C.3 for queryRS,>(`, κ, d), randRS,>(`, κ, d), and
lengthRS,>(`, κ, d).

Let mκ,η,d := b(d+ 1)/(dκ,η + 1)c. The algorithm VRS,> does some “real” verification only in
the case d < |S| = 2κ, for otherwise it can always accept because RS(F2` , S, d) includes all the
codewords (of length |S|). Hence, dκ,η < d < |S| = 2η(dκ,η + 1), and thus mκ,η,d ∈ {0, . . . , 2η}.
The algorithm VRS,> makes mκ,η,d calls to VRS,= and, in case mκ,η,d · (dκ,η + 1) < (d + 1), also
one call to VRS,<; after that, it performs a consistency test by querying at one value the implicit
input and at one value each of the functions p0, . . . , p2η in the proximity proof (for a total of
1 + 2η additional queries).

Thus, the algorithm QRS,> is defined as follows:

QRS,>

(
(I`,BS ,OS , d), r1 · · · rrandRS,>(`,κ,d), i

)
≡
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1. If d ≥ 2κ, then output ⊥. (Because the decision algorithm DRS,> will accept without
examining any answer to any query.)

2. If d < 2κ, then:
(a) dκ,η := |S|/2η − 1;
(b) mκ,η,d := b(d+ 1)/(dκ,η + 1)c;
(c) dκ,η,d := d−mκ,η,d · (dκ,η + 1);
(d) if i ∈ {1, . . . ,mκ,η,d · queryRS,=(`, κ)}, then:

i. z := b(i− 1)/queryRS,=(`, κ)c;
ii. r

(z)
1 · · · r

(z)
randRS,=(`,κ) := r1 · · · rrandRS,=(`,κ);

iii. i′ := i− z · queryRS,=(`, κ);

iv. j0 := QRS,=((I`,BS ,OS), r
(z)
1 · · · r

(z)
randRS,=(`,κ), i

′);

v. j := |S|+ z · (|S|+ lengthRS,=(`, κ)) + j0;
vi. output j;

(e) if mκ,η,d · (dκ,η + 1) < d + 1 and i′ ∈ {1, . . . , queryRS,<(`, κ, d)}, where i′ :=
i−mκ,η,d · queryRS,=(`, κ), then:

i. r
(mκ,η,d+1)
1 · · · r(mκ,η,d+1)

randRS,<(`,κ,dκ,η,d) := r1 · · · rrandRS,<(`,κ,dκ,η,d);

ii. j0 := QRS,<((I`,BS ,OS , dκ,η,d), r
(mκ,η,d+1)
1 · · · r(mκ,η,d+1)

randRS,<(`,κ,dκ,η,d), i
′);

iii. j := |S|+mκ,η,d · (|S|+ lengthRS,=(`, κ)) + j0;
iv. output j;

(f) if m · (dκ,η + 1) = d + 1 and i0 ∈ {1, . . . , 1 + 2η}, where i0 := i − mκ,η,d ·
queryRS,=(`, κ), then:

i. r
(γ)
1 · · · r

(γ)
κ := r1 · · · rκ;

ii. γ := GetRandElt(I`,BS ,OS ; r
(γ)
1 · · · r

(γ)
κ );

iii. ιγ := GetIndexOfElt(It,BS ,OS , γ);
iv. if i0 = 1, then j := ιγ ;
v. if 1 < i0 ≤ (mκ,η,d + 1), then j := |S|+ (i0 − 2) · (|S|+ lengthRS,=(`, κ)) + ιγ ;
vi. if (mκ,η,d + 1) < i0 ≤ 2η + 1, then j :=⊥;

vii. output j;
(g) if mκ,η,d · (dκ,η + 1) < d + 1 and i0 ∈ {1, . . . , 1 + 2η}, where i0 := i − (mκ,η,d ·

queryRS,=(`, κ) + queryRS,<(`, κ, dκ,η,d)), then:

i. r
(γ)
1 · · · r

(γ)
κ := r1 · · · rκ;

ii. γ := GetRandElt(I`,BS ,OS ; r
(γ)
1 · · · r

(γ)
κ );

iii. ιγ := GetIndexOfElt(It,BS ,OS , γ);
iv. if i0 = 1, then j := ιγ ;
v. if 1 < i0 ≤ (mκ,η,d + 1), then j := |S|+ (i0 − 2) · (|S|+ lengthRS,=(`, κ)) + ιγ ;
vi. if i = mκ,η,d + 2, then j := |S|+mκ,η,d · (|S|+ lengthRS,=(`, κ)) + ιγ ;

vii. if (mκ,η,d + 2) < i0 ≤ 2η + 1, then j :=⊥;
viii. output j.

The corresponding algorithm DRS,> is defined as follows:

DRS,>

(
(I`,BS ,OS , d), r1 · · · rrandRS,>(`,κ,d), α1 · · ·αqueryRS,>(`,κ,d)

)
≡

1. If d ≥ 2κ, then output 1.
2. If d < 2κ, then:
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(a) r
(γ)
1 · · · r

(γ)
κ := r1 · · · rκ;

(b) γ := GetRandElt(I`,BS ,OS ; r
(γ)
1 · · · r

(γ)
κ );

(c) mκ,η,d := b(d+ 1)/(dκ,η + 1)c;
(d) dκ,η,d := d−mκ,η,d · (dκ,η + 1);
(e) if mκ,η,d · (dκ,η + 1) < d+ 1, then:

i. parse α1 · · ·αqueryRS,>(`,κ,d) as

α
(0)
1 · · ·α

(0)
queryRS,=(`,κ) · · ·α

(mκ,η,d−1)
1 · · ·α(mκ,η,d−1)

queryRS,=(`,κ)α
(mκ,η,d)
1 · · ·α(mκ,η,d)

queryRS,<(`,κ,dκ,η,d)vv0 · · · v2η−1 ;

ii. for i = 0, . . . ,mκ,η,d − 1, do the following:

A. r
(i)
1 · · · r

(i)
randRS,=(`,κ) := r1 · · · rrandRS,=(`,κ);

B. bi := DRS,=((I`,BS ,OS), r
(i)
1 · · · r

(i)
randRS,=(`,κ), α

(i)
1 · · ·α

(i)
queryRS,=(`,κ));

iii. r
(mκ,η,d)
1 · · · r(mκ,η,d)

randRS,<(`,κ,dκ,η,d) := r1 · · · rrandRS,<(`,κ,dκ,η,d);

iv. bmκ,η,d := DRS,<((I`,BS ,OS), r
(mκ,η,d)
1 · · · r(mκ,η,d)

randRS,<(`,κ,dκ,η,d), α
(mκ,η,d)
1 · · ·α(mκ,η,d)

queryRS,<(`,κ,dκ,η,d));

v. bconsist := (v
?
=
∑2η−1

i=0 γi(dκ,η+1)vi);
vi. b := bconsist ∧ b0 ∧ · · · ∧ bmκ,η,d−1 ∧ bmκ,η,d ;
vii. output b;

(f) if mκ,η,d · (dκ,η + 1) = d+ 1, then:
i. parse α1 · · ·αqueryRS,>(`,κ,d) as

α
(0)
1 · · ·α

(0)
queryRS,=(`,κ) · · ·α

(mκ,η,d−1)
1 · · ·α(mκ,η,d−1)

queryRS,=(`,κ)vv0 · · · v2η−1 ;

ii. for i = 0, . . . ,mκ,η,d − 1, do

A. r
(i)
1 · · · r

(i)
randRS,=(`,κ) := r1 · · · rrandRS,=(`,κ);

B. bi := DRS,=((I`,BS ,OS), r
(i)
1 · · · r

(i)
randRS,=(`,κ), α

(i)
1 · · ·α

(i)
queryRS,=(`,κ));

iii. bconsist := (v
?
=
∑2η−1

i=0 γi(dκ,η+1)vi);
iv. b := bconsist ∧ b0 ∧ · · · ∧ bm−1;
v. output b.

The correctness of both QRS,> and DRS,> easily follows by inspection of the algorithms and the
above discussion, as well as Lemma 12.16 and Lemma 12.17.

12.3.4 Non-Adaptivity of VRS

Lemma 12.19. VRS is a non-adaptive (strong) PCPP verifier.

Proof. The explicit input of VRS is (I`,BS ,OS , d), where I` is an irreducible polynomial over F2

of degree ` with root x, which induces the field extension F2` := F2(x), BS = (a1, . . . , aκ) and
OS are a basis and offset of a κ-dimensional affine subspace S ⊆ F2` , and d is a positive integer;
the implicit input of VRS is a function p : S → F2` . (For more details on the algorithm VRS, see
Algorithm 13.) The proof of proximity π of VRS is parsed according to whether d is less than,
equal to, or greater than dκ,η := |S|/2η − 1 = 2κ−η − 1; see Algorithm 4 for the algorithm that
computes the proof of proximity according to these three cases. Finally, see Lemma C.4 for
queryRS(`, κ, d), randRS(`, κ, d), and lengthRS(`, κ, d).
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The algorithm VRS simply calls VRS,<, VRS,=, or VRS,> according to the three cases for d with
respect to dκ,η. (Unless κ ≤ η, in which case VRS directly tests the degree.) The algorithms for
QRS and DRS therefore follow immediately.

Thus, the algorithm QRS is defined as follows:

QRS

(
(I`,BS ,OS , d), r1 · · · rrandRS(`,κ,d), i

)
≡

1. If κ ≤ η:
(a) Output j := i.

2. If κ > η:
(a) Set dκ,η := |S|/2η − 1.
(b) If d < dκ,η, then output j := QRS,<

(
(I`,BS ,OS , d), r1 · · · rrandRS,<(`,κ,d), i

)
.

(c) If d = dκ,η, then output j := QRS,=

(
(I`,BS ,OS), r1 · · · rrandRS,=(`,κ), i

)
.

(d) If d > dκ,η, then output j := QRS,>

(
(I`,BS ,OS , d), r1 · · · rrandRS,>(`,κ,d), i

)
.

The corresponding algorithm DRS is defined as follows:

DRS

(
(I`,BS ,OS , d), r1 · · · rrandRS(`,κ,d), α1 · · ·αqueryRS(`,κ,d)

)
≡

1. If κ ≤ η:
(a) P := SubspaceInterp(I`,BS ,OS , (α1, . . . , α2κ))
(b) d̃ := deg(P )
(c) if d̃ ≤ d, output 1, else output 0

2. If κ > η:
(a) Set dκ,η := |S|/2η − 1.
(b) If d < dκ,η, then output b := DRS,<

(
(I`,BS ,OS , d), r1 · · · rrandRS,<(`,κ,d), α1 · · ·αqueryRS,<(`,κ,d)

)
.

(c) If d = dκ,η, then output b := DRS,=

(
(I`,BS ,OS), r1 · · · rrandRS,=(`,κ), α1 · · ·αqueryRS,=(`,κ)

)
.

(d) If d > dκ,η, then output b := DRS,>

(
(I`,BS ,OS , d), r1 · · · rrandRS,>(`,κ,d), α1 · · ·αqueryRS,>(`,κ,d)

)
.

The correctness of both QRS and DRS easily follows by inspection of the algorithms and the
above discussion, as well as Lemma 12.16, Lemma 12.17, and Lemma 12.18.

12.3.5 Non-Adaptivity of VVRS

Lemma 12.20. VVRS is a non-adaptive (strong) PCPP verifier.

Proof. The explicit input of VVRS is (I`,BS ,OS ,BH ,OH , d), where I` is an irreducible polynomial
over F2 of degree ` with root x, which induces the field extension F2` := F2(x), BS = (a1, . . . , aκ)
and OS are a basis and offset of a κ-dimensional affine subspace S ⊆ F2` , BH = (b1, . . . , bλ)
and OH are a basis and offset of a λ-dimensional affine subspace H ⊆ F2` , and d is a positive
integer; the implicit input of VVRS is a function p : S → F2` . (For more details on the algorithm
VVRS, see Algorithm 12.) The proof of proximity π of VVRS is parsed as a pair (p̃, π̃) where
π̃ is a proof of proximity for the function p̃ to RS(F2` , S, d − |H|); see Algorithm 3 for the
algorithm that computes the proof of proximity. Finally, see Lemma C.5 for queryVRS(`, κ, λ, d),
randVRS(`, κ, λ, d), and lengthVRS(`, κ, λ, d).

The algorithm VVRS simply calls VRS on input (I`,BS ,OS , d−|H|) (using the proximity proof
π = (p̃, π̃) as the pair of oracles for VRS), then makes two queries (one to the implicit input p,
and one to the function p̃ in the proximity proof π), and performs a consistency test between
the functions p and p̃.

Thus, the algorithm QVRS is defined as follows:
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QVRS

(
(I`,BS ,OS ,BH ,OH , d), r1 · · · rrandVRS(`,κ,λ,d), i

)
≡

1. If i ∈
{

1, . . . , queryRS(`, κ, d)
}

, then:
(a) r′1 · · · r′randRS(`,κ,d−|H|) := r1 · · · rrandRS(`,κ,d−|H|);

(b) jold := QRS

(
(I`,BS ,OS , d− |H|), r′1 · · · r′randRS(`,κ,d−|H|), i

)
;

(c) j := |S|+ jold;
(d) output j.

2. If i = queryRS(`, κ, d) + 1, then:

(a) r
(α)
1 · · · r(α)

κ := r1 · · · rκ;

(b) α := GetRandElt(I`,BS ,OS ; r
(α)
1 · · · r(α)

κ );
(c) jold := GetIndexOfElt(I`,BS ,OS , α);
(d) j := jold;
(e) output j.

3. If i = queryRS(`, κ, d) + 2, then:

(a) r
(α)
1 · · · r(α)

κ := r1 · · · rκ;

(b) α := GetRandElt(I`,BS ,OS ; r
(α)
1 · · · r(α)

κ );
(c) jold := GetIndexOfElt(I`,BS ,OS , α);
(d) j := |S|+ jold;
(e) output j.

The corresponding algorithm DVRS is defined as follows:

DVRS

(
(I`,BS ,OS ,BH ,OH , d), r1 · · · rrandVRS(`,κ,λ,d), α1 · · ·αqueryVRS(`,κ,λ,d)

)
≡

1. Parse α1 · · ·αqueryVRS(`,κ,λ,d) as α1 · · ·αqueryRS(`,κ,d−|H|)ωω̃.
2. r′1 · · · r′randRS(`,κ,d−|H|) := r1 · · · rrandRS(`,κ,d−|H|).

3. bRS := DRS

(
(I`,BS ,OS , d− |H|), r′1 · · · r′randRS(`,κ,d−|H|), α1 · · ·αqueryRS(`,κ,d−|H|)

)
.

4. r
(α)
1 · · · r(α)

κ := r1 · · · rκ.

5. α := GetRandElt(I`,BS ,OS ; r
(α)
1 · · · r(α)

κ ).
6. [ZH ]A := FindSubspPoly(I`,BH ,OH);
7. τ := [ZH ]A(α).
8. If (ω = τ · ω̃), then bconsist := 1 else bconsist := 0.
9. b := bRS ∧ bconsist.

10. Output b.

The correctness of both QVRS and DVRS easily follows by inspection of the algorithms and the
above discussion, as well as Lemma 12.19.

12.3.6 Non-Adaptivity of VaRS

Lemma 12.21. VaRS is a non-adaptive PCPP verifier.

Proof. The algorithm VaRS is (as the name suggests) an algorithm that amplifies the soundness
of VRS; we let sRS(δ, n) denote the soundness function of VRS. With the exception of the addition
of the proximity parameter δ and target constant soundness s′ ∈ [0, 1], VaRS has the same explicit
input, implicit input, and proof of proximity structure as VRS; all of these were briefly recalled
in Lemma 12.19. For more details on the algorithm VaRS, see Algorithm 11. (Note that there is

84



no prover algorithm that is “specialized” for VaRS, because its corresponding prover is the same
as the one for VRS; more details on the prover for VRS can be found in Algorithm 4.) Finally,
see Lemma C.6 for queryaRS(`, κ, d, δ, s′) and randaRS(`, κ, d, δ, s′).

The algorithm VaRS simply calls VRS several times, on the same input but with different
randomness, and then accepts if and only if all the calls to VRS accept. Hence, the algorithms
QaRS and DaRS for VaRS can easily be constructed using the algorithms QRS and DRS for VRS.

Specifically, the algorithm QaRS is defined as follows:

QaRS

(
(I`,BS ,OS , d, δ, s′), r1 · · · rrandaRS(`,κ,d,δ,s′), i

)
≡

1. m :=
⌈

log(1−s′)
log(1−sRS(δ,2κ))

⌉
.

2. Let z ∈ {1, . . . ,m} be such that i ∈
{

(z−1)·queryRS(`, κ, d)+1, . . . , z·queryRS(`, κ, d)
}

.
3. inew := i− (z − 1) · queryRS(`, κ, d).

4. r
(inew)
1 · · · r(inew)

randRS(`,κ,d) := r(inew−1)·randRS(`,κ,d)+1 · · · rinew·randRS(`,κ,d).

5. j := QRS

(
(I`,BS ,OS , d), r

(inew)
1 · · · r(inew)

randRS(`,κ,d), inew
)
.

6. Output j.

The corresponding algorithm DaRS is defined as follows:

DaRS

(
(I`,BS ,OS , d, δ, s′), r1 · · · rrandaRS(`,κ,d,δ,s′), α1 · · ·αqueryaRS(`,κ,d,δ,s′)

)
≡

1. m :=
⌈

log(1−s′)
log(1−sRS(δ,2κ))

⌉
.

2. Parse α1 · · ·αqueryaRS(`,κ,δ,s′) as α
(1)
1 · · ·α

(1)
queryRS(`,κ,d) · · ·α

(m)
1 · · ·α(m)

queryRS(`,κ,d).

3. For i = 1, . . . ,m, do the following:

(a) r
(i)
1 · · · r

(i)
randRS(`,κ,d) := r(i−1)·randRS(`,κ,d)+1 · · · ri·randRS(`,κ,d);

(b) bi := DRS

(
(I`,BS ,OS , d), r

(i)
1 · · · r

(i)
randRS(`,κ,d), α

(i)
1 · · ·α

(i)
queryRS(`,κ,d)

)
.

4. b := b1 ∧ · · · ∧ bm.
5. Output b.

The correctness of both QaRS and DaRS easily follows by inspection of the algorithms and the
above discussion, as well as Lemma 12.19.

Note that, in our explicit description of the algorithm VRS (from Algorithm 11), we have
chosen to not worry about randomness efficiency, so that each run of the sequential repetition is
performed using fresh randomness; this is in contrast to the randomness-efficient result given for
this step in [BSS08, Proposition 2.9]. Of course, as was mentioned before (see Remark 11.2), the
reason is that a randomness-efficient sampler would complicate the construction unnecessarily,
given that in this work we are not worried about randomness efficiency. Of course, if one wanted
to consider a randomness-efficient VaRS, one could easily modify the above algorithms QaRS and
DaRS to account for that, by simply changing how the two algorithms give randomness to each
sequential run.

12.3.7 Non-Adaptivity of VaVRS

Lemma 12.22. VaVRS is a non-adaptive PCPP verifier.

85



Proof. This proof is completely analogous to that of Lemma 12.21, but, for completeness, we
write it in full. The algorithm VaVRS is (as the name suggests) an algorithm that amplifies the
soundness of VVRS; we let sVRS(δ, n) denote the soundness function of VRS. With the exception
of the addition of the proximity parameter δ and the target soundness s′, VaVRS has the same
explicit input, implicit input, and proof of proximity structure as VVRS; all of these were briefly
recalled in Lemma 12.20. For more details on the algorithm VaVRS, see Algorithm 10. (Note that
there is no prover algorithm that is “specialized” for VaVRS, because its corresponding prover is
the same as the one for VVRS; more details on the prover for VVRS can be found in Algorithm 3.)
Finally, see Lemma C.7 for queryaVRS(`, κ, λ, d, δ, s′) and randaVRS(`, κ, λ, d, δ, s′).

The algorithm VaVRS simply calls VVRS several times, on the same input but with different
randomness, and then accepts if and only if all the calls to VVRS accept. Hence, the algorithms
QaVRS and DaVRS for VaVRS can easily be constructed using the algorithms QVRS and DVRS for
VVRS.

Specifically, the algorithm QaVRS is defined as follows:

QaVRS

(
(I`,BS ,OS ,BH ,OH , d, δ, s′), r1 · · · rrandaVRS(`,κ,λ,d,δ,s′), i

)
≡

1. m :=
⌈

log(1−s′)
log(1−sVRS(δ,2κ))

⌉
.

2. Let z ∈ {1, . . . ,m} be such that i ∈
{

(z−1)·queryVRS(`, κ, λ, d)+1, . . . , z·queryVRS(`, κ, λ, d)
}

.
3. inew := i− z · queryVRS(`, κ, λ, d).

4. r
(inew)
1 · · · r(inew)

randVRS(`,κ,λ,d) := r(inew−1)·randVRS(`,κ,λ,d)+1 · · · rinew·randVRS(`,κ,λ,d).

5. j := QVRS

(
(I`,BS ,OS ,BH ,OH , d), r

(inew)
1 · · · r(inew)

randVRS(`,κ,λ,d), inew
)
.

6. Output j.

The corresponding algorithm DaVRS is defined as follows:

DaVRS

(
(I`,BS ,OS ,BH ,OH , d, δ, s′), r1 · · · rrandaVRS(`,κ,λ,d,δ,s′), α1 · · ·αqueryaVRS(`,κ,λ,d,δ,s′)

)
≡

1. m :=
⌈

log(1−s′)
log(1−sVRS(δ,2κ))

⌉
.

2. Parse α1 · · ·αqueryaVRS(`,κ,λ,d,δ,s′) as α
(1)
1 · · ·α

(1)
queryVRS(`,κ,λ,d) · · ·α

(m)
1 · · ·α(m)

queryVRS(`,κ,λ,d).

3. For i = 1, . . . ,m, do the following:

(a) r
(i)
1 · · · r

(i)
randVRS(`,κ,λ,d) := r(i−1)·randVRS(`,κ,λ,d)+1 · · · ri·randVRS(`,κ,λ,d);

(b) bi := DVRS

(
(I`,BS ,OS ,BH ,OH , d), r

(i)
1 · · · r

(i)
randVRS(`,κ,λ,d), α

(i)
1 · · ·α

(i)
queryVRS(`,κ,λ,d)

)
.

4. b := b1 ∧ · · · ∧ bm.
5. Output b.

The correctness of both QaVRS and DaVRS easily follows by inspection of the algorithms and the
above discussion, as well as Lemma 12.20.

12.3.8 Non-Adaptivity of VsACSP

Lemma 12.23. VsACSP is a non-adaptive PCP verifier.

Proof. The PCP verifier VsACSP is given as input an instance (x, 1t), allegedly in sACSP, and
oracle access to a PCP proof π. (For more details on the algorithm VsACSP, see Algorithm 9.)
The PCP proof π is parsed as a tuple (p0, π0, p1, π1, πc) where π0 is a proof of proximity for p0
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to RS(Ft,Ft, 2mH(t)−1), π1 is a proof of proximity for p1 to VRS(Ft,Ft, Ht, d), and πc is a proof
of proximity for p0 − px to VRS(Ft,Ft, It,log |x|, 2

mH(t) − 1) for a certain degree d, function px,
and affine subspace It,log |x|; see Algorithm 2 for the algorithm that computes the PCP proof.
Finally, see Lemma C.8 for queryACSP(x, t), randACSP(x, t), and lengthACSP(x, t).

The algorithm VsACSP consists of five main steps: in the first step, VsACSP generates the neces-
sary “objects” needed for running subsequent steps; in the second step, VsACSP tests proximity of
p0 to RS (using a specific proximity parameter δRS and target soundness s′RS = 1/2); in the third
step, VsACSP tests proximity of p1 to VRS (using another specific proximity parameter δVRS and
target soundness s′VRS = 1/2); in the fourth step, VsACSP runs a consistency test between p0 and
p1; in the fifth step, VsACSP tests proximity of p0 − px to VRS (using another specific proximity
parameter δc and target soundness s′c = 1/2).

The algorithm QACSP is then easily defined as follows:

QACSP

(
(x, 1t), r1 · · · rrandACSP(x,t), i

)
≡

1. Parameter instantiation:
(a) It := FindIrrPoly(1f(t));
(b) BFt := FieldBasis(It);
(c) (BHt ,OHt) := FindH(1t);
(d) for i = 1, . . . , cN(t), [Nt,i]

A := FindN(1t, i);
(e) [Pt]

A := FindP(1t);
(f) (BIt,log |x| ,OIt,log |x|) := FindI(1t, 1log |x|);

(g) d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))).

2. Deduce the amount of randomness and number of queries for the amplified verifiers:

(a) δRS := (8
∑cN(t)

i=1 deg(Nt,i))
−1 and s′RS := 0.5;

(b) nqaRS := queryaRS(f(t), f(t), 2mH(t) − 1, δRS, s
′
RS);

(c) nraRS := randaRS(f(t), f(t), 2mH(t) − 1, δRS, s
′
RS);

(d) δVRS := 1
8 and s′VRS := 0.5;

(e) nqaVRS := queryaVRS(f(t), f(t),mH(t), d, δVRS, s
′
VRS);

(f) nraVRS := randaVRS(f(t), f(t),mH(t), d, δVRS, s
′
VRS);

(g) δc := (8
∑cN(t)

i=1 deg(Nt,i))
−1 and s′c := 0.5;

(h) nqc := queryaVRS(f(t), f(t), log |x|, 2mH(t) − 1, δc, s
′
c);

(i) nrc := randaVRS(f(t), f(t), log |x|, 2mH(t) − 1, δc, s
′
c).

3. If i ∈
{

1, . . . , nqaRS

}
, then:

(a) r′1 · · · r′nraRS
:= r1 · · · rnraRS ;

(b) jold := QaRS

(
(It,BFt , 0Ft , 2mH(t) − 1, δRS, s

′
RS), r′1 · · · r′nraRS

, i
)
;

(c) j := jold;
(d) output j.

4. If inew ∈ {1, . . . , nqaVRS}, where inew := i− nqaRS, then:
(a) r′′1 · · · r′′nraVRS

:= r1 · · · rnraVRS ;
(b) jold := QaVRS

(
(It,BFt , 0Ft ,BHt ,OHt , d, δVRS, s

′
VRS), r′′1 · · · r′′nraVRS

, inew
)
;

(c) j := 2f(t) + lengthaRS(f(t), f(t), 2mH(t) − 1, δRS, s
′
RS) + jold;

(d) output j.
5. If inew ∈ {1, . . . , cN(t) + 1}, where inew := i− nqaRS − nqaVRS, then:

(a) r
(α)
1 · · · r(α)

f(t) := r1 · · · rf(t);

(b) α := GetRandElt(It,BFt , 0Ft ; r
(α)
1 · · · r(α)

f(t));
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(c) if inew ∈
{

1, . . . , cN(t)
}

, then:
i. αinew := [Nt,inew ]A(α);
ii. jαinew := GetIndexOfElt(It,BFt , 0Ft , αinew);

iii. j := jαinew ;
iv. output j;

(d) if inew = cN(t) + 1, then:
i. jα := GetIndexOfElt(It,BFt , 0Ft , α);
ii. j := 2f(t) + lengthaRS(f(t), f(t), 2mH(t) − 1, δRS, s

′
RS) + jα;

iii. output j.
6. If inew ∈ {1, . . . , nqc}, where inew := i− nqaRS − nqaVRS − (cN(t) + 1), then:

(a) r′′1 · · · r′′nrc := r1 · · · rnrc ;
(b) jold := QaVRS

(
(It,BFt , 0Ft ,BIt,log |x| ,OIt,log |x| , 2mH(t) − 1, δc, s

′
c), r

′′
1 · · · r′′nrc , inew

)
;

(c) if j ∈ {1, . . . , 2f(t)}, then j := jold;
(d) if j − 2f(t) ∈ {1, . . . , lengthaVRS(f(t), f(t), log |x|, d, δc, s′c)},

then j := lengthaRS(f(t), f(t), 2mH(t) − 1, δRS, s
′
RS)

+2f(t) + lengthaVRS(f(t), f(t),mH(t), d, δVRS, s
′
VRS) + jold;

(e) output j.

The corresponding algorithm DACSP is defined as follows:

DACSP

(
(x, 1t), r1 · · · rrandACSP(x,t), α1 · · ·αqueryACSP(x,t)

)
≡

1. Parameter instantiation:
(a) It := FindIrrPoly(1f(t));
(b) BFt := FieldBasis(It);
(c) (BHt ,OHt) := FindH(1t);
(d) for i = 1, . . . , cN(t), [Nt,i]

A := FindN(1t, i);
(e) [Pt]

A := FindP(1t);
(f) (BIt,log |x| ,OIt,log |x|) := FindI(1t, 1log |x|);

(g) d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))).

2. Deduce the amount of randomness and number of queries for the amplified verifiers:

(a) δRS := (8
∑cN(t)

i=1 deg(Nt,i))
−1 and s′RS := 0.5;

(b) nqaRS := queryaRS(f(t), f(t), 2mH(t) − 1, δRS, s
′
RS);

(c) nraRS := randaRS(f(t), f(t), 2mH(t) − 1, δRS, s
′
RS);

(d) δVRS := 1
8 and s′VRS := 0.5;

(e) nqaVRS := queryaVRS(f(t), f(t),mH(t), d, δVRS, s
′
VRS);

(f) nraVRS := randaVRS(f(t), f(t),mH(t), d, δVRS, s
′
VRS);

(g) δc := (8
∑cN(t)

i=1 deg(Nt,i))
−1 and s′c := 0.5;

(h) nqc := queryaVRS(f(t), f(t), log |x|, 2mH(t) − 1, δc, s
′
c);

(i) nrc := randaVRS(f(t), f(t), log |x|, 2mH(t) − 1, δc, s
′
c).

3. Parse α1 · · ·αqueryACSP(x,t) as

α′1 · · ·α′nqaRS
α′′1 · · ·α′′nqaVRS

γ1 · · · γcN(t)ωτ1 · · · τnqc .

4. r′1 · · · r′nraRS
:= r1 · · · rnraRS .

5. bRS := DaRS

(
(It,BFt , 0Ft , 2mH(t) − 1, δRS, s′RS), r′1 · · · r′nraRS

, α′1 · · ·α′nqaRS

)
.

6. r′′1 · · · r′′nraVRS
:= r1 · · · rnraVRS .
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7. bVRS := DaVRS

(
(It,BFt , 0Ft ,BHt ,OHt , d, δVRS, s

′
VRS), r′′1 · · · r′′nraVRS

, α′′1 · · ·α′′nqaVRS

)
.

8. r
(α)
1 · · · r(α)

f(t) := r1 · · · rf(t);

9. α := GetRandElt(It,BFt , 0Ft ; r
(α)
1 · · · r(α)

f(t)).

10. [Pt]
A := FindP(1t).

11. ω′ := [Pt]
A(α, γ1, . . . , γcN(t)).

12. bP := (ω′
?
= ω).

13. r′′′1 · · · r′′′nrc := r1 · · · rnrc .
14. bc := DaVRS

(
(It,BFt , 0Ft ,BIt,log |x| ,OIt,log |x| , 2mH(t) − 1, δc, s

′
c), r

′′′
1 · · · r′′′nrc , τ1 · · · τnqc

)
.

15. b := bRS ∧ bVRS ∧ bP ∧ bc.
16. Output b.

The correctness of both QACSP and DACSP easily follows by inspection of the algorithms and the
above discussion, as well as Lemma 12.21 and Lemma 12.22.

12.4 Efficient Reverse Sampling

The third property considered by Barak and Goldreich [BG08, Definiton 3.2, third item] for
a PCP verifier is the ability to efficiently find a random string that is consistent with a given
query:

Definition 12.24 (Efficient Reverse Sampling). A PCP (resp., PCPP) verifier V is efficiently
reverse samplable if V is a non-adaptive PCP (resp., PCPP) verifier, and hence can be
decomposed into the pair of algorithms Q and D, and, moreover, there exists a probabilistic
polynomial-time algorithm S such that, given any string x and positive integers i and j, S(x, i, j)
outputs a uniformly distributed string r that satisfies Q(x, r, i) = j.

We prove that the PCP verifier VsACSP does satisfy the definition above — that this is so is
not clear, especially in light of the recursive nature of VRS,=, used as part of the construction of
VsACSP.

Claim 12.25. The PCP verifier VsACSP is efficiently reverse samplable.

Again, the construction of VsACSP is quite complicated, and we will have to proceed one step
at a time. As before, our proof will be “bottom up”. Please refer to Figure 1 for an algorithmic
reference of the construction of VsACSP. (More specific references will be given in each of the
proofs.) Also, as we did in Section 12.3, we fix throughout a specific choice of parameters
(η, κ0, γ, µ), which parametrize VsACSP.

Throughout, the symbol ◦ will denote string contatenation.

12.4.1 Efficient Reverse Sampling of VRS,=

Lemma 12.26. The (strong) PCPP verifier VRS,= is efficiently reverse-samplable.

Proof. Recall the definitions from Lemma C.1. We have already established in Lemma 12.16
that VRS,= is a non-adaptive (strong) PCPP verifier. We are left to construct the probabilistic
polynomial-time “reverse sampler”: on input (I`,BL,OL), a query number i ∈ {1, . . . , queryRS,=(`, κ)},
and a query index j ∈ {1, . . . , |L|+ lengthRS,=(`, κ)},

SRS,=

(
(I`,BL,OL), i, j

)
≡
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1. Compute (r, n, t) := RandSamp
(
(I`,BL,OL), i, j

)
.

2. Output r.

Similarly to QRS,=, we have exported the “hard work” of SRS,= to an iterative procedure,
RandSamp passing more state; on input an irreducible polynomial I` of degree ` with root
x, a basis BL and offset OL for a κ-dimensional affine subspace L ⊆ F2` , a query number
i ∈ {1, . . . , queryRS,=(`, κ)}, and a query index j ∈ {1, . . . , |L|+ lengthRS,=(`, κ)}, the procedure

RandSamp outputs a triple (r, n, t), where r ∈ {0, 1}randRS,=(`,κ) is a uniformly distributed
string satisfying j = QRS,=

(
(I`,BL,OL), r, i

)
, n is the cardinality of all such strings r, and

t = randRS,=(`, κ).
Essentially, deducing the algorithm RandSamp amounts to carefully examining the algo-

rithm Translate, which was the iterative procedure doing the “hard work” of QRS,=, on known
inputs I`, BL, OL, and i but without knowing the input randomness r; of course (and this is
the point), we do know that the output is (text, elt, j), for some text and elt, and the goal
of RandSamp is to find a string r that is consistent with the known inputs and output and,
moreover, is in fact uniformly distributed among all such strings; it will be convenient to also
keep track of the numbers n and t described in the previous paragraph.

At high level, the algorithm RandSamp will act differently, depending on whether the query
j under consideration is to the implicit input p : L→ F2` or to the proximity proof π = (f,Π);
in the former case, j must be between 1 and |L| = 2κ, while, in the latter case, j − |L| must be
between 1 and |Lβ| · |L1|+ |L1| · lengthRS,=(`, bk/2c−γ+µ+1)+ |L′0| · lengthRS,=(`, dk/2e+γ). In
fact, if the query j is to the proximity proof, RandSamp will also distinguish between the case
that j is a query to f , a query to one of the row-test proofs of proximity, and a query to one of
the column-test proofs of proximity. We now describe the algorithm RandSamp in detail:

RandSamp
(
(I`,BL,OL), i, j

)
≡

1. if κ ≤ κ0, then output (ε, 0, 0).

indeed, in the base case of QRS,=, no randomness is used, and thus here none need be sampled

2. if κ > κ0, then do the following:

(a) m0 := dκ/2e+ γ, m1 := bκ/2c − γ + µ;

(b) m := 1 + max{m0,m1};
(c) BL0

:= (a1, . . . , abκ/2c−γ); OL0
:= OL;

(d) BL′0 := (a1, . . . , abκ/2c−γ+µ), OL′0 := OL;

(e) BL1 := (abκ/2c−γ+1, . . . , aκ), OL1 := OL;

(f) [ZL0
]A := FindSubspPoly(I`,BL0

,OL0
);

(g) BZL0
(L1) := ([ZL0

]A(abκ/2c−γ+1) + [ZL0
]A(0F

2`
), . . . , [ZL0

]A(aκ) + [ZL0
]A(0F

2`
));

(h) if j′ ∈ {1, . . . , 2κ}, where j′ := j, then do the following:

i.e., j is a query into the implicit input p : L→ F2`

i. α := GetEltWithIndex(I`,BL,OL, j′);
ii. deduce β ∈ L1 such that [ZL0

]A(β) = [ZL0
]A(α);

iii. if β ∈ L′0, then BLβ := (a1, . . . , abκ/2c−γ+µ, abκ/2c−γ+µ+1);

iv. if β 6∈ L′0, then BLβ := (a1, . . . , abκ/2c−γ+µ, β +OL′0);

v. OLβ := OL′0 ;

vi. if α 6∈ L′0, then do the following:

A. r1 := 0;

B. r2 · · · r1+m0
:= GetRandFromElt(I`,BL1

,OL1
, β);

C. m̃0 := m− 1−m0;
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D. if m̃ > 0, draw rm−m̃0+1, . . . , rm ∈ {0, 1} at random;

E. j′′ := GetIndexOfElt(I`,BLβ ,OLβ , α);

F. (r0, n0, `0) := RandSamp
(
(I`,BLβ ,OLβ ), i, j′′

)
;

G. output (r1 · · · rm ◦ r0, 2m̃0 · n0, 2m · `0);

vii. if α ∈ L′0, then do the following:

first figure out the probability mass to assign to a row test

A. r
(0)
2 · · · r

(0)
1+m0

:= GetRandFromElt(I`,BL1
,OL1

, β);

B. m̃0 := m− 1−m0;

C. if m̃0 > 0, draw r
(0)
m−m̃0+1, . . . , r

(0)
m ∈ {0, 1} at random;

D. j′′ := GetIndexOfElt(I`,BLβ ,OLβ , α);

E. (r0, n0, `0) := RandSamp
(
(I`,BLβ ,OLβ ), i, j′′

)
;

then figure out probability mass to assign to a column test

F. r
(1)
2 · · · r

(1)
1+m1

:= GetRandFromElt(I`,BL′0 ,OL′0 , α);

G. m̃1 := m− 1−m1;

H. if m̃1 > 0, draw r
(1)
m−m̃1+1, . . . , r

(1)
m ∈ {0, 1} at random;

I. j′′ := GetIndexOfElt(I`,BZL0
(L1),OZL0

(L1), α);

J. (r1, n1, `1) := RandSamp
(
(I`,BL′0 ,OL′0), i, j′′

)
;

finally put everything together

K. r1 · · · rm◦r is set to r
(0)
1 · · · r

(0)
m ◦r0 w.p. 2m̃0 ·n0

2m·`0 and to r
(1)
1 · · · r

(1)
m ◦r1 w.p. 2m̃1 ·n1

2m·`1 ;

L. output (r1 · · · rm ◦ r, 2m̃0 · n0 + 2m̃1 · n1, 2m · `0 + 2m · `1);

(i) if j′ ∈ {1, . . . , 2κ+µ+1}, where j′ := j − 2κ, then do the following:

i.e., j is a query into the bivariate evaluation f

i. ιrow := bj′/2dκ/2e+γc;
ii. ιcol := j′ − ιcol · 2dκ/2e+γ ;

iii. α := GetEltWithIndex(I`,BL′0 ,OL′0 , ιcol);
iv. β := GetEltWithIndex(I`,BZL0

(L1),OZL0
(L1)ιrow);

first figure out probability mass to assign to a row test

v. r
(0)
2 · · · r

(0)
1+m0

:= GetRandFromElt(I`,BL1
,OL1

, β);

vi. m̃0 := m− 1−m0;

vii. if m̃0 > 0, draw r
(0)
m−m̃0+1, . . . , r

(0)
m ∈ {0, 1} at random;

viii. j′′ := ιcol;

ix. (r0, n0, `0) := RandSamp
(
(I`,BLβ ,OLβ ), i, j′′

)
;

then figure out probability mass to assign to a column test

x. r
(1)
2 · · · r

(1)
1+m1

:= GetRandFromElt(I`,BL′0 ,OL′0 , α);

xi. m̃1 := m− 1−m1;

xii. if m̃1 > 0, draw r
(1)
m−m̃1+1, . . . , r

(1)
m ∈ {0, 1} at random;

xiii. j′′ := ιrow;

xiv. (r1, n1, `1) := RandSamp
(
(I`,BL′0 ,OL′0), i, j′′

)
;

finally put everything together

xv. r1 · · · rm ◦ r is set to r
(0)
1 · · · r

(0)
m ◦ r0 w.p. 2m̃0 ·n0

2m·`0 and to r
(1)
1 · · · r

(1)
m ◦ r1 w.p. 2m̃1 ·n1

2m·`1 ;

xvi. output (r1 · · · rm ◦ r, 2m̃0 · n0 + 2m̃1 · n1, 2m · `0 + 2m · `1);

(j) if j′ ∈ {1, . . . , 2dκ/2e+γ}, where j′ :=
⌊

j−2κ−2κ+µ+1

lengthRS,=(`,bκ/2c−γ+µ+1)

⌋
, then do the following:

i.e., j is a query into a row proximity sub-proof
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i. r1 := 0;

ii. β′ := GetEltWithIndex(I`,BZL0
(L1),OZL0

(L1), j
′);

iii. deduce β ∈ L1 such that [ZL0
]A(β) = β′;

iv. r2 · · · r1+m0
:= GetRandFromElt(I`,BL1

,OL1
, β);

v. m̃0 := m− 1−m0;

vi. if m̃0 > 0, draw rm−m̃0+1, . . . , rm ∈ {0, 1} at random;

vii. j′′ := 2bκ/2c−γ+µ+1 + (j − 2κ − 2κ+µ+1 − j′ · lengthRS,=(`, bκ/2c − γ + µ+ 1));

viii. (r0, n0, `0) := RandSamp
(
(I`,BLβ ,OLβ ), i, j′′

)
;

ix. output (r1 · · · rm ◦ r0, 2m̃0 · n0, 2m · `0);

(k) if j′ ∈ {1, . . . , 2bκ/2c−γ+µ}, where j′ :=

⌊
j−2κ−2κ+µ+1−2dκ/2e+γ ·lengthRS,=(`,bκ/2c−γ+µ+1)

lengthRS,=(`,dκ/2e+µ)

⌋
,

then do the following:

i.e., j is a query into a column proximity sub-proof

i. r1 := 1;

ii. α := GetEltWithIndex(I`,BL′0 ,OL′0 , j
′);

iii. deduce β ∈ L1 such that [ZL0
]A(β) = [ZL0

]A(α);

iv. r2 · · · r1+m1
:= GetRandFromElt(I`,BL′0 ,OL′0 , α);

v. m̃1 := m− 1−m1;

vi. if m̃1 > 0, draw rm−m̃1+1, . . . , rm ∈ {0, 1} at random;

vii. j′′ := 2dκ/2e+µ − (j − 2κ − 2κ+µ+1 − 2dκ/2e+γ · lengthRS,=(`, bκ/2c − γ + µ+ 1)− j′ ·
lengthRS,=(`, dκ/2e+ γ));

viii. (r1, n1, `1) := RandSamp
(
(I`,BZL0

(L1),OZL0
(L1)), i, j

′′);
ix. output (r1 · · · rm ◦ r1, 2m̃1 · n1, 2m · `1).

Note that RandSamp happens to be independent of i. Also recall (see Lemma C.10) that

lengthRS,=(`, κ) = 2dκ/2e+γ · 2bκ/2c−γ+µ+1

+ 2dκ/2e+γ · lengthRS,=(`, bκ/2c − γ + µ+ 1) + 2bκ/2c−γ+µ · lengthRS,=(`, dκ/2e+ γ) .

The correctness of SRS,= follows from the correctness of RandSamp, which follows by inspection.

We remark that in Step 2(h)ii, Step 2(j)iii, and Step 2(k)iii, RandSamp is required to
“invert” the polynomial ZL0 . More precisely, given β′ ∈ ZL0(F2`), RandSamp needs to compute
the unique β ∈ L1 such that ZL0(β) = β′. Even though ZL0 is a high-degree polynomial, the
same fact that implies the existence of a small arithmetic circuit [ZL0 ]A for computing ZL0 (see
Algorithm 21) also implies a “sparse” computation for finding β. Specifically, because ZL0 is a
linearized polynomial (or, more precisely, a shift of such a polynomial), the map ZL0 : F2` → F2`

is an affine map. Hence, finding β reduces to finding the unique solution in L1 of a dim(L0)-
dimensional linear system Mx+O = β′ where M and O are the matrix and offset induced by
the affine map ZL0 . This can be done in time that is polynomial in ` and κ, and thus β can
indeed be found efficiently by RandSamp.

12.4.2 Efficient Reverse Sampling of VRS,<

Lemma 12.27. The (strong) PCPP verifier VRS,< is efficiently reverse-samplable.
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Proof. Recall the definitions from Lemma C.2. We have already established in Lemma 12.17
that VRS,< is a non-adaptive (strong) PCPP verifier. We are left to construct the probabilistic
polynomial-time “reverse sampler”: on input (I`,BS ,OS , d), i ∈ {1, . . . , queryRS,<(`, κ, d)}, and
j ∈ {1, . . . , |S|+ lengthRS,<(`, κ, d)},

SRS,<

(
(I`,BS ,OS , d), i, j

)
≡

1. If i ∈ {1, . . . , queryRS,=(`, κ)}, then:
(a) compute r := SRS,=

(
(I`,BS ,OS), i, j

)
.

2. If i′ ∈ {1, . . . , queryRS,=(`, κ)}, where i′ := i− queryRS,=(`, κ), then:
(a) if j ∈ {1, . . . , |S|}, then:

i. compute r := SRS,=

(
(I`,BS ,OS), i′, j

)
;

(b) if j′ ∈ {|S|+ 1, . . . , |S|+ lengthRS,=(`, κ)}, where j′ := j − lengthRS,=(`, κ), then:
i. compute r := SRS,=

(
(I`,BS ,OS), i′, j′

)
.

3. Output r.

Recall that randRS,<(`, κ, d) = randRS,=(`, κ), and thus r is always of the correct length (and thus
there is never a need to pad it with random bits). The correctness of SRS,< easily follows by
inspection, as well as from Lemma 12.16.

12.4.3 Efficient Reverse Sampling of VRS,>

Lemma 12.28. The (strong) PCPP verifier VRS,> is efficiently reverse-samplable.

Proof. Recall the definitions from Lemma C.3. We have already established in Lemma 12.18
that VRS,> is a non-adaptive (strong) PCPP verifier. We are left to construct the probabilistic
polynomial-time “reverse sampler”: on input (I`,BS ,OS , d), i ∈ {1, . . . , queryRS,>(`, κ, d)}, and
j ∈ {1, . . . , |S|+ lengthRS,>(`, κ, d)},

SRS,>

(
(I`,BS ,OS , d), i, j

)
≡

1. If d ≥ 2κ, then output ⊥. (Because the decision algorithm DRS,> will accept without
examining any query answer, and thus the query algorithm QRS,> will in this case
not make any queries.)

2. If d < 2κ, then:
(a) dκ,η := |S|/2η − 1;
(b) mκ,η,d := b(d+ 1)/(dκ,η + 1)c;
(c) dκ,η,d := d−mκ,η,d · (dκ,η + 1);
(d) if i ∈

{
1, . . . ,mκ,η,d · queryRS,=(`, κ)

}
, then:

i. z := b(i− 1)/queryRS,=(`, κ)c;
ii. inew := i− z · queryRS,=(`, κ);
iii. jnew := j −

(
|S|+ z · (|S|+ lengthRS,=(`, κ))

)
;

iv. r := SRS,=

(
(I`,BS ,OS), inew, jnew

)
;

v. output r;
(e) if mκ,η,d · (dκ,η + 1) < d + 1 and inew ∈ {1, . . . , queryRS,<(`, κ, dκ,η,d)}, where

inew := i−mκ,η,d · queryRS,=(`, κ), then:
i. jnew := j −

(
|S|+mκ,η,d · (|S|+ lengthRS,=(`, κ))

)
;

ii. r := SRS,<

(
(I`,BS ,OS , dκ,η,d), inew, jnew

)
;

iii. output r;
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(f) if mκ,η,d · (dκ,η + 1) = d + 1 and inew ∈ {1, . . . , (1 + mκ,η,d)}, where inew :=
i−mκ,η,d · queryRS,=(`, κ), then:

i. if inew = 1, then:
(it must be that j ∈ {1, . . . , |S|})

A. jnew := j;
B. γ := GetEltWithIndex(I`,BS ,OS , jnew);
C. r := GetRandFromElt(I`,BS ,OS , γ);
D. output r;

ii. if inew ∈ {2, . . . , (1 +mκ,η,d)}, then:
(it must be that j ∈ {|S|+ (inew− 2) · (|S|+ lengthRS,=(`, κ)) + 1, . . . , |S|+ (inew− 2) · (|S|+
lengthRS,=(`, κ)) + |S|})

A. jnew := j −
(
|S|+ (inew − 2) · (|S|+ lengthRS,=(`, κ))

)
;

B. τ := GetEltWithIndex(I`,BS ,OS , jnew);
C. γ := τ1/((inew−2)·(dκ,η+1));
D. r := GetRandFromElt(I`,BS ,OS , γ);
E. output r;

(g) if mκ,η,d · (dκ,η + 1) < d + 1 and inew ∈ {1, . . . , (1 + mκ,η,d)}, where inew :=
i− (mκ,η,d · queryRS,=(`, κ) + queryRS,<(`, κ, dκ,η,d)), then:

i. if inew = 1, then:
(it must be that j ∈ {1, . . . , |S|})

A. jnew := j;
B. γ := GetEltWithIndex(I`,BS ,OS , jnew);
C. r := GetRandFromElt(I`,BS ,OS , γ);
D. output r;

ii. if inew ∈ {2, . . . , (1 +mκ,η,d + 1)}, then:
(it must be that j ∈ {|S|+ (inew− 2) · (|S|+ lengthRS,=(`, κ)) + 1, . . . , |S|+ (inew− 2) · (|S|+
lengthRS,=(`, κ)) + |S|})

A. jnew := j −
(
|S|+ (inew − 2) · (|S|+ lengthRS,=(`, κ))

)
;

B. τ := GetEltWithIndex(I`,BS ,OS , jnew);
C. γ := τ1/((inew−2)·(dκ,η+1));
D. r := GetRandFromElt(I`,BS ,OS , γ);
E. output r.

Recall that randRS,>(`, κ, d) = max{randRS,=(`, κ),1κ,η,d · randRS,<(`, κ, dκ,η,d)}, where 1κ,η,d := 1
if (d+ 1) > dκ,η,d · (dκ,η + 1) and 1κ,η,d := 0 otherwise, and thus r is always of the correct length
(and thus there is never a need to pad it with random bits). The correctness of SRS,> easily
follows by inspection, as well as from Lemma 12.16 and Lemma 12.17.

12.4.4 Efficient Reverse Sampling of VRS

Lemma 12.29. The (strong) PCPP verifier VRS is efficiently reverse-samplable.

Proof. Recall the definitions from Lemma C.4. We have already established in Lemma 12.19
that VRS is a non-adaptive (strong) PCPP verifier. We are left to construct the probabilistic
polynomial-time “reverse sampler”: on input (I`,BS ,OS , d), i ∈ {1, . . . , queryRS(`, κ, d)}, and
j ∈ {1, . . . , |S|+ lengthRS(`, κ, d)},

SRS

(
(I`,BS ,OS , d), i, j

)
≡
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1. If κ ≤ η:
(a) Output a random string in randRS(`, κ, d).

2. If κ > η:
(a) Set dκ,η := |S|/2η − 1.
(b) If d < dκ,η, then output r := SRS,<

(
(I`,BS ,OS , d), i, j

)
.

(c) If d = dκ,η, then output r := SRS,=

(
(I`,BS ,OS), i, j

)
.

(d) If d > dκ,η, then output r := SRS,>

(
(I`,BS ,OS , d), i, j

)
.

(e) Pad r with random bits until it is randRS(`, κ)-bits long.
(f) Output r.

The correctness of SRS easily follows by inspection, as well as from Lemma 12.16, Lemma 12.17,
and Lemma 12.18.

12.4.5 Efficient Reverse Sampling of VVRS

Lemma 12.30. The (strong) PCPP verifier VVRS is efficiently reverse-samplable.

Proof. Recall the definitions from Lemma C.5. We have already established in Lemma 12.20
that VVRS is a non-adaptive (strong) PCPP verifier. We are left to construct the probabilistic
polynomial-time “reverse sampler”: on input (I`,BS ,OS ,BH ,OH , d), i ∈ {1, . . . , queryVRS(`, κ, λ, d)},
and j ∈ {1, . . . , |S|+ lengthVRS(`, κ, λ, d)},

SVRS

(
(I`,BS ,OS ,BH ,OH , d), i, j

)
≡

1. If i ∈
{

1, . . . , queryRS(`, κ, d− |H|)
}

, then:
(it must be that j ∈ {|S|+ 1, . . . , |S|+ |S|+ lengthRS(`, κ, d− |H|)})
(a) inew := i;
(b) jnew := j − |S|;
(c) r := SRS

(
(I`,BS ,OS , d− |H|), inew, jnew

)
.

2. If i = queryRS(`, κ, d− |H|) + 1, then:
(it must be that j ∈ {1, . . . , |S|})
(a) jnew := j;
(b) α := GetEltWithIndex(I`,BS ,OS , jnew);
(c) r := GetRandFromElt(I`,BS ,OS , α).

3. If i = queryRS(`, κ, d− |H|) + 2, then:
(it must be that j ∈ {|S|+ 1, . . . , |S|+ |S|})
(a) jnew := j − |S|;
(b) α := GetEltWithIndex(I`,BS ,OS , jnew);
(c) r := GetRandFromElt(I`,BS ,OS , α).

4. Pad r with random bits until it is randVRS(`, κ, λ, d)-bits long.
5. Output r.

The correctness of SVRS easily follows by inspection, as well as from Lemma 12.19.

12.4.6 Efficient Reverse Sampling of VaRS

Lemma 12.31. The PCPP verifier VaRS is efficiently reverse-samplable.
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Proof. Recall the definitions from Lemma C.6. We have already established in Lemma 12.21
that VaRS is a non-adaptive PCPP verifier. We are left to construct the probabilistic polynomial-
time “reverse sampler”: on input (I`,BS ,OS , d, δ, s′), i ∈ {1, . . . , queryaRS(`, κ, d, δ, s′)}, and
j ∈ {1, . . . , |S|+ lengthaRS(`, κ, d, δ, s′)},

SaRS

(
(I`,BS ,OS , d, δ, s′), i, j

)
≡

1. m :=
⌈

log(1−s′)
log(1−sRS(δ,2κ))

⌉
.

2. Let z ∈ {1, . . . ,m} be such that i ∈
{

(z−1)·queryRS(`, κ, d)+1, . . . , z·queryRS(`, κ, d)
}

.
3. inew := i− (z − 1) · queryRS(`, κ, d).
4. jnew := j.
5. rz := SRS

(
(I`,BS ,OS , d), inew, jnew

)
.

6. For l ∈ {1, . . . ,m} − {z}, draw a random randRS(`, κ, d)-bit string rl.
7. r := r1 · · · rm.
8. Output r.

The correctness of SaRS easily follows by inspection, as well as from Lemma 12.19.

12.4.7 Efficient Reverse Sampling of VaVRS

Lemma 12.32. The PCPP verifier VaVRS is efficiently reverse-samplable.

Proof. Recall the definitions from Lemma C.7. We have already established in Lemma 12.22 that
VaVRS is a non-adaptive PCPP verifier. We are left to construct the probabilistic polynomial-time
“reverse sampler”: on input (I`,BS ,OS ,BH ,OH , d, δ, s′), i ∈ {1, . . . , queryaVRS(`, κ, λ, d, δ, s′)},
and j ∈ {1, . . . , |S|+ lengthaVRS(`, κ, λ, d, δ, s′)},

SaVRS

(
(I`,BS ,OS ,BH ,OH , d, s′), i, j

)
≡

1. m :=
⌈

log(1−s′)
log(1−sVRS(δ,2κ))

⌉
.

2. Let z ∈ {1, . . . ,m} be such that i ∈
{

(z−1)·queryVRS(`, κ, λ, d)+1, . . . , z·queryVRS(`, κ, λ, d)
}

.
3. inew := i− (z − 1) · queryVRS(`, κ, λ, d).
4. jnew := j.
5. rz := SVRS

(
(I`,BS ,OS ,BH ,OH , d), inew, jnew

)
.

6. For l ∈ {1, . . . ,m} − {z}, draw a random randVRS(`, κ, λ, d)-bit string rl.
7. r := r1 · · · rm.
8. Output r.

The correctness of SaVRS easily follows by inspection, as well as from Lemma 12.20.

12.4.8 Efficient Reverse Sampling of VsACSP

Lemma 12.33. The PCP verifier VsACSP is efficiently reverse-samplable.

Proof. Recall the definitions from Lemma C.8. We have already established in Lemma 12.23 that
VaVRS is a non-adaptive PCP verifier. We are left to construct the probabilistic polynomial-time
“reverse sampler”: on input (x, 1t), i ∈ {1, . . . , queryACSP(x, t)}, and j ∈ {1, . . . , lengthACSP(x, t)},

SACSP

(
(x, 1t), i, j

)
≡
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1. Parameter instantiation:
(a) It := FindIrrPoly(1f(t));
(b) BFt := FieldBasis(It);
(c) (BHt ,OHt) := FindH(1t);
(d) for i = 1, . . . , cN(t), [Nt,i]

A := FindN(1t, i);
(e) [Pt]

A := FindP(1t);
(f) (BIt,log |x| ,OIt,log |x|) := FindI(1t, 1log |x|);

(g) d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))).

2. Deduce the number of queries for the amplified verifiers:

(a) δRS := (8
∑cN(t)

i=1 deg(Nt,i))
−1 and s′RS := 0.5;

(b) nqaRS := queryaRS(f(t), f(t), 2mH(t) − 1, δRS, s
′
RS);

(c) δVRS := 1
8 and s′VRS := 0.5;

(d) nqaVRS := queryaVRS(f(t), f(t),mH(t), d, δVRS, s
′
VRS);

(e) δc := (8
∑cN(t)

i=1 deg(Nt,i))
−1 and s′c := 0.5;

(f) nqc := queryaVRS(f(t), f(t), log |x|, 2mH(t) − 1, δc, s
′
c).

3. If i ∈ {1, . . . , nqaRS}, then:
(a) inew := i;
(b) jnew := j;
(c) r := SaRS

(
(It,BFt , 0Ft , 2mH(t) − 1, δRS, s

′
RS), inew, jnew

)
.

4. If inew ∈ {1, . . . , nqaVRS}, where inew := i− nqaRS, then:
(a) jnew := j − 2mH(t) − lengthaRS(f(t), f(t), 2mH(t) − 1, δRS, s

′
RS);

(b) r := SaVRS

(
(It,BFt , 0Ft ,BHt ,OHt , d, δVRS, s

′
VRS), inew, jnew

)
.

5. If inew ∈ {1, . . . , cN(t) + 1}, where inew := i− nqaRS − nqaVRS, then:
(a) if inew ∈ {1, . . . , cN(t)}, then:

i. jnew := j;
ii. αinew := GetEltWithIndex(It,BFt , 0Ft , jnew);
iii. find a random solution α to the equation αinew := [Nt,inew ]A(x);
iv. r := GetRandFromElt(It,BFt , 0Ft , α);

(b) if inew = cN(t) + 1, then:
i. jnew := j;
ii. α := GetEltWithIndex(It,BFt , 0Ft , jnew);
iii. r := GetRandFromElt(It,BFt , 0Ft , α).

6. If inew ∈ {1, . . . , nqc}, where inew := i− nqaRS − nqaVRS − (cN(t) + 1), then:
(a) if j ∈ {1, . . . , 2f(t)}, then:

i. compute r := SaVRS

(
(It,BFt , 0Ft ,BIt,log |x| ,OIt,log |x| , δc, s′c), inew, jnew

)
;

(b) if j′ ∈ {2f(t) + 1, . . . , 2f(t) + lengthaVRS(f(t), f(t), log |x|, 2mH(t) − 1, δc, s
′
c)},

where j′ := j − lengthaRS(f(t), f(t), 2mH(t) − 1, δRS, s
′
RS)

−2f(t) − lengthaVRS(f(t), f(t),mH(t), d, δVRS, s
′
VRS),

then:
i. compute r := SaVRS

(
(It,BFt , 0Ft ,BIt,log |x| ,OIt,log |x| , δc, s′c), inew, j′

)
;

7. Pad r with random bits until it is randACSP(x, t)-bits long.
8. Output r.

The correctness of SACSP easily follows by inspection, as well as from Lemma 12.21 and Lemma 12.22.
Note that in Step 5(a)iii we have to find a random root of the polynomial Nt,inew(x)− αinew

over F2f(t) . This can be done in time poly(deg(Nt,inew), f(t)) by factoring the polynomial (e.g.,
see the survey of [VZGP01]) and selecting one of the roots at random.
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12.5 Proof Of Knowledge

The fourth property considered by Barak and Goldreich [BG08, Definiton 3.2, third item] for a
PCP verifier is a proof-of-knowledge property. We show that the PCP verifier VsACSP satisfies a
variant of the proof-of-knowledge property considered by Barak and Goldreich. At high-level,
the original definition of Barak and Goldreich requires the following: if, on input some string x
and with access to some oracle π, the PCP verifier accepts with high enough probability, then
π “contains” a witness for x, in the sense that there is an efficient knowledge extractor that, on
input x and with oracle access to π, can compute any bit of the witness with high probability.
Formally:

Definition 12.34 (PCP Proof of Knowledge). Fix ε : N → [0, 1]. A PCP verifier V has
the proof-of-knowledge property with error ε if there exists a probabilistic polynomial-
time oracle machine EPCP such that the following holds: for every two strings x and π, if
Pr[V π(x) = 1] > ε(|x|) then there exists w = w1 · · ·wT such that (x,w) ∈ R and, for i =
1, . . . , T , Pr[EπPCP(x, i) = wi] > 2/3.

A weaker definition does not require the knowledge extractor EPCP to be an implicit rep-
resentation of the witness, and instead allows EPCP to run in time that is polynomial in the
witness length:

Definition 12.35 (Explicit PCP Proof of Knowledge). Fix ε : N → [0, 1]. A PCP verifier V
has the explicit proof-of-knowledge property with error ε if there exists a probabilistic
polynomial-time oracle machine EPCP such that the following holds: for every two strings x
and π, if Pr[V π(x) = 1] > ε(|x|) then there exists w = w1 · · ·wT such that (x,w) ∈ R and
Pr[EπPCP(x, 1T ) = w] > 2/3.

We prove that VsACSP satisfies this weaker definition (and then in Remark 12.37 we explain
why it does not satisfy the original one). Later, in Section 12.6, we will show that the weak
PCP proof-of-knowledge property still suffices for constructing a variant of universal arguments
(with a correspondingly weaker proof of knowledge property), which are still useful for a number
of applications.

Claim 12.36. The PCP verifier VsACSP has the PCP explicit proof-of-knowledge property with
error ε(n) = 1/2.

Proof. The PCP verifier VsACSP is described in Construction 8.5 (and then again more succinctly
in Algorithm 9). The PCP weak proof-of-knowledge property of VsACSP can be deduced by
examining the part of the proof of Theorem 8.1 that establishes the soundness property of
VsACSP. Details follow.

Fix an instance (x, 1t) and a proof π = (p0, π1, p1, π1, πc). Suppose that Pr
[
V π

sACSP

(
(x, 1t)

)
=

1
]
> 1/2. Let It,log |x| be the (log |x|)-th affine subspace in ~It, Ax be the low-degree extension of

the function fx : It,log |x| → {0, 1} defined by fx(αi) := xi where αi is the i-th element in It,log |x|,

and px the evaluation ofAx on Ft. Also let d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))).

It must be that

• p0 is δRS-close to RS(Ft,Ft, 2mH(t) − 1),

• p1 is δVRS-close to VRS(Ft,Ft, Ht, d), and
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• p0 − px is δc-close to VRS(Ft,Ft, It,log |x|, 2
mH(t) − 1),

where δRS = δc = (8
∑cN(t)

i=1 deg(Nt,i))
−1 and δVRS = 1

8 . Indeed, if that were not the case, then
V π

sACSP

(
(x, 1t)

)
would have accepted with probability at most 1/2 (due respectively to its first,

second, and fourth subtest).
Let A : Ft → Ft be the unique polynomial of degree less than 2mH(t) whose evaluation table

over Ft is closest to p0. Note that A is unique, because 1−(2mH(t)−1)/|Ft| is larger than 2δRS =

(4
∑cN(t)

i=1 deg(Nt,i))
−1. (See Remark 8.6 and Lemma 4.11.) Furthermore, we can deduce that

A is consistent with the instance (x, 1t): p0−px is (8
∑cN(t)

i=1 deg(Nt,i))
−1-close to the evaluation

of A−Ax on Ft and (8
∑cN(t)

i=1 deg(Nt,i))
−1-close the code VRS(Ft,Ft, It,log |x|, 2

mH(t) − 1); thus,

invoking once again the fact that 1− (2mH(t)− 1)/|Ft| is larger than (4
∑cN(t)

i=1 deg(Nt,i))
−1 (and

Lemma 4.11) we deduce that the evaluation of A−Ax is in VRS(Ft,Ft, It,log |x|, 2
mH(t) − 1).

Let B : Ft → Ft be the polynomial defined as B(x) := Pt
(
x,A(Nt,1(x)), . . . , A(Nt,cN(t)(x))

)
.

Because p0 is (8
∑cN(t)

i=1 deg(Nt,i))
−1-close to the evaluation table of A over Ft, we deduce

that, for i = 1, . . . , cN(t), p0 ◦Nt,i is
deg(Nt,i)

8
∑cN(t)
i=1 deg(Nt,i)

-close to the evaluation table of A ◦Nt,i.

Define the function p2 : Ft → Ft by

p2(x) := Pt

(
x, p0

(
Nt,1(x)

)
, . . . , p0

(
Nt,cN(t)(x)

))
.

We deduce then, via a union bound, that p2 must be 1/8-close to the evaluation table of B(x)
over Ft.

Now let B′ : Ft → Ft be the unique polynomial of degree at most d vanishing on Ht whose
evaluation table over Ft is closest to p1. Again note that B′ is unique, because 1 − d/|Ft| is
larger than 2δVRS = 1/4. (See Remark 8.6 and Lemma 4.11.) We argue that B′ and B must be
equal. Indeed, suppose by way of contradiction that B and B′ are distinct; then, as they are
both polynomials of degree at most d ≤ |Ft|/4, their evaluation tables over Ft may agree on at
most a 1/4 fraction of their entries; hence, by a union bound, the third subtest of VsACSP accepts
with probability at most 1/8+1/8+1/4 ≤ 1/2 — a contradiction to the fact that V π

sACSP((x, 1t))
accepts with probability greater than 1/2.

Since B′ and B are equal, B vanishes on Ht, so that (together with the fact that A is
consistent with the instance (x, 1t)) we deduce that A is a witness to the fact that (x, 1t) ∈
sACSP.

In summary, p0 a function over Ft that is (8
∑cN(t)

i=1 deg(Nt,i))
−1-close to a (unique) polyno-

mial A of degree less than 2mH(t); moreover A is a witness to the fact that (x, 1t) ∈ sACSP.
Therefore, we can let EPCP be the algorithm that decodes the Reed–Solomon codeword p0.
More precisely, by Claim 4.12, there exists a polynomial-time algorithm DecodeRS that, on
input (the representation of) a finite field F, a subset S of F, a degree d (presented in unary),
and a function p : S → F, outputs a polynomial P : F→ F of degree at most d whose evaluation
over S is closest to p (as long as p lies in the unique decoding radius, which is the case in this
proof). We can then define EPCP as follows:

EπPCP

(
x, 12t

) def
=

1. Parse π as (p0, π0, p1, π1).
2. Compute It := FindIrrPoly

(
1f(t)

)
.

3. Set BFt :=
(
1, x, . . . , xf(t)−1

)
.
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4. Set d := 2mH(t) − 1.
5. Compute A(x) := DecodeRS(It, span(BFt), 1d, p0).
6. Output A(x).

Note that, similarly to the verifier VsACSP, the knowledge extractor EPCP also knows the choice
of parameters for sACSP; so, for example, it knows the functions f and mH(t). Clearly, EPCP

runs in polynomial time.30

Thus, it is easy to see that whenever VsACSP accepts the instance (x, 1t) and oracle π with
probability greater than 1/2, it is indeed the case that EPCP succeeds in extracting a witness
with probability greater than 2/3. (In fact, it succeeds with probability 1.)

Remark 12.37. Even for an “honest” oracle π = (p0, π0, p1, π1, πc) (e.g., the one produced
by the PCP prover PsACSP on input (x, 1t) and a witness A for (x, 1t)), retrieving A from its
error-free evaluation p0 over Ft requires working at least linearly in deg(A), which may very well
be linear in 2t. Indeed, simply reading less than deg(A) values of p0 is not enough information
to uniquely determine A. Hence, at least for VsACSP we must settle for a “weak” proof-of-
knowledge where if we want to extract a bit of the witness, then we might as well extract the
whole witness. Fortunately, as discussed in more detail in Section 12.6, for many applications
of universal arguments this is not an issue.

Remark 12.38. Fix κ ∈ N. If a PCP verifier V has the PCP explicit proof-of-knowledge
property with error ε, then the PCP verifier V sequentially repeated κ times has the PCP
explicit proof-of-knowledge property with error εκ. (Indeed, whenever the repeated verifier
accepts a PCP oracle π with probability greater than 2−κ, then the non-repeated verifier must
accept the same PCP oracle π with greater than half probability.)

Remark 12.39. Barak and Goldreich claimed [BG08, Appendix A] that the PCP proof of
knowledge (see Definition 12.34) holds for many PCPs, yet the PCPs that we use only satisfy
the explicit PCP proof of knowledge (see Definition 12.35). The reason is that many PCP
constructions (e.g., [BFLS91]) use multivariate techniques, as opposed to univariate techniques
as we do. More precisely, many PCP constructions use low-degree low-variate multivariate
polynomials when it comes to arithmetizing certain constraint satisfaction problems. With
multivariate techniques, the witness is encoded using a Reed–Muller code (via a low-degree ex-
tension), which has much better local-decoding properties than Reed–Solomon codes: a witness
w of size 2t is mapped to a d-degree m-variate polynomial with m = O(t/ log t) and d = O(t)
and a bit of w can be retrieved in time poly(t) [BF90, Lip90].

As discussed before, the advantage of univariate techniques over multivariate techniques is
that the proof length of the PCP oracle can be made very short; namely, we do not know of
PCPs of quasilinear length based on multivariate techniques but we do when based on univariate
techniques.

12.6 Obtaining (Almost) Universal Arguments

Having proved that the PCP system (PsACSP, VsACSP) for sACSP does satisfy the first three
properties and a variant of the fourth property considered by Barak and Goldreich [BG08,
Definiton 3.2], we now explain how these four properties are enough to imply, through [BG08,
Construction 3.4], an almost universal argument system for sACSP. (See Definition 12.9.)

30More precisely, EPCP will run in poly(2mH(t)) time, which is polynomial in 12t whenever mH(t) = t + o(t).
Indeed, the “true” measure of instance size in sACSP problems is 2mH(t) and not 2t.
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Claim 12.40. Following [BG08, Construction 3.4] by starting with the (amplified) PCP sys-
tem (PsACSP, VsACSP) and a collision-resistant hash function yields an almost universal argument
system (PUA, VUA) for the language sACSP.

We assume familiarity with the proof of [BG08, Lemma 3.5], which shows that the construc-
tion of universal arguments given in [BG08, Construction 3.4] using a PCP system satisfying the
original four properties in [BG08, Definition 3.2] works, as long as a collision-resistant function
family is used.

In comparison, our Claim 12.40 says that, even if we start with a PCP system that satisfies a
slightly weaker notion of proof of knowledge (i.e., Definition 12.8 instead of Definition 12.6), the
construction of universal arguments still yields a universal argument, albeit with a correspond-
ingly weaker notion of proof of knowledge, that is, yields an almost universal argument. (And, of
course, the other two properties of efficient verification and completeness via a relatively-efficient
prover easily follow from using the same construction [BG08, Construction 3.4].)

As discussed in Remark 12.2, this is sufficient for most “positive” applications, because an
almost universal argument is, in particular, also a succinct argument of knowledge for NP, and
this latter primitive is usually sufficient for applications.

Proof of Claim 12.40. We give a high-level overview of the proof [BG08, Lemma 3.5], and then
explain (and give details of) how it can be modified to yield the proof for our claim. Also,
in this proof we assume that VsACSP has been amplified to error 2−κ for inputs of length κ; in
particular, it has the PCP explicit proof-of-knowledge property with error ε(κ) = 2−κ. (See
Remark 12.38.)

Roughly, the argument used to prove [BG08, Lemma 3.5] consists of three steps:

1. First, one shows that, if a prover circuit is too inconsistent about answering queries and yet
is still somewhat convincing, then that prover can be efficiently converted into a collision-
finding circuit; in particular, that means that, in order to be somewhat convincing, a
prover circuit must essentially “have a PCP oracle in mind”.

2. Next, one shows how to construct an efficient “oracle recovery” procedure, i.e., a proba-
bilistic polynomial-time oracle machine recover that, with access to the prover circuit, is
an implicit representation of a PCP oracle that is also somewhat convincing (this time
convincing to the PCP verifier). This step crucially relies on the existence of an efficient
reverse sampler.

3. Finally, one shows how this oracle recovery procedure can be used, together with the
PCP knowledge extractor, to yield the knowledge extractor required by the weak proof-
of-knowledge property from Definition 12.6.

Even given this high-level overview, it is clear that the first two steps of the argument of Barak
and Goldreich work in our case too, because they only rely on the collision-resistant property
and the fact that the prover is somewhat convincing. On the other hand, step three (which
clearly refers to the PCP knowledge extractor), requires modification. So we now show how to
use the oracle recovery procedure together with our knowledge extractor to produce a “weaker”
universal-argument knowledge extractor that will satisfy Definition 12.8 instead.

More precisely, we argue as follows. Fix two positive polynomials sUA and pUA and, letting
qUA = 5pUA, we show how to construct a probabilistic polynomial-time procedure EUA (depending
on sUA and pUA) such that, for every family of sUA-size prover circuits P̃UA = {P̃UA,κ}κ∈N, for all
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sufficiently large κ ∈ N, for every instance (x, 1t) ∈ {0, 1}κ, if P̃UA,κ convinces VUA to accept (x, 1t)
with probability greater than pUA(κ)−1 then, with probability greater than qUA(κ)−1 taken over a
random choice of internal randomness r for EUA, the weak knowledge extractor EUA, with oracle
access to the code of P̃UA,κ and on input (x, 1t), outputs a valid witness w for x.

Barak and Goldreich [BG08, Claim 3.5.3] showed how to construct a probabilistic polynomial-
time oracle machine recover (depending on sUA and pUA) such that, for all sufficiently large κ ∈ N,
if P̃UA,κ convinces VUA to accept (x, 1t) with probability greater than pUA(κ)−1, then, with proba-

bility 1
4.5pUA(κ) , recover〈P̃UA,κ〉

(
(x, 1t), ·

)
is an implicit representation of a PCP oracle π such that

Pr
[
V π

sACSP

(
(x, 1t)

)
= 1
]
> 1

8pUA(κ) >
1

2κ .31

Also, we amplify the success probability of EPCP(x, 12t), with (x, 1t) ∈ {0, 1}κ, from greater
than 2/3 to greater than 1− 2−κ.

Then, we define the “explicit” weak knowledge extractor EUA (depending on sUA and pUA)
as follows: for every family of sUA-size prover circuits P̃UA = {P̃UA,κ}κ∈N, for every κ ∈ N and
instance (x, 1t) ∈ {0, 1}κ,

E
〈P̃UA,κ〉
UA (x, 12t)

def
=

1. Draw a random tape ω for the oracle-recovery procedure recover.
2. Invoke EPCP(x, 12t) providing it with oracle access to π, using the oracle-recovery

procedure recover on input (x, t), random tape ω, and oracle access to the code of
P̃UA,κ.

3. Output whatever (the amplified) EπPCP(x, 12t) outputs.

Note that EUA does run in polynomial time, because each invocation of recover requires poly(κ)
invocations of P̃UA,κ (for a total of poly(κ) · sUA(κ) time per invocation), and there are at most
poly(|y|, 2t, κ) invocations of recoverε (as the amplified EPCP runs in poly(|y|, 2t, κ) time).

Finally, the probability that E
〈P̃UA,κ〉
UA (x, 12t) succeeds in extracting a valid witness for y is

at least the probability that ω is a “good” random tape for recover
(
(x, t)

)
(i.e., makes it an

implicit representation of a “convincing” PCP oracle π) times the probability that EπPCP(x, 12t)
successfully extracts; for sufficiently large κ ∈ N, that probability is at least 1

4.5pUA(κ) ·(1−2−κ) >
1

5pUA(κ) , as desired.

Remark 12.41. Note that the alphabet of the PCP oracle is elements of a finite field F2` , and
not bits. Fortunately, the analysis of the rewinding strategy of the knowledge extractor does
not rely on how large the alphabet of the PCP oracle is, but only reasons about consistency of
answers across different runs of the prover, and thus the different alphabet does not require any
changes in the proof.

31Actually, the oracle-recovery procedure of Barak and Goldreich was constructed to take a randomly chosen
collision-resistant function family seed α as input, but here we include this random choice as part of the procedure.
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A Work On Fast Verification Of Long Computations

While we believe that the question of whether PCPs can be made efficient enough to be used in
practice (e.g., via the “commit to a PCP and then reveal” construction [Kil92, Mic00, BG08,
DCL08, BCCT12a, DFH12, GLR11]) is itself fascinating, a natural question to consider is
whether the heavy machinery of PCPs is really needed for the application of fast verification of
long computations.

The answer seems to depend on the strength of the desired application and the strength of
the computational assumptions that one is willing to make. Let us explain.

At present, we know that:

• Ishai et al. [IKO07] constructed a four-message argument system for NP in which the prover-
to-verifier communication is short (i.e., an argument with a laconic prover [GVW02]) by
combining a strong linear PCP and (standard) linear homomorphic encryption; they also
showed how to extend their approach to “balance” the communication between the prover
and verifier and obtain a O(1/ε)-message argument system for NP with O(nε) communication
complexity.

While their basic protocol does not provide the verifier with any saving in computation, Ishai
et al. noted that their protocol actually yields a batching argument : namely, an argument
in which, in order to simultaneously verify the correct evaluation of ` circuits of size S,
the verifier may run in time S (i.e., in time S/` per circuit evaluation). A set of works
[SBW11, SMBW12, SVP+12, SBV+12] has improved upon, optimized, and implemented
the batching argument of Ishai et al. [IKO07] for the purpose of verifiable delegation of
computation.

• Goldwasser et al. [GKR08] showed how to verify log-space uniform NC computations (i.e.,
log-space uniform circuits of polylogarithmic depth) by relying on probabilistic-checking
techniques that are lighter than those used in PCPs; their protocol can be reduced to one
round [KR09, KRR12]. A set of works [CMT12, TRMP12] has optimized and implemented
the protocol of Goldwasser et al. [GKR08]. Canetti et al. [CRR11] showed how to extend
the techniques in [GKR08] to also handle non-uniform NC circuits, in a publicly-verifiable
one-round protocol having an expensive offline preprocessing phase.

• A set of works [GGP10, CKV10, AIK10] showed how to verify all polynomial-time computa-
tions without using probabilistic-checking techniques, provided one is willing to tolerate an
expensive offline preprocessing phase.32 These works, however, deliver a notion of soundness
that is not so strong: soundness only holds when the information of whether the verifier has
accepted or not remains secret.

• Groth [Gro10] showed how to construct publicly-verifiable SNARGs of knowledge (SNARKs)
for all of NP with an expensive offline preprocessing phase and where both the preprocessing
running time and the prover running are quadratic (in the size of the circuit verifying mem-
bership in the language). Lipmaa [Lip12] improved on the work of Groth by showing how to
make the preprocessing running time quasilinear; however, the prover running time remained
quadratic in his work. Gennaro et al. [GGPR12] obtained quasi-optimal time complexities

32Though, admittedly, these works rely on fully-homomorphic encryption [Gen09], which, just like PCPs, is
also notoriously inefficient in practice.
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in this setting: both the prover running time and preprocessing running time are quasilinear
in their work.

Bitansky et al. [BCI+13] showed how to compile a weak linear PCP to a SNARK with an
expensive offline preprocessing phase. Constructions of linear PCPs for NP can easily be ob-
tained, for example, via probabilistic-checking techniques for the Hadamard code [ALM+98]
or via quadratic-span programs [GGPR12]. While none of [Gro10, Lip12, GGPR12] ex-
plicitly invoke probabilistic-checking techniques, the result of Bitansky et al. shows that all
these constructions can be interpreted as implicitly invoking the power of weak linear PCPs,
thereby providing a unifying explanation of the constructions in these works.

All of [Gro10, Lip12, GGPR12, BCI+13] rely on various flavors of knowledge-of-exponent
assumptions [Dam92, HT98, BP04] in bilinear groups or, more generally, on the existence
of encodings that only allow for linear homomorphic operations [BCI+13]; relying on non-
falsifiable assumptions [Nao03] such as the aforementioned ones seems inherent for obtaining
SNARGs [GW11].

• Bitansky et al. [BCCT12b] showed that the expensive preprocessing phase of a SNARK (if
there is one) can always be removed via a generic transformation that only relies on standard
cryptographic assumptions and does not invoke any probabilistic-checking techniques. Their
transformation also shows how to make the prover complexity tightly related in time and
space to those of the original computation to be verified.

• Bitansky and Chiesa [BC12] showed how to use multi-prover interactive proof techniques
[BOGKW88] to obtain, from standard cryptographic assumptions, interactive succinct ar-
guments where again the prover’s time and space complexities are tightly related to those of
the original computation to be verified; they also showed how to obtain designated-verifier
SNARKs, where the prover has similar time and space complexities, from a knowledge as-
sumption about fully-homomorphic encryption.

Thus, it seems that the question of whether full-fledged PCPs are really needed depends on the
strength of the desired application (e.g., verify deterministic vs. non-deterministic computations,
publicly-verifiable vs. privately-verifiable, interactive vs. non-interactive) and the strength of the
computational assumptions we are willing to make (e.g., only falsifiable assumptions or not).

For example, on the one hand, we could make strong non-falsifiable assumptions to only use
linear PCPs [BCI+13] and then invoke the result of [BCCT12b] to obtain succinct argument
constructions that do not invoke “full-fledged” PCPs; on the other hand, we could only assume
the existence of collision-resistant hash functions and construct succinct arguments using full-
fledged PCPs [Kil92, Mic00, BG08]. Finally, we note that the use of PCPs in constructing
succinct arguments is to a certain extent inherent [RV09].
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B PCP Algorithmic Specifications

We provide algorithmic specifications for the PCP system used in the proof of Theorem 1.
The probabilistic-checking core of the PCP system used in the proof of Theorem 1 is the PCP

system (PsACSP, VsACSP) for the language sACSP used in the proof of Theorem 8.1 in Section 8;
the remaining part of the construction consists instead of Levin reductions.

Recall that a PCP system for the language sACSP would indeed not be very useful without
sufficiently tight Levin reductions from “more natural” languages. Such reductions are studied
in detail by Ben-Sasson et al. [BSCGT13], who consider Levin reductions from the correctness
of computation of a wide class of random-access machines.

In the algorithmic specifications of this section, we shall thus ignore the details of the
specific Levin reduction to sACSP, and only focus on spelling out the details of (PsACSP, VsACSP);
a complexity analysis of the PCP system’s proof length, randomness, and query complexity is
given later in Appendix C.

Concretely, we assume that, for some machine M of interest, we already know a Levin
reduction (ParamsL,Reduce-WitnessL,Recover-WitnessL) from the language

L =
{

(x, 1t) : there is w with |w| ≤ 2t s.t. M(x, w) accepts within 2t steps
}

to the language sACSP with the choice of parameters ParamsL. That is, Reduce-WitnessL and
Recover-WitnessL are polynomial-time computable and the following two properties hold:

1. Soundness: (x, 1t) ∈ L ←→ (x, 1t) ∈ sACSP(ParamsL)

2. Witness Reductions:

• w is witness to
(x, 1t) ∈ L −→ Reduce-WitnessL(w) is witness to

(x, 1t) ∈ sACSP(ParamsL)

• Recover-WitnessL(A) is witness to
(x, 1t) ∈ L ←− A is witness to

(x, 1t) ∈ sACSP(ParamsL)

Note that the input x itself is not changed by the Levin reduction considered here (i.e., L is
reducible to sACSP with the choice of parameters ParamsL via the identity mapping).33

In Figure 1 we give a high-level diagram of all the components (together with the dependen-
cies among them) of the PCP system (PL, VL) for the language L. Following are pseudocode
listings for each component: in Section B.1 are listings for the components of the prover PL,
in Section B.2 are listings for the components of the verifier VL, and finally in Section B.3 are
listings for the finite-field algorithms used throughout.

33Recall from Definition 7.1 that sACSP only considers (x, 1t) such that |x| ∈ {2, . . . , 2t}.
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PL

PsACSP

PVRS PRS

PRS,> PRS,<

PRS,=

Reduce-WitnessL

ParamsL

VL

VsACSP

VaVRS VaRS

VVRS VRS

VRS,> VRS,<

VRS,=finite field algorithms

subroutines:

Figure 1: A high-level diagram showing the relation among the “modules”
in the construction of the PCP prover PL and PCP verifier VL. Also, every
module makes use of certain algorithms for computations in finite fields,
which we spell out.
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B.1 PCP Prover Specifications

Algorithm 1 PL

inputs:
• (x, 1t), in the language L
• w, witness to (x, 1t) ∈ L

randomness:
• no randomness used

output:
• π, probabilistically-checkable proof for the satisfiability of (x, 1t)

1. A← Reduce-WitnessL(w)
2. π ← PsACSP

(
(x, 1t), A

)
3. output π

notes:
• see Algorithm 8 for VL, the corresponding verifier
• PsACSP has the choice of parameters ParamsL hardcoded
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Algorithm 2 PsACSP

inputs:
• (x, 1t), in sACSP with the given choice of parameters(

f, (mH, tH,H), (cN, tN, sN,N), (tP, sP,P), (tI, I)
)

• A : Ft → Ft, assignment polynomial that is witness to (x, t) ∈ sACSP
(i.e., deg(A) < 2mH(t), A satisfies the constraint polynomial Pt, and A is consistent with (x, 1t), cf.
Definition 7.1)

randomness:
• no randomness used

output:
• π = (p0, π0, p1, π1, πc), probabilistically-checkable proof for the claim “(x, 1t) ∈ sACSP”

1. Parameter instantiation:
(a) It := FindIrrPoly(1f(t))
(b) BFt := FieldBasis(It)
(c) (BHt ,OHt) := FindH(1t)
(d) for i = 1, . . . , cN(t), [Nt,i]

A := FindN(1t, i)
(e) [Pt]

A := FindP(1t)
(f) (BIt,log |x| ,OIt,log |x|) := FindI(1t, 1log |x|)

2. Proof that A has low degree:
(a) p0 := SubspaceEval(I`,BFt , 0Ft , A)
(b) π0 := PRS

(
It,BFt , 0Ft , 2mH(t) − 1, A

)
3. Proof that A satisfies the constraint polynomial:

(a) for each α ∈ Ft:
i. use [Pt]

A and [Nt,i]
A to compute β := Pt

(
α, p0(Nt,1(α)), . . . , p0(Nt,cN(t)(α))

)
ii. set p1(α) := β

(b) B := SubspaceInterp(I`,BFt , 0Ft , p1)

(c) d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2

mH(t)−1)·deg(Nt,cN(t))))
(d) π1 := PVRS

(
It,BFt , 0Ft ,BHt ,OHt , d, B

)
4. Proof that A is consistent with (x, 1t):

(a) compute Ax, the low-degree extension of the function fx : It,log |x| → {0, 1} defined by fx(αi) := xi
where αi is the i-th element in It,log |x|

(b) πc := PVRS

(
It,BFt , 0Ft ,BIt,log |x| ,OIt,log |x| , 2mH(t) − 1, A−Ax

)
5. π := (p0, π0, p1, π1, πc)
6. output π

notes:
• reference: Construction 8.3
• see Lemma C.8 for complexity bounds on queries and randomness
• see Algorithm 9 for VsACSP, the corresponding verifier
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Algorithm 3 PVRS

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BS and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• BH and OH , basis and offset for the λ-dimensional affine subspace H ⊆ F2`

• d, positive integer indicating what “low-degree” means
• P : F2` → F2` , polynomial whose evaluation over S is in VRS

(
F2` , S,H, d

)
randomness:
• no randomness used

output:
• π = (p̃, π̃), proof of proximity to VRS

(
F2` , S,H, d

)
for the evaluation of P over S

1. P̃ := SubspaceDivide(I`,BH ,OH , P )

2. p̃ := SubspaceEval(I`,BS ,OS , P̃ )

3. π̃ := PRS

(
I`,BS ,OS , d− 2λ, P̃

)
4. output (p̃, π̃)

notes:
• see Lemma C.5 for complexity bounds on the proof length
• see Algorithm 12 for VVRS, the corresponding verifier
• since the evaluation of P over S is in VRS

(
F2` , S,H, d

)
, it must be that d ≥ |H|
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Algorithm 4 PRS

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BS and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• d, positive integer indicating what “low-degree” means
• P : F2` → F2` , polynomial whose evaluation over S is in RS

(
F2` , S, d

)
randomness:
• no randomness used

output:
• π, proof of proximity to RS

(
F2` , S, d

)
for the evaluation of P over S

1. if κ ≤ η, then output π :=⊥
2. if κ > η, then:

(a) dκ,η := |S|/2η − 1 = 2κ/2η − 1
(b) if d < dκ,η, then output π := PRS,<(I`,BS ,OS , d, P )
(c) if d = dκ,η, then output π := PRS,=(I`,BS ,OS , P )
(d) if d > dκ,η, then output π := PRS,>(I`,BS ,OS , d, P )

notes:
• see Lemma C.4 for complexity bounds on the proof length
• see Algorithm 13 for VRS, the corresponding verifier
• if κ ≤ η, then there is no need to output a proximity proof, because VRS will read the entire implicit

input to decide whether the implicit input is in RS
(
F2` , S, d

)
or not
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Algorithm 5 PRS,>

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BS and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• d, positive integer, greater than |S|/2η − 1, indicating what “low-degree” means
• P : F2` → F2` , polynomial whose evaluation over S is in RS

(
F2` , S, d

)
randomness:
• no randomness used

output:
• π =

(
(p0, π0), . . . , (p2η−1, π2η−1)

)
, proof of proximity to RS

(
F2` , S, d

)
for the evaluation of P over S

1. if d ≥ |S|, then output π :=⊥
2. if d < |S|, then:

(a) dκ,η := |S|/2η − 1 = 2κ/2η − 1
(b) mκ,η,d := b(d+ 1)/(dκ,η + 1)c

(note that mκ,η,d ∈ {0, . . . , 2η}, because 2η · (dκ,η + 1) = |S|)
(c) Prest(x) := P (x)
(d) for i = 0, . . . ,mκ,η,d − 1:

i. Pi(x) := Prest(x) mod xdκ,η+1

ii. pi := SubspaceEval(I`,BS ,OS , Pi)
iii. πi := PRS,=(I`,BS ,OS , Pi)
iv. Prest(x) :=

(
Prest(x)− Pi(x)

)
/xdκ,η+1

(e) h := mκ,η,d · (dκ,η + 1)
(f) if h < d+ 1, then:

i. Pmκ,η,d(x) := Prest

ii. pmκ,η,d := SubspaceEval(I`,BS ,OS , Pmκ,η,d)

iii. πmκ,η,d := PRS,<(I`,BS ,OS , d− h, Pmκ,η,d)

3. π :=
(
(p0, π0), . . . , (p2η−1, π2η−1)

)
(any pi or πi that was not assigned is set to ⊥)

4. output π

notes:
• see Lemma C.3 for complexity bounds on the proof length
• see Algorithm 14 for VRS,>, the corresponding verifier
• if d ≥ |S|, every function p : S → F2` is in RS(F2` , S, d) (cf. Step 1)
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Algorithm 6 PRS,<

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BS and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• d, positive integer, less than |S|/2η − 1, indicating what “low-degree” means
• P : F2` → F2` , polynomial whose evaluation over S is in RS

(
F2` , S, d

)
randomness:
• no randomness used

output:
• π = (π1, π2), proof of proximity to RS

(
F2` , S, d

)
for the evaluation of P over S

1. dκ,η := |S|/2η − 1 = 2κ/2η − 1
2. Q(x) := xdκ,η−d ∈ F2` [x]
3. P ′(x) := P (x) ·Q(x)
4. π1 := PRS,=(I`,BS ,OS , P )
5. π2 := PRS,=(I`,BS ,OS , P ′)
6. π := (π1, π2)
7. output π

notes:
• see Lemma C.2 for complexity bounds on the proof length
• see Algorithm 15 for VRS,<, the corresponding verifier
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Algorithm 7 PRS,=

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BL = (a1, . . . , aκ) and OL, basis and offset for the κ-dimensional affine subspace L ⊆ F2`

• P : F2` → F2` , polynomial whose evaluation over L is in RS
(
F2` , L, |L|/2η − 1

)
randomness:
• no randomness used

output:
• π = (f,Π), proof of proximity to RS

(
F2` , L, |L|/2η − 1

)
for the evaluation of P over S

1. if κ ≤ κ0, then output π :=⊥
2. if κ > κ0, then:

(a) BL0
:= (a1, . . . , abκ/2c−γ), OL0

:= OL
(b) [ZL0

]A := FindSubspPoly(I`,BL0
,OL0

)
(c) BL′0 := (a1, . . . , abκ/2c−γ+µ), OL′0 := OL
(d) BL1 := (abκ/2c−γ+1, . . . , aκ), OL1 := OL
(e) BZL0

(L1) := ([ZL0 ]A(abκ/2c−γ+1) + [ZL0
]A(0F

2`
), . . . , [ZL0

]A(aκ) + [ZL0
]A(0F

2`
)),

OZL0
(L1) := [ZL0

]A(OL1
)

(f) L0 := span(BL0
) +OL0

(g) L′0 := span(BL′0) +OL′0
(h) L1 := span(BL1) +OL1

(i) for each β ∈ L1:
i. OLβ := OL′0

ii. if β ∈ L′0, then:
A. BLβ := “append abκ/2c−γ+µ+1 to the basis BL′0”
B. Lβ := span(BLβ ) +OLβ = L′0 ∪ (L′0 + abκ/2c−γ+µ+1 +OL′0)

else:
A. BLβ := “append β +OL1 to the basis BL′0”
B. Lβ := span(BLβ ) +OLβ = L′0 ∪ (L′0 + β)

(j) Q := FindBivariate(I`,BL0
,OL0

, P )
(k) evaluate Q(x, y) = P0(x) + P1(x)y + · · ·+ Pe(x)ye on ∪β∈L1

Lβ × {ZL0
(β)} to get f :

i. for i = 0, . . . , e, si := SubspaceEval(I`,BZL0
(L1),OZL0

(L1), Pi)
ii. for each β ∈ L1, β′ := [ZL0 ]A(β) and f(·, β′) := SubspaceEval(I`,BLβ ,OLβ , Pβ), where

Pβ(y) := s0(β′) + s1(β′)y + · · ·+ se(β
′)ye

(l) for each β ∈ L1:
i. β′ := [ZL0

]A(β)
ii. Fβ′(x) := Q(x, β′)
iii. π↔β′ := PRS,=(I`,BLβ ,OLβ , Fβ′)

(m) for each α ∈ L′0:
i. Fα(y) := Q(α, y)

ii. π
l
α := PRS,=(I`,BZL0

(L1),OZL0
(L1), Fα)

(n) Π := {π↔β′ : β′ ∈ ZL0
(L1)} ∪ {πlα : α ∈ L′0}

(o) π := (f,Π)
(p) output π

notes:
• see Theorem 11.3 for how the parameters (η, κ0, γ, µ) can be chosen
• see Lemma C.1 for complexity bounds on the proof length
• see Algorithm 16 for VRS,=, the corresponding verifier
• in Step 2g, some computation can be saved since L′0 = L0 + (span(abκ/2c−γ+1, . . . , abκ/2c−γ+µ) +OL0

)
• in Step 2(i)ii, since β ∈ L1, it suffices to check if β+OL1 is in span(abκ/2c−γ+1, . . . , abκ/2c−γ+µ)−{0}
• in Step 2k, we consider all elements α ∈ Lβ , so that f has domain ∪β∈L1Lβ × {ZL0(β)}; but, f has

domain ∪β∈L1
(Lβ − (L0 + β +OL))× {ZL0

(β)} in [BSS08, proof of Proposition 6.9], because the
values of f in ∪β∈L1

(L0 + β +OL)× {ZL0
(β)} are never queried; nonetheless, we choose to define f

there as well, because doing so simplifies a lot of “index arithmetic” when implementing VRS,= (and
when decomposing VRS,= into QRS,= and DRS,=); cf. Footnote 28
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B.2 PCP Verifier Specifications

Algorithm 8 VL

inputs:
• (x, 1t), allegedly in the language L

randomness:
• r1 · · · rrandPCP(x,t)

oracle:
• π, probabilistically-checkable proof for the satisfiability of (x, 1t)

1. b← V πsACSP

(
(x, 1t) ; r1 · · · rrandPCP(x,t)

)
2. output b

notes:
• see Algorithm 1 for PL, the corresponding verifier
• VsACSP has the choice of parameters ParamsL hardcoded
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Algorithm 9 VsACSP

inputs:
• (x, 1t), allegedly in sACSP with the given choice of parameters(

f, (mH, tH,H), (cN, tN, sN,N), (tP, sP,P), (tI, I)
)

randomness:
• r1 · · · rrandACSP(x,t)

oracle:
• π = (p0, π0, p1, π1, πc), probabilistically-checkable proof for the claim “(x, 1t) ∈ sACSP”

1. Parameter instantiation:
(a) It := FindIrrPoly(1f(t))
(b) BFt := FieldBasis(It)
(c) (BHt ,OHt) := FindH(1t)
(d) for i = 1, . . . , cN(t), [Nt,i]

A := FindN(1t, i)
(e) [Pt]

A := FindP(1t)
(f) (BIt,log |x| ,OIt,log |x|) := FindI(1t, 1log |x|)

2. Proximity of p0 to RS:

(a) δRS := (8
∑cN(t)
i=1 deg(Nt,i))

−1, s′RS := 0.5, RRS := randaRS(f(t), f(t), 2mH(t) − 1, δRS, s
′
RS)

(b) r′1 · · · r′RRS
:= r1 · · · rRRS

(c) bRS := V
(p0,π0)
aRS

(
It,BFt , 0Ft , 2mH(t) − 1, δRS, s

′
RS ; r′1 · · · r′RRS

)
3. Proximity of p1 to VRS:

(a) d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2

mH(t)−1)·deg(Nt,cN(t))))
(b) δVRS := 1

8 , s′VRS := 0.5, RVRS := randaVRS(f(t), f(t),mH(t), d, δVRS, s
′
VRS)

(c) r′1 · · · r′RVRS
:= r1 · · · rRVRS

(d) bVRS := V
(p1,π1)
aVRS

(
It,BFt , 0Ft ,BHt ,OHt , d, δVRS, s

′
VRS ; r′1 · · · r′RVRS

)
4. Consistency of p0 with p1:

(a) r
(α)
1 · · · r(α)f(t) := r1 · · · rf(t)

(b) for i = 1, . . . , cN(t), αi := [Nt,i]
A(α)

(c) query p0 at the following points: α1, . . . , αcN(t)

(d) query p1 at the point α
(e) ω := [Pt]

A
(
α, p0(α1), . . . , p0(αcN(t))

)
(f) if (ω = p1(α)), then bconsist := 1, else bconsist := 0

5. Consistency of p0 with the instance (x, 1t):
(a) compute Ax, the low-degree extension of the function fx : It,log |x| → {0, 1} defined by fx(αi) := xi

where αi is the i-th element in It,log |x|

(b) δc := (8
∑cN(t)
i=1 deg(Nt,i))

−1, s′c := 0.5, Rc := randaVRS(f(t), f(t), log |x|, 2mH(t) − 1, δc, s
′
c)

(c) r′1 · · · r′Rc
:= r1 · · · rRc

(d) binst := V
(p0−px,πc)
aVRS

(
It,BFt , 0Ft ,BIt,log |x| ,OIt,log |x| , 2mH(t) − 1, δc, s

′
c ; r′1 · · · r′Rc

)
, where px is the

evaluation of Ax (note that p0 − px can be simulated with access to p0 and px, and px can be
simulated by evaluating Ax)

6. b := bRS ∧ bVRS ∧ bconsist ∧ binst
7. output b

notes:
• reference: Construction 8.5
• see Lemma C.8 for complexity bounds on queries and randomness
• see Lemma 12.23 for the “non-adaptive decomposition” of VsACSP into QACSP and DACSP

• see Algorithm 2 for PsACSP, the corresponding prover
• to amplify soundness beyond 1/2, there is of course no need to perform again Step 1, but one does

need to re-draw fresh randomness for the other steps (proximity to RS, proximity to VRS,
consistency check, and consistency with the instance)
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Algorithm 10 VaVRS

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BS and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• BH and OH , basis and offset for the λ-dimensional affine subspace H ⊆ F2`

• d, positive integer indicating what “low-degree” means
• δ, proximity parameter
• s′, target soundness

randomness:
• r1 · · · rrandaVRS(`,κ,λ,d,δ,s′)

oracles:
• p, function from S to F2`

• π = (p̃, π̃), proof of proximity to VRS
(
F2` , S,H, d

)
for the function p

1. m :=
⌈

log(1−s′)
log(1−sVRS(δ,2κ)

)
⌉

2. for i = 1, . . . ,m:

(a) r
(i)
1 · · · r

(i)
randVRS(`,κ,λ,d)

:= r(i−1)·randVRS(`,κ,λ,d)+1 · · · ri·randVRS(`,κ,λ,d)

(b) bi := V
(p,π)
VRS

(
I`,BS ,OS ,BH ,OH , d ; r

(i)
1 · · · r

(i)
randVRS(`,κ,λ,d)

)
3. b := b1 ∧ · · · ∧ bm
4. output b

notes:
• see Lemma C.7 for complexity bounds on queries and randomness
• see Lemma 12.22 for the “non-adaptive decomposition” of VaVRS into QaVRS and DaVRS

• see Algorithm 3 for PVRS, the corresponding prover (which is the same as that for VVRS)
• soundness amplification in Step 2a is done “directly”, without attention to randomness efficiency

• from Theorem 11.1, we know that
⌈

log(1−s′)
log(1−sVRS(δ,2κ)

)
⌉
≤
⌈

1
sVRS(δ,2κ)

⌉
≤
⌈
1
δ

(
2 + 2η+1+κlog c

1−2−η

)⌉
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Algorithm 11 VaRS

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BS and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• d, positive integer indicating what “low-degree” means
• δ, proximity parameter
• s′, target soundness

randomness:
• r1 · · · rrandaRS(`,κ,d,δ,s′)

oracles:
• p, function from S to F2`

• π, proof of proximity to RS
(
F2` , S, d

)
for the function p

1. m :=
⌈

log(1−s′)
log(1−sRS(δ,2κ)

)
⌉

2. for i = 1, . . . ,m:

(a) r
(i)
1 · · · r

(i)
randRS(`,κ,d)

:= r(i−1)·randRS(`,κ,d)+1 · · · ri·randRS(`,κ,d)

(b) bi := V
(p,π)
RS

(
I`,BS ,OS , d ; r

(i)
1 · · · r

(i)
randRS(`,κ,d)

)
3. b := b1 ∧ · · · ∧ bm
4. output b

notes:
• see Lemma C.6 for complexity bounds on queries and randomness
• see Lemma 12.21 for the “non-adaptive decomposition” of VaRS into QaRS and DaRS

• see Algorithm 4 for PRS, the corresponding prover (which is the same as that for VRS)
• soundness amplification in Step 2a is done “directly”, without attention to randomness efficiency

• from Theorem 11.1, we know that
⌈

log(1−s′)
log(1−sRS(δ,2κ)

)
⌉
≤
⌈

1
sRS(δ,2κ)

⌉
≤
⌈
1
δ

(
1 + 2η+1+κlog c

1−2−η

)⌉
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Algorithm 12 VVRS

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BS and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• BH and OH , basis and offset for the λ-dimensional affine subspace H ⊆ F2`

• d, positive integer indicating what “low-degree” means

randomness:
• r1 · · · rrandVRS(`,κ,λ,d)

oracles:
• p, function from S to F2`

• π = (p̃, π̃), proof of proximity to VRS
(
F2` , S,H, d

)
for the function p

1. Proximity test of p̃ to RS
(
F2` , S, d− |H|

)
:

(a) r′1 · · · r′randRS(`,κ,d−|H|) := r1 · · · rrandRS(`,κ,d−|H|)

(b) bRS := V
(p̃,π̃)
RS

(
I`,BS ,OS , d− |H| ; r′1 · · · r′randRS(`,κ,d−|H|)

)
2. Consistency check between p and p̃:

(a) r
(α)
1 · · · r(α)κ := r1 · · · rκ

(b) α := GetRandElt(I`,BS ,OS , (r(α)1 , . . . , r
(α)
κ ))

(c) query α to p
(d) query α to p̃
(e) [ZH ]A := FindSubspPoly(I`,BH ,OH)
(f) ω := [ZH ]A(α)
(g) if

(
p(α) = ω · p̃(α)

)
, then bconsist := 1, else bconsist := 0

3. b := bRS ∧ bconsist
4. output b

notes:
• see Lemma C.5 for complexity bounds on queries and randomness
• see Lemma 12.20 for the “non-adaptive decomposition” of VVRS into QVRS and DVRS

• see Algorithm 3 for PVRS, the corresponding prover
• it must be that d ≥ |H|, otherwise p is certainly not in VRS

(
F2` , S,H, d

)
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Algorithm 13 VRS

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BS and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• d, positive integer indicating what “low-degree” means

randomness:
• r1 · · · rrandRS(`,κ,d)

oracles:
• p, function from S to F2`

• π, proof of proximity to RS
(
F2` , S, d

)
for the function p

1. if κ ≤ η, then:
(a) for i = 1, . . . , 2κ:

i. αi := GetEltWithIndex(I`,BS ,OS , i)
ii. query αi to p

(b) P := SubspaceInterp(I`,BS ,OS , (p(α1), . . . , p(α2κ)))
(c) d̃ := deg(P )
(d) if d̃ ≤ d, output 1, else output 0

2. if κ > η, then:
(a) dκ,η := |S|/2η − 1 = 2κ/2η − 1

(b) if d < dκ,η, then output b := V
(p,π)
RS,<

(
I`,BS ,OS , d ; r1 · · · rrandRS,<(`,κ,d)

)
(c) if d = dκ,η, then output b := V

(p,π)
RS,=

(
I`,BS ,OS ; r1 · · · rrandRS,=(`,κ)

)
(d) if d > dκ,η, then output b := V

(p,π)
RS,>

(
I`,BS ,OS , d ; r1 · · · rrandRS,>(`,κ,d)

)
notes:
• see Lemma C.4 for complexity bounds on queries and randomness
• see Lemma 12.19 for the “non-adaptive decomposition” of VRS into QRS and DRS

• see Algorithm 4 for PRS, the corresponding prover
• if κ ≤ η, then VRS can just check directly whether p is in RS

(
F2` , S, d

)
or not
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Algorithm 14 VRS,>

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BS and OS , basis and offset for the κ-dimensional affine subset S ⊆ F2`

• d, positive integer, greater than |S|/2η − 1, indicating what “low-degree” means

randomness:
• r1 · · · rrandRS,>(`,κ,d)

oracles:
• p, function from S to F2`

• π =
(
(p0, π0), . . . , (p2η−1, π2η−1)

)
, proof of proximity to RS

(
F2` , S, d

)
for the function p

1. if d ≥ |S|, then output b := 1
2. if d < |S|, then:

(a) dκ,η := |S|/2η − 1 = 2κ/2η − 1
(b) mκ,η,d := b(d+ 1)/(dκ,η + 1)c
(c) r

(τ)
1 · · · r

(τ)
κ := r1 · · · rκ

(d) τ := GetRandElt(I`,BS ,OS , (r(τ)1 , . . . , r
(τ)
κ ))

(e) query τ to p
(f) for i = 0, . . . ,mκ,η,d − 1:

i. r
(i)
1 · · · r

(i)
randRS,=(`,κ) := r1 · · · rrandRS,=(`,κ)

ii. query τ to pi
iii. bi := V

(pi,πi)
RS,=

(
I`,BS ,OS , dκ,η ; r

(i)
1 · · · r

(i)
randRS,=(`,κ)

)
(g) if mκ,η,d · (dκ,η + 1) = d+ 1, then:

i. ωτ :=
∑m−1
i=0 τ i(dκ,η+1) · pi(τ)

ii. if p(τ) = ωτ , then bconsist := 1, else bconsist := 0
iii. b := b0 ∧ · · · ∧ bmκ,η,d−1 ∧ bconsist
iv. output b

(h) if mκ,η,d · (dκ,η + 1) < d+ 1, then:
i. dκ,η,d := d−mκ,η,d · (dκ,η + 1)

ii. r
(mκ,η,d)
1 · · · r(mκ,η,d)randRS,<(`,κ,dκ,η,d)

:= r1 · · · rrandRS,<(`,κ,dκ,η,d)

iii. bmκ,η,d := V
(pmκ,η,d ,πmκ,η,d )
RS,<

(
I`,BS ,OS , dκ,η,d ; r

(mκ,η,d)
1 · · · r(mκ,η,d)randRS,<(`,κ,dκ,η,d)

)
iv. query τ to pmκ,η,d
v. ωτ :=

∑mκ,η,d
i=0 τ i(dκ,η+1) · pi(τ)

vi. if p(τ) = ωτ , then bconsist := 1, else bconsist := 0
vii. b := b0 ∧ · · · ∧ bmκ,η,d−1 ∧ bmκ,η,d ∧ bconsist

viii. output b

notes:
• see Lemma C.3 for complexity bounds on queries and randomness
• see Lemma 12.18 for the “non-adaptive decomposition” of VRS,> into QRS,> and DRS,>

• see Algorithm 5 for PRS,>, the corresponding prover
• if d ≥ |S|, every function p : S → F2` is in RS(F2` , S, d) (cf. Step 1)
• if d < |S|, then b(d+ 1)/(dκ,η + 1)c ∈ {0, . . . , 2η}, because |S| = 2η · (dκ,η + 1)
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Algorithm 15 VRS,<

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BS and OS , basis for the κ-dimensional affine subset S ⊆ F2`

• d, positive integer, less than |S|/2η − 1, indicating what “low-degree” means

randomness:
• r1 · · · rrandRS,<(`,κ,d)

oracles:
• p, function from S to F2`

• π = (π1, π2), proof of proximity to RS
(
F2` , S, d

)
for the function p

1. dκ,η := |S|/2η − 1 = 2κ/2η − 1
2. r′1 · · · r′randRS,=(`,κ) := r1 · · · rrandRS,=(`,κ)

3. b1 := V
(p,π1)
RS,=

(
I`,BS ,OS ; r′1 · · · r′randRS,=(`,κ)

)
4. r′′1 · · · r′′randRS,=(`,κ) := r1 · · · rrandRS,=(`,κ)

5. compute the polynomial Q(x) := xdκ,η−d ∈ F2` [x]
6. “p′ := p ·Q” (see notes below)

7. b2 := V
(p′,π2)
RS,=

(
I`,BS ,OS ; r′′1 · · · r′′randRS,=(`,κ)

)
8. b := b1 ∧ b2
9. output b

notes:
• see Lemma C.2 for complexity bounds on queries and randomness
• see Lemma 12.17 for the “non-adaptive decomposition” of VRS,< into QRS,< and DRS,<

• see Algorithm 6 for PRS,<, the corresponding prover
• in Step 7, we must simulate the implicit input p′ (which is also a function from S to F2`), and we do

so as follows: for each query α, query α to the (real) implicit input p and then return p(α) ·Q(α);
note that Q(α) can be evaluated in time that is poly(`, log(dκ,η − d))
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Algorithm 16 VRS,=

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension F2` := F2(x)
• BL = (a1, . . . , aκ) and OL, basis and offset for the κ-dimensional affine subset L ⊆ F2`

randomness:
• r1 · · · rrandRS,=(`,κ)

oracles:
• p, function from L to F2`

• π = (f,Π), proof of proximity to RS
(
F2` , L, |L|/2η − 1

)
for the function p

1. if κ ≤ κ0, then:
(a) for i = 1, . . . , 2κ:

i. αi := GetEltWithIndex(I`,BL,OL, i)
ii. query αi to p

(b) dκ,η := |L|/2η − 1 = 2κ/2η − 1
(c) P := SubspaceInterp(I`,BL,OL, (p(α1), . . . , p(α2κ)))
(d) d̃ := deg(P )
(e) if d̃ ≤ dκ,η, output 1, else output 0

2. if κ > κ0, then:
(a) BL0

:= (a1, . . . , abκ/2c−γ), OL0
:= OL

(b) [ZL0 ]A := FindSubspPoly(I`,BL0 ,OL0)
(c) BL′0 := (a1, . . . , abκ/2c−γ+µ), OL′0 := OL
(d) if r1 = 0, then do a random row test:

i. m := 1 + dκ/2e+ γ
ii. BL1

:= (abκ/2c−γ+1, . . . , aκ), OL1
:= OL

iii. β := GetRandElt(I`,BL1 ,OL1 , (r2, . . . , r1+dκ/2e+γ))
iv. if β ∈ L′0, then BLβ := (a1, . . . , abκ/2c−γ+µ, abκ/2c−γ+µ+1);
v. if β 6∈ L′0, then BLβ := (a1, . . . , abκ/2c−γ+µ, β +OL′0)
vi. OLβ := OL′0

vii. β′ := [ZL0
]A(β)

viii. b := V
(f̂ |↔

β′ ,π
↔
β′ )

RS,=

(
I`,BLβ ,OLβ ; rm+1 · · · rrandRS,=(`,κ)

)
ix. output b

(e) if r1 = 1, then do a random column test:
i. m := 1 + bκ/2c − γ + µ

ii. α := GetRandElt(I`,BL′0 ,OL′0 , (r2, . . . , r1+bκ/2c−γ+µ))
iii. BZL0

(L1) := ([ZL0
]A(abκ/2c−γ+1) + [ZL0

]A(0F
2`

), . . . , [ZL0
]A(aκ) + [ZL0

]A(0F
2`

)),
OZL0

(L1) := [ZL0
]A(OL1

)

iv. b := V
(f̂ |lα,π

l
α)

RS,=

(
I`,BZL0

(L1),OZL0
(L1) ; rm+1 · · · rrandRS,=(`,κ)

)
v. output b

notes:
• see Theorem 11.3 for how the parameters (η, κ0, γ, µ) can be chosen
• see Lemma C.1 for complexity bounds on queries and randomness
• see Lemma 12.16 for the “non-adaptive decomposition” of VRS,= into QRS,= and DRS,=

• see Algorithm 7 for PRS,=, the corresponding prover

• in Step 2(d)viii, f̂ |↔β′ is a function with domain Lβ × {β′} that is simulated as follows: for each query

α ∈ Lβ to f̂ |↔β′ , if ZL0
(α) = β′ then return p(α), else return f(α, β′)

• in Step 2(e)iv, f̂ |lα is a function with domain {α} × ZL0(L1) that is simulated as follows: for each

query β′ ∈ ZL0
(L1) to f̂ |lα, if ZL0

(α) = β′ then return p(α), else return f(α, β′)
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B.3 Finite Field Algorithms

In this section we provide the finite-field algorithms that we used in the pseudocode listings in
Section B.1 and Section B.2 (and also those in Section 12). These algorithms provide certain
basic computations in extension fields of F2, and almost all are adapted to the important special
case of affine subspaces. Throughout, we let S denote a κ-dimensional affine subspace of the
appropriate extension field of F2, specified via a basis BS and an offset OS .

We begin with a summary of the algorithms described in this section, and following are the
peudocode listings.

• Set up:

– FindIrrPoly(1`) outputs an irreducible polynomial I` of degree ` over F2 with a root x

– FieldBasis(I`) outputs a (canonical) basis BF for the field F := F2(x)

• Selecting field elements of affine subspaces:

– GetRandElt(I`,BS ,OS , (r1, . . . , rκ)) outputs a field element in the affine subspace S
according to the random binary string (r1, . . . , rκ)

– GetEltWithIndex(I`,BS ,OS , i) outputs the i-th field element in the affine subspace
S according to a canonical order

• Multi-point evaluation and interpolation over affine subspaces:

– SubspaceEval(I`,BS ,OS , P ) outputs the evaluation of P (x) over the affine subspace S

– SubspaceInterp(I`,BS ,OS , (α0, . . . , α2κ−1)) outputs the interpolation of (α0, . . . , α2κ−1)
over the affine subspace S

• Some operations involving vanishing polynomials for affine subspaces:

– FindSubspPoly(I`,BS ,OS) outputs an arithmetic circuit [ZS ]A for computing the van-
ishing polynomial ZS(x) of the affine subspace S

– FindBivariate(I`,BS ,OS , P ) outputs Q(x, y) := P (x) mod (y − ZS(x))

– SubspaceDivide(I`,BS ,OS , P ) outputs P̃ (x) := P (x)/ZS(x), if P (x) ≡ 0 mod ZS(x)
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Algorithm 17 FindIrrPoly

inputs:
• 1`, desired degree presented in unary

output:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension

F2` := F2(x)

1. the algorithm of [Sho88, Corollary 3.2], which runs in time poly(`)

notes:
• the algorithm for finding irreducible polynomials is the only one that we do not spell out

explicitly, because we do not plan to use it in practice; indeed, in practice, pre-computed tables
of irreducible polynomials work much better

Algorithm 18 FieldBasis

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension

F2` := F2(x)

output:
• BF

2`
, basis for F2` when viewed as an `-dimensional vector space over F2

1. output 1, x, . . . , x`−1

notes:
• an optimization that is left to future work is the use of normal bases [Gao93]

124



Algorithm 19 GetRandElt

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension

F2` := F2(x)
• BS = (a1, . . . , aκ) and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• (r1, . . . , rκ), random binary string used to select the element of S

output:
• α, selected element of S

1. α :=
(∑κ

j=1 rjaj

)
+OS

2. output α

notes:
• the random bits are simply the coefficients of the linear combination

Algorithm 20 GetEltWithIndex

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension

F2` := F2(x)
• BS = (a1, . . . , aκ) and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• i, index in {1, . . . , 2κ} of the desired element of S

output:
• α, selected element of S

1. α := (
∑κ
j=1 ijaj) +OS

2. output α

notes:
• i1 · · · iκ is (i− 1) in binary
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Algorithm 21 FindSubspPoly

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension

F2` := F2(x)
• BS = (a1, . . . , aκ) and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

output:
• [ZS ]A, an O(κ) arithmetic circuit for computing ZS(x) =

∑κ
i=0 βix

2i + γ, the vanishing
polynomial for the affine subspace S

1. let [ZS1
]A be the arithmetic circuit for ZS1

(x) := x · (x+ a1)
2. if κ = 1, then:

(a) use [ZS1
]A to compute the arithmetic circuit [ZS ]A for ZS(x) := ZS1

(x) + ZS1
(OS)

(b) output [ZS ]A

3. if κ > 1, then:
(a) for j = 2, . . . , κ:

i. use [ZSj−1
]A to compute αj := ZSj−1

(aj)
ii. use [ZSj−1

]A to compute the arithmetic circuit [ZSj ]
A for ZSj (x) := ZSj−1

(x2) + αjZSj−1
(x)

(b) use [ZSκ ]A to compute the arithmetic circuit [ZS ]A for ZS(x) := ZSκ(x) + ZSκ(OS)
(c) output [ZS ]A

notes:
• the algorithm uses the simple recursion

Zspan(a1,...,aκ)(x) =Zspan(a1,...,aκ−1)(x)Zspan(a1,...,aκ−1)(x+ aκ)

=Zspan(a1,...,aκ−1)(x) ·
(
Zspan(a1,...,aκ−1)(x) + Zspan(a1,...,aκ−1)(aκ)

)
=Zspan(a1,...,aκ−1)(x)2 + Zspan(a1,...,aκ−1)(aκ) · Zspan(a1,...,aκ−1)(x)

=Zspan(a1,...,aκ−1)(x
2) + Zspan(a1,...,aκ−1)(aκ) · Zspan(a1,...,aκ−1)(x)

together with the fact that

Zspan(a1,...,aκ)+O(x) = Zspan(a1,...,aκ)(x+O) = Zspan(a1,...,aκ)(x) + Zspan(a1,...,aκ)(O)

126



Algorithm 22 SubspaceEval

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension

F2` := F2(x)
• BS = (a1, . . . , aκ) and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• P (x) =
∑d
i=0 βix

i, polynomial over F2` [x] with d < 2κ

output:
• (α0, . . . , α2κ−1), elements in F2` such that P (

∑κ
i=1 biai) = α∑κ

i=i bi2
i−1 for b1 · · · bκ ∈ {0, 1}κ

1. output (α0, . . . , α2κ−1) := A(I`,BS ,OS , P, 0), where A is defined below

Define A(I`, (a1, . . . , aκ),O, P, j) as follows:
1. if κ = 1, return P (aj2κ) and P (aj2κ+1)
2. if κ > 1:

(a) use FindSubspPoly to find (an arithmetic circuit for) Zspan(a1,...,aκ−1)+O(x).
(b) compute β := Zspan(a1,...,aκ−1)+O(aj2κ)
(c) divide P (x) by Zspan(a1,...,aκ−1)+O(x)− β to obtain a quotient Q(x) and remainder R(x)
(d) compute P0(x) := R(x)
(e) compute P1(x) := R(x) + Zspan(a1,...,aκ−1)+O(aκ) ·Q(x)
(f) compute (αj2κ , . . . , αj2κ+2κ−1−1) := A(I`, (a1, . . . , aκ−1),O, P0, j)
(g) compute (αj2κ+2κ−1 , . . . , α(j+1)2κ−1) := A(I`, (a1, . . . , aκ−1),O, P1, j + 2κ−1)
(h) output (αj2κ , . . . , α(j+1)2κ−1)

notes:
• see [Mat08, Figure 3.1] for a discussion (of the linear subspace case) and more references
• in an implementation, the vanishing polynomials would be pre-computed first
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Algorithm 23 SubspaceInterp

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension

F2` := F2(x)
• BS = (a1, . . . , aκ) and OS , basis and offset for the κ-dimensional affine subspace S ⊆ F2`

• (α0, . . . , α2κ−1), elements in F2`

output:
• P (x) =

∑d
i=0 βix

i, with d < 2κ, such that P (
∑κ
i=1 biai) = α∑κ

i=i bi2
i−1 for b1 · · · bκ ∈ {0, 1}κ

1. output P := A(I`,BS ,OS , (α0, . . . , α2κ−1), 0), where A is defined below

Define A(I`, (a1, . . . , aκ),O, (α0, . . . , α2κ−1), j) as follows:
1. if κ = 1, return (x− αj2κ) · (x− αj2κ+1)
2. if κ > 1:

(a) compute P0(x) := A(I`, (a1, . . . , aκ−1),O, (αj2κ , . . . , αj2κ+2κ−1−1), j)
(b) compute P1(x) := A(I`, (a1, . . . , aκ−1),O, (αj2κ+2κ−1 , . . . , α(j+1)2κ−1), j + 2κ−1)
(c) use FindSubspPoly to find Zspan(a1,...,aκ−1)+O(x)
(d) compute β := Zspan(a1,...,aκ−1)+O(aj2κ)
(e) compute R(x) := P0(x)
(f) compute Q(x) := (P1(x)− P0(x))/β
(g) compute P (x) := Q(x) · (Zspan(a1,...,aκ−1)+O(x)− β) +R(x)
(h) output P (x)

notes:
• this is simply the “dual” of Algorithm 22
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Algorithm 24 SubspaceDivide

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension

F2` := F2(x)
• BS = (a1, . . . , aκ) and OS , basis for the κ-dimensional affine subspace S ⊆ F2`

• P (x) =
∑d
i=0 βix

i, polynomial over F2` [x] with d < 2` such that P (x) ≡ 0 mod ZS(x)

output:
• P̃ (x), polynomial equal to P (x)/ZS(x)

1. P̃ (x) := 0

2. if deg(P ) < 2κ, output P̃ (x) := 0; otherwise continue

3. ZS(x) =
∑κ
i=0 βix

2i + ω0 := FindSubspPoly(I`,BS ,OS)
4. let t be such that 2t ≤ deg(P ) < 2t+1; note that κ ≤ t
5. R0(x) := ZS(x)− x2κ =

∑κ−1
i=0 βix

2i + ω0

6. for j = 1, . . . , t− k: compute Rj(x) := Rj−1(x)2 = Rj(x
2)

7. P0(x) := P (x)
8. for j = 1, . . . , t− κ+ 1:

(a) by induction, deg(Pj−1) < 2t−(j−1)+1

(b) if deg(Pj−1) < 2t−(j−1), set Pj(x) := Pj−1(x) and go to next iteration of the loop

(c) if deg(Pj−1) ≥ 2t−(j−1), continue this iteration

(d) write Pj−1(x) = x2
t−j+1

P
(1)
j−1(x) + P

(0)
j−1(x) with deg(P

(1)
j−1) ≤ deg(Pj−1) − 2t−j+1 and

deg(P
(0)
j−1) < 2t−j+1 and note that

Pj−1(x) = (x2
t−j+1

+Rt−κ+1−j(x))P
(1)
j−1(x) + P ′j−1(x) = ZS(x)2

t−κ+1−j
P

(1)
j−1(x) + P ′j−1(x)

where P ′j−1(x) := Rt−κ+1−j(x) · P (1)
j−1(x) + P

(0)
j−1(x)

(e) set P̃ (x) := P̃ (x) + ZS(x)2
t−κ+1−j−1P

(1)
j−1(x)

(f) write P ′j−1(x) = x2
t−j+1

P
(1′)
j−1(x) + P

(0′)
j−1(x) + P

(0)
j−1(x) with with degx(P

(1′)
j−1) ≤ degx(Pj−1)−

2t−j+2 + 2t−κ+1−j and deg(P
(0′)
j−1) < 2t−j+1 and note that

P ′j−1(x) = (x2
t−j+1

+Rt−κ+1−j(x))P
(1′)
j−1(x) + Pj(x) = ZS(x)2

t−κ+1−j
P

(1′)
j−1(x) + Pj(x)

where Pj(x) := Rt−κ+1−j(x) · P (1′)
j−1(x) + P

(0′)
j−1(x) + P

(0)
j−1(x) and note that deg(Pj) < 2t−j+1

(g) set P̃ (x) := P̃ (x) + ZS(x)2
t−κ+1−j−1P

(1′)
j−1(x)

9. output P̃ (x)

notes:
• Step 5 and Step 6 construct a (t− κ+ 1)-line table, and in each line of the table there is a large

power of 2 of ZS(x)− x2κ

• in each iteration of the loop in Step 8 we divide out a large power of ZS(x) twice, and these two
divisions will jointly halve the degree of the remaining polynomial, and that is why we only need
few iterations (i.e., t− κ+ 1 iterations)

• in order to compute ZS(x)2
t−κ+1−j−1P

(1)
j−1(x) and ZS(x)2

t−κ+1−j−1P
(1′)
j−1(x), respectively in

Step 8e and in Step 8g, we should remember that
ZS(x)2

t−κ+1−j−1 =
∏t−κ−j
i=0 ZS(x)2

i

=
∏t−κ−j
i=0 (x2

t−j
+Rt−κ−j(x)), so that we should evaluate

the product “from right to left” (i.e., multiply each of the terms of the product with P
(1)
j−1(x) or

P
(1′)
j−1(x), instead of first evaluating the big product and then multiplying the result with P

(1)
j−1(x)

or P
(1′)
j−1(x))
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Algorithm 25 FindBivariate

inputs:
• I`, irreducible polynomial of degree ` over F2 with root x, inducing the field extension

F2` := F2(x)
• BS = (a1, . . . , aκ) and OS , basis for the κ-dimensional affine subspace S ⊆ F2`

• P (x) =
∑d
i=0 βix

i, polynomial over F2` [x]

output:
• Q(x, y), bivariate polynomial equal to P (x) mod (y − ZS(x)); note that degx(Q) < 2κ and

degy(Q) = bdeg(P )
2κ c

1. if deg(P ) < 2κ, output Q(x, y) := P (x); otherwise continue

2. ZS(x) =
∑κ
i=0 βix

2i + ω0 := FindSubspPoly(I`,BS ,OS)
3. let t be such that 2t ≤ deg(P ) < 2t+1; note that κ ≤ t
4. R0(x, y) := y + (ZS(x)− x2κ) = y +

∑κ−1
i=0 βix

2i + ω0

5. For j = 1, . . . , t− k:

Rj(x, y) :=

j∑
i=1

α2
i−1y

2i + γ2κ−1y +

κ−1∑
i=1

(γ2κ−1βi + γ2i−1)x2
i

+ γ2κ−1β0x+ ω2
j−1 + γ2κ−1ω0

where Rj−1(x, y) =
∑j−1
i=0 αiy

2i +
∑κ−1
i=0 γix

2i + ωj−1
6. P0(x, y) := P (x)
7. For j = 1, . . . , t− κ+ 1:

(a) by induction, degx(Pj−1) < 2t−(j−1)+1

(b) if degx(Pj−1) < 2t−(j−1), set Pj(x, y) := Pj−1(x, y) and go to next iteration of the loop

(c) if degx(Pj−1) ≥ 2t−(j−1), continue this iteration

(d) write Pj−1(x, y) = x2
t−j+1

P
(1)
j−1(x, y) + P

(0)
j−1(x, y) with degx(P

(1)
j−1) ≤ degx(Pj−1) − 2t−j+1

and degx(P
(0)
j−1) < 2t−j+1

(e) replace x2
t−j+1

with Rt−κ+1−j(x, y) in Pj−1(x, y) to obtain P ′j−1(x, y) := P
(1′)
j−1(x, y) +

P
(0)
j−1(x, y) with degx(P

(1′)
j−1) ≤ degx(Pj−1)− 2t−j+1 + 2κ−1

(f) write P ′j−1(x, y) = x2
t−j+1

P
(1′′)
j−1 (x, y) + P

(0′′)
j−1 (x, y) + P

(0)
j−1(x, y) with degx(P

(1′′)
j−1 ) ≤

degx(Pj−1)− 2t−j+2 + 2κ−1 and degx(P
(0′′)
j−1 ) < 2t−j+1

(g) replace x2
t−j+1

with Rt−κ+1−j(x, y) in P ′j−1(x, y) to obtain Pj(x, y) with degx(Pj) < 2t−j+1

8. output Q(x, y) := Pt−κ+1(x, y)

notes:
• Step 4 and Step 5 construct a (t− κ+ 1)-line table, and in each line of the table there is a

polynomial with at most (t− κ+ 1) y-monomials and κ x-monomials for substitution of a larger

power of x (specifically, the i-th line is for substituting x2
κ+i

)
• in each iteration of the loop in Step 7 we substitute a large power of x twice, and these two

substitutions will jointly halve the degree of the polynomial, and that is why we only need few
iterations (i.e., t− κ+ 1 iterations)
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C Complexity Analysis

We carefully analyze the query complexity, randomness complexity, and proof length complexity
of (PsACSP, VsACSP), which is the PCP system for sACSP discussed in Section 8;34 the resulting
expressions for the three complexity measures can be easily evaluated numerically for any given
set of parameters. Recall that pseudocode listings for the PCP system (PsACSP, VsACSP) are given
in Appendix B.

In this section, we proceed “bottom-up”, analyzing each module in Figure 1, one prover-
verifier pair at a time. Throughout, we fix a choice of integer parameters (η, κ0, γ, µ) satisfying
Equation 6 in Theorem 11.3.

C.1 Complexity Analysis of PRS,= and VRS,=

The PCPP prover PRS,= is described in Algorithm 7 and the (strong) PCPP verifier VRS,= is
described in Algorithm 16.

Lemma C.1 (Complexity Parameters for PRS,= and VRS,=). The following equations hold:

queryRS,=(`, κ) ≤ 2κ0 ,

randRS,=(`, κ) ≤ κ+ (µ+ 2) log(2κ) ,

lengthRS,=(`, κ) ≤ 2κκ1+max{−γ+µ+1,γ} .

Proof. As was already remarked in [BSS08, Propistion 6.8], it is easy to see that the query
complexity is as follows:

queryRS,=(`, κ) =

{
2κ if κ ≤ κ0

0 if κ > κ0

}
≤ 2κ0 .

Next, as was already remarked in [BSS08, Proposition 6.8] (and then in further detail in [Bha05,
Sec. 2.3.1]), the randomness complexity satisfies the recursion from Lemma C.9 (after appro-
priately generalizing it to our more general constructions), and our lemma tells us that we can
upper bound it follows:

randRS,=(`, κ) ≤

{
0 if κ ≤ κ0

κ+ (µ+ 2) log (κ− 2 max{−γ + µ+ 1, γ}) if κ > κ0

}
≤ κ+ (µ+ 2) log(2κ) .

Finally, as was already remarked in [BSS08, Proposition 6.8] (and then in further detail in
[Bha05, Sec. 2.2.2]), the proof length complexity satisfies the recursion from Lemma C.10 (after
appropriately generalizing it to our more general constructions), and our lemma tells us that
we can upper bound it as follows:

lengthRS,=(`, κ) ≤ 2κκ1+max{−γ+µ+1,γ} .

Of course, if one wishes to numerically evaluate randRS,=(`, κ) or lengthRS,=(`, κ), using the re-
cursive function (in Lemma C.9 or Lemma C.10 respectively) will give the exact value. (Though
our bounds are quite tight.)

34We do not discuss here the prover and verifier time and space complexities; indeed, a detailed complexity
analysis of such performance measures (e.g., by paying close attention to multiplicative constants) does not seem
feasible and is ultimately not fruitful — after all, concrete time and space requirements of a prover and verifier
are best studied through a code implementation, which we leave to future work.
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C.2 Complexity Analysis of PRS,< and VRS,<

The PCPP prover PRS,< is described in Algorithm 6 and the (strong) PCPP verifier VRS,< is
described in Algorithm 15.

Lemma C.2 (Complexity Parameters for PRS,< and VRS,<). The following equations hold:

queryRS,<(`, κ, d) = 2 · queryRS,=(`, κ) ,

randRS,<(`, κ, d) = randRS,=(`, κ) ,

lengthRS,<(`, κ, d) = 2 · lengthRS,=(`, κ) .

Proof. Immediate from the construction of PRS,< and VRS,<.

C.3 Complexity Analysis of PRS,> and VRS,>

The PCPP prover PRS,> is described in Algorithm 5 and the (strong) PCPP verifier VRS,> is
described in Algorithm 14. Recall that dκ,η := 2κ/2η − 1.

Lemma C.3 (Complexity Parameters for PRS,> and VRS,>). The following equations hold:

queryRS,>(`, κ, d) = mκ,η,d · queryRS,=(`, κ) + 1κ,η,d · queryRS,<(`, κ, d−mκ,η,d(dκ,η + 1)) +mκ,η,d + 1κ,η,d + 1 ,

randRS,>(`, κ, d) = max
{
randRS,=(`, κ) , 1κ,η,d · randRS,<(`, κ, d−mκ,η,d(dκ,η + 1)) , κ

}
,

lengthRS,>(`, κ, d) = mκ,η,d · (2κ + lengthRS,=(`, κ)) + 1κ,η,d · (2κ + lengthRS,<(`, κ, d−mκ,η,d(dκ,η + 1))) ,

where mκ,η,d := d d+1
dκ,η+1e and 1κ,η,d := 1 if (d+ 1) > mκ,η,d · (dκ,η + 1) and 1κ,η,d := 0 otherwise.

Proof. Immediate from the construction of PRS,> and VRS,>.

C.4 Complexity Analysis of PRS and VRS

The PCPP prover PRS is described in Algorithm 4 and the (strong) PCPP verifier VRS is de-
scribed in Algorithm 13.

Lemma C.4 (Complexity Parameters for PRS and VRS). The following equations hold:

queryRS(`, κ, d) =


queryRS,<(`, κ, d) if d < dκ,η

queryRS,=(`, κ) if d = dκ,η

queryRS,>(`, κ, d) if d > dκ,η

,

randRS(`, κ, d) =


randRS,<(`, κ, d) if d < dκ,η

randRS,=(`, κ) if d = dκ,η

randRS,>(`, κ, d) if d > dκ,η

,

lengthRS(`, κ, d) =


lengthRS,<(`, κ, d) if d < dκ,η

lengthRS,=(`, κ) if d = dκ,η

lengthRS,>(`, κ, d) if d > dκ,η

.

Proof. The prover PRS simply calls PRS,<, PRS,=, or PRS,>, depending on whether the input
degree d is less than, equal to, or greater than dκ,η := 2κ/2η − 1; similarly for VRS.35

35Though if κ no larger than η, then VRS will directly test the degree of the implicit input. We do not include
this case in the complexity analysis, because η is a very small constant, and we will never be interested in inputs
of such a small dimension!
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C.5 Complexity Analysis of PVRS and VVRS

The PCPP prover PVRS is described in Algorithm 3 and the (strong) PCPP verifier VVRS is
described in Algorithm 12.

Lemma C.5 (Complexity Parameters for PVRS and VVRS). The following equations hold:

queryVRS(`, κ, λ, d) = queryRS(`, κ, d− 2λ) + 2 ,

randVRS(`, κ, λ, d) = max
{
randRS(`, κ, d− 2λ) , κ

}
,

lengthVRS(`, κ, λ, d) = 2κ + lengthRS(`, κ, d− 2λ) ,

Proof. Immediate from the construction of PVRS and VVRS.

C.6 Complexity Analysis of VaRS and VaVRS

The (“weak”) PCPP verifier VaRS is described in Algorithm 11; its corresponding prover is
simply the PCPP prover PRS from Algorithm 4.

Lemma C.6 (Complexity Parameters for VaRS). The following equations hold:

queryaRS(`, κ, d, δ, s′) = msRS,δ,s′(n) · queryRS(`, κ, d) ,

randaRS(`, κ, d, δ, s′) = msRS,δ,s′(n) · randRS(`, κ, d) .

Proof. Observe that VaRS simply performs naive sequential repetition on VRS. Hence, by Re-
mark 11.2, in order to obtain a “weak” PCPP with proximity parameter δ and target soundness
s′ (both given as input to VaRS), the number of repetitions is:

msRS,δ,s′(n) =

⌈
log(1− s′)
sRS(δ, n)

⌉
.

where n = 2κ and sRS is the soundness of VRS. (Recall that Theorem 11.1 gives a lower bound
on sRS.)

The query complexity and randomness complexity thus simply increase by the multiplicative
factor msRS,δ,s′(n).

The (“weak”) PCPP verifier VaVRS is described in Algorithm 10; its corresponding prover is
simply the PCPP prover PVRS from Algorithm 3.

Lemma C.7 (Complexity Parameters for VaVRS). The following equations hold:

queryaVRS(`, κ, λ, d, δ, s′) = msVRS,δ,s′(n) · queryVRS(`, κ, λ, d) ,

randaVRS(`, κ, λ, d, δ, s′) = msVRS,δ,s′(n) · randVRS(`, κ, λ, d) .

Proof. Observe that VaVRS simply performs naive sequential repetition on VVRS. Hence, by Re-
mark 11.2, in order to obtain a “weak” PCPP with proximity parameter δ and target soundness
s′ (both given as input to VaVRS), the number of repetitions is:

msVRS,δ,s′(n) =

⌈
log(1− s′)
sVRS(δ, n)

⌉
.

where n = 2κ and sVRS is the soundness of VVRS. (Recall that Theorem 11.1 gives a lower bound
on sVRS.)

The query complexity and randomness complexity thus simply increase by the multiplicative
factor msVRS,δ,s′(n).
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C.7 Complexity Analysis of PsACSP and VsACSP

The prover PsACSP is described in Algorithm 2 (and also in Construction 8.3) and the verifier
VsACSP is described in Algorithm 9 (and also in Construction 8.5).

Lemma C.8 (Complexity Parameters for PsACSP and VsACSP). The following equations hold:

queryACSP(x, t) = queryaRS(f(t), f(t), 2mH(t) − 1, 1
8cN(t) ,

1
2)

+ queryaVRS(f(t), f(t),mH(t), d, 1
8 ,

1
2)

+ (cN(t) + 1)

+ queryaVRS(f(t), f(t), log |x|, 2mH(t) − 1, 1
8cN(t) ,

1
2) ,

randACSP(x, t) = max
{
randaRS(f(t), f(t), 2mH(t) − 1, 1

8cN(t) ,
1
2) ,

randaVRS(f(t), f(t),mH(t), d, 1
8 ,

1
2) ,

f(t) ,

randaVRS(f(t), f(t), log |x|, 2mH(t) − 1, 1
8cN(t) ,

1
2)
}
,

lengthACSP(x, t) = 2f(t) + lengthaRS(f(t), f(t), 2mH(t) − 1, 1
8cN(t) ,

1
2)

+ 2f(t) + lengthaVRS(f(t), f(t),mH(t), d, 1
8 ,

1
2)

+ lengthaVRS(f(t), f(t), log |x|, 2mH(t) − 1, 1
8cN(t) ,

1
2) ,

where d := deg(Pt(x, x
(2mH(t)−1)·deg(Nt,1), . . . , x(2mH(t)−1)·deg(Nt,cN(t)))).

Proof. Immediate from the construction of PsACSP and VsACSP.

C.8 Solving Recursions

We deduce an upper bound for two recursive functions that arise in Appendix C.1: respectively,
the upper bounds are on the recursive function giving the amount of randomness used by VRS,=

(Lemma C.9) and the recursive function giving the length of the proximity proof generated by
PRS,= (Lemma C.10).

Lemma C.9. The recursion

r(κ) =

{
0 if κ ≤ κ0

1 + max
{⌈κ

2

⌉
+ γ + r

(⌊κ
2

⌋
− γ + µ+ 1

)
,
⌊κ

2

⌋
− γ + µ+ r

(⌈κ
2

⌉
+ γ
)}

if κ > κ0

(27)

is upper bounded by the function

r̃(κ) =

{
0 if κ ≤ κ0

κ+ (µ+ 2) log (κ− 2 max{−γ + µ+ 1, γ}) if κ > κ0

.

Proof. For κ ∈ {1, . . . , κ0}, the equality follows immediately. The parameter constraints from
Equation 6 imply that r̃(k) is well-defined for κ > κ0:

k

2
≥ κ0 + 1

2
≥
⌊
κ0 + 1

2

⌋
≥ γ + 1 ≥ γ +

1

2
and

134



k

2
≥ κ0 + 1

2
≥
⌈
κ0 + 1

2

⌉
− 1

2
≥ −γ + µ+ 2− 1

2
= −γ + µ+ 1 +

1

2
,

so that κ− 2 ·max{−γ + µ+ 1, γ} ≥ 1 > 0. Also, it will be useful to also derive the following
inequalities (also implied by Equation 6):

κ−
(⌈κ

2

⌉
+ γ + 1

)
=
⌊κ

2

⌋
− γ − 1 ≥

⌊
κ0 + 1

2

⌋
− γ − 1 ≥ 0 and

κ−
(⌊κ

2

⌋
− γ + µ+ 1

)
=
⌈κ

2

⌉
+ γ − µ− 1 ≥ 1 ≥ 0 .

Finally, we observe that, for every two κ and c with κ ≥ 2c:

log
(⌊κ

2

⌋
− c
)
≤ log

(κ
2
− c
)

= log(κ− 2c)− 1 and

log
(⌈κ

2

⌉
− c
)
≤ log

(κ
2
− c+ 1

)
= log(κ− 2c+ 2)− 1 .

Now we go back to the rest of the proof. For κ > κ0, we distinguish between four cases:

• Case 1: κ is such that bκ/2c − γ + µ+ 1 ≤ κ0 and dκ/2e+ γ ≤ κ0. By Equation 27, the
defining equation for r(κ), we get:

r(κ) = 1 + max
{⌈κ

2

⌉
+ γ + r

(⌊κ
2

⌋
− γ + µ+ 1

)
,
⌊κ

2

⌋
− γ + µ+ r

(⌈κ
2

⌉
+ γ
)}

= 1 + max
{⌈κ

2

⌉
+ γ + 0 ,

⌊κ
2

⌋
− γ + µ+ 0

}
≤ κ
≤ κ+ (µ+ 2) log (κ− 2 max{−γ + µ+ 1, γ}) .

• Case 2: κ is such that bκ/2c − γ + µ+ 1 > κ0 and dκ/2e+ γ ≤ κ0. By Equation 27, the
defining equation for r(κ), we get:

r(κ) = 1 + max
{⌈κ

2

⌉
+ γ + r

(⌊κ
2

⌋
− γ + µ+ 1

)
,
⌊κ

2

⌋
− γ + µ+ r

(⌈κ
2

⌉
+ γ
)}

≤ 1 + max
{⌈κ

2

⌉
+ γ +

(⌊κ
2

⌋
− γ + µ+ 1 + (µ+ 2) log

(⌊κ
2

⌋
− γ + µ+ 1− 2 max{−γ + µ+ 1, γ}

))
,⌊κ

2

⌋
− γ + µ+ 0

}
≤ 1 + max

{
κ+ µ+ 1 + (µ+ 2) log

(⌊κ
2

⌋
− γ + µ+ 1− 2 max{−γ + µ+ 1, γ}

)
,
⌊κ

2

⌋
− γ + µ

}
≤ 1 + max

{
κ+ µ+ 1 + (µ+ 2) log

(⌊κ
2

⌋
−max{−γ + µ+ 1, γ}

)
,
⌊κ

2

⌋
− γ + µ

}
≤ max

{
κ+ (µ+ 2) log (κ− 2 max{−γ + µ+ 1, γ}) ,

⌊κ
2

⌋
− γ + µ+ 1

}
= κ+ (µ+ 2) log (κ− 2 max{−γ + µ+ 1, γ}) .

• Case 3: κ is such that bκ/2c − γ + µ+ 1 ≤ κ0 and dκ/2e+ γ > κ0. By Equation 27, the
defining equation for r(κ), we get:

r(κ) = 1 + max
{⌈κ

2

⌉
+ γ + r

(⌊κ
2

⌋
− γ + µ+ 1

)
,
⌊κ

2

⌋
− γ + µ+ r

(⌈κ
2

⌉
+ γ
)}
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≤ 1 + max
{⌈κ

2

⌉
+ γ + 0 ,⌊κ

2

⌋
− γ + µ+

(⌈κ
2

⌉
+ γ + (µ+ 2) log

(⌈κ
2

⌉
+ γ − 2 max{−γ + µ+ 1, γ}

))}
= 1 + max

{⌈κ
2

⌉
+ γ , κ+ µ+ (µ+ 2) log

(⌈κ
2

⌉
+ γ − 2 max{−γ + µ+ 1, γ}

)}
≤ 1 + max

{⌈κ
2

⌉
+ γ , κ+ µ+ (µ+ 2) log

(⌈κ
2

⌉
−max{−γ + µ+ 1, γ}

)}
≤ max

{⌈κ
2

⌉
+ γ + 1 , κ+ (µ+ 2) log (κ− 2 max{−γ + µ+ 1, γ}+ 2)− 1

}
≤ max

{⌈κ
2

⌉
+ γ + 1 , κ+ (µ+ 2) log (κ− 2 max{−γ + µ+ 1, γ})

}
= κ+ (µ+ 2) log (κ− 2 max{−γ + µ+ 1, γ}) .

• Case 4: κ is such that bκ/2c − γ + µ+ 1 > κ0 and dκ/2e+ γ > κ0. This case follows by
similar computations as Case 2 and Case 3.

Lemma C.10. The recursive function

r(κ) =

{
0 if κ ≤ κ0

2dκ/2e+γ · 2bκ/2c−γ+µ+1 + 2dκ/2e+γ · r (bκ/2c − γ + µ+ 1) + 2bκ/2c−γ+µ · r (dκ/2e+ γ) if κ > κ0

(28)

is upper bounded by the function

r̃(κ) = 2κκ1+max{−γ+µ+1,γ} .

Proof. Let s̃(κ) be a generic function of κ ∈ N. We derive constraints on s̃(κ) such that
r(κ) ≤ 2κ · s̃(κ). For κ ∈ {1, . . . , κ0}, the inequality r(κ) ≤ 2κ · s̃(κ) follows as long as s̃(κ) is
non-negative on {1, . . . , κ0}. For κ > κ0, we distinguish between four cases:

• Case 1: κ is such that bκ/2c − γ + µ+ 1 ≤ κ0 and dκ/2e+ γ ≤ κ0. By Equation 28, the
defining equation for r(κ), we get:

r(κ) = 2µ+1 · 2κ + 2dκ/2e+γ · r (bκ/2c − γ + µ+ 1) + 2bκ/2c−γ+µ · r (dκ/2e+ γ)

≤ 2µ+1 · 2κ + 2dκ/2e+γ · 0 + 2bκ/2c−γ+µ+1 · 0
= 2µ+1 · 2κ

≤ 2κ · s̃(κ) ,

where the first inequality follows by the inductive hypothesis and the last inequality is a
constraint for s̃.

• Case 2: κ is such that bκ/2c − γ + µ+ 1 > κ0 and dκ/2e+ γ ≤ κ0. By Equation 28, the
defining equation for r(κ), we get:

r(κ) = 2µ+1 · 2κ + 2dκ/2e+γ · r (bκ/2c − γ + µ+ 1) + 2bκ/2c−γ+µ · r (dκ/2e+ γ)

≤ 2µ+1 · 2κ + 2dκ/2e+γ ·
(

2bκ/2c−γ+µ+1 · s̃ (bκ/2c − γ + µ+ 1)
)

+ 2bκ/2c−γ+µ · 0
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= 2µ+1 · 2κ + 2µ+1 · 2κ · s̃ (bκ/2c − γ + µ+ 1)

= 2κ ·
(
2µ+1 + 2µ+1 · s̃ (bκ/2c − γ + µ+ 1)

)
≤ 2κ · s̃(κ) ,

where the first inequality follows by the inductive hypothesis and the last inequality is a
constraint (additional to the other one that we already derived) for s̃.

• Case 3: κ is such that bκ/2c − γ + µ+ 1 ≤ κ0 and dκ/2e+ γ > κ0. By Equation 28, the
defining equation for r(κ), we get:

r(κ) = 2µ+1 · 2κ + 2dκ/2e+γ · r (bκ/2c − γ + µ+ 1) + 2bκ/2c−γ+µ · r (dκ/2e+ γ)

≤ 2µ+1 · 2κ + 2dκ/2e+γ · 0 + 2bκ/2c−γ+µ ·
(

2dκ/2e+γ · s̃(dκ/2e+ γ)
)

= 2µ+1 · 2κ + 2µ · 2κ · s̃ (bκ/2c+ γ)

= 2κ ·
(
2µ+1 + 2µ · s̃ (bκ/2c+ γ)

)
≤ 2κ · s̃(κ) ,

where the first inequality follows by the inductive hypothesis and the last inequality is a
constraint (additional to the other two that we already derived) for s̃.

• Case 4: κ is such that bκ/2c − γ + µ+ 1 > κ0 and dκ/2e+ γ > κ0. By Equation 28, the
defining equation for r(κ), we get:

r(κ) = 2µ+1 · 2κ + 2dκ/2e+γ · r (bκ/2c − γ + µ+ 1) + 2bκ/2c−γ+µ · r (dκ/2e+ γ)

≤ 2µ+1 · 2κ + 2dκ/2e+γ ·
(

2bκ/2c−γ+µ+1 · s̃ (bκ/2c − γ + µ+ 1)
)

+ 2bκ/2c−γ+µ ·
(

2dκ/2e+γ · s̃(dκ/2e+ γ)
)

= 2µ+1 · 2κ + 2µ+1 · 2κ · s̃ (bκ/2c − γ + µ+ 1) + 2µ · 2κ · s̃ (dκ/2e+ γ)

= 2κ ·
(
2µ+1 + 2µ+1 · s̃ (bκ/2c − γ + µ+ 1) + 2µ · s̃ (dκ/2e+ γ)

)
≤ 2κ · s̃(κ) ,

where the first inequality follows by the inductive hypothesis and the last inequality is a
constraint (additional to the other three that we already derived) for s̃.

Overall, we require that

s̃(κ) ≥



0 if κ ≤ κ0

2µ+1 if Case 1

2µ+1 + 2µ+1 · s̃ (bκ/2c − γ + µ+ 1) if Case 2

2µ+1 + 2µ · s̃ (bκ/2c+ γ) if Case 3

2µ+1 + 2µ+1 · s̃ (bκ/2c − γ + µ+ 1) + 2µ · s̃ (dκ/2e+ γ) if Case 4

.

By inspection, s̃(κ)
def
= κ1+max{−γ+µ+1,γ} works for all κ ∈ N.
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