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Abstract

We obtain the first deterministic randomness extractors for n-bit sources with min-
entropy ≥ n1−α generated (or sampled) by single-tape Turing machines running in
time n2−16α, for all sufficiently small α > 0. We also show that such machines cannot
sample a uniform n-bit input to the Inner Product function together with the output.

The proofs combine a variant of the crossing-sequence technique by Hennie [SWCT
1965] with extractors for block sources, especially those by Chor and Goldreich [SICOMP
1988] and by Kamp, Rao, Vadhan, and Zuckerman [JCSS 2011].
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1 Introduction

Turing machines may be most studied model of computation even after decades of work on
circuits. Following a first wave of worst-case lower bounds starting in the 60’s (cf. [HU69])
and continuing to this date, researchers in the 90’s have produced a second type of results.
Specifically, Impagliazzo, Nisan, and Wigderson obtain in [INW94] average-case lower bounds
and pseudorandom generators.

In this work we are interested in what we see as a third type of lower bounds: sampling
lower bounds. We seek to understand what distributions can be sampled by randomized
Turing machines (which take no input).

The first work on sampling complexity may be the one by Jerrum, Valiant, and Vazirani
[JVV86] who define sampling complexity classes and prove reductions among various prob-
lems. An unconditional communication complexity lower bound for sampling disjointness
appears in the work [ASTS+03] by Ambainis, Schulman, Ta-Shma, Vazirani, and Wigder-
son. Goldreich, Goldwasser, and Nussboim study the complexity of sampling in [GGN10] as
part of a general study of the implementation of huge random objects. Aaronson proves in
[Aar11] a connection between sampling and searching problems.

The complexity of sampling is being revisited in a series of recent works [Vio12, LV11,
DW11, Vio11]. These works establish the first unconditional lower bounds for several com-
putational models, such as bounded-depth circuits, and draw several new connections to
problems in data structures, combinatorics, and randomness extractors. The connection to
randomness extractors in particular makes progress along the research direction initiated by
Trevisan and Vadhan in [TV00], and continued by Kamp, Rao, Vadhan, and Zuckerman
in [KRVZ11], which aims to construct deterministic randomness extractors for efficiently-
samplable distributions.

1.1 Our results

Our main result is an extractor for sources samplable by Turing machines running in sub-
quadratic time. For clarity we first review randomized Turing machines.

In this work, Turing machines have exactly one read-write tape, infinite to the right
only, with exactly one head on it. One may choose {0, 1} as tape alphabet. The tape is
initially blank, that is, all zeros. In one time step, the machine reads the content of the
cell, tosses a coin, and then writes the cell, updates the state, and moves the head to an
adjacent location. A t × t computation table is a t × t matrix corresponding to a valid
computation according to such rules, with rows being configurations. Each entry specifies
the content of the corresponding tape cell, whether the head is on that cell, and if so what
is the current state and the current coin toss. Since we store the coin tosses in the entries,
all t× t computation tables have equal probability 2−t.

A Turing machine source on n bits running in time t is sampled as follows. First sample
uniformly the t× t computation table. Then output the bottom left n tape bits.

Theorem 1.1 (Extractors for Turing-machine sources). For all sufficiently small α > 0,
there is an explicit extractor E : {0, 1}n → {0, 1}m with output length m = nΩ(1) and
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Figure 1: Decomposition of Turing-machine source in r = 3 blocks (or runs) or ` bits
separated by blocks of b bits.

error 2−n
Ω(1)

for n-bit sources with min-entropy ≥ k := n1−α/16 that are sampled by Turing
machines with ≤ 2q := 2n

α/16
states and running in time ≤ t := n2−α.

The above theorem implies sampling lower bounds for somewhat complicated functions.
The next one obtains one for the inner-product function IP .

Theorem 1.2 (Sampling lower bound for Turing machines). For every α ∈ (0, 1] and all
sufficiently large even n

no Turing machine with ≤ 2q := 2n
α/2

states and running in time ≤ t := n2−α can sample
the distribution

(X1, X2, IP (X1, X2))

where X1 and X2 are uniform and independent over {0, 1}n/2.

Note that this result depends on the ordering of the input bits – if the bits of X1 and X2

are interleaved than a Turing machine can sample the distribution in linear time.

1.2 Overview of the proofs

To prove our results we show that any Turing-machine source contains an independent
source. More specifically, divide the n bits of the source into r blocks (or runs) of length `
separated by blocks of length b, as in Figure 1. We show that any Turing-machine source
running in subquadratic time is a convex combination of sources Y1Y2 · · ·Yr where the Yi are
independent, and each Yi covers exactly one of the `-bit blocks:

Lemma 1.3 (Turing-machine sources contain independent sources). Let X be a Turing
machine source on n bits running in time t ≥ n with 2q states and min-entropy k.

For any `, b such that (r−1)(`+b)+` = n, X is a convex combination of J ≤ 2r·O(q(lg t)t/b)

n-bit sources Sj where each Sj is
Sj = Y1Y2 . . . Yr,

where the Yi are independent, and for every i < r we have `i+b(i−1) ≤ |Y1Y2 . . . Yi| ≤ `i+bi.

One can then extract using extractors for independent sources, developed in an exciting,
ongoing line of research; see e.g. [SV86, CG88, BIW06, BKS+10, Raz05, KRVZ11, Rao09,
Bou05, BRSW06, Li11]. One gets different results depending on which extractors one uses.
However, many of the available extractors for independent sources require a guarantee on
the min-entropy of each source. By contrast, our given guarantee on the min-entropy of
the Turing-machine source only translates into a guarantee on the total min-entropy of the
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independent sources. Thus for our extractor in Theorem 1.1 we use the extractors by Kamp,
Rao, Vadhan, and Zuckerman [KRVZ11] which only require that.

The sampling lower bound for IP in Theorem 1.2 is obtained by using instead the result
by Chor and Goldreich that the inner product function IP : {0, 1}` × {0, 1}` → {0, 1}
is a two-source extractor with error ε if the sum of the entropies of the two sources is
> `+ 2 lg(1/ε).[CG88]

We now elaborate on how we prove that any Turing-machine source contains an inde-
pendent source. First, we introduce a variant of the classical crossing-sequence technique
due to Hennie [Hen65] that is suitable for sampling tasks. This allows us to sample the
Turing-machine source by a low-communication protocol among r players. This is explained
in more detail below. Compared to previous simulations [KN97, §12] ours has the advantage
of incurring no error. Another difference is that in our setting it is advantageous to have a
large number of players. (This is because the number of players corresponds to the num-
ber of independent blocks, and in general the more the independent blocks the easier the
extraction.)

We then use the fact that a source sampled by a low-communication protocol is a con-
vex combination of independent sources. For 2 players, this fact originates from the work
[ASTS+03, §7] of Ambainis, Schulman, Ta-Shma, Vazirani, and Wigderson.

This concludes the high-level view of the proof. In the next paragraph we elaborate on
how to sample a Turing-machine source by a low-communication protocol.

From Turing’s machines to Yao’s protocols. Let T := (C1, C2, . . . , Ct) be a distribu-
tion on t× t computation tables, where Ci represents the ith column of the table. We first
describe an alternative way to sample T ; then we explain how this alternative way can be
implemented as a low-communication protocol.

The alternative way to sample T comes from the observation that the random variables
C1, C2, . . . are a markov process (or chain). That is, conditioned on Ci, the random variable
C<i of the columns before the ith is independent from the random variable C>i of the columns
after the ith. The alternative way proceeds by sampling T from left to right one column
at the time, each time conditioning only on the previous column (as opposed to the entire
prefix). For example, one first samples C1 = c1, then samples C2 = c2|C1 = c1, then samples
C3 = c3|C2 = c2, and so on. Let us call the resulting distribution T ?. To see that T and
T ? are the same distribution, note that after conditioning on a column Ci = ci, T becomes
a product distribution: the columns before i are independent from those after i. This holds
because T |Ci = ci is uniform on its support (since each computation table has probability
2−t), and by locality of computation: if c<i ci c>i and c′<i ci c

′
>i are in the support of T |Ci = ci,

then so is c<i ci c
′
>i. It is now an exercise to show that for any transcript t = (c1, c2, . . . , ct)
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we have Pr[T = t] = Pr[T ? = t]. The solution to the exercise follows.

Pr[T = t] =
∏
i

Pr[Ci = ci|C<i = c<i];

Pr[T ? = t] =
∏
i

Pr[Ci = ci|Ci−1 = ci−1]

=
∏
i

Pr[Ci = ci ∧ C<i−1 = c<i−1|Ci−1 = ci−1]

Pr[C<i−1 = c<i−1|Ci−1 = ci−1]
(Since T |Ci−1 = ci−1 is product)

= Pr[T = t].

We then exploit the above alternative way to sample T efficiently by a low-communication
protocol among r players. Refer to Figure 1 for the parameters. The first player samples one
column at a time. After an appropriate number ` of columns, it looks for the first column
that has a short description. By locality of computation, among b columns there must be
one that corresponds to a tape cell that the Turing-machine head scans ≤ t/b times. Since
modifications of a column only occur when the head scans it, this column can be described
with about t/b bits, which is < n for t = n2−α and b = n1−α/2. The player can send this
description to the next player, who can then continue the process.

2 Proofs

Lemma 1.3 (Turing-machine sources contain independent sources). Let X be a Turing
machine source on n bits running in time t ≥ n with 2q states and min-entropy k.

For any `, b such that (r−1)(`+b)+` = n, X is a convex combination of J ≤ 2r·O(q(lg t)t/b)

n-bit sources Sj where each Sj is
Sj = Y1Y2 . . . Yr,

where the Yi are independent, and for every i < r we have `i+b(i−1) ≤ |Y1Y2 . . . Yi| ≤ `i+bi.

Proof. We prove this in two stages. In the first, more substantial stage we show how to
sample the entire source X using a one-way low-communication protocol in which Player i
outputs a sample covering Yi but touching no Yj for j 6= i. In the second stage we condition
on the protocol’s transcript.

We now proceed to the first stage. Let T = (C1, C2, . . . , Ct) be the uniform distribution
over t× t computation tables.

P1 starts sampling T from left to right, one column at the time. It stops at the first
tape-cell index s1 such that ` < s1 ≤ ` + b and such that the sample cs1 of Cs1 contains
≤ t/b states. Since each row only has the state in one cell, such an s1 is guaranteed to exist.
Because changes to tape contents only happen when the head is on that cell, this column
can be described with

O(q(lg t)t/b)

bits. The lg t term arises from specifying the times where the head is on that cell.
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P1 outputs the first s1 output bits of the computation table. It then sends both the
description of cs1 and s1 to P2. This takes O(q(lg t)t/b) +O(lg t) = O(q(lg t)t/b) bits.

P2 will then continue sampling the computation table from left to right one column at
the time. It stops at the smallest tape-cell index s2 such that (`+ b) + ` < s2 ≤ 2(`+ b) and
such that the sample cs2 of Cs2 contains ≤ t/b states. And so on.

This is the end of stage 1.
By conditioning on the communication, we can write the output distribution as a convex

combination of J ≤ 2r·O(q(lg t)t/b) distributions Sj. After conditioning on the communication,
the players’ output are independent and have a fixed length. Hence each Sj is a product
distribution Sj = Y1Y2 . . . Yr where Yi is the output of Pi. The bounds on the lengths of
Y1Y2 . . . Yi follow by inspection.

The following standard claim bounds the entropy loss when selecting a distribution from
a convex combination.

Claim 2.1 (Entropy loss in convex combo). Let D be a distribution with min-entropy k
that is a convex combination of J = 2j distributions D1, D2, . . . , DJ . Consider sampling D
by first appropriately selecting an index h ≤ J , and then sampling Dh. For every ε, the
probability over the choice of h that Dh has min-entropy ≤ k − j − lg(1/ε) is ≤ ε.

Proof. Suppose the probability is > ε. There is a h ≤ J that is picked with probability
> ε/J such that Dh has min-entropy ≤ k − j − lg(1/ε). This means that there is some a
such that Pr[Dh = a] ≥ 1/2k−j−lg(1/ε). But then Pr[D = a] > ε/J · 1/2k−j−lg(1/ε) > 1/2k.

We use the following extractor.

Theorem 2.2 (Theorem 5.1 in [KRVZ11]). There is a constant β > 0 such that for every
` and δ ≥ 1/`β there is an explicit extractor for min-entropy ≥ δr` sources over

(
{0, 1}`

)r
such that the r blocks of ` bits are independent and with r ≥ 1/(βδ2), with output length

m = `Ω(1), and error ε = 2−`
Ω(1)

.

Using the techniques in [GRS06, Sha08] one can derive a similar extractor where almost
all the entropy is output, cf. [KRVZ11, §7]. However we do not pursue this here.

We now restate and prove our main extractor result.

Theorem 1.1 (Extractors for Turing-machine sources). For all sufficiently small α > 0,
there is an explicit extractor E : {0, 1}n → {0, 1}m with output length m = nΩ(1) and

error 2−n
Ω(1)

for n-bit sources with min-entropy ≥ k := n1−α/16 that are sampled by Turing
machines with ≤ 2q := 2n

α/16
states and running in time ≤ t := n2−α.

Proof. For an α to be determined later, set b := n1−α/2 and ` := n1−α/4. We assume
w.l.o.g. that `+ b divides n+ b. Note r := (n+ b)/(`+ b) = Θ(nα/4).

Divide the n bits of the source into r runs of ` bits separated by r− 1 runs of b bits. We
apply the extractor from Theorem 2.2 to the r runs of ` bits.
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By Lemma 1.3 we view the source as a convex combination of J ≤ 2O(rq(lg t)t/b) product
sources Sj. By Claim 2.1 with ε := 2−k/2, if we choose a distribution in the combination,
except with probability ε we obtain a distribution with min-entropy at least

k −O(rq(lg t)t/b)− lg(1/ε) ≥ k/2−O(rq(lg t)t/b)

=n1−α/16/2−O(nα/4+α/16+1−α/2 lg n) = n1−α/16/2−O(n1−3α/16 lg n)

≥Ω(k).

We assume this is the case and proceed.
By ignoring the r− 1 runs of b bits, we drop (r− 1)b ≤ O(nα/4n1−α/2) = O(n1−α/4) bits.

Since k ≥ n1−α/16, the extractor is applied to a distribution of entropy that is still Ω(k).
Also, since we ignore the r − 1 runs of b bits, the r runs of ` bits to which the extractor

is applied are independent.
The parameter δ in theorem 2.2 is

δ = Θ(k/r`) = Θ(k/n) = Θ(1/nα/16).

We must have
δ ≥ 1/`β = 1/n(1−α/4)β

for the constant β in the statement of Theorem 2.2. This is the case for α sufficiently small.
We also must have

r ≥ 1/(βδ2) = Θ(nα/8/β)

which is true because r = Θ(nα/4) as observed above.

The output length is m = `Ω(1) = nΩ(1). The error of the extractor is 2−`
Ω(1)

= 2−n
Ω(1)

.
Combined with the above error of 2−k/2 arising from the convex combination, we obtain

a total error of again 2−n
Ω(1)

.

For the lower bound for sampling inner product we make use of the following theorem.

Theorem 2.3 ([CG88]). Let X1 and X2 be two independent sources on ` bits. Suppose the
sum of the min-entropies is ≥ `+ 2 lg(1/ε). Then |Pr[IP (X1, X2) = 1]− 1/2| ≤ ε.

We now restate and prove our sampling lower bound for inner product.

Theorem 1.2 (Sampling lower bound for Turing machines). For every α ∈ (0, 1] and all
sufficiently large even n

no Turing machine with ≤ 2q := 2n
α/2

states and running in time ≤ t := n2−α can sample
the distribution

(X1, X2, IP (X1, X2))

where X1 and X2 are uniform and independent over {0, 1}n/2.
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Proof. Suppose there was such a Turing machine. Consider the Turing machine M ′ that first
samples (X1, X2, IP (X1, X2)) then if IP (X1, X2) = 1 stops and outputs (X1, X2), otherwise
it outputs a uniform n-bit string. M ′ can be implemented, say, in time O(t) with O(2q)
states.

The machine M ′ samples a distribution (X ′1, X
′
2) with min-entropy k ≥ n− 1. Moreover,

because Pr[IP (X1, X2) = 1] approaches 1/2 for large n, Pr[IP (X ′1, X
′
2) = 1] approaches 3/4

for large n.
Set b := 0.01n. By Lemma 1.3, (X ′1, X

′
2) is a convex combination of sources Sj such that

except with probability 0.01 over the choice of an independent source from this combination,
Sj has min-entropy

≥n−O(1)−O(q(lg t)t/b)− lg(1/0.01)

≥n−O(nα/2(lg n)n1−α −O(1)

≥0.99n.

Moreover, each Sj is Sj = Y1Y2 for independent Y1, Y2 and ` ≤ |Y1| ≤ ` + b, where n =
2`+ b. Assume without loss of generality that |Y1| ≥ |Y2|. By conditioning on the b = 0.01n
middle bits (each of which depends on exclusively Y1 or Y2), we can further write (Y1, Y2) as
a convex combination of ≤ 2b sources S ′j where each S ′j is S ′j = Y ′1Y

′
2 where |Y ′1 | = |Y ′2 | = n/2

and Y ′1 , Y
′

2 are independent. Y ′1Y
′

2 has min-entropy ≥ 0.99n− 0.01n = 0.98n.
This min-entropy is larger than n/2+2 lg(100). Hence by Theorem 2.3 IP will successfully

extract one bit with error 0.01.
Overall, the error of the extracted bit is ≤ 0.01+0.01 = 0.02. This contradicts the above

remark that Pr[IP (X ′1, X
′
2) = 1] approaches 3/4 for large n.

In this proof the extractor is applied to the whole sample, whereas in the proof of Theorem
1.1 it is applied to a projection of the sample. That was only for convenience however. One
could have applied it to the whole sample and then condition on the values of the runs of b
bits.
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