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Abstract

We show that sparse affine-invariant linear properties over arbitrary finite fields are locally
testable with a constant number of queries. Given a finite field F, and an extension field Fgn,
a property is a set of functions mapping Fy» to F,. The property is said to be affine-invariant
if it is invariant under affine transformations of Fy», and it is said to be sparse if its size is
polynomial in the domain size. Our work completes a line of work initiated by Grigorescu et al.
[RANDOM 2009] and followed by Kaufman and Lovett [FOCS 2011]. The latter showed such a
result for the case when ¢ was prime. Extending to non-prime cases turns out to be non-trivial
and our proof involves some detours into additive combinatorics, as well as a new calculus for
building property testers for affine-invariant linear properties.
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1 Introduction

This paper investigates property testing in the context of linear, affine-invariant properties and
proves that all sparse properties in this class are testable. We describe these notions more precisely
below, before explaining the context and motivation for this study.

1.1 The problem and main result

Given finite sets D and R (for domain and range), a property of functions mapping D to R is simply
given by a subset F C {D — R} (F is the subset of functions that satisfy the property). Property
testing investigates the possibility of efficient algorithms that make few queries to an oracle for
f D — R and accepts f € F while rejecting f that is very far from F with constant probability.
Distance here is measured in normalized Hamming distance and so 6(f, g) = ﬁ ezl f(x) # g(x)}
and 6(f, F) = minge7{d(f, 9)}. A property F is said to be k-locally testable if there exists a tester
making at most k queries to a function f : D — R, that accepts f € F with probability 1, while
rejecting all f with probability at least d(f, F).

A large, and very important, class of properties, namely the algebraic ones, are abstracted best
by the features of being linear and affine-invariant. In such settings the range of the property is
a (small) finite field F; (where F; denotes the field of size ¢) and the domain is a (large) finite
extension Fgn. A property F C {Fgn — Fy} is linear if it is an Fg-vector space, i.e., Vf, g € F and
a € Fy we have aof + g € F. The property F is said to be affine-invariant if it is invariant under
affine-transformations of the domain, i.e., Vo, B € Fyn with a # 0, and Vf € F it is the case that
fa,p given by fo () = f(o- 4 B) is also in F.

Finally, we say that F is sparse if it contains only polynomially many functions in its domain
size. More precisely, we say that F C {Fgn — F,} is t-(size-)sparse if |F| < ¢". Our main theorem
shows that all sparse properties are testable with a constant number of queries.

Theorem 1.1 (Main). For every q and t there exists k = kq s such that for every n, every t-sparse,
linear, affine-invariant property F C {Fgn — Fy} is k-locally testable.

Our work extends prior work of Grigorescu et al. [GKS09] and Kaufman and Lovett [KL11].
The latter, in particular, proved the above theorem when ¢ is prime, leaving open the case of all
extensions of prime fields. We describe the relationship to previous work and explain our technical
contributions after discussing the motivation for studying affine-invariant linear properties.

1.2 Motivation

Property Testing: The general motivation to understand linear, affine-invariant, properties is
that they form the most natural abstraction of some of the most useful class of property tests that
have played a role in the construction of locally testable codes and probabilistically checkable proofs.
Some central properties that have been utilized in such constructions have been the “linearity”
property and the “low-degree” property. Affine-invariant properties abstract such properties in
as natural a manner as “graph properties” abstract specific properties such as triangle-freeness or
bipartiteness. Given the major role played by algebraic properties, understanding their testability
seems as important as understanding testability of, say, graph properties.

Locally testable codes: If the study of affine-invariance is natural in the context of property
testing, the restriction to linearity is as natural in the context of error-correcting codes. Most well-
studied error-correcting codes are linear and the locally testable ones are usually derived from linear



locally testable properties. We note that the very fact that a property is linear, affine-invariant and
locally testable implies that it is an error-correcting code. By the work of Ben-Sasson et al. [BHRO5]
it is known that all locally testable codes must be what are known as “LDPC codes”, where the
code is defined by a collection of local constraints. However it is also known, from the work of
Ben-Sasson et al. [BGKT05] that in order to be locally testable the LDPC code must have a
redundant collection of local constraints. Redundancy among local constraints is a relatively rare
phenomenon and imposing some symmetry (such as affine-invariance) is one way of getting such
redundancy. Indeed the symmetry offered by affine-invariance is the only setting where (with some
additional features) the redundancy is known to lead to testable codes. Thus affine-invariant linear
properties lead to some of the most natural and broad classes of locally testable codes.

In spite our relatively good understanding of the structure of affine-invariant linear properties
we do not yet have a characterization of what makes such properties locally testable, as is the case
for graph properties [AFNS06, BCLT06]. The current belief seems to be that a k-query testable
property F C {}FZ — Fq} is a combination of a constant number of “base-properties” where base-
properties are of two kinds — “low-degree” properties (also known as Reed-Muller codes of constant
degree) and “sparse” ones. (For a detailed description of this belief and its ensuing conjectures
see Section 5 in Ben-Sasson et al. [BGM™11a].) But our limited understanding of affine-invariant
linear locally testable codes means that we cannot rule out the existence of some other property,
neither “low-degree” nor “sparse”, that nevertheless is locally testable. And till this work, it was
not even known that every combination of “base-properties” does indeed lead to testability. Thus
this work finally completes the “easy direction” of the project aiming to characterize affine-invariant
linear locally testable properties, and does this by showing that all finite combinations of “base-
properties” that are believed to be testable are indeed so. What is still lacking now is a limitation
result saying that the remaining classes of affine-invariant linear properties are not testable.

1.3 Comparison with previous work

The task of testing sparse codes was initiated in Kaufman and Litsyn [KL05], and then pursued
further in Kaufman and Sudan [KS07b] and most recently by Kopparty and Saraf [KS10]. All the
above results show that if a code is sparse and of very high distance then it is testable. ([KLO5],
[KSO07b] only deal with binary codes. The results of [KS10] seems to extend to prime-alphabet
codes, or even g-ary alphabet case, though the results are not stated so.)

The task of testing sparse affine-invariant linear properties was initiated by [GKS09]. They
showed that in some special cases binary sparse affine-invariant linear properties were testable.
[KL11] extended the result vastly — they showed that every sparse affine-invariant linear property
over a prime field I, is testable. The main ingredient in the proofs of the above results shows that
sparse affine-invariant linear properties satisfy the sufficient condition (high-distance) required in
the results mentioned in the previous paragraph. While they also give “nice” tests in the process,
this may be viewed as a bonus, but not necessary for testability.

Testing over non-prime finite fields turns out to be more involved for a fundamental reason.
Codes over IF, where ¢ = p°®, p is a prime and s > 1, have decent distance, but certainly nowhere
close to being “excellent” in the sense required in all the previous works. Indeed previous results
relied crucially on the fact that every non-zero function from the sparse property in question was
roughly balanced (took on every value in the range roughly the same number of times). Such a
statement is simply not true in our setting. The reason is not just that F, contains I, as a subfield,
but moreover that [F, contains many vector spaces over the prime subfield F,. Indeed for every
such subspace V' of I, it is possible to create sparse properties that contain functions which take on
values only from V', and take on every value in V' roughly the same number of times. This obstacle



turns out to be sufficient enough to derail the previous proof techniques (which are still useful, but
insufficient).

To overcome this obstacle we revisit the structure of affine-invariant linear properties and in-
troduce a simple calculus for building tests for such properties. Our final tests also use some of the
algebraic machinery coming from the proofs of the sum-product theorems to build the necessary
tests.

1.4 Technical contributions

Previous works on testing affine-invariant linear properties have already shown that it suffices to
consider tests that distinguish some “basic” functions. Specifically, if we let Trace : Fgn — Iy
denote the standard trace map given by Trace(z) = z + 294 ---+ 29" ', then it (roughly) suffices
to build “tests” that simultaneously accept some good functions, of the form Trace(z%) with d € G,
while rejecting all bad ones, of the form Trace(x¢) for e € B. For simplicity think of a “test” of arity
k as specified by a tuple aq,...,a; € Fgn in conjunction with a Fy-linear form (Ay,...,\;) € ]F];.
The “test” accepts d if Zle A\ Trace(ad) = 0 and it rejects e if Zle AiTrace(af) # 0. The sets
G and B depend on the property F being tested. Previous analysis, especially [KL11], picked a
random test of constant size that accepted all the good functions and were able to claim that with
(overwhelmingly) high probability such a test would reject all bad functions. This claim relied on
the fact that all non-zero functions (good/bad) took on each value in the range roughly equally
often. This fact is no longer true in our case and translates into an algebraic challenge. For some
d € G and e € B it is no longer the case that a random “test” that accepts Trace(xz?) will reject
Trace(z¢) with high probability. A particularly challenging case for us is when e = p’d, where p is
the characteristic of the field we are working with. For this specific case, we manage to “handcraft”
a test, using some methods from additive combinatorics, that accepts Trace(z?) while rejecting
Trace(zP'?). This is the central technical contribution of this work and we give some insight into it
next.

If we are so lucky as to have an element a in [Fg» such that A £ o is contained in F, but not
contained in F,; then we are in good shape: The “test” that checks whether “A - f(1) = f(a)?”

accepts f(z) = Trace(z?) while rejecting f(z) = Trace(zP'?). In general we cannot guarantee the
existence of such a lucky a. Therefore we consider the set A = {ad |a € Fqn} and its /-wise sum-
set LA = {a1+...+a¢|a; € A}. If we could prove that (A contains an element A\ € F, \ F; for
some constant ¢ (possibly depending on the sparsity of F and ¢) we would still be okay. This also
seems plausible, since the set A is completely closed under multiplication and so the sum-product
estimates [BGKO06] show that [¢A| > |A|. Thus it is conceivable that the larger set /A might
contain a nice A, and if so we would have a constraint of arity roughly ¢ separating Trace(z?) from
Trace(zP'?).

Determining the smallest ¢ for which /A is closed under addition (for a given d) is well-studied
as Waring’s problem for finite fields. The best bound, due to Cochrane and Cipra, is roughly of the
form ¢ < d/1°el4l [CC11] (see [Cip10] for more information). For general d, the parameter ¢ may
need to grow with n, however in our case d is restricted (due to the sparsity of F), so the above
bound gives constant . For the sake of presenting a simple and self-contained proof, we provide a
solution to a problem that is somewhat more specific than Waring’s problem, yet suffices for our
purposes and lends more easily to analysis. Based on the simplified analysis of the sum-product
theorem in [BIWO06], we consider sets Ay of the form Ay = ((A—(A)/(LA—LA) (i.e., sets containing
ratios of two elements each of which is expressible as the difference of two elements of £A). We
show, with a self-contained elementary proof, that for sufficiently large ¢ the set Ay is closed under
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addition, hence contains a A € IF, \ F,;. With some additional work we are then able to mimic the

“lucky” case above to get a constraint of arity O(f) separating Trace(x?) from Trace(z?'?).

Unfortunately, while the handcrafted test manages to settle the toy challenge for a single pair
d, e, it fails to build a single test that simultaneously accepts all the good functions Trace(xd), d e G,
while rejecting all the bad functions. In particular, the literature on affine-invariant property testing
that reduced testing to distinguishing basic functions seemed to crucially rely on the fact that the
tests simultaneously accepted all the functions Trace(z?) for d € G. Tests that accept just one
of the basic functions seem to be useless in their setting. Indeed we call our tests distinguishing
Trace(z?) from Trace(z¢) “pseudo-tests” due to this reason. To use our pseudo-tests, we build a
calculus for combining pseudo-tests which allows us to build larger pseudo-tests which combine
smaller pseudo-tests to either enlarge the set of good functions being accepted or to enlarge the set
of bad functions being rejected. Other than the “handcrafted” pseudo-test mentioned above, we
also use the proof method of Kaufman and Lovett to find pseudo-tests distinguishing other pairs
of good and bad functions. We then combine them using our calculus till we get a “pseudo-test”
which does accept all the good functions, and rejects all the bad functions. At this stage we can
now apply the previous works to get a tester for the family F.

1.5 Organization of rest of the paper

In Section 3 we prove our main theorem after recalling in Section 2 the required tools from previous
works. In Section 4 we use additive combinatorics to construct a “pseudo-test” for the most
challenging case of separating 2 from 2 for e = p'd (see the discussion in the previous subsection).
Section 5 generalizes the main theorem of [KL11] and constructs a “pseudo-test” for separating ¢
from x¢ for other €’s of interest. In Section 6 we introduce our calculus for composing “pseudo-
tests”. Section 7, though not needed for obtaining our main result, is worth noting. It contains a
useful simplification of the constraints used in the study of affine-invariant property testing.

2 Preliminaries

We start by recalling the notions of k-single-orbit characterizability, the degree set and the
border set of an affine-invariant linear family and their role in the testing of these prop-
erties.  All information presented in this section has already appeared in previous works
[KS08, GKS08, GKS09, BS11, BGM™11a]. We follow the presentation in [BGM™11a, Sections
2, 3.

2.1 Establishing the k-single-orbit characterization property is sufficient for k-
local testability

Our tester for sparse affine-invariant linear properties comes from a structural theorem which shows
that every such property has a “single-orbit characterization”. To describe this notion we need a
couple of definitions.

Definition 2.1 (k-(basic)-constraint, k-characterization). A k-constraint C = (@, {Xi};l) over
Fqn is given by a vector @ = (o, ..., ay) € F’;n together with r vectors \; = (Ni1,- - Aig) € IE“’; for
1 <4 <r. We say that the constraint C' accepts a function f : Fgn — Fyn if Z?Zl Nijf(aj) =0 for
all 1 <7 < r. Otherwise we say that C' rejects f. We say a constraint is basic if r = 1.

Let F C {Fqn — F,} be a linear property. A k-characterization of F is a collection of k-
constraints C1,. .., Cy, such that f € F if and only if C; accepts f, for every j € {1,...,m}.



It is well-known [BHRO5] that every k-locally testable linear property must have a k-
characterization. In the case of affine-invariant linear properties some special characterizations
are known to lead to k-testability. We describe these special characterizations next.

Definition 2.2 (k-single-orbit characterization (k-s-o-c)). Let C' = (@, {Xi};l) be a k-constraint
over Fgn. The orbit of C' under the set of affine transformations is the following set of k-constraints

{ToC},= {((T(al), o Tlag)), {Xi}zzl) | T : Fgn — Fyn is an affine transformation} )

We say that C is a k-single-orbit characterization (k-s-o-c) of F if the orbit of C' forms a k-
characterization of F.

We say that F has a basic k-s-o-c if the constraint C' above is a basic one. (One of the
simplifications proved in this work is that basic single-orbit characterizations are equivalent to
general single-orbit characterizations, cf. Section 7.) A theorem due to Kaufman and Sudan
[KS08] (see also [KS0T7al) says that k-s-o-c implies local testability.

Theorem 2.3 (k-s-o-c implies local testability,[KS07a] Theorem 2.9.). Let F C {Fgn — Fy} be an
affine-invariant linear property. If F has a k-single-orbit characterization, then F is also poly(k)-
locally testable.

2.2 Degree sets of affine-invariant linear properties

Let F C {Fgn — F,} be a linear affine-invariant property of functions. Note that every member of
{F4» — 4} can be written uniquely as a polynomial of degree at most ¢ — 1 from Fn[z]. Thus
for a function f : Fyn — F, we define its support, denoted supp(f), to be the set of exponents
in the support of the associated polynomial. Le., supp(f) = {d € {0,...,¢" — 1}|cq # 0} where
flx) =>4 cqx®. The degree set of F is simply the union of the supports of the functions in F:

Deg(F) = Ugersupp(f).
Conversely, for a set of degrees D C {0,...,q" — 1} let
Famy(D) = {f | f : Fgn — Fy, supp(f) C D}.

Affine-invariant linear properties are characterized in terms of their degree-sets (this is stated
formally in the next lemma) and these degree-sets have a special structure — they are “closed”
under “p-shadows” and “(g,n)-shifts” as explained next.

Define the p-shadow of an integer d to be the set of integers whose base-p representation is
not larger, point-wise, than the base-p representation of d. More precisely, writing d in base p as
> a0 dip" we define

Shadow,(d) = Zeipi le; €{0,1,...,d;}Vi>0
i>0

It is known from [KSO08] that whenever d € Deg(F) for some affine-invariant linear property
F then ¢ -d mod ¢" — 1 also belongs to Deg(F). This motivates the following definition of the
(g, m)-shift of an integer d as

. ({0} d=0
Shlft%n(d)_{ {ecef{l,....q" =1} |¢c=¢"-d mod ¢" —1forsome 0 <i<n} 1<d<q"—1
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The reason for treating 0 differently than ¢ — 1 is that these two exponents induce somewhat
different functions, namely 0° = 1 but 09"~! = 0.

The p-shadow of a set of integers D is Shadow, (D) = J,cp Shadow,(d). We say D is p-shadow
closed if D = Shadow,(D). The (g,n)-shift of D is similarly defined and we say D is (g, n)-shift
closed if D = Shift, (D).

The following lemma is [BGM T 11a, Lemma 2.11]. It says that an affine-invariant linear property
in {Fg» — F,} is characterized by its degree-set, and this degree-set is p-shadow and (g, n)-shift
closed.

Lemma 2.4 (Characterization of affine-invariant linear properties by degree-sets). let F C
{Fgn — 4} be an affine-invariant linear property. Then Deg(F) is (q,n)-shift-closed, p-shadow-
closed, and F = Famg,(Deg(F)). Conversely, suppose that D is a (q,n)-shift-closed and p-shadow-
closed set of degrees. Then Famy(D) is an affine-invariant linear property and D = Deg(Famg,(D)).

Remark 2.5 (The role of p and ¢ in Lemma 2.4). We point out that the characteristic p of the field
[F, and its size ¢ play different roles in the lemma above. The shadow of an integer is with respect
to base-p representations, whereas the shift of an integer is computed by taking ¢-multiples of it.

2.3 The border set of affine-invariant linear properties

The fact that the degree sets of affine-invariant linear properties are p-shadow closed motivates the
following definition of the Border introduced in [BGM™11a]. This notion will play a central role in
constructing our tester for sparse affine-invariant linear properties.

Definition 2.6 (Border). The border of an affine-invariant linear property 7 C {Fg» — F,}, where
q is a power of a prime p, is the set of degrees e that are “just outside” of Deg(F), meaning that e
is not in Deg(F) but every element in the p-shadow of e is:

Border(F) ={e € {0,...,¢" — 1} | e & Deg(F) but (Shadow,(e) \ {e}) C Deg(F)}.

In what follows, we say that a constraint C' over Fy» accepts the degree d if it accepts the function
f(x) = 2, otherwise we say that C rejects the degree d. For a set of degrees D C {0,1,...,¢" — 1},
we say that the constraint C' accepts D if it accepts all degrees in D. In our proof of Theorem 1.1
we shall use the following equivalent definition of k-single-orbit characterization via the notion of
the border.

Lemma 2.7 (Equivalent definition of k-single-orbit characterizable property via the border,
[BGM™11b], Lemma 3.2.). Let F be an affine-invariant linear property, and let C be a k-constraint.
Then C forms a k-single-orbit characterization of F if and only if C' accepts all degrees in Deg(F)
and rejects all degrees in Border(F).

3 Proof of Main Theorem

In this section we prove our main theorem (Theorem 1.1) and along the way explain the main new
ingredients and the need for them. Like all previous works on k-local testability of affine-invariant
linear properties, our main theorem is obtained from showing the existence of the k-s-o-c property.

Theorem 3.1 (Sparse affine-invariant linear properties have a k-single-orbit characterization). For
every q that is a power of a prime p and every integer t there exists an integer k = k(t,q) such that
the following holds. If F C {Fgn — Fy} is a t-sparse linear affine-invariant property then F has a
k-single-orbit characterization.

Proof of Main Theorem 1.1. Follows immediately from Theorem 3.1 and Theorem 2.3. O



3.1 Pseudo-tests suffice for local testability

Our single-orbit characterizations are obtained by introducing a notion that we call a “pseudo-test”,
which we define below.

Definition 3.2 (Pseudo-test). For disjoint sets D, B C {0,...,¢" — 1}, and a k-constraint C' =
(@, {Xi};l), we say that C' is a k-pseudo-test separating D from B if C' accepts all degrees in D
and rejects all degrees in B. We say that C' is a basic-pseudo-test if it is a basic-constraint. (When
the arity k is clear from context we will often drop it, calling it simply a “pseudo-test”.)

As such the pseudo-test above need not satisfy any semantic properties. While the test itself
accepts every function in the span of the monomials {z%|d € D} it clearly accepts a vast number
of other functions (since it is a single deterministic test and hence accepts a subspace of dimension
q" — ). So it is far from being sound. Our intent is to use the orbit of the pseudo-test as the test,
but then this orbit is now not complete! It may not accept 2% with probability 1, even for d € D.
Thus pseudo-tests seem to be completely irrelevant to the task at hand.

However as we note below in the next corollary, in some circumstances they do work well as
tests. Furthermore, somewhat surprisingly it is possible to take two pseudo-tests each of which is
incomplete, or unsound, and combine them to get something that is complete and sound. Indeed
the value of the pseudo-tests are that they can be composed together nicely. Some of the basic steps
are given later on in Propositions 6.2 and 6.4 and the resulting “broad” Composition Lemma 3.10
says that it is possible to construct (“nice”) pseudo-tests “piecemeal” from (not so nice but) simpler
pseudo-tests.

The relation between pseudo-tests and single-orbit characterizability is given by the following
Corollary which is an immediate consequence of Lemma 2.7 and the definition of a pseudo-test.

Corollary 3.3 (Equivalent definition of k-single-orbit characterizable property via pseudo-tests).
Let F be an affine-invariant linear property, and let C be a k-constraint. Then C forms a k-single-
orbit characterization of F if and only if F is a pseudo-test separating Deg(F) from Border(F).

When applying the above corollary it will be useful for us to use the following simple lemma

which says that a constraint over Fy» accepts a degree d if and only if it accepts all degrees in its
(g, n)-shift.

Lemma 3.4. Let d be a degree in {0,1,...,¢" — 1}, and let C be a k-constraint over Fgn. Then C
accepts d if and only if it accepts all degrees in Shift, ,(d).

Proof. Let d' € Shift,,(d) be such that d = d-¢* mod ¢" — 1. Then for all 1 < i < r we have that

k ¢ koo, , k
a4 _ q¢ dq" _ A
(o rsed) =Sl = 3 avse.
7=1 7=1 7j=1

where the first equality is due to the fact that raising to the power ¢’ is a linear operation over Fgn,
3

while the second equality is due to the fact that \; ; € F, and hence A! ;= Ai,j. Thus we have that

Z?Zl )\i,joz;l =0 if and only if 25:1 )\i,ja‘f =0. OJ

Given the notion of pseudo-test we can state the main technical theorem whose proof occupies

the rest of this paper. In what follows we say D’ is a (g, n)-shift representative set for a (q,n)-shift
closed set D if Shift, ,,(D') = D.



Theorem 3.5 (Main Technical — Sparse affine-invariant linear properties have a k-pseudo-test).
For every q that is a power of a prime p and every integer t there exists an integer k = k(t,q)
such that the following holds. Let F C {Fgn — F,} be a t-sparse affine-invariant linear property
and let D', B' be (q,n)-representative sets of Deg(F), Border(F) respectively. Then there exists a
k-pseudo-test that separates D' from B'.

Proof of Theorem 3.1. Follows immediately from Theorem 3.5, Corollary 3.3 and Lemma 3.4. [

3.2 Overview of the proof of Main Technical Theorem 3.5

Fix (g, n)-shift representative sets D', B’ for Deg(F) and Border(F) respectively. We construct a
pseudo-test that separates D’ from B’ in three steps as follows.

1. Cover D’ x B’ by a constant number of product sets
D' x B'=D{ x ByU...UDj; x By (1)
where the constant ¢ depends only on ¢ and ¢, and, crucially, is independent of n.

2. For each i = 1,...,¢ construct a k’-pseudo-test that separates D} from B., where k" does not
depend on n (it, too, depends on ¢ and t).

3. Show that all £ of the k’-pseudo-tests can be “composed” to derive a single k-pseudo-test that
separates D’ from B’ with k = k(k’,t,¢). This separates D’ from B’ by a pseudo-test of size
that depends only on ¢ and t and is independent of n and thereby proves Theorem 3.5.

We now elaborate on each of the steps. The second step will be broken up into two sub-steps
because there are two very different kinds of pair-sets that we need to consider, and each requires
its own set of tools.

3.3 Covering the (q,n)-shift representative sets

First we define the cover of D’ x B’ by set-pairs and then bound the number of set-pairs in our
cover in Lemma 3.7. (Inspection reveals that our cover is actually a partition of D’ x B’ but the
rest of our proofs only need the weaker assumption of a cover.)

Definition 3.6 (Cover). Given D', B’ that are (g,n)-shift representative sets of Deg(F) and
Border(F) respectively, where ¢ = p® for a prime p, partition B’ into

By = B'\ Shifty ,(D'); By = B' N Shifty o, (D). (2)

Set D = D" and B{, = By. Order the pairs in D’ x B; arbitrarily as {(di,b1),..., (dg, by)} where
¢ =|D'|-|B1| and let D, = {d;} and B, = {b;} forall i = 1,... L.

Notice that although elements of Border(F) do not belong to Deg(F) (cf. Definition 2.6), they
can potentially belong to Shift, s, (Deg(F)), so the set By can indeed be nonempty.

Inspection reveals that the above set of pairs in Definition 3.6 covers D’ x B’. The following
lemma bounds the number of pairs by bounding |D’| - | By|. The second part of the lemma will be
used soon and since its proof relies on the first part we find it convenient to include it here. To
state the second part we define the p-weight wt,(d) of an integer d as the sum of digits of the base-p
representation of d. Formally, if d = Y., d;p’ then wt,(d) = >, di.



Lemma 3.7 (t-sparse properties have sparse representative sets). Suppose that F C {Fgn — Fy}
18 a t-sparse affine-invariant linear property. Then the following holds:

1. There exist (q,n)-shift representative sets D', B’ for Deg(F), Border(F) respectively such
that |D'| < 2t+ 1, and assuming q = p°® where p is a prime, By = Border(F) N Shifty, 5, (D’)
is of size at most s(2t + 1).

2. All integers in Deg(F) have p-weight at most 2t and those of Border(F) have p-weight at
most 2t 4 1.

Proof. Our starting point is Lemma 2.15 from [BGM™*11a]. It says that if F is ¢-sparse then it
has a (g, n)-shift representative set D" of size at most 2¢ + 1. The border could be potentially of
much larger size but if we restrict our attention only to the elements that lie in Shift, ,(D’), then
they can be represented by a set B; of size at most s|D’| because for each nonzero d € D’ the
(q,n)-shifts of d,dp, . ..,dp*~! cover the (p, sn)-shift of d.

To prove the second part we claim that Deg(F) contains integers of p-weight at most 2¢. By
definition, this will immediately imply (cf. Definition 2.6) that the p-weight of every element of
Border(F) is at most 2¢+ 1. To see that Deg(F) cannot contain an integer of p-weight greater than
2t notice that Lemma 2.4 implies that if an integer of p-weight r belongs to Deg(F) then there are
integers of p-weight r' in Deg(F) for every ' = 0,1,...,r — 1. Since the (¢, n)-shift of an integer
d contains only integers of the same p-weight as d, this implies that |D’| > r. The assumption
|D’| < 2t + 1 therefore shows that no integer in Deg(F) has p-weight greater than 2t as claimed
and this completes our proof. O

3.4 Separating a pair of sets with disjoint p-shifts

We now turn to the task of separating individual pairs of sets from our cover given in Definition 3.6.
We start by showing a pseudo-test which separates a pair of sets D, B such that B does not contain
any p-shift of a degree in D. This pseudo-test will be used for separating the sets D from By, and
in addition for separating all pairs (d;, b;) such that the degree b; does not belong to a p-shift of
the degree d;. Our proof method uses the work of Kauffman and Lovett [KL11]. Stated using
our language of pseudo-tests, they proved that for every t-sparse affine-invariant linear property
F C {Fpn — Fp} over a prime field F, there exists a k(t)-pseudo-test that separates D’ from
B’, where D', B" are (p,n)-shift representative sets of Deg(F), Border(F) respectively. And by
Corollary 3.3 and Lemma 3.4. this readily implies F is also k(t)-single-orbit characterizatable. We
observe that the proof method of [KL11] actually gives the following more general pseudo-test.

Lemma 3.8 (Separation of distinct (p, n)-shifts). For everyt,w and prime p there exists k = k(t, w)
such that the following holds for sufficiently large n: Let D, B C {0,...,p" — 1} such that |D| < t,
B does not contain any (p,n)-shift of a degree in D and in addition wty(d) < w for every degree
d € DU B. Then there exists a single (basic) k-pseudo-test C that separates D from B.

We prove this lemma in Section 5. To see that the result of [KL11] is a special case of it note that
it 7 C {Fp» — F,} is a t-sparse affine-invariant linear property over a prime field F, then Lemma
3.7 implies that Deg(F) has a (p,n)-shift representative set D" of size at most 2t + 1. Moreover,
Part 2 of the same Lemma implies that if B’ is a (p, n)-shift representative set of Border(F) then
wtp(d) < 2t+1 for every d € D' UB’. Finally, note that the fact that F is an affine-invariant linear
property over [, implies that it is (p, n)-shift-closed and hence B’ does not contain any (p, n)-shift
of a degree in D',
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3.5 Separating a pair of degrees in the same p-shift

Lemma 3.8 only gives a pseudo-test which separate pairs of degrees that belong to different (p,n)-
shifts. As explained above, this suffices in order to prove single-orbit characterizability of affine-
invariant linear properties over a prime field IF,, since the degree sets of such properties are (p, n)-shift
closed. However, in the case of non-prime fields of size ¢ = p® affine-invariant linear properties are
not necessarily (p, sn)-shift closed, and thus we need to be able to separate also pairs of degrees
that belong to the same (p, sn)-shift. The following lemma covers this case.

Lemma 3.9 (Separation of two degrees in the same (p, sn)-shift). Let g = p* for a prime p, and
letd € {0,...,q" —1}, b € Shift, s, (d) \ Shift, ,,(d) be a pair of degrees of p-weight at most w. Then
there exists a single (basic) k-pseudo-test C' that separates {d} from {b} for k =4 -8*""".

As mentioned earlier this is the case where we have to design the pseudo-tests explicitly. We
prove this lemma, using machinery that comes from the proofs of the sum-product theorem, in
Section 4 .

3.6 A Calculus for composing pseudo-tests

So far we have managed to find a separating pseudo-test for each pair of sets in our cover of D’ x B’
given in Definition 3.6. In order to obtain a single pseudo-test that separates all of D’ from all of
B’ and thereby prove Theorem 3.5 we introduce a natural calculus for composing pseudo-tests that
separate distinct pairs of degree-sets. Suppose (' is a ki-pseudo-test that separates D from By
and C5 is a ko-pseudo-test that separates Do from Bs. One of the basic operations in our calculus
takes the “union” of C7 and Cy and gives a (k1 + ko)-pseudo-test that separates Dy N Dy from
B U By (cf. Proposition 6.2). The second operation takes the “tensor” of C; and Cs and gives a
(k1-k2)-pseudo-test which separates D1 UDs from B1N By (cf. Proposition 6.4). The combination of
the two operations yields the following result that allows us to combine many different pseudo-tests
into one.

Lemma 3.10 (Composition of pseudo-tests). For every k', t and ¢, there exists k = k(k',t,0)
such that the following holds. Let D,B C {0,...,q" — 1} be disjoint sets with |D| < t and let
DxB=DyxByU...UDy x By be a cover of D x B. Suppose that for all i = 1,... ¢ there exists
a k'-pseudo-test C; which separates D; from B;. Then there exists a k-pseudo-test C that separates
D from B.

The proof of the lemma, along with a detailed description of the calculus of “unions” and
“tensors” that underlie it, appears in Section 6.

3.7 Completing the proof of Theorem 3.5

We are now in the position to complete the formal proof of the main technical theorem.

Proof of Main Technical Theorem 3.5. Let ¢ = p® for a prime p and let F C {Fyn — F,} be
a t-sparse affine-invariant linear property. Let B’, D’ be the (g,n)-shift representative sets for
Deg(F), Border(F) respectively guaranteed by Lemma 3.7. By the lemma we have |D'| < 2t + 1
and | B’ N Shift, ¢, (D’)| < s(2t + 1) and all integers in D" have p-weight at most 2¢ and those of B’
have p-weight at most 2t + 1. Cover D’ x B’ as in Definition 3.6 and notice the number of sets in
this cover is bounded by 1+ |D'| - |By| < s(2t + 1)? + 1.

Apply Lemma 3.8 to conclude that D} can be separated from B by a ki-pseudo-test Cy for
k1 that depends only on ¢. Apply Lemma 3.8 also to each pair D} x Bl,i = 1,...,¢ which satisfy
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Shift,, s (d;) N Shift,, s, (b;) = 0 to obtain a ki-pseudo-test C; that separates D] from Bj. Finally,
apply Lemma 3.9 to each pair D, x Bl,i = 1,...,¢ that satisfy Shift,, s,(d;) N Shift, ¢, (b;) # 0 to
obtain a ka-pseudo-test C; that separates D) from B] where ko depends only on t.

Apply the composition Lemma 3.10 to Cy,...,C, and, recalling ¢ is bounded by a polynomial
in s,t and |D'| < 2t + 1 we conclude the existence of a k-pseudo-test C' that separates D’ from B’
where k depends only on ¢ and ¢q. This completes the proof of Theorem 3.5. OJ

4 Separating pairs of degrees in the same p-shift — Proof of
Lemma 3.9

In this section we prove Lemma 3.9, showing for every pair of degrees d € {0,...,¢" — 1}, b €
Shift,, s, (d) \ Shift, ,(d) of constant p-weight the existence of a k-constraint which separates d from
b.

The proof idea of Lemma 3.9 is the following. Suppose we wish to find a constraint which
separates the degree d from the degree d- p' € Shift,, 5, (d) \ Shifty,(d). Let A = {a%a € F4n}, and
assume for simplicity that AN (Fy\F,:) # 0. Then in this case there exists a constraint C' = (@, A)
of arity 2 which separates d from d-p*: Let v € AN (Fg\Fpi) and @ = (a1, 0) = (1,7) € ]an, and
let A= (A1, d) = (=1,7%) € F? (the fact that 7~4 £ 1/4%is in F, follows from our assumption
that v? € ;). Then for the degree d we have that

Maf +Xz08 = —1+77%" =0, (3)
and hence C accepts d. On the other hand, for the degree d - p’ we have that
)\10((1“)1 + )\QOég.pl =—-1+ W_d’yd'pi. (4)

Note that (4) equals zero if and only if (v9)?' = 4%. But by assumption v¢ ¢ F , and hence

pY
(v")P" # 4% which implies in turn that (4) is non-zero.

However, our assumption that AN (F, \ F,:) # 0 was too optimistic. To resolve this we resort
to the closure F(A) of A in Fyn, defined as the smallest subfield of Fy» containing A. Note that
Fp, C F(A) C Fgn. We first prove (in Lemma 4.1) that F(A) N (F; \ Fj:) # 0. Then in Lemma 4.2
we prove, using machinery developed for the proof of a version of the sum-product theorem from
[BIWO6], that if d < ¢/'=9" then every element ~ € F(A) can be written as v = 2L where both 1
and 2 are the sum of a constant number of elements in A (this constant depends only on €). This
gives in turn the desired constraint C' = (@, \) which separates d from d - p’.

We start by claiming that F(A) contains an element in Fy \ ;.

Lemma 4.1. Let ¢ = p° for some prime p, and let d € {0,...,¢" — 1} be such that d - p* ¢
Shiftg(d). Let A= {a®ja € Fgn}, and let F(A) be the smallest subfield of Fgn containing A. Then
F(A) N (Fg \Fpi) # 0.

Proof. Let F(A) = Fpm, and suppose by way of contradiction that Fym N (Fy \ F,i) = (. Then
Fpm NF, € Fji. In order to arrive at a contradiction, we will show that d - p* is a (g, n)-shift of d
contradicting our assumption.

Let » = gecd(s,m). Then we have Fym NF, = F,r C Fi and hence r divides 4. Our first
observation is that since r = ged(s, m) there exists a pair of integers ¢, ¢ such that tm +¢s = r. Let
=" = %. Since r divides 7 we have that t’, ¢/ are integers and

tm+ s = ﬁm+ %5 = L(tm + ts) = 1. (5)
r r r

12



Our second observation is that since F(A) = Fym then for every a € F,n we have that (a?)P" =
a® and hence the polynomial %P — z? is identically zero over F4n. This implies in turn that

d-p™=d mod ¢" — 1. (6)
From (5) and (6) we have

d-p = d-p"™* mod ¢"—1 (From (5))
= d-p"* mod ¢"—1 (From (6))
= d-¢" mod ¢"—1 (Since ¢ = p?)

Thus we have that d - p’ is a (g, n)-shift of d — a contradiction. O
We now prove that if d is not too large then every element v € F(A) can be written in the form
v = 71 where both v, and 7, are sums of a constant number of elements in A.

Lemma 4.2. Let d € {0,1,...,¢" —1} be a degree which satisfies d < ¢1=9", let A =
{adla € Fgn}, and let F(A) be the smallest subfield of Fgn containing A. Then F(A) C ﬁﬁ 5’2

fort = galt/el,

Using [CC11, Theorem 1.2] the bound on ¢ above can be improved to exponential in 1/e, i.e.,
¢ = 20(1/9 For the sake of presenting a simple self-contained proof, we prove the above lemma
using the following theorem from [BIW06] which was proved there as a step towards a simplified
version of the sum-product theorem of [BKT04]. For a set A and ® an arithmetic operation in
{+,—, =, x}let Ao A={a®d|a,d € A}.

Theorem 4.3 ([BIW06], Claim A.4.). Let F be a finite field, and let A CF and k € N (with k > 2)
be such that |F|'/*F < |A| < |F|Y/*=1. Then | A| > [F|V/(k=D),

Proof of Lemma 4.2. Apply Theorem 4.3 iteratively. Set Ay := A and for i = 1,2,3,... let A] =
%, and A; = A, + A, - Al. The proof consists of two main steps. In the first step we will
argue that there exists t < [1 /€] + 1 for which F(A) C A;. In the second step we will prove by

i—1
induction on 4 that A; C w for every i = 1,2,3,.... Lemma 4.2 follows from the i =t
g4l —gt' g
case.
We start by showing the existence of t < [1/e]| + 1 for which F(A) C A;. To see this note first
that since d < ¢1=9" for every 3 € [Fyn there are at most 19" solutions in z to the equation
% = 3. Thus |Ag| > ﬁ = ¢*. Choose k = [%1 + 1, and note that € > % Theorem 4.3 implies

that |A}] = ‘A = 0| > (qM)Y*D g Al is a field then we are done since it can be verified that
A C A (since 0¢ A) and hence F(A) C A} from the minimality of F(A). Otherwise we have that
|Ay| = |A] + A] - A)| is strictly greater than (¢™)"*~V and thus we can apply Theorem 4.3 again
to the set A;. Continuing this process iteratively we have that at the i-th step either A/ is a field
and hence F(A) C A, C A; or that |A4;| > |4 > (¢™)Y*=9 Since A; C Fyn for all 4, this process
must terminate after at most k = [1] 4 1 steps, and thus we have that F(A) C A, for t < [1]+1.

i—1 i—1
84 A—gt A for every 7 = 172,3, .... This will

Next we show by induction on i that A; C STy g T4

imply in turn that
84F1/61A o 84f1/e1A

]F(A) g At = 84[1/5]A o 84[1/5]14
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Base case — i = 1. Noting that A is closed under multiplication, in this case we have that

A__,+A,A__A—A+A—A A—ACA—A+2A—Z4C&L%AC8A—&1
= DA™ A A" A—A A—A~ A—A 2424~ 4A—4A ~ 8A —8A

Induction step. Suppose that the claim holds for index ¢ and we will prove that it holds for
index 7 + 1 as well.

Mo = B By Ay = G G B
41'71 42'71 41'71 41'71 4i71 41'71
C 8842.121 _Zmﬁi + 8842.121 _8841.11111 . 8841,1;14 —Z‘LilA (Induction hypothesis)
c 8“”A—8&ﬂ4+2.§4”A—2-§N”A
TOgETA —gt A 2.82471 4 —2.8241 Y4
c 8834714 _g.8347" 4
T4-83TTA 4834704
c 8¥A—8YA
= 814 814

O]

In our proof of Lemma 3.9 we would like to apply Lemma 4.2 to the degree d. In order to apply
this lemma we need d to be small. However, all we know about d is that it has small p-weight
and this does not guarantee that d is small. In order to deal with this we shall first prove that
since d has a small p-weight, it has a degree d’ in its (g, n)-shift that is small. We will then show a
constraint over Fyn which separates d’ from d’ - p'. From Lemma 3.4 this will also imply that the
constraint C' separates d from d - p*. The following lemma says that every degree of small g-weight
has a degree in its (g, n)-shift that is small.

Lemma 4.4. For every degree d € {0,1,...,q" — 1} there exists a degree d’ € Shift, ,(d) such that
4 < ¢(1=1/wta(d)n+1

Proof. Let t = wty(d), and let d = Z?:_ol d;¢* be the representation of d in base-q. Since
wtq(d) < t the pigeonhole principle implies that d has at least % = % — 1 consecutive

digits dj,dj11 modns---sdj+2-2 modn Which equal zero. Let d" € Shift,,(d) be such that

d =d-g¢"t1="/=7 mod ¢ — 1. Then d satisfies that all indices Al niqsee
t

where d' = E;:Ol diq' is the representation of d’ in base-q. But this implies in turn that
1-1/t ; _
d < Z;}Z(O /)(q )¢ < g -1/D+1, O

,d,_, equal zero,

We now proceed to the proof of Lemma 3.9

Proof of Lemma 8.9. Suppose that b € Shift, ,(d) such that b =d-p’ mod ¢" — 1. Since wt,(d)
wtp(d) < w, from Lemma 4.4 we have that there exists a degree d’ € Shift,,(d) such that d’
g /wintl < =1/t for sufficiently large n. Let b € Shift,,(d’) such that ¥ = d' - p’
mod ¢" — 1 and note that b € Shift, ¢, (d') \ Shifty,(d'). From Lemma 3.4 it suffices to show a
k-constraint which separates d’ from b'.

Let A = {adl\a € Fqn}, and let F(A) be the smallest subfield of Fyn containing A. From

Lemma 4.1 we have that F(A) N (F, \F,:) # 0, let v € F(A)N(F,\F,:). From Lemma 4.2 and since

<
<
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d' < U1/ wH)n we have that F(A) C gﬁ iﬁ for £ = 8% and thus v € ﬁﬁ:gﬁ. In particular
there exist 1, ..., B4 € Fyn such that
B+ 4 B7) — (B + -+ ﬁ%é)
(524+1 -+ BYy) — (53e+1 -+ B

The constraint C' = (@, A) will be the (4¢)-constraint defined by @ = (v,...,aq) € Fii and
A=(A1,... M) € IFfIM, where o; = 3; for all 1 <7 < 4/, and

(7)

-1 1<i</
1 +1<i<2
~y 204+1<i<30°
—y H+1< <4
It remains to show that the constraint C' accepts d’ and rejects b’. For the degree d’ we have
from (7) that

4 ) l ) 20 ) 3¢ ) 40 )
Sonaf = - S o) +a X - X a) =0
=1 =1

i=0+1 i=20+1 i=30+1
On the other hand, for the degree b’ we have

Z)‘ia?/ = Z)\ af P (Since b’ € Shift, ,(d’) such that ¥ =d’ - p* mod ¢" — 1)

L 20 L 3¢ L 40 .y
= (T ) S A Y )
i=1

i=04+1 i=204+1 i=30+1
¢ 20 P 3¢ a6 i ,
= — ( Z @d' — Z ﬁg/> + 7< Z ﬁfl, — Z 5%) (Since the mapping y ~ y”' is linear)
i=1 i=0+1 i=20+1 i=30+1
¢ 20 i v
_ ( NS Bf”) (=14~ +777) (From (7))
i=1 i=041

To see that the above equation is non-zero note that v ¢ I, and hence 'ypi # ~v. This implies in

turn that —1+4-9" # 0. Also, since y # 0, from (7) we have that (Zf_lﬂf”—Z” 1 6") 40,

Hence the above equation is non-zero which concludes the proof of the lemma.

5 Separating a pair of sets with disjoint p-shifts — Proof of Lemma
3.8

In this section we prove Lemma 3.8 which shows the existence of a k-constraint which separates
degree sets with disjoint (p,n)-shifts. We will prove Lemma 3.8 using probabilistic arguments
following the proof method of [KL11]. More precisely, we will show that if we choose A € (F ;‘,)k,
@ € (Fyn)* uniformly and independently at random for sufficiently large k, then with sufficiently
high probability the constraint C' = (@, \) will accept the set D and will reject the set B. In order
to prove this we first compute bounds on the probability that such a random constraint accepts all
degrees in an arbitrary degree set D C {0,1,...,p" — 1}.
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Lemma 5.1. Let p be a prime, and let D C {0,1,...,p" — 1} be such that D has a (p,n)-shift
representative set of size t, and wty(d) < w for everyd € D . Let A € (IE‘;)"‘, @ € (Fyn)k be chosen
uniformly and independently at random. Then if 0 ¢ D,

Pr [C = (@, ) accepts D] — p~1Shiften (DI} < ]Fpn\_k/(szth),

Ae(F3)k, ae(Fpn )k

while 1f 0 € D,

k—1
Pr [C = (E,X) accepts D] — (1 + (_1)k<1> >p—|Shiftp,n(D)| < \Fpn]_k/@wQ?”t).
Xe(F5)F, Q€ (Fpn)F p—1

The proof of the above lemma appears in Section 5.1. Before proving this lemma, we present
the proof of Lemma 3.8 based on it.

Proof of Lemma 3.8. Suppose first that 0 ¢ B, we will deal with the case in which 0 € B later.
Choose k = 2w?2"(t + 1) + 2 (note that k is even), and let A € (F;)*, @ € (Fyn)* be chosen
uniformly and independently at random. Denote by P(D, B) the probability that the random
constraint C' = (@, \) accepts all degrees in D and rejects all degrees in B. Our goal will be to show
that P(D, B) is at least (p — 1) ¥p~"*, the probability assigned under the uniform distribution
to a fixed pair of vectors A € (F;)k , @ € (Fpn)*. This will imply the existence of a k-constraint
C = (@, \) which accepts all degrees in D and rejects all degrees in B. We compute a lower bound
on P(D, B) using Lemma 5.1.

P(D,B) > _ Pr [C = (@, \) accepts D] — Zi Pr [C = (@, \) accepts D U {b} ]

AE(Fy)F, ac(Fpn )k beB AE(Fy)F, ac(Fpn )k

> p7|Shiftp,n(D)\ _ pfnk/(2w22“’t) .
Z <p_|Shiftp’"(DU{b}) + p_”k/(2w22w(t+1))> (from Lemma 5.1 and since k is even)
beB

_ p7|Shiftp,n(D)\ . pfnk/(2w22“’t) .
Z <p—(|Shiftp,n(D)|+Shiftp’n(b)D +p—nk/(2w22w(t+1))) (b ¢ Shlftpyn(D))
beB

> - IShiftpn(D)] (1 -y p|Shiftp,n(b>> _(1B| 4 1)p /w2 @) (8)

beB

In order to bound the above expression we bound the sizes of Shift, (D), Shift, ,(b) and B.
The size of Shift, (D) can be bounded easily noting that |D| < t and |Shift, ,,(d)| < n for every
d € D which yields

|Shift, ,,(D)| < tn. 9)

Next we bound Shift,, ,,(b) from below for b € B. Let b = Z?;ol b;p' be the base-p representation
of b. From our assumption that 0 ¢ B we have that b # 0 and hence b; # 0 for some 0 < i <n — 1.
Suppose that |Shift, ,,(b)| = 7, note that this implies that r divides n. But this implies that p’™-b = b
mod p" — 1 for every integer 0 < j < % which implies in turn that b; = b1 mod n for every
integer 0 < j < . Thus we have that wt,(b) >  which gives

|Shift, ,(b)] > —. (10)

g3
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Finally, we bound the size of B. Since all degrees in B have p-weight at most w, we can bound
the size of B for sufficiently large n by

B sZ("fjﬁ]l) <(w+1)-(n+w-1)"" (11)
=0

Plugging Equations (9), (10) and (11) into (8) we obtain

P(D,B) > p—tn(l - (w + 1) . (n +w— l)w—l _p—n/w) o ((w + 1) . (n +w— 1)w—1 + l)p—nk/(2w22w(t+1))
1

Qp_t” (due to our choice of k = 2w?2¥(t + 1) + 2 and for sufficiently large n)

> (p—1)Fp Tk

Y

It remains to deal with the case in which 0 € B. The same calculations as above show the
existence of a k-constraint C' which is a pseudo-test separating D from B\ {0}. Note also that the
1-constraint C’ = (a, \) defined by @ = 0, A = 1 rejects the degree 0 and accepts all degrees in D
and thus forms a pseudo-test separating D from {0}. Thus the union constraint C” = C" U C (cf.
Definition 6.1) forms a (k 4 1)-constraint which is a pseudo-test separating D from B.

O]

5.1 Proof of Lemma 5.1

In order to prove this lemma we first show that the task of computing the probability that a random
constraint satisfies a degree set D can be reduced to the task of computing the expected bias of
the trace of sparse polynomials supported on degrees in D. We will then use a special bound on
the distribution of the image of sparse polynomials from [KL11] in order to compute this latter
expectation.

Recall that the trace operator over Fy» is the function Tracesn_q : Fgn — F, defined as
Tracegn q(x) = Z?z_ol 24", The following are well-known facts regarding the trace function that we
shall use for the proof of Lemma 5.1.

Fact 5.2. The trace operator is Fy-linear, i.e. for a, € Fgn and v € Fy, Tracegn_q(a + ) =
Tracegnq(@) + Tracegn—q(8) and Tracegn q(ya) = yTracegn_q(a). Moreover, it is a g™ *-to-1

map, i.e., for every a € Fy, ]Trace;nlﬁq(a)\ =g L.

Fact 5.3 (Trace of linear functions is unbiased). Let p be a prime. Then for every oy, ag, ..., ap €

Fpn not all zero we have that

Trace,n (> 5| aiz;)
pr—p(2i=1 ®iTi) | _
Exl,xQ,...,an]Fpn LOp ! - 07

where w), = e2mi/P s the complex p-root of unity.

For a degree set D C {0,1,...,p" — 1} and a vector § = (B4)aep € (Fpn)!Pl let fa(z) =
PraE]Fpn [g(a)zo]_l/p

1-1/p
Lemma 5.4. Let p be a prime, and let D C {0,1,...,p" —1}. Let X € (IF;)’“, @ € (Fpn)* be chosen
uniformly and independently at random. Then

> deD Bqz?. For a function g : Fyn — F, let Bias,(g) =

- . k
Xe(]F*)kP*re(IF )k[C = (@, \) accepts D] = EEG(JFpn)'D' [Blasp(Tracepn_)p(fB))] .
p) a&lpn
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Proof. Our first observation is that

- Trace,n (> B, (Zf: Aia?))
XE(IF*)kP—re(IF )k[C:(O")‘) accepts D) = Bger,. o1 sempr, me(epn |90 ‘
p) " a&Epn

To see this let p(B,a,\) = w?acepn_’p(ZdeD fa(Zies )‘ia?)). Note that for every @, A such that
C = (@, \) accepts D we have that Zle Niad = 0 for all d € D, and hence u(8,@, ) = 1 for all
B € (Fpn)IPL. In particular, in this case EBE(Fpn)lDW(B’ @, \) = 1. On the other hand, for every @, A
such that C' = (@, \) does not accept D there exists d € D such that Ele Niad # 0, and hence
Traceyn p(Y_4ep Bd(Z?:l Aiad)) is distributed uniformly over F,, when j is distributed uniformly
over (F,n)IPl. This implies in turn that EBE(]FpnﬂDhUJ(B, a,\) = 0.
Thus we have

_ Traceynp(Caep Ba(Ximg Miaf))
Xe(IF*)kPare(F n)k[C = (@, \) accepts D] = EEG(Fpn)‘D‘,Xe(JF;)k,ae(ﬁ«‘pn)k [wp p—p(2aep Pd 1 ]
p/ P

- F Z;@:l)‘iTmcep”—)p(fE(ai))
= LBe(Fn)IPINe(F)k, ac(Fyn )k |WP

— E. NoTrace,n p (f5(a0)) ] "
o BE(F,n )P Xo€EFS, apEF,n Wp

EBG(IFpn)\D\ [Bias,(Tracepn p(f; g))}’“

. AoTrace,n s, (f7(c0))

To see the last equality let p(Ag, ) = wp . Note that for every ag € Fy» such
that Tracepnp(f3(c0)) = 0 we have that p(Ao, ag) =1 for all Ag € F. In particular, in this case
Exoer, (Ao, 29) = 1. On the other hand, for every ag € Fyn such that Tracepn%p(fg(oco)) # 0 we
have that AoTracepn—,(f5(co)) is distributed uniformly over F, when A is distributed uniformly

over I, and hence Ey,cr,p(Mo, @) = 0. This implies in turn that

E)\OE]FP, g€l pn P()\O> Oé()) = Pr [Tracep"ﬁp(fg(ao)) = O]v

[e7s) E]Fpn
and hence

Proger,. [Tracepn—p(f5(ca0)) = 0] — 1/p
1-1/p

Exoers, apel,n p(Ao, o) = = Biasy(Traceyn 5 (f3))-

O]

In order to compute the expectation in the right-hand side of Lemma 5.4 we shall use the
following special bound on the distribution of the image of sparse polynomials from [KL11] (see
also [KL10]).

Theorem 5.5 (Bounds on the image distribution of sparse polynomials, [KL10], Theorem 1.3.).
Let p be a prime, and let f(x) be a univariate polynomial over Fyn. Suppose that f(x) is the sum of
at most t monomials over Fyn, each of degree if p-weight at most w with respect to p. Then either
Tracepnp(f(x)) is constant for every x € Fpn, or

Ever, [wgmcepmp(ﬂw))} ‘ < [y | M/ (2u727),
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Note that the above bound applies only if Tracepn_,,(f(z)) is non-constant, and hence in order
to compute the expectation in the right-hand side of Lemma 5.4 we shall also need to compute
the probability, over all vectors 8 € (Fpn)IP! that the function f5(2) =X 4ep Bax? is the constant
function. This is done in the following lemma.

Lemma 5.6. Let p be a prime, and let D be a subset of {0,1,...,p" — 1} which satisfies that
Shifty, , (d) N Shift, ,(d") =0 for every distinct d,d’ € D. Then

Pr [Tracep"ﬁp(fﬁ) is the zero function] = p—|Shiftp’n(D)|‘

BE(Eyn )P
In addition, for every c € Iy,

—|Shift, » (D)| 0eD
Pr  [Tracepnp(fz) =] = { p ’

BE(F,n)IP 0, otherwise

Proof. Our first observation is that Tracepn_p( fg) is the zero function if and only if the polynomial
Traceyn—p(f7) mod oP" — 7z is the zero polynomial. Note that

Traceynp(f3) = Tracepn_>p< Z Bda:d) = Z Tracepn_sp (Bdacd).

deD deD

Our second observation is that since all degrees in D lie in distinct (p, n)-shifts then all mono-
mials in Tracepn_p (ﬁdmd) mod 2?" — x are distinct from all monomials in Traceyn_, (ﬂd/xd,)
mod zP" — x for all distinct d,d’ € D.

One last observation is that if d € D satisfies |Shift,,(d)] = ¢ then all monomials in
Tracepnﬁp(ﬁdmd) mod zP" — z are of the form zd»" modp"— , 0 <1< /¢ —1, where the coeffi-
cient of the monomial z4?" ™4 P"~1 ig (Trace,n_,,¢(B4))"". Note that (Trace, ,,¢(8q4)) equals
zero if and only if (Trace,n_,, (Ba))P’ equals zero, and that the number of elements 85 € Fyn
which satisfy (Trace,n ,,¢(84))"" = 0 is exactly p"~“. Thus the probability that a random element
Ba € Fpn satisfies that Trace,n_, (Bdmd) mod zP" — z is the zero polynomial is exactly p~*.

Concluding, we have that for every d € D the probability that a random element 3; € Fp»
satisfies that Tracepn_,p (ﬁda:d) mod zP" — x is the zero polynomial equals p~ISPifte.n(d)l  Since all
polynomials of the form Tracepn_,), (Bd:rd) mod 2P" — x for d € D have distinct monomials, this
implies in turn that

_ Pr[Tracepnp(f3) is the zero function] = H p 1Shftp (@] — = Yaep IShiftp.n(d)] — 4)=IShifty.n (D)
BE(Epn) P! deD

The second part of the lemma can be proved similarly by observing that Tracepn_p( fg) =c
if and only if the polynomial Tracepn ., ( fB) mod zP" — z equals ¢, and that this happens if and

only if the coefficient of the monomial 1 in Traceyn—,(f5) mod 2P" — x equals ¢ while all other
coeflicients equal 0.
O

We are now ready for the proof of Lemma 5.1.
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Proof of Lemma 5.1. Let S be a set of (p,n)-shift representative set of D, |S| = t. Lemma 3.4
implies that the constraint C' accepts D if and only if it accepts S, and thus it suffices to prove the
lemma for the set S. From Lemma 5.4 we have that

Pr C = (@, \) accepts S] = E- 151 [Bias, (Tracepn ., (f3) k.
Xe(Fz)k,ae(len)k[ (@, ] BG(FP")S‘[ P pn s )

Suppose first that 0 ¢ D. Note that fg is a univariate polynomial over F,» which is the sum
of at most ¢ monomials, each of degree of p-weight at most w. Thus from Theorem 5.5 we have
that the function Tracepn_,p( fg) is either the zero function, in which case its bias equals 1, or it is
a non-constant function, in which case it satisfies

Trace,n_s,(f7) _ 259w
Eocpn (wp 7] < [Fpn L/ (w2,

and in particular 2
]Biasp(Tracepnﬁp(fE)” < ‘Fpnrl/(zw 2vt)

Moreover, from Lemma 5.6 we have that the probability over all 3 € (]Fpn)‘s | that Tracepn—p( fﬁ)

pIShiftpn (S)] — = [Shifty,n (D)

is the zero polynomial is . Concluding, we have that

- Pr [C' = (@, ) accepts D] — p~ Shiften (D)} —
Ae(]F;;)k, ae(Fpn)k

. k —|Shiftp,n (D —k/(2w?2v
‘EﬁE(Fpn)IS [Blasp(Tracep"Hp(fB))] — p~ Shiftpa ”’ < [Fpr| /(@un2)
Next suppose that 0 € D. From Theorem 5.5 we have that the function Traceyn_,( fg) is either
the zero function, in which case its bias equals 1, or a constant non-zero function, in which case its
. 1 . .
bias equals —5—1» Or it satisfies
[Bias, (Traceyn _,p(f3))| < [Fpn |71/ 07270,

Moreover, from Lemma 5.6 we have that for every ¢ € F,, the probability over all 3 € (Fpn)|5 |
that Traceyn—,(fz) = c is pIShiftyn (S)] — p=IShifty n (D)l - Concluding, we have that

_ . 1 \* .
_ o Pr [C = (@, X) accepts D] — p~ StifentDl — () — 1) ( - _> pIShiftr (D)) =
NE(Fy)k, ae(Fyn )k p—1

. ]. k=1 _ i _ ’LU2 w
‘Eﬁe(FPn)S[Blasp(Tracepnep(f/g))]k - <1+ (—=1)" <p—1> >p [Shifty.n (D)} < |Fpn| K/ (@u2%e)

0

6 A calculus for composing pseudo-tests — Proof of Lemma 3.10

Below we introduce two operations on constraints, each operation combines two constraints to
create a single constraint (of larger arity). We describe the property of these combination operators
in the language of pseudo-tests. For a pair of vectors v = (v1,...,7) and v = (7],...,7;,) let
yor' = (Vs s Vs V15 - - -5 7Y;) denote their concatenation. Let 0j denote the all-zeros vector of
length k.
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Definition 6.1 (Union of constraints). Let C7 = <a(1), {)\51)}%11> be a kj-constraint and let

Cy = <a(2), {AE”}?;) be a kg-constraint. Their union C' = Cy U Cy is the (ki + ko)-constraint

¢ = (@ (") u{xP)" ) dotined vy
2)

a=aboa?,

)\,(1) X( ) 00, for all 1 <4 <ry,

and
X;(Q) =0, 0 Xl@) for all 1 < i < 7.

Proposition 6.2. Let C1 be a pseudo-test separating D1 from By and let Cy be a pseudo-test
separating Do from Bo. Then C1 U Cy is a pseudo-test separating D1 N Do from B U Bs.

Proof. For every degree d,

k1+k2

Z N o ZASJ) () for all 1 <i <y,
7j=1
and similarly
K1+ k2
Z ANPad =3 A (@) for all 1 < i < .
7j=1

Thus the constraint C' accepts the degree d if and only if both C; and Cy accept the degree d.
Hence C accepts all degrees in D1 N Dy and rejects all degrees in By U Bs.
O

T1

Definition 6.3 (Tensor of constraints). Let C = (a(l), {Xgl)};l

) be a ki-constraint and let

Cy = ( ) {)\(2)} 1> be a ko-constraint. Their tensor product C' = C; ® Cy is the (k; - k2)-

constraint C' = (@, {/\(i17i2)}7f1’r2 ), where @ € (Fgn)F>*2 and Niria) € (Fy)Frk2 for all 1 < i <

11=1,i9=1
r1, 1 <1 <y, and are defined as follows:

QGrgz) = Yy " Xy s
and 0 @
Airsia),(nga) = 11,01 ')‘iz,jz

forall 1 < gy <k, 1< g2 <k, 1 <43 <1y, 1 <idp <o

Proposition 6.4. Let C1 be a pseudo-test separating D1 from By and let Cy be a pseudo-test
separating Do from Bo. Then C1 ® Cy is a pseudo-test separating Dy U Dy from By N By .
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Proof. For every degree d, and for every 1 <i; <7y, 1 < iy <719 we have that

SR L& @ (@
Z Z A(i17i2)7(j1,j2)(O‘(jmé))d = Z Z >‘i1,j1 ')‘iz,h ’ (ajl ) ’ (ajz )
Jji=172=1 J1=1j2=1
LW 2@ @0
= < Z >\i1»)jl (ajl ) > ’ < Z >\i2,j2 (ajz ) >
Ji=1 Jj2=1

Thus the constraint C' accepts the degree d if and only if at least one of the constraints Cy, Cy
accepts d. Hence C' accepts all degrees in D; U Dy and rejects all degrees in By N Bs.
O

The above, simple constructions, result in the Composition Lemma 3.10, which allows to de-
compose a testing problem into simpler ones.

Proof of Lemma 3.10. Fix d € D and let S C [{] be the set {j € [(]|3b € B s.t. C; is a pseudo-test
separating {d} from {b}}. Let Cy be the union of all constraints indexed by indices in S. Then
Cy is at most a (k' - £)-constraint and by Proposition 6.2 above Cy is a pseudo-test separating {d}
from B.

Now let C be the tensor of all constraints Cy for d € D. The constraint C' is of size at most
(k" - £)' and by Proposition 6.4, C' is a pseudo-test separating D from B . The lemma thus holds
for k = (K'0)*. O

7 Equivalence of basic and general single-orbit characterizations

Recall that an affine-invariant linear property F is k-single-orbit characterizable if there exists a
k-constraint C' = (a, {XZ-}ZZI) which forms a k-single-orbit characterization of 7. We say that F
has a basic k-single-orbit characterization if r = 1.

A natural question is whether every affine-invariant linear property which has a single-orbit
characterization with » > 1 and of small locality also has a basic single-orbit characterization of
small locality. In this section we answer this question in the affirmative by showing that every
k-single-orbit characterization of an affine-invariant linear property F can be transformed into a
basic k’-single-orbit characterization of F, where k’ depends only on k.

Theorem 7.1 (Equivalence of basic and general single-orbit characterizations). For every integer
k there exists an integer ng = no(k) such that the following holds for all n > ng. If an affine-
invariant linear property F C {Fgn — Fq} has a k-single-orbit characterization then it also has a
basic k?-single-orbit characterization.

For the proof of the above theorem we shall use the following theorem from [BS11] (see also
[BS10]) which gives a bound on the g-weight of degrees in the degree set of affine-invariant linear
properties which are accepted by a k-constraint.

Theorem 7.2 (Weight-degree of affine-invariant linear properties accepted by a k-constraint,
[BS10], Theorem 2.9.). Suppose that F C {Fyn — Fy} is an affine-invariant linear property, where
q = p® for a prime p. Suppose furthermore that there exists a k-constraint which accepts all func-
tions f € F. Then wty(d) < (k—1)q/p for every degree d € Deg(F).
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We shall also use the following well-known Schwartz-Zippel lemma that bounds the number of
zeros of multivariate polynomials.

Lemma 7.3 (Schwartz-Zippel, [Sch80, Zip79]). Let p € Flx1,...,x,] be a polynomial of degree d
over a finite field F. Then

xl,x];r“’xn[p(xl,atg, coyy) = 0] < d/|F|
Proof of Theorem 7.1. Since F is k-single-orbit characterizable there exists a k-constraint C' =
(a, {X,-}:Zl ) that forms a k-single-orbit characterization of F. Without loss of generality we may
assume that all vectors Ai, Ag, ..., A, are linearly independent and hence r < k.

We will show that for all sufficiently large n there exists a choice of elements v1,7v2,...,7 € Fgn
such that the (k-r)-basic-constraint C' = (@, \), @ € (Fgn )%, X € (Fy)™¥, defined by a; j = a; -7
and \;; = A\ forall 1 <i <r, 1 <j <k forms a single-orbit characterization of . Note that
the fact that » < k implies that C” is indeed a k?-constraint.

Let B’ be a (g, n)-shift representative set for Border(F) which contains the minimal degree from
each (¢,n)-shift in Border(F). From Lemmas 2.7 and 3.4 it suffices to show that C’ accepts all
degrees in Deg(F) and rejects all degrees in B’.

For every degree d € {0,1,...,q" — 1} let Py(z1,z2,...,z,) be the polynomial in the variables
r1,T9,...,T,, defined as follows.

r k r k
Pd(l’l, Ty ey JIT) = Z Z )\i,j : (O[j : :L’Z')d = Z xf( )\ma;l)
j=1

=1 j=1 =1

Note that for every choice of elements 71,72,...,7 € Fgn, the constraint C’ accepts the de-
gree d if and only if Py(v1,72,...,7%) = 0. Thus we need to show that there exists a choice of
elements v1,v2,...,7 € Fgn such that Py(vy1,72,...,7%) = 0 for every degree d € Deg(F) and
Py(y1,72 -+, 7) # 0 for every degree b € B'.

We first observe that Py(v1,...,7) = 0 for every degree d € Deg(F) and for every choice

of elements v1,...,7 € Fgn. To see this recall that the constraint C accepts d and therefore
Z;‘;l Aijad =0 forall 1 <i<r.
It remains to show that there exists a choice of elements 71, ..., v, € Fgn such that Py(vy1,...,7)

is non-zero for all b € B’. In order to show this we shall bound the probability that random elements
Yiso-osYr € Fgn satisty Py(7y1,...,7) = 0 for some b € B’. By union bound,

Pr Py(y1,...,7) =0 for some b € B'| < Pr Py(1,... -0
w,...,wremqn[ b (V155 ) ] bezf; Aﬂ,_._mqun[ b(Y1, - yr) = 0]

< |B. Pr  [Py(v,...7) = 0](12
< | IgéaB%%wfqun[ b(Y15 -+ vr) = 0](12)

In what follows we show an upper bound on the size of B’ and on the probability
Pro, . yeeFn [Po(71, ... 7r) = 0] for b € B’ based on Lemmas 7.2 and 7.3.

We start with bounding the probability Pry,  ..eF,n» [Py(71,...7) = 0] for b € B’. Since C
is a k-constraint which accepts all degrees in Deg(F), from Theorem 7.2 we have that wty(d) <
(k — 1)q/p for every d € Deg(F). From the definition of the border this implies that wt,(b) <
(k—1)g/p+1 < kq/p for all b € Border(F). Since B’ contains the minimal degree from each
(q,n)-shift in Border(F), Lemma 4.4 implies that b < ¢(!'=P/(@)n+1 for every b € B’. Thus we
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have that for every b € B’ the degree of the polynomial Py(x1,...,z,) is at most ¢(1=?/(@k)n+1 and
hence the Schwartz-Zippel Lemma (Lemma 7.3) implies that

q(l—p/(qk))nJr1

Pr [Py, yr) =0] < T 13
b B0 ar) = 0] 0 (13)

Next we bound the size of B’. This can be done by noticing that the fact that all degrees in
Border(F) are of g-weight at most kq/p implies that

kq/p
k
|B| < [Border(F)| < 3 (?) i< ?q Jo/Pnkalp 4 1, (14)
1=0

Plugging (13) and (14) into (12) we obtain

k
Pr  [Py(v1,...,7) =0for some b € B'] < (qqu/pnkQ/p + 1>
717---777'6Fq"7f p

q(lfp/(qk))wr1

qn

This implies in turn that for sufficiently large n there exists a choice of elements ~1,...,7, € Fgn
such that Py(y1,...,7) is non-zero for all b € B’ which concludes the proof of the theorem.

O]
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