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Abstract

A (k, ε)-biased sample space is a distribution over {0, 1}n that ε-fools every nonempty linear test of
size at most k. Since they were introduced by Naor and Naor [NN93], these sample spaces have become
a central notion in theoretical computer science with a variety of applications. When constructing such
spaces, one usually attempts to minimize the seed length as a function of n, k and ε. Given such a
construction, if we reverse the roles and consider a fixed seed length, then the smaller we pick k, the
better the bound on the bias ε becomes. However, once the space is constructed we have a single bound
on the bias of all tests of size at most k.

In this work we initiate the study of a new pseudorandom object, which we call a gradual (k, ε)-
biased sample space. Roughly speaking, this is a sample space that ε-fools linear tests of size exactly
k and moreover, the bound on the bias for linear tests of size i ≤ k decays as i gets smaller. We
show how to construct gradual (k, ε)-biased sample spaces of size comparable to the (non-gradual)
spaces constructed by Alon et al. [AGHP92], and prove a lower bound on their size. Our construction is
based on the lossless expanders of Guruswami et al. [GUV09], combined with the Quadratic Character
Construction of [AGHP92].
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1 Introduction

An ε-biased sample space S over {0, 1}n is a sample space with the following property: for every nonempty
T ⊆ [n], the random variable sT , ⊕i∈T si, where s is sampled from S, has bias at most ε. In other words,
a sample space is ε-biased if it ε-fools every nontrivial linear test. When it is not desired or not important to
specify ε, one usually refers to such a sample space as a small-bias sample space.

The notion of a small-bias sample space was introduced in the seminal paper of Naor and Naor [NN93]
and has become a fundamental notion in theoretical computer science, with a variety of applications [Nao92,
BNS92, NN93, HPS93, AR94, MW02, BSSVW03, VW08, Vio09].

Several explicit constructions of small-bias sample spaces that attempt to minimize the sample space
size in terms of n and ε are known [AGHP92, ABN+92, NN93, BT09]. These constructions give in-
comparable sizes. Unfortunately, all known constructions fall short from achieving sample spaces of size
O(n/ε2), which are guaranteed to exist by a simple probabilistic argument. Another research direction,
which this work falls into, studies variations and generalizations of small-bias sample spaces [AIK+90,
RSW93, EGL+92, AM95, MST06, Shp06].

A relaxation of the notion of a small-bias sample space requires only that small linear tests will be fooled.
Formally, a (k, ε)-biased sample space is a sample space S over {0, 1}n such that for every nonempty
T ⊆ [n] of size at most k, the random variable sT has bias at most ε, where again s is sampled from S.
The advantage of this relaxed notion is that fooling only small tests, rather than every nontrivial test, can
be achieved by much smaller sample spaces. The original motivation for studying (k, ε)-biased sample
spaces was to obtain almost k-wise independent random variables. However, (k, ε)-biased sample spaces
had proved to be useful in their own right, and found several applications [SZ94, Raz05, CRS12].

Naor and Naor [NN93] gave a general method for constructing (k, ε)-biased sample spaces from ε-
biased sample spaces. Their method yields (k, ε)-biased sample spaces that are exponentially smaller in
terms of n than what is possible for ε-biased sample spaces. In terms of seed-length, they showed that
a seed of length O(log k + log log n + log ε−1) is sufficient in order to fool tests of size k, while it is
known that a seed of length Ω(log n+ log ε−1) is necessary in order to fool every nontrivial linear test (see,
e.g, [AGHP92, Alo09]).

Gradual small-bias sample spaces. Consider two pairs (k1, ε1) and (k2, ε2) such that

s = log k1 + log ε−1
1 = log k2 + log ε−1

2 .

Potentially, one could hope that a seed of length O(s+ log log n) would be sufficient to ε1-fool tests of size
k1 and simultaneously to ε2-fool tests of size k2. In other words, we are considering a (k, ε)-biased sample
space that has the following property: for tests of size t < k, the “spare” log k − log t bits of the seed are
utilized to reduce the bias. In this paper we initiate the study of such sample spaces, which have a better
bound on the bias for smaller tests.

Definition 1.1. A sample space S over {0, 1}n is called gradual (k, ε)-biased if for every nonempty T ⊆ [n]
of size at most k, ∣∣∣Es∼S

[
(−1)

∑
i∈T si

] ∣∣∣ ≤ ε · |T |
k

.

A few words about the definition are in order. First, note that when T is of size exactly k, the bound
on the bias is ε, i.e., a gradual (k, ε)-biased sample space is, in particular, (k, ε)-biased. One may consider
a more general definition, which allows an arbitrary decaying function as the bound on the bias (say, ε ·
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(|T |/k)d for some parameter d). We choose this function to be ε · |T |/k in the definition and discuss a more
general definition in Section 4.

1.1 Motivation

Why should we care about gradual small-bias sample spaces? For one, we believe that the notion is simply
a natural strengthening of a (k, ε)-biased sample space, and as such, is interesting in its own right. More-
over, we believe that gradual small-bias sample spaces provide an example of a more general phenomenon,
which we now explain. The entropy in the seed of a gradual small-bias sample space is utilized to the fullest.
Namely, if we have prepared our sample space with a seed long enough to fool large linear tests, and in prac-
tice a small test is used, the extra entropy in the seed is not wasted, but is rather channeled towards reducing
the bias of the test. Another example of this general phenomenon arises in the setting of randomness ex-
traction. Roughly speaking, a (k, ε) extractor E is randomized function that when applied on a distribution
with min-entropy at least k, results in a distribution which is ε-close to uniform. When an extractor is fed
with a distribution of much higher min-entropy, this extra entropy could potentially go to waste. However,
there are extractors which siphon this entropy to reduce the error ε. The extractor that is based on a random
walk on an expander is one such example.

Finally we observe that the Fourier spectrum of a gradual small-bias sample space has the following nice
structure. The bound on the Fourier coefficients is stronger for coefficients in the lower levels. Although this
observation is trivial, we feel that it provides another neat perspective on gradual small-bias sample spaces.

1.2 Main Result

The following theorem is our main result:

Theorem 1.2. For any integers n and k ≤ n, for any ε > 0, and for any constant δ > 0 1 there exists an
explicit construction of a gradual (k, ε) sample space of size

m = Oδ

((
k

ε

)2+δ

+

(
log n

log k

)2+4/δ

k1+δ

)
,

where the Oδ hides a multiplicative constant that depends only on δ.

Obviously, one can find a value for δ that minimizes m as a function of n, k and ε. However, when no
assumptions are made on the relations between n, k and ε, the expression one would get is cumbersome and
non-informative. Moreover, when conducting such minimization one can no longer ignore the multiplicative
dependency in δ that is hidden under the big Oδ notation. We therefore choose to specify our bound in the
more readable way presented above. Nevertheless, in the following table we consider three natural ranges
for k in terms of n, and for those we give the minimum value of m with respect to δ. We also make a
comparison with the size of the (non-gradual) (k, ε)-biased sample space from [AGHP92], which equals to
mAGHP =

(
kε−1 log n

)2. The comparison is meant to show that using our construction of gradual small-
bias sample space, one does not pay much more in the sample space size for having a decaying bound on
the bias.2

1In fact, the construction works without assuming δ is constant, and this assumption appears only to simplify the presentation
of the theorem. See Theorem 3.1 for a more general statement.

2A central building block in our construction is an unbalanced expander. Unfortunately, even the state of the art explicit
construction of unbalanced expanders [GUV09] are somewhat far from optimal. When analyzing our construction of gradual
small-bias sample spaces using optimal unbalanced expanders, the resulting sample space would have size matching that of the
(non-gradual) construction of [AGHP92].
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Range of k
Sample space size

[AGHP92] Theorem 1.2

k = nγ , for any constant γ ≤ 1 (k/ε)2+o(1) Oδ

(
(k/ε)2+δ

)
for any

constant δ > 0

k = logc n, for any constant c ≥ 6, and ε =
Ω(1)

(log n)2(c+1) (log n)2(c+1)+3

k = O(1) and ε = log−c n, for any constant
c ≥ 1/2

(log n)2(c+1) Oc((log n)
2(c+1))

1.3 Informal Description of the Construction

Our high-level strategy is composed of two steps:

1. Obtaining a gradual (n, ε)-biased sample space, over {0, 1}n.

2. Transforming it into a gradual (k, ε)-biased sample space with a shorter seed.

A similar approach was used by [NN93] to construct (non-gradual) (k, ε)-biased sample spaces. We now
elaborate on each of the steps.

1.3.1 Gradual small-bias sample spaces from quadratic characters

For the first step, we use the Quadratic Character Construction of small-bias sample spaces of [AGHP92],
which we now describe.

Let q be an odd prime power. Denote by Fq the finite field with q elements. The quadratic character
χ : Fq → {−1, 0, 1} is defined as

χ(x) =


0, x = 0;

1, ∃y ∈ Fq\{0} such that x = y2;

−1, otherwise.

The sample space in this construction consists of q strings, in correspondence with the elements of Fq.
A string in the sample space is composed of n bits, which are indexed by elements from some arbitrarily
chosen set I ⊆ Fq of size |I| = n. For i ∈ I and x ∈ Fq, the ith bit of the xth string is given by χ(x+ i).3

The bias of this construction for liner tests of size k is essentially the expectation of χ over the image of
some degree k polynomial. Weil’s Theorem (see Theorem 2.1) bounds precisely expectations of this form.
Moreover, the bound this theorem provides is linear in k, the degree of the aforementioned polynomial. This
implies a better bound for samller tests. It follows that this space is indeed a gradual (n, ε)-biased sample
space.

3Formally, the support of the sample space should be {0, 1}n. This minor technicality is resolved by mapping ±1 to {0, 1}, and
0 arbitrarily.
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1.3.2 Shortening the seed length

In order to obtain a (k, ε)-biased sample space clearly it suffices to construct an (n, ε)-biased sample space
(since being (n, ε)-biased implies being (k, ε)-biased). We now describe a cleverer way to transform (n, ε)-
biased sample spaces into (k, ε)-biased ones. This transformation is due to [NN93].

Let Un denote the uniform distribution over {0, 1}n. We say that a linear transformation T : {0, 1}n →
{0, 1}N generates a k-wise independent space if the N random variables (Zi)

N
i=1 defined by

Zi = T (Un)i

are k-wise independent. Suppose S is an (n, ε)-biased sample space over {0, 1}n and suppose that T :
{0, 1}n → {0, 1}N generates a k-wise independent space. Then, in [NN93] it is shown that the sample
space over {0, 1}N defined by T (S) is (k, ε)-biased. The advantage of this transformation is that it allows
N to be significantly larger than n, thus shortening the seed length as a function of the output length.

Similar to this approach, we also suggest a general way to transform a gradual (n, ε)-biased sample
space into a gradual (k, ε)-biased one. The idea is to use a linear transformation T : {0, 1}n → {0, 1}N ,
which generates a k-wise independent space, but which is also sparse, in the sense that each output bit
depends only on a small number of input bits. We claim that in this case, provided that S is a gradual
(n, ε)-biased sample space, T (S) is a gradual (k, ε)-biased sample space.

Let us sketch the proof idea. Suppose T is such a transformation, in which each output bit is a sum of
at most ℓ input bits, and suppose S is a gradual (n, ε)-biased sample space. To sample from the new sample
space, we first sample s from S and then output T (s). Consider a linear test A(·) of size r ≤ k, applied
to T (s). By the sparsity of T , it follows that A(T (s)) is a sum of at most ℓ · r bits of s. Moreover, since
T generates a k-wise independent space, this sum is not empty. Thus, the bias of A(T (s)) is the bias of
some test of weight ℓ · r in the sample space S, and the claim follows. It might be useful to note that this
transformation works even if S is a gradual (ℓ · r, ε)-biased sample space (as apposed to S being a gradual
(n, ε)-biased sample space).

We present an explicit construction of such a transformation T , based on expanders (see Section 2.2).
The construction that we use is essentially the parity-check matrix of the codes of Sipser and Spielman [SS96]
when combined with the unbalanced expanders of [GUV09].

1.4 Organization

In Section 2 we state some preliminary definitions and results that we need. In Section 3 we present a
construction of a gradual small-bias sample space and prove Theorem 1.2. In Section 4 we study a more
general definition of gradual small-bias sample spaces. In particular, we address the problem of achieving
a stronger decay in the bound on the bias, and prove a lower bound on the size of such sample spaces.
Section 5 contains concluding remarks and some open problems.

2 Preliminaries

All logarithms in this paper are in base 2. For a natural number n we define [n] = {1, 2, . . . , n}.

2.1 Quadratic Characters

We denote by χq the quadratic character over Fq. When the field is understood from the context, we omit
the subscript and simply denote this character by χ. We use a special case of Weil’s Theorem regarding

4



character sums (see e.g., [Sch76]).

Theorem 2.1 (Weil’s Theorem). Let q be an odd prime power. Let f ∈ Fq[x] be a degree d polynomial.
Assume that f(x) ̸= c · g(x)2 for any c ∈ Fq, g ∈ Fq[x]. Then,∣∣∣∣∣∣

∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.

2.2 Expanders and Codes

We associate a bipartite graph G = (L,R,E) with |L| left-vertices, |R| right-vertices and left-degree d with
the adjacency function G : L× [d] → R, where G(x, i) = y if and only if y is the ith neighbor of x. For a
set of left-vertices A ⊆ L we denote by G(A) the set of neighbors of A.

Definition 2.2. A bipartite graph G : L × [d] → R is a k-unique-neighbor expander if for any nonempty
subset A ⊆ L of size at most k, there exists some y ∈ R that is adjacent to exactly one vertex in A.

Definition 2.3. A bipartite graph G : L × [d] → R is a (≤ k, α) expander if for any subset A ⊆ L of size
at most k,

|G(A)| ≥ α · |A|.

We will need the well known fact that a graph whose expansion is greater than half of the degree is also
a unique-neighbor expander.

Fact 2.4. If G : L× [d] → R is a (≤ k, α) expander for α > d/2 then G is a k-unique-neighbor expander.

Proof: Consider a nonempty set of left-vertices A ⊆ L of size at most k. The number of outgoing edges
from A is |A| · d. Suppose that each vertex in G(A) is adjacent to at least two vertices in A. This implies,
|A| · d ≥ 2 · |G(A)|, which contradicts the fact that G is a (≤ k, α) expander for α > d/2.

We will make use of the following expanders, constructed by [GUV09].

Theorem 2.5 ([GUV09, Theorem 3.2]). Let q be a prime power.4 For every integers ℓ, r, h ≥ 1 there exists
an explicit construction of a graph G : [qℓ]× [q] → [qr+1] which is an (≤ hr, q− (ℓ−1)(h−1)r) expander.
In particular, G is an hr-unique-neighbor expander when q > (ℓ− 1)(h− 1)r/2.

In essence our construction uses the error-correcting code whose parity check matrix is defined by
the above graph (as in [SS96]). In comparison, the (non-gradual) (k, ε)-biased sample spaces of [NN93,
AGHP92] use the BCH code. Unlike the BCH code, the expander code is a low-density parity-check code,
and this property plays a crucial role in our construction.

3 The Construction

In this section we describe our construction of a gradual (k, ε)-biased sample space, and prove Theorem 1.2.
For simplicity we combine the two conceptual steps that appear in the informal description of the construc-
tion (Section 1.3).

4For this construction to be explicit, the characteristic of Fq should be small. In our construction we take it to be 3.
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Let r ≥ 2 be an integer.5 Let q be an odd prime power to be determined later. Set ℓ = ⌈ lognlog q ⌉. For
the construction, we assume that we have a bipartite graph G = (L,R,E) which is a k-unique-neighbor
expander with |L| = qℓ, |R| = qr+1, and left-degree q. By our choice of ℓ we have |L| ≥ n. Fix an arbitrary
subset L′ of L such that |L′| = n. Set m = qr+1 and identify R with the finite field Fm. For every vertex
v ∈ L′ define the polynomial pv(x) ∈ Fm[x] by

pv(x) =
∏

w : (v,w)∈E

(x− w).

We now describe the sample space S over {0, 1}n.6 Each element in S corresponds to a field element in
Fm, that is, S = {sx : x ∈ Fm}. The string sx is indexed by elements from the set L′. In particular, for
every x ∈ Fm and v ∈ L′, we define

(sx)v =


1− χm (pv(x))

2
, pv(x) ̸= 0;

0, otherwise.
(3.1)

The following theorem readily implies Theorem 1.2 by setting δ = 4/(r − 1).

Theorem 3.1. For every integers n, k, r such that n ≥ k and r ≥ 2, and for any ε > 0, there is a way to
choose q such that the construction defined above is an explicit gradual (k, ε) sample space over {0, 1}n
with size

m ≤ max

{
(10r2)r+1

(
log n

log k

)r+1

k1+1/r, 3r+1

(
2k

ε

)2+4/(r−1)
}
.

To prove Theorem 3.1 we prove the following two claims.

Claim 3.2. If

q ≥
(
2k

ε

)2/(r−1)

then the sample space defined above is gradual (k, ε)-biased.

Claim 3.3. If

q ≥ 3.3 · log n
log k

· k1/rr2,

then we have an explicit construction of the k-unique-neighbor expander graph G = (L,R,E) required by
the above construction.

Before proving the two claims we derive Theorem 3.1 from them. By choosing

q ≥ max

{
3.3 · log n

log k
· k1/rr2,

(
2k

ε

)2/(r−1)
}
, (3.2)

Claim 3.3 assures us that we can obtain the graph G that we need in the construction. Having this graph,
Claim 3.2 guarantees that the above sample space is gradual (k, ε)-biased. Certainly one can efficiently find

5The parameter r is related to the parameter δ that appears in Theorem 1.2. In particular r = 1 + 4/δ.
6In fact, we define S as a multi-set. The sample space is induced in the natural way, namely, to sample from the sample space,

one sample an element s ∈ S with probability proportional to the multiplicity of s in S.
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a choice for q = 3z which is at most three times the right hand side of Equation (3.2).7 As m = qr+1 we
get the following upper bound on m, the sample space size

m ≤ max

{
(10r2)r+1

(
log n

log k

)r+1

k1+1/r, 3r+1

(
2k

ε

)2+4/(r−1)
}
,

hence Theorem 3.1 follows.

Proof of Claim 3.2: Let T ⊆ L′ be a non-empty set of size at most k. Define

pT (x) =
∏
v∈T

pv(x).

Since pT (x) is defined as a product of |T | polynomials, each of degree at most q, we have that deg (pT (x)) ≤
q · |T |. Moreover, we claim that pT (x) has a simple root. Indeed, T is a nonempty set of size at most k of
L′ ⊆ L. By our assumption, G is a k-unique-neighbor expander, and so there exists a vertex w ∈ R with
exactly one neighbor, v, in T . This implies that w is a simple root of pv(x), while for every u ∈ T\{v},
pu(w) ̸= 0. Hence, by the definition of pT (x) we have that w is a simple root of pT (x). Now, the bias of
the linear test defined by T is ∑

x∈Fm

(−1)
∑

v∈T (sx)v =
∑
x∈Fm

∏
v∈T

(−1)(sx)v . (3.3)

Suppose x is not a root of pT (x). Then the value such an x contributes to the sum in Equation (3.3) is

∏
v∈T

(−1)(sx)v =
∏
v∈T

χm(pv(x)) = χm

(∏
v∈T

pv(x)

)
= χm(pT (x)),

where the middle equality follows from the fact that χ is a multiplicative homomorphism. As pT (x) has at
most deg (pT ) ≤ q · |T | roots, we have that∣∣∣∣∣ ∑

x∈Fm

(−1)
∑

v∈T (sx)v

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
x∈Fm

χm(pT (x))

∣∣∣∣∣+ q · |T |

Since pT (x) has a simple root, pT (x) is not of the form c · g(x)2 for any c ∈ Fm and g ∈ Fm[x]. Therefore,
we can apply Weil’s Theorem (Theorem 2.1) to get∣∣∣∣∣ ∑

x∈Fm

χm(pT (x))

∣∣∣∣∣ < q · |T | ·
√
m.

Hence,
1

m

∣∣∣∣∣ ∑
x∈Fm

(−1)
∑

v∈T (sx)v

∣∣∣∣∣ ≤ 2q · |T |√
m

= 2|T | · q(1−r)/2.

7Observe also that this solves the minor issue regarding the need for small characteristic for the explicitness requirements of
Theorem 2.5.
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To get a bound of at most ε on the bias for tests of size exactly k, we require that

2k · q(1−r)/2 ≤ ε,

or

q ≥
(
2k

ε

)2/(r−1)

. (3.4)

Proof of Claim 3.3: We use the expanders from Theorem 2.5 with h = ⌈k1/r⌉. If

q − (ℓ− 1)(h− 1)r ≥ 0.51q

then G is a k-unique-neighbor expander. By the definition of ℓ, for the above equation to hold, it is enough
to require

q log q ≥ 2.05 · log n · k1/rr. (3.5)

We use the following simple claim that can be easily verified.

Claim 3.4. For every x, y > 1, if
x ≥ 1.6 · y

log y

then x log x ≥ y.

By the Claim 3.4, for equation (3.5) to hold, it is enough to require that

q ≥ 1.6 · 2.05 · log n · k1/rr
log (k1/r)

= 3.28 · log n
log k

· k1/rr2,

which concludes the proof.

4 Non-Linear Bias Decay

The definition of a gradual (k, ε)-biased sample space that appears in the introduction requires a bound of
the form ε · |T |/k on the bias for any nonempty set T of size at most k. The construction we suggest in this
paper indeed has such linear decay. However, one may consider a more general definition where the decay
exponent is a non-negative real parameter d.

Definition 4.1. A sample space S over {0, 1}n is called gradual (k, d, ε)-biased if for every nonempty
T ⊆ [n] of size at most k, ∣∣∣Es∼S

[
(−1)

∑
i∈T si

] ∣∣∣ ≤ ε ·
(
|T |
k

)d

.

We call d the decay exponent.

A straightforward probabilistic argument shows that a random sample space S over {0, 1}n of size
m = O(k2d · ε−2 · log n) is, with high probability, a (k, d, ε)-biased sample space. We start this section
by proving an almost matching lower bound on the size of (k, d, ε)-biased sample spaces (Theorem 4.3
below). We then turn to present two simple methods that transform a gradual (k, d, ε)-biased sample space
to a gradual (k, d′, ε)-biased sample space for d′ > d. These methods, together with the construction for the
case d = 1 (Theorem 1.2) yields constructions with larger decay exponents (Corollary 4.4).
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4.1 A Lower Bound

To prove a lower bound on the size of a gradual small-bias sample space we will use the following known
lower bound on the size of (non-gradual) (k, ε)-biased sample spaces.

Theorem 4.2 ([AAK+07, Alo09]). Let S be a (k, ε)-biased sample space over {0, 1}n of size m. If ε ≥(
n
k/2

)−1/2 then

m ≥ Ω

(
k log (n/k)

ε2 · log 1/ε

)
.

We now state and prove a lower bound for the size of gradual (k, d, ε) sample spaces.

Theorem 4.3. Let S be a gradual (k, d, ε)-biased sample space over {0, 1}n of size m. If d ≤ k/ log k and
ε > (d log k/n)O(d log k) then

m ≥ Ω

(
log n

ε2 · log 1/ε
·
(

k

d · log k

)2d
)
.

Proof: Let S be a gradual (k, d, ε)-biased sample space over {0, 1}n of size m. Then, in particular, S is

a (k′, ε′)-biased sample space with k′ = d log k and ε′ = ε ·
(
d·log k

k

)d
. As ε′ ≥

(
n

k′/2

)−1/2 we can use
Theorem 4.2 to deduce that

m ≥ Ω

(
k′ log (n/k′)

(ε′)2 · log 1/ε′

)
≥ Ω

( k

d · log k

)2d

· 1

ε2 · log (1/ε)
·
log k · log

(
n

d log k

)
log
(

k
d log k

)
 .

Since we assume that d ≤ k/ log k, and since k ≤ n, we have that

log k · log
(

n
d log k

)
log
(

k
d log k

) ≥ log n,

thus we have the desired lower bound on m.

4.2 Amplifying the Decay Exponent

We now present two simple methods to amplify the decay exponent of a given sample S. Of course, one
must pay in the sample space size in order to get a stronger decay. The two methods we suggest give
incomparable sample space sizes. One is better than the other depending on how the size of S depends on
n, k and ε. Starting with our construction, the two methods give roughly the same sample space size.

The first method is based on the following trivial observation: every gradual (k, d, ε/k)-biased sample
space S on n variables is a gradual (k, d + 1, ε)-biased sample space on n variables. Indeed, for every
nonempty T ⊆ [n] of size at most k,∣∣∣Es∼S

[
(−1)

∑
i∈T si

] ∣∣∣ ≤ ε

k
·
(
|T |
k

)d

≤ ε ·
(
|T |
k

)d+1

.

That is, choosing a smaller error to begin with, will result in a larger decay exponent. This observation,
together with Theorem 1.2 immediately implies the following corollary.
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Corollary 4.4. For any integers n, k, d, such that k ≤ n, for any ε > 0, and for any constant δ > 0, there
exists an explicit construction of a gradual (k, d, ε) sample space of size

m = Oδ

((
kd

ε

)2+δ

+

(
logn

log k

)2+4/δ

k1+δ

)
.

For constructions where the dependency in ε−1 is small, and this is the case in our construction, the
above method is quite effective. However, for a construction that suffers a worse dependency on ε−1, the
following method, which doubles the decay exponent, would be preferred: given a gradual small-bias sample
space S, use the sample space S + S.8 More formally,

Lemma 4.5. Let S be a gradual (k, d,
√
ε)-biased sample space. Then S+S is a gradual (k, 2d, ε)-biased

sample space.

Proof: For a sample space X , define a function pX : {0, 1}n → R by

pX(x) = Pr[X = x].

Then, for every T ⊆ [n],

p̂S(T ) = 2−n · Es∼S

[
(−1)

∑
i∈T si

]
.

By basic Fourier analysis (see, e.g., [O’D])

pS+S = 2n · pS ∗ pS ,

and so
p̂S+S(T ) = 2n · p̂S ∗ pS(T ) = 2n · p̂S(T )2.

Hence,

∣∣∣Es∼S+S

[
(−1)

∑
i∈T si

] ∣∣∣ = (Es∼S

[
(−1)

∑
i∈T si

])2
≤

(
√
ε ·
(
|T |
k

)d
)2

= ε ·
(
|T |
k

)2d

.

5 Concluding Remarks and Open Problems

Our method for transforming a gradual ε-biased sample space into a gradual (k, ε)-biased sample space
uses, as a black box, the unbalanced expanders of [GUV09]. Hence, improved constructions of unbalanced
expanders, or low-density parity-check codes in general, may lead to improved constructions of gradual
(k, ε)-biased sample spaces. Indeed, our general method has the potential to generate very good gradual
(k, ε)-biased sample spaces from the Quadratic Characters Construction given better constructions of un-
balanced expanders. Specifically, using the unbalanced expanders given by the probabilistic construction
(see, e.g., [GUV09]), our method yields a gradual (k, ε)-biased sample space of size O((kε−1 log n)2).
This is as good as the non-gradual (k, ε)-biased sample space of [AGHP92]. It would therefore be interest-
ing to construct a gradual small-bias sample space that matches the parameters of the non-gradual sample
space of [AGHP92].

8The sample space S + S is defined by sampling s1 and s2, independently, from S and then outputting s1 ⊕ s2.
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For non-gradual small-bias sample spaces there are a few explicit constructions with incomparable
size [AGHP92, ABN+92, NN93, BT09]. Finding an explicit construction of a gradual small-bias sam-
ple space with better (or incomparable) size to ours is therefore a natural research goal. One possible route
towards this goal is to construct a gradual small-bias sample space that has an incomparable size with that
of the Quadratic Character Construction. We are not aware of such a construction in the literature.

The original motivation for studying (non-gradual) (k, ε)-biased sample spaces was to construct a sam-
ple space S that is almost k-wise independent. Using a gradual (k, ε)-biased sample space instead of the
non-gradual one improves the size of S by a mere multiplicative constant factor. Nevertheless, we hope that
applications that exploit the gradual bound on the bias would be found.
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