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Abstract

Here, we give an algorithm for deciding if the nonnegative rank of a matrix M of dimension
m × n is at most r which runs in time (nm)O(r2). This is the first exact algorithm that runs
in time singly-exponential in r. This algorithm (and earlier algorithms) are built on methods
for finding a solution to a system of polynomial inequalities (if one exists). Notably, the best
algorithms for this task run in time exponential in the number of variables but polynomial in
all of the other parameters (the number of inequalities and the maximum degree).

Hence these algorithms motivate natural algebraic questions whose solution have immediate
algorithmic implications: How many variables do we need to represent the decision problem,
does M have nonnegative rank at most r? A naive formulation uses nr+mr variables and yields
an algorithm that is exponential in n and m even for constant r. (Arora, Ge, Kannan, Moitra,
STOC 2012) [1] recently reduced the number of variables to 2r22r, and here we exponentially
reduce the number of variables to 2r2 and this yields our main algorithm. In fact, the algorithm
that we obtain is nearly-optimal (under the Exponential Time Hypothesis) since an algorithm
that runs in time (nm)o(r) would yield a subexponential algorithm for 3-SAT [1].

Our main result is based on establishing a normal form for nonnegative matrix factorization
– which in turn allows us to exploit algebraic dependence among a large collection of linear
transformations with variable entries. Additionally, we also demonstrate that nonnegative rank
cannot be certified by even a very large submatrix of M , and this property also follows from
the intuition gained from viewing nonnegative rank through the lens of systems of polynomial
inequalities.
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1 Introduction

1.1 Background

The nonnegative rank of a matrix is a fundamental parameter that arises throughout algorithms
and complexity and admits many equivalent formulations. In particular, given a nonnegative1

matrix M of dimension m× n, its nonnegative rank is the smallest r for which:

• M can be written as the product of nonnegative matrices A and W which have dimension
m× r and r × n respectively

• M can be written as the sum of r nonnegative rank one matrices

• there are r nonnegative vectors v1, v2, ...vr (of length m) such that the nonnegative hull of
{v1, v2, ...vr} contains all columns in M

Throughout this paper, we will denote the nonnegative rank by rank+(M) and we will refer to
a factorization M = AW where A and W are nonnegative and have dimension m × r and r × n
respectively as a nonnegative matrix factorization of inner-dimension r.

Some of the most compelling applications of nonnegative rank are in machine learning, statistics,
combinatorics and communication complexity. In machine learning, the benefit of requiring a
matrix factorization M = AW to be nonnegative is that this factorization can then be interpreted
probabilistically. A representative application comes from the domain of topic modeling, where M is
chosen to be a so-called ”term-by-document matrix”: the entry in row i, column j is the frequency of
occurrence of the ith word in the jth document. And computing a nonnegative matrix factorization
of inner-dimension r is akin to finding a collection of r topics (which are each distributions on words)
so that each document can be expressed as a convex combination of these r topics. Nonnegative
matrix factorization has found applications throughout machine learning, from topic modeling to
information retrieval to image segmentation and collaborative filtering. Even this is far from an
exhaustive list. We note that of particular interest in these applications, are instances of this
problem in which the target nonnegative rank r is small.

In combinatorial optimization, one is often interested in expressing a polytope P as the projec-
tion of a higher-dimensional polytope Q which (hopefully) has much fewer facets. The minimum
number of facets needed is called the extension complexity of P and there is a rich body of literature
on this subject. Yannakakis established a striking connection between extension complexity and
nonnegative rank: Given the polytope P , one constructs the ”slack matrix”: the entry in row i,
column j is how slack the ith vertex is against the jth constraint. Yannakakis proved that the
nonnegative rank of the slack matrix is exactly equal to the extension complexity of P [18]. Fiorini
et al [6] recently used this connection and results from quantum communication complexity to
prove a remarkable lower bound, that the traveling salesman (TSP) polytope has no polynomial
size extended formulation.

In communication complexity, the famous Log Rank Conjecture of Lovasz and Saks [10] asks if
the log of the rank of the communication matrix and the deterministic communication complexity
are polynomially related. In fact, an equivalent formulation of this problem (that follows from [2])
is that the Log Rank Conjecture asks if the log of the rank and the log of the nonnegative rank of a
Boolean matrix are polynomially related. Of crucial importance here is that the matrix in question
be Boolean. For a general matrix, there is no non-trivial relationship since there are examples in

1We will refer to a matrix that is entry-wise nonnegative as a ”nonnegative matrix”.

1



which the rank is three and yet the nonnegative rank is Ω(
√
n) [7]. Also in complexity theory, Nisan

used nonnegative rank to prove lower bounds for non-commutative models of computation [12].
We note that nonnegative matrix factorization has also been applied to problems in biology,

economics and chemometrics to model all sorts of processes, ranging from stimulation in the visual
cortex to the dynamics of marriage. In fact, a historical curiosity is that nonnegative rank was first
introduced in chemometrics, under the name of self-modeling curve resolution.

1.2 Systems of Polynomial Inequalities

The focus of this paper is:

Question. What is the complexity of computing the nonnegative rank?

A priori it is not even clear that there is an algorithm that runs in any finite amount of
time. But indeed, Cohen and Rothblum [5] observed that the decision question of whether or not
rank+(M) ≤ r can be equivalently formulated as a system of O(mn) polynomial inequalities with
mr + nr total variables variables: we can treat each entry in A and each entry in W as a variable,
and the constraint that this be a valid nonnegative matrix factorization is exactly that A and W
be nonnegative and that M = AW . The latter is a set of mn degree two constraints. It is easy to
see that this system of polynomial inequalities has a solution if and only if rank+(M) ≤ r.

Moreover, whether or not a system of polynomial inequalities has a solution is decidable. This
is a quite non-trivial statement. The first algorithm is due to Tarski [16], and there have since
been a long line of improvements to this decision procedure. The best known algorithm is due to
Renegar [13] and the running time of finding a solution to a system of p polynomial inequalities
with k variables and maximum degree D is roughly(

Dp
)O(k)

So (appealing to decision procedures for a system of polynomial inequalities) there is an algorithm
for computing the nonnegative rank of a matrix that runs in a finite amount of time. Note that if
the target nonnegative rank r is small (say, three), this algorithm still runs in time exponential in
m and n. And the question of whether or not there is a faster algorithm (in particular, one which
runs in polynomial time for any constant r) was still open. Vavasis proved that nonnegative rank is
NP-hard to compute [17], but this only rules out an exact algorithm that runs in time polynomial
in n, m and r (if P 6= NP ).

The crucial observation that the reader should keep in mind throughout this paper is that
the main bottleneck in finding a solution to a system of polynomial inequalities is the number
of variables. Renegar’s algorithm [13] runs in time polynomial in the number of polynomials (p)
and the maximum degree (D), but runs in time exponential in the number of variables (k). In a
technical sense, the number of variables plays an analogous role to the VC-dimension in learning
theory. (This connection can be made explicit by drawing an analogy between the Milnor-Thom
and Warren Bounds and the Sauer-Shelah Lemma).

Cohen and Rothblum [5] give a reduction from nonnegative rank to finding a solution to a
system of polynomial inequalities that has mr + nr variables and a natural goal is to try to use
fewer variables in this reduction. Arora et al [1]2 do exactly this and give a reduction to a system
with only f(r) = 2r22r variables. This yields an exact algorithm for deciding if rank+(M) ≤ r
that runs in time (

nm
)2r22r
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which is doubly exponential in r, but runs in polynomial time algorithm for any fixed r. Furthermore
Arora et al [1] demonstrate that an exact algorithm for deciding if rank+(M) ≤ r that runs in
time (nm)o(r) would yield a sub-exponential time algorithm for 3-SAT. In summary, there is an
exact algorithm for deciding if rank+(M) ≤ r that runs in polynomial time for any r = O(1), and
any algorithm must depend (at least) exponentially on r. However, the algorithm in [1] runs in
time doubly exponential in r, and perhaps we could still hope for an algorithm that runs in time
singly-exponential in r. Here, we give such an algorithm and we do this by reducing the number of
variables exponentially from 2r22r to 2r2.

And perhaps the main message in this paper is that systems of polynomial inequalities with
even just a small number of variables can be remarkably expressive! We believe that this theme
may find other applications: Perhaps there are other problems for which one would like to design
an algorithm based on solving some appropriately chosen system of polynomial inequalities. Then
in this case, reducing the number of variables can drastically improve the running time of an
algorithm. Indeed, maybe this complexity measure deserves to be studied in its own right:

Meta Question. Given a decision problem, how many variables are needed to encode its answer
as a system of polynomial inequalities?

In particular, we want that the decision problem is a YES instance if and only if the corresponding
system of polynomial inequalities has a solution. We note that this question probably makes the
most sense and is the most promising in the context of geometric problems. (Indeed, nonnegative
rank can be thought of in a purely geometric language and this is the view that will be most useful
in our paper).

1.3 Our Results

We now state our main results: Let M be a m × n nonnegative matrix and let L denote the
maximum bit complexity of any coefficient in M . We prove

Theorem. There is a poly(n,m,L)(r4r+1mn)cr
2

time algorithm for deciding if the nonnegative
rank of M is at most r. Additionally, given δ > 0 (and if rank+(M) ≤ r), the algorithm runs
in time poly(n,m,L, log 1

δ )(r4r+1mn)cr
2

returns factors Ã and W̃ that are entry-wise close (within
an additive δ) to A and W (respectively) that are a nonnegative matrix factorization of M of
inner-dimension at most r. Furthermore the entries of Ã and W̃ have rational coordinates with
numerators and denominators bounded in bit length by O(L(r4r+1mn)cr

2
+ log 1

δ ).

This is the first algorithm that runs in singly-exponential time as a function of r, and in fact
is an exponential improvement over the previously best known algorithm due to Arora et al [1].
Moreover, notice that the algorithm in [1] is faster than the one in [5] only if r = O(log n) whereas
our algorithm is in fact faster for any r = o(n). Our algorithm is nearly optimal (under the
Exponential Time Hypothesis), since an exact algorithm that runs in time (nm)o(r) would yield a
sub-exponential time algorithm for 3-SAT [1].

Our approach is based on two steps. First, we establish a ”normal form” for nonnegative matrix
factorization. We show that any nonnegative matrix factorization M = AW of inner-dimension r
can be placed in a normal form (crucially, without changing the inner-dimension) so that a small
subset of entries of A and W uniquely determine all of the remaining entries. More precisely, there
are functions F and G (whose behavior only depends on an r × r submatrix of A and on an r × r

2We remark that the present author is the last author on the paper [1]. However, the proofs that we present here
will be self-contained.
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submatrix of W respectively) such that F maps each column of M to the corresponding column of
W and G maps each row of M to the corresponding row of A.

These functions F and G can be quite complicated when A or W do not have full column or row
rank respectively. In the case that both A and W have full column and row rank, these functions
are just linear transformations (see [1]). The difficulty is that when, say, A is rank deficient there
are cases in which we need exponential (in r) many linear transformations T1, T2, ...Tq so that the
output of F is always the output of one of these linear transformations applied to a column of M .
This is precisely the reason that the previous algorithm [1] ran in time doubly exponential in r –
the number of variables is dominated by the number of linear transformations that we need, and
in some cases we really do need exponentially many linear transformations to define the function
F . Our approach to circumvent this problem is to exploit algebraic dependence among these linear
transformations. In particular, our normal form allows us to show that the entries in these linear
transformations can be defined as (ratios of) polynomial functions of a much smaller number of
shared variables. This is an immediate corollary of our normal form and a simple application
of Cramer’s Rule. Hence we can reduce the number of variables (in the system of polynomial
inequalities) from exponential in r to quadratic in r.

We also consider another basic question about the nonnegative rank of a matrix:

Question. Can the nonnegative rank of a matrix M be certified by a small submatrix?

Indeed – in the case of the rank – a matrix M has rank at least r if and only if there is an
r × r submatrix of M that has rank r. This property plays a crucial role in many applications
[8] and it is natural to wonder if the nonnegative rank admits any similar characterization. As
another motivation, often we are only given a subset of the entries of the matrix M (for example,
in the Netflix problem) and we would like to use these entries to infer properties about M . Yet,
the nonnegative rank behaves quite differently than the rank in this regard.

Theorem. For any r ∈ N, there is a 3rn× 3rn nonnegative matrix which has nonnegative rank at
least 4r and yet for any < n rows, the corresponding submatrix has nonnegative rank at most 3r.

So even the submatrices consisting of a constant fraction of the rows in M do not determine the
nonnegative rank of M even within a constant factor. This result, too, can be thought of in the
language of systems of polynomial inequalities: The basic principle at play is that even though
the nonnegative rank can be equivalently characterized by a system of polynomial inequalities with
only 2r2 variables, there are systems of polynomial inequalities that are together infeasible and
yet any strict subset of the constraints is feasible. This is in stark contrast to the case of linear
inequalities, for which, if the system is infeasible (and is in dimension d) there is a subset of just d
linear inequalities that is infeasible (i.e. there is a size d obstruction) [11].

2 Computing the Nonnegative Rank

2.1 Stability (A Normal Form)

Throughout this paper, let M denote an entry-wise nonnegative matrix of dimension m × n. We
will also let Mi denote the ith column of M and M j denote the jth row. Given a subset U ⊂ [n],
we will let MU denote the submatrix consisting of columns of M from the set U (and similarly MV

is a submatrix of rows of M).

Definition 2.1. rank+(M) is the smallest r such that M can be written as

M = AW

4



where A and W are nonnegative and have dimension m× r and r × n respectively.

Additionally, we will call M = AW a nonnegative matrix factorization of inner-dimension r.

Definition 2.2.
aff(A) =

{∑
i

αiAi

∣∣∣∀iαi ≥ 0
}

(aff(A) is the affine hull of columns in A).
Note: Given A, there is a nonnegative matrix W such that M = AW if and only if each column

Mi of M is contained in aff(A).

Definition 2.3. Given A and a vector v ∈ Rm (recall A is dimension m× r), we will call a subset
S of columns of A admissible if

v ∈ aff(AS).

We will use this notion to place a stronger requirement on any nonnegative matrix factorization
of M It will not be immediately clear, but as we will be able to add this requirement without loss
of generality.

Throughout this paper, we will make use of the lexicographic ordering on subsets of columns
of A. The standard lexicographic ordering is often restricted to comparing to subsets of the same
size, but here we will want an ordering on all subsets. We will simply impose that if |S| < |T |, S
is before T in the lexicographic ordering.

Let M = AW be a nonnegative matrix factorization.

Definition 2.4. For each column Mi, let Si be the lexicographically first admissible subset (of
columns of A) for Mi. Similarly, for each row M j , let Tj be the lexicographically first admissible
subset (of rows of W ) for M j . We call M = AW stable if:

1. for each i, Wi is supported in Si

2. and for each j, Aj is supported in Tj .

Next we show that a nonnegative matrix factorization of inner-dimension r can always be made
stable (while preserving nonnegativity and the inner-dimension):

Lemma 2.5. If M = AW is a nonnegative matrix factorization of inner-dimension r, then there
is a Ã and W̃ such that:

1. M = ÃW̃ , Ã and W̃ are nonnegative and have inner-dimension r and

2. M = ÃW̃ is stable.

Proof: The natural approach to prove this lemma is, if M = AW is not stable, update columns
in W or rows in A. The only subtle point is that if we update A and W at the same time to
Ã and W̃ , we may not have M = ÃW̃ . So the approach is to update only one of these two at a
time, to preserve that M = AW̃ or M = ÃW and then update the other. Suppose we update W
to W̃ first. Then for a row in M j , the lexicographically first subset of admissible rows (for M j) is
defined with respect to W̃ and not W - i.e. a subset V of rows is admissible if M j ∈ aff(W̃ V ).

Throughout our updating process, we will make use of a potential function to ensure that this
process terminates. To each row of A and to each column of W , we will associate a subset of [r]
corresponding to the support of the vector. Whenever we update either a row of A or a column of
W , the support will only ever move earlier according to the lexicographic ordering.

5



So, now we can define our updating procedure. We start with M = AW , and each update
phase will alternately be an A-updating phase or a W -updating phase. In a W -updating phase, for
each column Mi let Si be the lexicographically first subset of columns of A that is admissible for
Mi. If Si is lexicographically (strictly) earlier than the support of Wi, we find a vector W̃i that is
nonnegative, and supported in Si and satisfies Mi = AW̃i. If not, we set W̃i = Wi. In either case,
we have that Mi = AW̃i and hence M = AW̃ . At the end of this phase, we overwrite W with W̃ .

The A-updating phase is defined analogously, and throughout this procedure we maintain the
invariant that M = AW and A and W are nonnegative and have inner-dimension r. Note that the
support of columns of W and rows of A are monotonically decreasing according to the lexicograph-
ical ordering, and if either A or W are updated (any row of A or any column of W ), one support
must have strictly decreased according to the lexicographic ordering so this updating procedure
terminates with M = ÃW̃ that are nonnegative, have inner-dimension r and are also stable. �

2.2 Few Entries Determine A and W

Throughout this section, let M = AW be a stable nonnegative matrix factorization.
The goal in this section is to demonstrate that (given M), only a few entries in A and W are

needed to determine the remaining entries. This is only a property of stable factorizations, and is
not guaranteed to hold for general factorizations.

Let rank(A) = s and let U ⊂ [m] be a set of s linearly independent rows in A. Furthermore, let
S1, S2, ...Sp ⊂ [r] be the (full) list of sets of s linearly independent columns of A (in lexicographic
order). Note that p ≤

(
r
s

)
≤ 2r.

Definition 2.6. The ensemble of A (at U) is a list of linear transformations: B1, B2...Bp where
for each i, Bi is an r × s matrix that is zero on all rows outside the set Si and restricted to rows
in Si is (AUSi

)−1.

Note that each submatrix (AUSi
)−1 is indeed invertible: rank(A) = s and U is a set of s linearly

independent rows so a set Si of columns of A is linearly independent if and only if these vectors
restricted to U are also linearly independent.

The main goal in this section is to show:

Lemma 2.7. For each column Mi, among the set of vectors

S =
{
B1M

U
i , B2M

U
i , ...BpM

U
i

}
Wi is the unique vector with lexicographically minimal support among all nonnegative vectors in
the set S.

We will break this lemma up into two parts:

Lemma 2.8. Wi is contained in the set S.

Proof: Let Ri be the support of Wi. Then Ri must correspond to a linearly independent set of
columns of A – otherwise we could find a nonnegative W̃i whose support is a strict subset of Ri
such that AW̃i = Mi, but this would violate the condition of stability.

Because the sets of linearly independent columns of A are a matroid, there is a set Si′ of s
linearly independent columns of A for which Ri ⊂ Si′ . Hence

Bi′M
U
i = Bi′(AWi)

U = Bi′A
UWi = v.
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However, Bi′ is zero on rows outside the set Si′ and restricting Bi′A
U to rows and columns in Si′

is the s× s identity matrix. Since the support of Wi is contained in Si′ , we have Wi = v. �

We note a corollary of this lemma that will be useful later:

Corollary 2.9. The support of Wi corresponds to a linearly independent set of columns in A.

Next, we prove the second part needed for the main result in this section:

Lemma 2.10. For each vector Bi′M
U
i , ABi′M

U
i = Mi.

Proof: Let v = ABi′M
U
i . We prove this lemma in two parts: first we prove that vU = MU

i and
then we prove the full lemma from this. Since Bi′ is zero on rows outside the set Si′ , we have

ABi′ = ASi′B
Si′
i′ = ASi′ (A

U
Si′

)−1.

Hence vU = AUSi′
(AUSi′

)−1MU
i = MU

i .

Consider a j outside the set U . By the choice of U , the row Aj can be expressed as a linear
combination of rows in A in the set U :

Aj =
∑
j′∈U

αj,j′A
j′

Since AWi = Mi, we have M j
i = AjWi =

∑
j′∈U αj,j′A

j′Wi =
∑

j′∈U αj,j′M
j′

i and hence:

vj = AjBi′M
U
i =

∑
j′∈U

αj,j′A
j′Bi′M

U
i

=
∑
j′∈U

αj,j′v
j′ =

∑
j′∈U

αj,j′M
j′

i = M j
i

�

Now we can prove the main lemma in this section:

Proof: We have already shown (Lemma 2.8) that Wi occurs in the set S. Consider any other
nonnegative vector Bi′M

U
i = v. We need to show that the support of v is lexicographically later

than the support of Wi.
First, we claim that if v 6= Wi then the support of Wi is not the same as the support of v.

Suppose not - i.e. v 6= Wi and yet the support of v and of Wi are identical (let this set be R).
Indeed R must correspond to a linearly independent set of columns of A (Corollary 2.9). Hence we
cannot have A(v −Wi) = ~0 (using Lemma 2.10) with v −Wi 6= ~0 and support of v −Wi contained
in R.

So the support of Wi and v are not identical and one of these must be lexicographically earlier.
Suppose (for contradiction) that the support of v is earlier. We know (Lemma 2.8) that the support
of Wi is an admissible set of columns of A for Mi. This contradicts stability (because we could
update Wi to v), and so we can conclude that the support of Wi is lexicographically earlier. �

Let rank(W ) = t and let V be a set of t linearly independent columns of W . Then we can
define an ensemble C1, C2, ...Cq for W at V analogously as we did for A. Similarly, we have q ≤

(
r
t

)
and for all j, among the set

T =
{
M j
V C1,M

j
V C2, ...M

j
V Cq

}
Aj is the vector with lexicographically minimal support among all nonnegative vectors in T (this
follows from the above proof by interchanging the roles of A and W ).
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2.3 A Semi-Algebraic Set, Take 1

Our goal is to encode the question of whether or not rank+(M) ≤ r as a non-emptiness problem for
a semi-algebraic set with a small number of variables. Our first attempt will be to choose the entries
in B1, B2, ...Bp and C1, C2, ...Cq as the variables. Our first goal is to construct a set of polynomial
constraints (using the variables) so that setting B1, B2, ...Bp and C1, C2, ...Cq to the ensembles of a
stable factorization M = AW is a valid solution. We then show (conversely) that any valid setting
of the variables in fact yields a nonnegative matrix factorization with inner-dimension r.

Suppose we are given the sets U and V , and the ensembles B1, B2, ...Bp and C1, C2, ...Cq.

Definition 2.11. Let first(S) applied to a collection of vectors output the vector with lexico-
graphically minimal support among all nonnegative vectors in S.

This function can output FAIL if there is no nonnegative vector in S.

Claim 2.12. Set:
Wi ← first({B1M

U
i , B2M

U
i , ...BpM

U
i }) (1)

Aj ← first({M j
V C1,M

j
V C2, ...M

j
V Cq}) (2)

There is an explicit Boolean function P that determines if for all i and j: 1. Wi ≥ ~0 2. Aj ≥ ~0
and 3. AjWi = M j

i . Furthermore, P is a function of sign constraints on the polynomials:

1. Bi′M
U
i (for all i, i′)

2. M j
V Cj′ (for all j, j′) and

3. M j
V Cj′Bi′M

U
i −M

j
i (for all i, i′, j, j′).

This claim is immediate, but we include a description of the Boolean function P for completeness

Proof: The Boolean function P will be an AND over subfunctions Pi,j defined for each i and j:

Pi,j will compute the index i′ and j′ so that Bi′M
U
i and M j

V Cj′ are lexicographically earliest among

nonnegative vectors in the sets S = {B1M
U
i , B2M

U
i , ...BpM

U
i } and T = {M j

V C1,M
j
V C2, ...M

j
V Cq}

respectively. This can be computed from only the signs of entries in the vectors in these sets.
Then Pi,j will check that for this i′ and j′, that M j

V Cj′Bi′M
U
i = M j

i . If there is no nonnegative
vector in either S or T, or there are two or more nonnegative vectors tied for lexicographically
earliest support (among only nonnegative vectors) then Pi,j will output FAIL. �

Lemma 2.13. P will output PASS when {Bi′}i′ and {Cj′}j′ are chosen as the ensembles of a
stable factorization M = AW .

Proof: This follows immediately from Lemma 2.7. However, note that Lemma 2.7 establishes
uniqueness (i.e. the vector with lexicographically earliest support among all nonnegative vectors
is unique) and hence each Pi,j will not prematurely output FAIL for these choices of {Bi′}i′ and
{Cj′}j′ . �

Next, we prove the converse direction:

Lemma 2.14. If P outputs PASS, then A and W (as defined in 1 and 2) are a nonnegative matrix
factorization of inner-dimension r.
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Note that this factorization is not necessarily stable.

Proof: We have that Wi and Aj are nonnegative (otherwise P would have output FAIL) and P
explicitly checks that AjWi = M j

i and hence M = AW . Note that Bi′ and Cj′ are r × s and t× r
dimensional, so M = AW does indeed have inner-dimension r. �

Combining Lemma 2.13 and Lemma 2.14, we have

Theorem 2.15. P outputs PASS for some choice of s, t, U, V, p and q and some setting of the
variables B1, B2, ...Bp and C1, C2, ..Cq if and only if rank+(M) ≤ r.

This leads to a natural approach for computing the nonnegative rank:

1. Guess s = rank(A), t = rank(W ) (for some stable factorization M = AW)

2. Guess U and V

3. Guess p ≤
(
r
s

)
and q ≤

(
r
t

)
4. Define a semi-algebraic set where the entries of B1, B2, ...Bp and C1, C2, ...Cq are variables

(using the Boolean function P)
5. Run an algorithm for deciding if the semi-algebraic set is non-empty (e.g. [13])

The running-time of the best algorithms for deciding if a semi-algebraic set is non-empty run
in time (

# polynomials×D
)O(k)

where D is the maximum degree and k is the number of variables. This bound is close to (optimal)
bounds on the number of sign configurations of a set of polynomials with maximum degree D and
k variables. These bounds are due to a number of authors, but are often referred to as Milnor-
Warren bounds. Indeed the main bottleneck in algorithms for determining non-emptiness for a
semi-algebraic set is just the time needed to enumerate all of these sign configurations (and make
an oracle call to the Boolean function for each one).

In the approach above, there are r(p + q) + mnpq polynomials of degree at most two in the
variables. r(p + q) constraints are due to nonnegativity and mnpq constraints are used to ensure
that M = AW . However, the drawback of the above approach is that the number of variables is
large.

There are rsp + rtq variables, and indeed p and q can be exponential in r. For example, if we
take the columns of A to be vertices of the cross-polytope (in r/2 dimensions), then we do in fact
need exponentially many simplices (one corresponding to each linear transformation Bi′) to cover
the convex hull of the cross-polytope just by a facet-counting argument.

Hence, the running time of the above algorithm will be doubly exponential in r. However, we
will be able to reduce the number of variables in this semi-algebraic set to polynomial in r (and
we emphasize that this is possible only for the semi-algebraic set we defined here, not for the semi-
algebraic set define in Arora et al [1]). The definition of stability is somewhat delicate, but this is
what allows us to get an exponential reduction in the number of variables.

2.4 A Semi-Algebraic Set, Take 2

Here we reduce the number of variables in the semi-algebraic set exponentially by exploiting
algebraic dependence among the matrices in the ensembles.

Consider the ensemble: B1, B2, ...Bp where for each i, there is a linearly independent set Si of
s columns of A and (Bi)

Si = (AUSi
)−1. Recall Cramer’s Rule:
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Lemma 2.16 (Cramer). Let R be an s × s invertible matrix. Then (R−1)ji = det(R−i−j)/det(R)

where R−i−j is the matrix R with the ith row and the jth column removed.

Hence we can instead use a variable for each entry in AU and each entry in WV . Then the sign of
(AUSi′

)−1MU
i can be recovered as a Boolean function of signs of degree at most s2 polynomials in

the entries of AU . (Additionally, we can check whether or not the polynomial det(AUSi′
) is non-zero

to determine if Si′ is linearly independent).
Similarly a constraint of the form∑

`∈Tj′∩Si′

(
M j
V (W

Tj′
V )−1

)
`

(
(AUSi′

)−1MU
i

)`
= M j

i

can be written as a degree at most 2r2 polynomial constraint in the entries of AU and WV by

clearing the denominators by det(W
Tj′
V ) and det(AUSi′

).

This new semi-algebraic set has rs+ rt variables and has r(p+ q) + (p+ q) +mnpq polynomials
of degree at most 2r2 (where the additional polynomials are the denominators in Cramer’s Rule).

Note that Lemma 2.14 still implies that if P outputs PASS, rank+(M) ≤ r and a nonnegative
matrix factorization of inner-dimension r can be computed from the settings of the variables for
the valid point in the semi-algebraic set. And Lemma 2.7 still implies that this semi-algebraic set is
non-empty if rank+(M) ≤ r (since moreover Lemma 2.5 implies that there is a stable factorization).

We can now use this reduction – and known algorithms for solving systems of polynomial
inequalities (as described in Section 1.2) to give a nearly optimal algorithm for deciding if M has
nonnegative rank at most r. Additionally, if rank+(M) ≤ r we can also compute the corresponding
nonnegative factors A and W to within an additive δ (at the expense of an extra factor log 1

δ in
the running time). In [13], Renegar gave the first algorithm for deciding if a system of polynomial
inequalities has a solution that runs in time exponential in the number of variables. We note that
in [14], Renegar extended this algorithm to also return a δ-approximate solution to an algebraic
formulae, and this is the algorithm that we will use to actually compute the factors A and W . We
also note that these algorithms only assume access to an oracle to the Boolean function P, and our
function P is computable in polynomial time.

Let L denote the maximum bit complexity of any coefficient in M . Then applying the algorithms
in [13] and [14] with our reduction we obtain:

Theorem. There is a poly(n,m,L)(r4r+1mn)cr
2

time algorithm for deciding if the nonnegative
rank of M is at most r. Additionally, given δ > 0 (and if rank+(M) ≤ r), the algorithm runs
in time poly(n,m,L, log 1

δ )(r4r+1mn)cr
2

returns factors Ã and W̃ that are entry-wise close (within
an additive δ) to A and W (respectively) that are a nonnegative matrix factorization of M of
inner-dimension at most r. Furthermore the entries of Ã and W̃ have rational coordinates with
numerators and denominators bounded in bit length by O(L(r4r+1mn)cr

2
+ log 1

δ ).

Alternatively, in the Blum-Shub-Smale (BSS) Model [4] one can instead use the algorithm in [13]
to decide if rank+(M) ≤ r and the running time of this algorithm is poly(n,m) + (r4r+1mn)cr

2
.

We emphasize that the above algorithm is based on answering a purely algebraic question: How
many variables are needed (in a system of polynomial inequalities) to encode the question does
M have nonnegative rank at most r? We obtain an exponential improvement on the number of
variables, over the results in [1], and this coupled with algorithms for computing a solution to a
system of polynomial inequalities, has an immediate algorithmic implication. The algorithm we
obtain here is in fact nearly optimal under the Exponential Time Hypothesis (ETH) of Impagliazzo
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and Paturi [9], since Arora et al [1] showed that an algorithm that decides if rank+(M) ≤ r in
(nm)o(r) time would imply a sub-exponential time algorithm for 3-SAT. It is somewhat surprising
that an algorithm for computing the nonnegative rank can be designed based on reasoning about
systems of polynomial inequalities, and no algorithm (under plausible complexity assumptions) can
do much better.

3 Fragile Instances of Nonnegative Rank

An important property of the rank of a matrix is that if a given matrix M has rank r, there is
an r × r submatrix of M that also has rank r. Hence, rank admits a small certificate that serves
as proof that a matrix does indeed have rank at least r and this fact plays a crucial role in many
applications.

Here, we give highly fragile instances of nonnegative rank: We give a (nonnegative) matrix
M of dimension n × n with rank+(M) = 4r, yet for any submatrix N of at most n

3r columns
of M , rank+(M) ≤ 3r. To put this result in context, consider a system of linear inequalities in
d dimensions that is infeasible. A basic result in discrete geometry [11] is that there is a subset
of at most d + 1 of the linear inequalities that is infeasible. In Section 2.4, we gave a system of
polynomial inequalities in 2r2 dimensions that has a solution if and only if rank+(M) ≤ r. One
might hope that this system is infeasible if and only if there is a small subset of the inequalities
that alone is infeasible, and that this would yield a subset of (say) the columns of M that ”proves”
that rank+(M) > r. Yet this is not the case and systems of polynomial inequalities do not have the
”Helly Property” [11] (indeed their individual constraints do not necessarily correspond to convex
regions).

To give fragile instances of nonnegative rank, we will make use of a series of reductions of
Vavasis [17] and a particular gadget in Arora et al [1]. In fact, we make use of a crucial property of
the reduction in [17] from nonnegative rank to the intermediate simplex problem – in a sense, that
rows of M are mapped to points and columns of M are mapped to constraints when reducing to
the intermediate simplex problem. We will only be interested in the intermediate simplex problem
in two dimensions:

Definition 3.1. An instance of the intermediate polygon problem is a polygon P ⊂ R2 and a set
S ⊂ P of |S| = n points. The goal is to find a triangle T with S ⊂ T ⊂ P in which case, we call
this a YES instance and otherwise we call it a NO instance.

Our goal is to construct an explicit instance of this problem that is NO instance and yet
restricting to any set S′ ⊂ S of at most n

3 points is a YES instance and we accomplish this latter
task by noticing that a particular gadget used in [1] (with a slight modification) has exactly this
property. We will then be able to use this instance of the intermediate simplex problem as a gadget
to construct fragile instances of nonnegative rank.

We will begin with some simple geometric lemmas and definitions.

Definition 3.2. Let Cd = {(x, y)|x2+y2 ≤ d}, and we will write C for C1. Let o denote the origin.

Definition 3.3. Let E be the set of all equilateral triangles T ⊂ C where the vertices of T are on
the boundary of C.

In our arguments, we will also make use of the (largest) inner circle c that is contained in all
triangles in E. Equivalently, this circle is the intersection of all triangles in E:

Definition 3.4. Let c = ∩T∈ET = Cd where d is defined as: (for an arbitrary T ∈ E), d is the
minimum distance from the boundary of T to the origin.
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Our instance of the intermediate polygon problem will be an intersection of n triangles T each
in the set E. The common intersection of these triangles will contain c, and next we prove that
in fact any triangle (contained in C) that contains c must in fact be equilateral. This will help us
reason about what sorts of triangles can make our instance a YES instance. The following two
lemmas are proved in [1], but we include the proofs here for completeness.

Lemma 3.5. [1] Any arbitrary triangle T with c ⊂ T ⊂ C must be in the set E.

Proof: Consider a triangle T with c ⊂ T ⊂ C. Then let e1, e2 and e3 be the three edges of T and
let θ1, θ2 and θ3 be the viewing angle from the origin o, namely θi is the angle formed by 〈ai, o, bi
where ai and bi are the endpoints of ei.

Since o ∈ T , we have that θ1+θ2+θ3 = 2π. Consider an edge ei. We will prove, by contradiction,
that ei ∩ c must contain exactly one point (i.e. ei must be tangent to the circle c). Suppose not -
since c ⊂ T , we must have that ei ∩ c =. Then let ` be the line parallel to ei that is tangent to c.
Let e′i be the intersection of ` with C. The viewing angle θ′i of e′i is strictly larger than θi, yet the
intersection of any line ` tangent to c with C has viewing angle exactly 2π

3 and hence we conclude
that θ1 + θ2 + θ3 < 2π, which is a contradiction.

So each ei is tangent to c and in fact we can use a similar argument to conclude that each ei
must be exactly the intersection of a line ` tangent to c with C (otherwise, again we would have
that θ1 + θ2 + θ3 < 2π).

Hence, we conclude that each edge of T has the same length, and each endpoint is on the
boundary of C so T ∈ E. �

Throughout the remainder of this section, consider any finite set T1, T2, ...Tn ∈ E of equilateral
triangles, and let S be the vertices of ∩ni=1Ti.

Lemma 3.6. [1] Let T be a triangle with S ⊂ T ⊂ C. Then T ∈ {T1, T2, ...Tn}.

Proof: Clearly we have that conv(S) ⊂ T since T is convex, and we also have that c ⊂ conv(S) =
∩ni=1Ti. So by Lemma 3.5, we can conclude that T must be in E. Suppose that T /∈ {T1, T2, ...Tn}.

Let {p1, p2, p3} = T ∩ c (i.e. these are the three points on the boundary of T closest to the
origin). Similarly, for each Ti let {pi1, pi2, pi3} = Ti ∩ c. Then {p1, p2, p3} is a rotation (by < 2π

3 ) of
{pi1, pi2, pi3} and hence {p1, p2, p3} are each strictly in the interior of Ti.

Hence, {p1, p2, p3} are on the boundary of conv(S)∩ T but not on the boundary of conv(S), so
T cannot contain conv(S). �

Lemma 3.7. For each edge ej of a triangle Ti, |ej ∩ S| = 2 and furthermore for each s ∈ S, s
intersects the edges of exactly two (distinct) triangles in {T1, T2, ...Tn}.

Corollary 3.8. |S| = 3n

Proof: Each edge of conv(S) is by definition a subsegment of some unique edge ej of some triangle
in {T1, T2, ...Tn}. All we need to show is that to each edge ej (of some triangle in {T1, T2, ...Tn})
we can find an edge of conv(S) which is a subsegment of ej :

Let pj be the closest point on ej to the origin. As we argued in Lemma 3.6, for all other
triangles, pj is strictly in the interior. So the ray from the origin to pj hits the segment ej first
(out of all edges of all triangles in E). Hence pj is on the boundary of conv(S), but only one edge
(namely ej) contains pj so the edge of conv(S) that contains pj is a subsegment of ej , as desired.
�

As we noted, the gadget that we use here is a slight modification of the one in [1] – and the
modification that we need involves rescaling:
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Definition 3.9. For each triangle T ∈ E, define T (1−ε) as the scaling down of T such that the
vertices of T (1−ε) are on the boundary of C1−ε.

This rescaling is precisely what ensures that the original instance is a NO instance, but as we
will see, if ε is sufficiently small then every small subset of S is a YES instance.

Definition 3.10. Let Si be the vertices of conv(S) ∩ T (1−ε)
i .

Claim 3.11. If ε is sufficiently small, then Si = S − Ti ∩ S.

Proof: Recall that conv(S) = ∩ni=1Ti. Consider an edge ej of Ti. Using Lemma 3.7, |ej∩S| = 2, and

we can choose ε small enough such that the region strictly between e
(1−ε)
j (namely, the corresponding

edge in T
(1−ε)
i ) and ej does not contain any points in S, in which case Si = S − Ti ∩ S. �

So consider the following instance of the intermediate polygon problem:

• Let P = conv(vertices in T
(1−ε)
i )

• and let S = vertices of ∩ni=1 Ti.

Claim 3.12. (P, S) is a NO instance.

Proof: P ⊂ C1−ε by the definition of T
(1−ε)
i , and using Lemma 3.5, any triangle T contained in C

that contains S must be in the set E; and since any triangle in E has its vertices on the boundary
of C, we conclude that T is not contained in C1−ε and hence (P, S) is indeed unsatisfiable. �

Lemma 3.13. For any S′ ⊂ S with |S′| < n, (P, S′) is a YES instance.

Proof: Using Lemma 3.7, each s ∈ S intersects exactly two edges of triangles in {T1, T2, ...Tn}, so
if |S′| < n, there must be a triangle Ti for which Ti ∩ S′ =.

Consider T
(1−ε)
i : Using Claim 3.11, we conclude that T

(1−ε)
i ∩ S′ = S′ − Ti ∩ S′ = S′. And we

have that T
(1−ε)
i ⊂ C1−ε, so (P, S′) is indeed satisfiable. �

We use the following lemma from Vavasis:

Lemma 3.14. [17] Let rank(M) = r, and let M = UV where U and V have r columns and rows
respectively. Then M has rank+(M) = r if and only if there is an invertible r × r matrix Q such
that UQ−1 and QV are both nonnegative.

We could use the reduction in [17] from nonnegative rank to the intermediate simplex problem,
but there is a technical issue that arises. Here, we give a slight modification of this reduction that
avoids this issue:

Consider the plane F = {(x, y, z)|x + y + z = 1}. Map P to this plane so that P is contained
in the nonnegative orthant (scale down P , if need be), and let the nonnegative hull of vectors in P
and the origin be denoted by the cone C.

Let C = {~v|Av ≥ 0} and set the rows of U to be vertices of F ∩ C and let V = AT . Note that
the vertices of F ∩ C are just the three-dimensional coordinates corresponding to the points in S.
Note that UV is a nonnegative matrix, since each vertex of F ∩ C is contained in the cone C. This
reduction is essentially the one in [17] but with a minor change to avoid a certain technical issue
that would arise otherwise.

Lemma 3.15. There is an invertible r× r matrix Q such that UQ−1 and QV are both nonnegative
if and only if (P, S) is a YES instance.
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Proof: Suppose (P, S) is a YES instance. Let the rows of Q be the three-dimensional coordinates
of the vertices of the triangle T (i.e. these are the vectors on the plane F ). These points are in the
cone C, so QV is nonnegative. Furthermore, S ⊂ T so each row of U is in the convex hull of rows
of Q and UQ−1 is nonnegative.

Conversely, consider an invertible Q for which UQ−1 and QV are both nonnegative. For each
row in Q, let pi be the intersection of the ray through the origin and the row in Q with F . pi ∈ C,
so the associated two-dimensional point is in P . Furthermore, each row of U is in the nonnegative
hull of {p1, p2, p3} and each pi and each row in U has nonnegative entries and the sum of the entries
is one. Hence each pi and each row in U has unit `1 norm. So each row of U is in the convex hull
of {p1, p2, p3}, and so the associated two-dimensional triangle contains S. �

Note that in this reduction, rows of M = UV are mapped one-to-one to points in S and columns
of M are mapped one-to-one to facets in P . Hence, (U, V ) is a NO instance, but any set of < n
rows of U is a YES instance.

So M = UV is a nonnegative matrix of dimension 3n× 3n with nonnegative rank ≥ 4 and yet
any submatrix of < n rows has nonnegative rank ≤ 3. We can use this matrix M to construct a
3rn× 3rn matrix which is block diagonal, and has M along the diagonal. Then:

Theorem. For any r ∈ N, there is a 3rn× 3rn nonnegative matrix which has nonnegative rank at
least 4r and yet for any < n rows, the corresponding submatrix has nonnegative rank at most 3r.

An interesting open question is to characterize the family of matrices for which nonnegative rank
can be certified by a small submatrix, since in many applications is is quite natural to assume that
the input matrices satisfy these conditions.
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