
Reductions to the set of random strings:
the resource-bounded case

Eric Allender1, Harry Buhrman2, Luke Friedman1, and Bruno Loff3

1 Department of Computer Science, Rutgers University, Piscataway, NJ 08855, USA
{allender/lbfried }@cs.rutgers.edu

2 CWI and University of Amsterdambuhrman@cwi.nl
3 CWI bruno.loff@gmail.com

Abstract. This paper is motivated by a conjecture [1, 4] that BPP can be charac-
terized in terms of polynomial-time nonadaptive reductions to the set of Kolmogorov-
random strings. In this paper we show that an approach laid out in [4] to settle
this conjecture cannot succeed without significant alteration, but that it does bear
fruit if we consider time-bounded Kolmogorov complexity instead.
We show that if a setA is reducible in polynomial time to the set of time-t-
bounded Kolmogorov-random strings (for all large enough time boundst), then
A is in P/poly, and that if in addition such a reduction exists for any universal
Turing machine one uses in the definition of Kolmogorov complexity, thenA is
in PSPACE.

1 Introduction

The roots of this investigation stretch back to the discovery that PSPACE⊆ PR and
NEXP ⊆ NPR, whereR is the set of Kolmogorov-random strings [3, 2]. Later, it was
shown that BPP⊆ PR

tt [7], where PAtt denotes the class of problems reducible toA via
polynomial-timenonadaptive(or truth-table) reductions.

There is evidence indicating that some of these inclusions are in some sense optimal.
The inclusions mentioned in the preceding paragraph hold for the two most-common
versions of Kolmogorov complexity (the plain complexityC and the prefix-free com-
plexityK), and they also hold no matter which universal Turing machine one uses when
defining the measuresK andC.

Let RKU denote the set of random strings according to the prefix-free measureK
given by the universal machineU :RKU = {x : KU (x) ≥ |x|}. Last year, it was shown
that the class of decidable sets that are polynomial-time truth-table reducible toRKU for

everyU is contained in PSPACE. That is, although P
RKU
tt contains arbitrarily complex

decidable sets, an extremely complex set can only be there because of characteristics of
RKU that are fragile with respect to the choice ofU .

This motivates the following definition:DTTR is the class of all decidable problems
that are polynomial-time truth-table reducible toRKU for every choice of universal
prefix-free Turing machineU . Thus it was proven that

BPP⊆ DTTR ⊆ PSPACE⊆ PRK . (1)

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 54 (2012)

So we naturally come upon the following.
Research question:DoesDTTR sit closer toBPP, or closer toPSPACE?
A conjecture by various authors [4, 1] is thatDTTR actually characterizes BPP

exactly. Part of the intuition is that a non-adaptive reduction cannot make use of queries
toRK larger thanO(log n) to solve a decidable problem. If indeed true we could use the
strings of length at mostO(log n) as advice and answer the larger queries with NO, to
show that these sets are in P/poly. The rest of the intuition is that the smaller strings can
only be used as a source for pseudo-randomness. If we are able to prove this conjecture,
then we can make use of the tools of Kolmogorov complexity to study various questions
about the class BPP. Because of the inclusions listed in (1) above, this now amounts to
understanding the relative power of Turing reductionsvs.truth-table reductions toRK .

In an attempt to tackle this question, it was conjectured in [4, 1] that theDTTR ⊆
PSPACE upper bound can be improved to PSPACE∩P/poly, and an approach was sug-
gested, based on the above mentioned intuition in connection with formal systems of
arithmetic. In this paper, we show that this approach must fail, or at least requires signif-
icant changes. Interestingly, we can also prove that this intuition — that the large queries
can be answered with NO —canbe used in the resource-bounded setting to show an
analogue of the P/poly inclusion. While demonstrating this discrepancy we show sev-
eral other ways in which reductions toRK andRKt are actually very different; in
particular, we construct a counter-intuitive example of a polynomial-time non-adaptive
reduction that distinguishesRK fromRKt , for any sufficiently large time-boundt.

To investigate the resource-bounded setting we define a classTTRT as a time-
bounded analog ofDTTR; informally,TTRT is the class of problems that are polynomial-
time truth-table reducible toRKt for every sufficiently fast-growing time-boundt, and
every “time-efficient” universal Turing machine used to defineKt. We prove that, for
all monotone nondecreasing computable functionsα(n) = ω(1),

BPP⊆ TTRT ⊆ PSPACE/α(n) ∩ P/poly.

Here, PSPACE/α(n) is a “slightly non-uniform” version of PSPACE. We believe that
this indicates thatTTRT is “closer” to BPP than it is to PSPACE.

It would be more appealing to avoid the advice function, and we are able to do
so, although this depends on a fine point in the definition of time-efficient prefix-free
Kolmogorov complexity. This point involves a subtle technical distinction, and will be
left for the appropriate section. To summarize:

– In Section 3 we prove thatTTRT ⊆ P/poly, by using the same basic idea of [4,
1]. We further show, however, that this approach will not work to proveDTTR ⊆
P/poly, and by reversing the logic connection of [4, 1], this will give us an indepen-
dence result in certain extensions of Peano arithmetic.

– Then in section 4 we prove thatTTRT ⊆ PSPACE/α(n), which is a non-trivial
adaptation of the techniques from [5]. In section 5 we show how to get the result
without the super-constant advice term.

In the final section we discuss prospects for future work.

2 Preliminaries

We assume the reader is familiar with basic complexity theory [6] and Kolmogorov
complexity [11]. We use≤p

T and PA when referring to polynomial-time Turing reduc-
tions, and≤p

tt and PAtt for polynomial-time truth-table (ornon-adaptive) reductions. For
a setA of strings,A≤n denotes the set of all strings of length at mostn in A.

We letKU denote Kolmogorov complexity with respect to prefix machineU , i.e.,
KU (x) = min{|p| : U(p) = x}. We useRKU to denote the set ofKU -randomstrings
{x|KU (x) ≥ |x|}. In this paper, a functiont : N → N is called a “time-bound” if it
is non-decreasing and time-constructible. We use the following time-bounded version
of Kolmogorov complexity: for a prefix machineU and a time-boundt, Kt

U (x) is the
length of the smallest stringp such thatU(p) outputsx and halts in fewer thant(|x|)
time steps. ThenRKt

U
is the set ofKt

U -randomstrings{x|Kt
U (x) ≥ |x|}. Let us define

what it means for a machine to be “universal” in the time-bounded setting:

Definition 2.1. A prefix machineU is a time-efficient universal prefix machine if there
exist constantsc andcM for each prefix machineM , such that

1. ∀x,KU (x) ≤ KM (x) + cM
2. ∀x,Kt

U (x) ≤ Kt′
M (x) + cM for all t > t′c

We will sometimes omitU in the notationKU , RKU ,K
t
U , RKt

U
, in which case we

meanU = U0, for some arbitrary choice of a time-efficient universal prefix machine
U0. Now we can formally define the time-bounded analogue ofDTTR:

Definition 2.2. TTRT is the class of languagesL such that there exists a time bound
t0 (depending onL) such that for all time-efficient universal prefix machinesU and
t ≥ t0, L ≤P

tt RKt
U

.

Corollary 12 from [7] says that, ift ≥ t0 = 222n

, then BPP≤p
tt RKt

U
, for any

time-efficient universalU . This implies:

Theorem 2.3 ([7]).BPP⊆ TTRT.

Proposition 2.4. For any machineM and t′(|x|) > 2|x|t(|x|), the queryx ∈ RKt
M

?
can be computed in timet′.

Proof. Simulate the machineM on every string of length less thanx for t(|x|) steps.
Because there are fewer than2|x| such strings, the bound follows. ut
Proposition 2.5. LetL ≤P

tt RKt
U

for some time-boundt. Then there exists a constant

k such that the languageL can be computed intL(n) = 2nk

t(nk) time.

Proof. LetM be a machine that computesL by running the polynomial-time truth-table
reduction fromL toRKt

U
, and computing by brute-force the answer to any queries from

the reduction. Using Proposition 2.4, we have that for large enoughk,M runs in at most
tL(n) = 2nk

t(nk) time, soL is decidable within this time-bound.

It is the ability to computeRKt for short strings that makes the time-bounded case
different from the ordinary case. This will be seen in proofs throughout the paper.

3 How and why to distinguishRK from RKt

At first glance, it seems reasonable to guess that a polynomial-time reduction would
have difficulty telling the difference between an oracle forRK and an oracle forRKt ,
for large enought. IndeedRK ⊆ RKt and in the limit fort→∞ they coincide.

One might even suspect that a polynomial-time reduction must behave the same way
with RKt andRK as oracle, already for modest time boundst. However, this intuition
is wrong. Here is an example for adaptive polynomial-time reductions.

Observation 3.1 There is a polynomial-time algorithm which, given oracle access to
RK and input1n, outputs aK-random string of lengthn. However, for any time-bound
t such thatt(n + 1) � 2nt(n), there is no polynomial-time algorithm which, given
oracle access toRKt and input1n, outputs aKt-random string of lengthn.

For the algorithm, see [8]; roughly, we start with a small random string and then use
Lemma 3.5 (below) to get a successively larger random string. But in the time-bounded
case in [9] it is shown that on input1n, no polynomial-time machineM can query (or
output) anyKt-random string of lengthn: in fact,M(1n) is the same for both oracles
RKt andR′ = R≤n−1

Kt . This is proven as follows: sinceR′ can be computed in time
t(n) (by Proposition 2.4), then any query of length≥ nmade byMR′

(1n) is described
by a pointer of lengthO(log n) in time t(n), and hence is not inRKt .

3.1 Small circuits for sets reducible toRKt

We now prove thatTTRT is a subset of P/poly. Actually, we will prove that this holds
even for Turing reductions:

Theorem 3.2. SupposeA ∈ DTIME(t1) andM : A ≤p
T RKt , for some time-bounds

t, t1 with t(n+ 1) ≥ 2nt(n) + 22n

t1(2n).4 ThenA ∈ P/poly; in fact, ifM runs in time

nc, andR′ = R
≤d(c+1) log ne
Kt , then∀x ∈ {0, 1}n MR′

(x) = A(x).

Proof. Let `(n) = d(c + 1) logne, R′(n) = R
≤`(n)
Kt , and suppose thatMR′(n)(x) 6=

A(x) for somex of lengthn. Then we may find the first suchx in time2`(n)t(`(n)) +
2n+1(t1(n) + O(nc)) (cf. Proposition 2.4), and each query made byMR′(n)(x) can
be output by a program of lengthc logn + O(1), running in the same time bound.
But sinceA(x) 6= MR′(n)(x), it must be that, withR′(n) as oracle,M makes some
queryq of sizem ≥ `(n) + 1 which is random fort-bounded Kolmogorov complexity
(because both small and non-random queries are answered correctly when usingR′

instead ofRKt). Hence we have both thatq is supposed to be random, and thatq can be
output by a program of length< `(n) in time2`(n)t(`(n)) + 2n+1(t1(n) +O(nc)) �
2`(n)t(`(n)) + 22`(n)

t1(2`(n)) ≤ t(`(n) + 1) ≤ t(m), which is a contradiction. ut
Corollary 3.3. TTRT ⊆ P/poly

4 For example, ifA ∈ EXP, thent can be doubly-exponential. IfA is elementary-time com-
putable, thent can be an exponential tower.

Proof. Let L ∈ TTRT. By the definition ofTTRT, L ≤P
tt RKt0 . Using Proposition

2.5, we then have thatL is decidable in timetL(n) = 2nk

t0(nk) for some constantk.
Choose a time-boundt such thatt(n+ 1) ≥ 2nt(n) + 22n

tL(2n). By the definition of
TTRT, sincet > t0, we have thatL ≤P

tt RKt
U0

, from which by Theorem 3.2 it follows
thatL ∈ P/poly.

PSPACE≤p
T RK [3], but Theorem 3.2 implies that PSPACE6≤p

T RKt for sufficiently-
large t, unless PSPACE⊆ P/poly. This highlights the difference between the time-
bounded and ordinary Kolmogorov complexity, and how this comes to the surface when
working with reductions to the corresponding sets of random strings.

3.2 A reduction distinguishingRK from RKt , and an incorrect conjecture

Theorem 3.2 shows that a polynomial-time truth-table reduction toRKt for sufficiently-
large t will work just as well if only the logarithmically-short queries are answered
correctly, and all of the other queries are simply answered “no”.

The authors of [4] conjectured that a similar situation would hold if the oracle were
RK instead ofRKt . More precisely, they proposed a proof-theoretic approach towards
proving thatDTTR is in P/poly: Let PA0 denote Peano Arithmetic, and fork > 0 let
PAk denote PAk−1 augmented with the axiom “PAk−1 is consistent”. In [4] it is shown
that, for any polynomial-time truth-table reductionM reducing a decidable setA toRK ,
one can construct a true statement of the form∀n∀j∀kΨ(n, j, k) (which is provable in
a theory such as Zermelo-Frankel), with the property that if, for each fixed (n,j ,k) there
is somek′ such that PAk′ provesψ(n,j , k), thenDTTR ⊆ P/poly. Furthermore, if these
statements were provable in the given extensions of PA, it would follow that, for each
input lengthn, there is a finite subsetR′ ⊆ RK consisting of strings having length at
mostO(log n), such thatMR′

(x) = A(x) for all stringsx of lengthn.
Thus the authors of [4] implicitly conjectured that, for any polynomial-time truth-

table reduction of a decidable set toRK , and for anyn, there would be some setting of
the short queries so that the reduction would still work on inputs of lengthn, when all
of the long queries are answered “no”. While we have just seen that this is precisely the
case for the time-bounded situation, the next theorem shows that this does not hold for
RK , even if “short” is interpreted as meaning “of length< n”. (It follows that infinitely
many of the statementsψ(n,j , k) of [4] are independent of every PAk′ .)

Theorem 3.4. There is a truth-table reductionM : {0, 1}∗ ≤p
tt RK , such that, for all

large enoughn:

∀R′ ⊆ {0, 1}≤n−1∃x ∈ {0, 1}n MR′
(x) 6= 1.

We will use the following lemma in the proof:

Lemma 3.5 (Theorem 15 of [8]).There is a polynomial-time procedure which, given
a stringz of even lengthn− 2, will output a list of constantly-many stringsz1, . . . , zc

of lengthn, such that at least one of them will beK-random ifz is.

Proof. We define our reductionM as follows: on inputx = 00 . . . 0z of lengthn having
even|z|, we query each ofz, z1, . . . , zc, and every string of length at mostlogn. If there
are no strings of length at mostlogn in the oracle, we reject. Else, ifz is random but
none of thezi are, we reject. On all other cases we accept.

By Lemma 3.5, and sinceRK has strings at every length, it is clear thatM accepts
every string with oracleRK , and rejects every string ifR′ = ∅. However, for any
non-empty setR′ ⊆ {0, 1}≤n−1, let ` ≤ n − 1 be the highest even length for which
R′=` 6= ∅, and pickz ∈ R′=`. Then we will havez ∈ R′=` but everyzi 6∈ R=`+2,
henceMR′

(00 . . . 0z) rejects. ut

In fact, if we letR′ = R≤n−1
Kt , for evenn, then for the firstx = 00z such that

MR′
(x) = 0, we will havez ∈ R′ ⊆ RKt , but eachzi can be given by a small pointer

in time O(2n−1t(n − 1)) (again we use Proposition 2.4), and hencezi 6∈ RKt for
suitably fast-growingt. ThusMRKt (x) = 0 6= MRK (x), and we conclude:

Observation 3.6 If t(n + 1) � 2nt(n), then the non-adaptive reductionM above
behaves differently on the oraclesRK andRKt .

4 Polynomial Space with Advice

Our single goal for this section is proving the following:

Theorem 4.1. For any computable unbounded functionα(n) = ω(1),

TTRT ⊆ PSPACE/α(n).

The proof of this theorem is patterned closely on related arguments in [5], although
a number of complications arise in the time-bounded case. The presentation here will
not be self-contained; readers will often be referred to [5]. Before proving the theorem
we present several supporting propositions.

Proposition 4.2 (Analogue to Coding Theorem).Letf be a function such that

1.
∑

x∈{0,1}∗ 2−f(x) ≤ 1
2. There is a machineM computingf(x) in timet(|x|)

Let t′(|x|) > 22|x|t(|x|). Then for someM ′,Kt′
M ′(x) = f(x) + 2.

Proof. The proof is similar to the proof of Proposition 5 from [5]. Let

E = 〈x0, f(x0)〉, 〈x1, f(x1)〉 . . .

be an enumeration of the functionf ordered lexicographically by the stringsxi.
We identify the set of infinite sequencesS = {0, 1}∞ with the half-open real in-

terval [0, 1); that is, each real numberr between 0 and 1 will be associated with the
sequence(s) corresponding to the infinite binary expansion ofr. We will associate each
element〈xi, f(xi)〉 from the enumerationE with a subintervalIi ⊆ S as follows:

I0 = [0, 2−f(x0)), and fori ≥ 1, Ii = [
∑

k<i 2−f(xk),
∑

k≤i 2−f(xk)). That is,

Ii is the half-open interval of length2−f(xi) that occurs immediately after the interval
corresponding to the element〈xi−1, f(xi−1)〉 that appeared just prior to〈xi, f(xi)〉 in
the enumerationE.

Since
∑

i≥0 2−f(xi) ≤ 1, eachIi ⊆ S.
Any finitestringz also corresponds to a subintervalΓz ⊆ S consisting of all infinite

sequences that begin withz; Γz has length2−|z|. Given any element〈xi, f(xi)〉, there
must exist a lexicographically first stringzi of lengthf(xi) + 2 such thatΓzi ⊆ Ii.
Observe that, since the intervalsIi are disjoint, no stringzi is a prefix of any other.

LetM ′ be the following machine. On inputz,M ′ runsM to compute the enumer-
ationE until it finds an element〈xi, f(xi)〉 that certifies thatz = zi. If it finds such an
element thenM ′ outputsxi.

Suppose thatM ′ outputsxi on inputz, and let〈xi, f(xi)〉 be the element ofE
corresponding toxi. Before outputtingxi, M ′ must compute|〈xj , f(xj)〉| for every
string xj such thatxj < xi (under the lexicographical ordering). There are at most
2|xi|+1 stringsxj such thatxj < xi, so overall this will take less than22|xi|t(|xi|) time.

M ′ will be a prefix machine, and we have thatKt′
M ′(x) = f(x) + 2.

Proposition 4.3 (Analogue to Proposition 6 from [5]).LetU be a time-efficient uni-
versal prefix Turing machine andM be any prefix Turing machine. Suppose thatt, t′,
and t′′ are time bounds andf, g are two time-constructible increasing functions, such
thatf is upper bounded by a polynomial, andt′′(|x|) = f(t(|x|)) = g(t′(|x|)).

Then there is a time-efficient universal prefix machineU ′ such that

Kt′′
U ′(x) = min(Kt

U (x),Kt′
M (x)) + 1

.

Proof. On input0y,U ′ runsU on inputy. If U would output stringx ony afters steps,
thenU ′ outputs stringx afterf(s) steps. Similarly, on input1y,U ′ runsM on inputy.
If M would output stringx ony afters steps, thenU ′ outputs stringx afterg(s) steps.

Note that becauseU is an efficient universal prefix machine,U ′ will be an efficient
universal prefix machine as well. ut
Proposition 4.4 (Analogue of Proposition 7 from [5]).Given any time-efficient uni-
versal prefix machineU , time boundt, and constantc ≥ 0, there is a time-efficient
universal prefix machineU ′ such thatKt

U ′(x) = Kt
U (x) + c.

Proof. On input0cx,M ′ runsM on inputx, and doesn’t halt on other inputs. ut
Proof (of Theorem 4.1).Fix α, and suppose for contradiction thatL ∈ TTRT −
PSPACE/α(n). Let t0 be the time bound given in the definition ofTTRT, and letU0

be some arbitrary time-efficient universal prefix machine. By the definition ofTTRT,
L ≤P

tt RK
t0
U0

. Therefore, by Proposition 2.5,L is decidable in timetL(n) = 2nk

t0(nk)

for some constantk.
Let t∗(n) be an extremely fast-growing function, so that for any constantd, we have

t∗(log(α(n))) > 2nd

tL(n) for all largen. To get our contradiction, we will show that

there exists a time-efficient universal prefix machineU such thatL 6≤P
tt RKt∗3

U
. Note

that becauset∗ > t0, this is a contradiction to the fact thatL ∈ TTRT.
For any functionf : {0, 1}∗ → N, defineRf = {x : f(x) ≥ |x|}. We will construct

a functionF : {0, 1}∗ → N and use it to form a functionH : {0, 1}∗ → N such that:

1. F is a total function andF (x) is computable in timet∗2(|x|) by a machineM .
2. H(x) = min(Kt∗

U0
(x) + 5, F (x) + 3).

3.
∑

x∈{0,1}∗ 2−H(x) ≤ 1/8
4. L 6≤p

tt RH

Claim (Analogue of Claim 1 from [5]).Given the above propertiesH = Kt∗3

U for some
efficient universal prefix machineU .

By Property 4 this ensures that the theorem holds.

Proof. By Property 3 we have that
∑

x∈{0,1}∗ 2−F (x)+3 ≤ 1/8. Hence
∑

x∈{0,1}∗ 2F (x) ≤
1. Using this along with Property 1, we then have by Proposition 4.2 thatKt∗3

M ′ = F +2
for some prefix machineM ′. By Proposition 4.4 we have thatKt∗

U ′ = Kt∗
U0

+ 4 for
some efficient universal prefix machineU ′. Therefore, by Proposition 4.3, withf(n) =
n3, g(n) = n, we find thatH(x) = min(Kt∗

U0
(x)+5, F (x)+3) = min(Kt∗

U ′(x),Kt∗3

M ′)+
1 isKt∗3

U for some efficient universal prefix machineU . ut
We now need to show that, for our given languageL, we can always construct functions
H andF with the desired properties. As part of this construction we will set up and play
a number of games. Our moves in the game will define the functionF . Potentially dur-
ing one of these games, we will play a move forcing a stringz to be in the complement
of RH . To do this we will setF (z) = |z| − 4. Therefore, a machineM can compute
F (z) by running our construction, looking for the first time during the construction that
F (z) is set to|z| − 4, and outputting|z| − 4. If a certain amount of time elapses during
the construction withoutF (z) ever being set to|z|−4, then the machineM outputs the
default value2|z|.

As in [5], to ensure thatL 6≤P
tt RH , we need to satisfy an infinite list of requirements

of the form
Re : γe is not a polynomial-time truth-table reduction ofL toRH .

In contrast to the situation in [5], we do not need to worry about playing different
games simultaneously or dealing with requirements in an unpredictable order; we will
first satisfyR1, thenR2, etc. To satisfyRe we will set up a gameGe,x for an appropriate
stringx of our choice, and then play out the game in its entirety. We will choosex so
that we can win the gameGe,x, which will ensure thatRe is satisfied. If theK player
cheats on gameGe,x, then we playGe,x′ for somex′. For the same reasons as in [5] the
K player cannot cheat infinitely often on games for a particulare, so eventuallyRe will
be satisfied.

A gameGe,x will be played as follows:
First we calculate the circuitγe,x, which represents the reductionγe on inputx. Let

F ∗ be the functionF as it is at this point of the construction when the gameGe,x is
about to be played. For any queryzi that is an input of this circuit such that|zi| ≤

log(α(|x|)) − 1, we calculateri = min(Kt∗
U0

(zi) + 5, F ∗(zi) + 3). If ri < |zi| we
substitute FALSE in for the query, and simplify the circuit accordingly, otherwise we
substitute TRUE in for the query, and simplify the circuit accordingly. (We will refer to
this as the “pregame preprocessing phase”.)

The remaining querieszi are then ordered by increasing length. There are two play-
ers, theF player (whose moves will be played by us during the construction), and theK
player (whose moves will be determined byKU0). As in [5], in each game theF player
will either be playing on the YES side (trying to make the final value of the circuit equal
TRUE), or the NO side (trying to make the final value of the circuit equal FALSE).

LetS1 be the set of queries fromγe,x of smallest length, letS2 be the set of queries
that have the second smallest length, etc. So we can think of the queries being grouped
into an ordered setS = (S1, S2, . . . , Sr) for somer.

The scoring for the game is similar to that in [5]; originally each player has a score
of 0 and a player loses if his score exceeds some thresholdε. When playing a game
Ge,x, we setε = 2−e−6.

In round one of the game, theK player makes some (potentially empty) subsetZ1 of
the queries fromS1 nonrandom. For anyZ1 ⊆ S1 that he chooses to make nonrandom,∑

z∈Z1
2−(|z|−6) − 2−2|z| is added to his score. As in [5], a player can only legally

make a move if doing so will not cause his score to exceedε.

Let us provide some explanation of how to interpret this score. Originally the func-
tion H is set so that for allz, H(z) = 2|z|. BecauseH = min(Kt∗

U0
+ 5, F + 3), if

Kt∗
U0

(z) ≤ |z| − 6 then this ensures thatz will be non-random according toH . It would
be sub-optimal for theK player to setKt∗

U0
(z) to a value lower than|z| − 6, because

this would add more to his score without any additional benefit. Therefore we assume
without loss of generality that when theK player makes a move he does so in exactly
this way. Thus the amount that is added to the score of playerK corresponds to the
amount by whichK is changing the probability assigned to each stringz (viewingK
as a probability function). As in [5], for the case of analyzing the games and determin-
ing who has a winning strategy, we assume that theK player is an adversary playing
optimally, even though in reality his moves will be based on an enumeration that knows
nothing of these games.

After theK player makes his move in round 1, theF player responds, by making
some subsetY1 of the queries fromS1 − Z1 nonrandom. After theF player moves,∑

z∈Y1
2−(|z|−4) − 2−2|z| is added to his score.

This is the end of round one. Then we continue on to round two, played in the same
way. TheK player goes first and makes some subset of the queries fromS2 nonrandom
(which makes his score go up accordingly), and then theF player responds by making
some subset of the remaining queries fromS2 nonrandom. Note that if a query fromSi

is not made nonrandom by either theK player or theF player in roundi, it cannot be
made nonrandom by either player for the remainder of the game.

After r rounds are finished the game is done and we see who wins, by evaluating
the circuitγe,x using the answers to the queries that have been established by the play
of the game. If the circuit evaluates to TRUE (FALSE) and theF player is playing as
the YES (NO) player, then theF player wins, otherwise theK player wins.

Note that the game is asymmetric between theF player and theK player; theF
player has an advantage due to the fact that he plays second in each round and can make
an identical move for fewer points than theK player. Because the game is asymmetric,
it is possible thatF can have a winning strategy playing onboththe YES and NO sides.
Thus we define a setval(Ge,x′) ⊆ {0, 1} as follows:0 ∈ val(Ge,x′) if theF player has
a winning strategy playing on the NO side inGe,x′ , and1 ∈ val(Ge,x′) if the F player
has a winning strategy playing on the YES side inGe,x′ .

Now we describe the construction. Supposes time steps have elapsed during the
construction up to this point, and we are getting ready to construct a new game in order
to satisfy requirementRe. (Either because we just finished satisfying requirementRe−1,
or becauseK cheated on some gameGe,x, so we have to start a new gameGe,x′).

Starting with the string0t∗4(s) (i.e. the string oft∗4(s) zeros), we search strings
in lexicographical order (as we do in [5]) until we find anx′ such that(1 − L(x′)) ∈
val(Ge,x′). (Here,L denotes the characteristic function of the setL.)

Once we find such a stringx′ (which we will prove we always can), then we play out
the gameGe,x′ with theF player (us) playing on the YES side ifL(x′) = 0 and the NO
side ifL(x′) = 1. To determine theK player’s move in theith round, we letZi ⊆ Si

be those queriesz ∈ Si for whichKt∗
U0

(z) + 5 < |z|. Our moves are determined by our
winning strategy, and are played as in [5]. (These determine the functionF ; as in [5]
initially F (x) = 2|x| for all x). If the game is completed without theK player cheating,
then we will have won the game, andRe will be satisfied and will stay satisfied for the
rest of the construction.

Note that when a gameGe,x is played,x is always chosen large enough so that any
query that is not fixed during the pregame preprocessing has not appeared in any game
that was played previously, so the games will never conflict with each other.

The analysis for why Properties 3 and 4 hold is basically identical to [5].
To wrap up the proof of the theorem, we need to prove a couple of claims.

Claim (Analogue of Claim 4 from [5]).During the construction, for any requirement
Re, we can always find a witnessx with the needed properties to constructGe,x.

Proof. Suppose for some requirementRe, our lexicographical search goes on forever
without finding anx such that(1 − L(x′)) ∈ val(Ge,x′). ThenL ∈ PSPACE/α(n),
which is a contradiction.

Here is the PSPACE algorithm to decideL. Hardcode all the answers for the initial
sequence of strings up to the point where we got stuck in the construction. LetF ∗ be
the functionF up to that point in the construction. On a general inputx, constructγe,x.
The advice functionα(n) will give the truth-table ofmin(Kt∗

U0
(z) + 5, F ∗(z) + 3)

for all queriesz such that|z| ≤ log(α(|x|)) − 1. For any queryz of γe,x such that
|z| ≤ log(α(|x|)) − 1, fix the answer to the query according to the advice.

If the F player had a winning strategy for both the YES and NO player on game
Ge,x, then we wouldn’t have gotten stuck onRe. Also theF player must have a winning
strategy for either the YES or the NO player, since he always has an advantage over the
K player when playing the game. Therefore, because we got stuck, it must be that the
F player has a winning strategy for the YES player if and only ifL(x) = 1. Once
the small queries have been fixed, finding which side (YES or NO) theF player has a

winning strategy for onGe,x, and hence whetherL(x) = 1 or L(x) = 0, can be done
in PSPACE.5 ut
Claim. F (z) is computable in timet∗2(|z|)
Proof. The functionF is determined by the moves we play in games during the con-
struction. In order to prove the claim, we must show that if during the construction we
as theF player make a move that involves setting a stringz to be non-random, then
fewer thant∗2(|z|) time steps have elapsed during the construction up to that point. The
machineM that computesF will on input z run the construction fort∗2(|z|) steps. If at
some point before this during the construction we as theF player makez non-random,
thenM outputs|z| − 4. OtherwiseM outputs2|z|.

Suppose during the construction that we as theF player make a move that sets a
queryz to be non-random during a gameGe,x. Note that|z| ≥ log(α(|x|)), otherwise
z would have been fixed during the preprocessing stage of the game.

There are at most2|x|+1 stringsx′ that we could have considered during our lex-
icographic search to find a game for which we had a winning strategy before finally
findingx. Let s be the number of time steps that have elapsed during the construction
before this search began.

Let us first bound the amount of time it takes to reject each of these stringsx′.
To compute the circuitγe,x′ takes at most|x′|k time for some constantk. For each
queryy such that|y| ≤ log(α(|x′|))− 1 we computemin(Kt∗

U0
(y) + 5, F ∗(y) + 3). To

calculateF ∗(y) it suffices to rerun the construction up to this point and check whether
a move had been previously made on the stringy. To do this takess time steps, and
by construction we have thatt∗(|z|) ≥ t∗(logα(|x|)) > |x′| ≥ t∗4(s), so s < |z|.
By Proposition 2.4, to computeKt∗

U0
(y) takes at most2|y|t∗(|y|) ≤ 2|z|t∗(|z|) times

steps. Therefore, since there can be at most|x′|k such queries, altogether computing
min(Kt∗

U0
(y) + 5, F ∗(y) + 3) for all thesey will take fewer than|x′|k2|z|t∗(|z|) time

steps.
Then we must computeL(x′), and check whether(1− L(x′)) ∈ val(Ge,x′). Com-

putingL(x′) takestL(|x′|) time. By Claim 4, once the small queries have been fixed
appropriately, computingval(Ge,x′) can be done in PSPACE, so it takes at most2|x

′|d

time for some constantd.
Compiling all this information, and using the fact that for each of thesex′ we have

that|x′| ≤ |x|, we get that the total number of timesteps needed to reject all of thesex′

is less than2|x|
d′

2|z|tL(|x|)t∗(|z|) for some constantd′.
During the actual gameGe,x, beforez is made non-random the construction might

have to computeKt∗
U0

(y) + 5 for all queries ofγe,x for which |y| ≤ |z|. By Proposition
2.4 this takes at most|x|k2|z|t∗(|z|) time.

Therefore, overall, for some constantd′′ the total amount of time steps elapsed
beforez is made non random in the construction is at most

T = 2|x|
d′′

2|z|tL(|x|)t∗(|z|) + s < t∗2(|z|).
5 This follows from [5], as these games are a restricted case of the games from that paper. The

point is that we can write the predicate “TheF player has a winning strategy as the YES player
onGe,x” as a simple quantified boolean formula.

Here the inequality follows from the fact thatt∗(log(α(|x|))) > 2|x|
d

tL(|x|) for
any constantd, and that|z| ≥ log(α(|x|)) . ut

5 Removing the Advice

With the plain Kolmogorov complexity functionC, it is fairly clear what is meant by
a “time-efficient” universal Turing machine. Namely,U is a time-efficient universal
Turing machine if, for every Turing machineM , there is a constantc so that, for every
x, if there is a descriptiond for whichM(d) = x in t steps, then there is a description
d′ of length≤ |d| + c for which U(d′) = x in at mostct log t steps. However, with
prefix-free Kolmogorov complexity, the situation is more complicated. The easiest way
to define universal Turing machines for the prefix-free Kolmogorov complexity function
K is in terms ofself-delimiting Turing machines.These are machines that have one-way
access to their input tape;x is a valid input for such a machine if the machine halts while
scanning the last symbol ofx. For such machines, the notion of time-efficiency carries
over essentially unchanged. However, there are several other ways of characterizingK
(such as in terms of partial-recursive functions whose domains form a prefix code, or
in terms of prefix-free entropy functions). The running times of the machines that give
short descriptions ofx using some of these other conventions can be substantially less
than the running times of the corresponding self-delimiting Turing machines. This issue
has been explored in detail by Juedes and Lutz [10], in connection with the P versus NP
problem. Given that there is some uncertainty about how best to define the notion of
time-efficient universal Turing machine forKt-complexity, one possible response is
simply to allow much more leeway in the time-efficiency requirement.

If we do this, we are able to get rid of the small amount of non-uniformity in our
PSPACE upper bound.

Definition 5.1. A prefix machineU is an f -efficient universal prefix machine if there
exist constantscM for each prefix machineM , such that

1. ∀x,KU (x) ≤ KM (x) + cM
2. ∀x,Kt

U (x) ≤ Kt′
M (x) + cM for all t(n) > f(t′(n))

In Definition 2.1 we defined a time-efficient universal prefix machine to be any
poly(n)-efficient universal prefix machine.

Definition 5.2. DefineTTRT′ to be the class of languagesL such that for all com-
putablef there existst0 such that for allf -efficient universal prefix machinesU and
t ≥ t0, L ≤P

tt RKt
U

.

Theorem 5.3. BPP⊆ TTRT′ ⊆ PSPACE∩ P/poly.

Note thatTTRT′ ⊆ TTRT, so from Theorem 3.2 we getTTRT′ ⊆ P/poly. Also,
the proofs in [7] can be adapted to show that BPP⊆ TTRT′. So all we need to show is
the PSPACE inclusion.

Proof (of Theorem 5.3).
The proof is similar to the proof of Theorem 4.1, with some minor technical modi-

fications. LetL be an arbitrary language fromTTRT′. BecauseTTRT′ ⊆ TTRT, as in
the proof of Theorem 4.1 we have thatL is decidable in timetL < 2nk

t′(nk) for some
fixed time boundt′ and constantk.

Define f to be a fast enough growing function thatf(n) > 2(tL(nd))d

for any
constantd. Let t0 be the time bound given in the definition ofTTRT′ for language
L and functionf . Let t∗(n) be a time bound such that for alln, t∗(n) > f(n) and
t∗(n) > t0(n). To get our contradiction, we will show that there exists anf -efficient
universal prefix machineU and constantc > 1 such thatL 6≤P

tt RKv
U

, wherev(|x|) =
2(tL(t∗(|x|)))c

> t0(|x|).
We will make use of the following revised proposition:

Proposition 5.4 (Revised Proposition 4.3).LetU andM be annc-efficient universal
prefix Turing machine and a prefix Turing machine respectively. Lett, t′ be time bounds
andf, g be two time-constructible increasing functions, such thatg(nc) < f(n). Let
t′′(|x|) = g(t(|x|)) = h(t′(|x|)). Then there is anf -efficient universal prefix machine
U ′ such that

Kt′′
U ′(x) = min(Kt

U (x),Kt′
M (x)) + 1.

Proof. Almost identical to before: On input0y,U ′ runsU on inputy. If U would output
stringx ony afters steps, thenU ′ outputs stringx afterg(s) steps. Similarly, on input
1y,U ′ runsM on inputy. If M would output stringx ony afters steps, thenU ′ outputs
stringx afterh(s) steps.

Note that becauseU is annc-efficient universal prefix machine,U ′ will be an f -
efficient universal prefix machine. ut

We will construct functionsF andH such that

1. F is a total function such that for allx, F (x) ≤ 2|x|, andF (x) is computable in
time2(tL(t∗(|x|)))d

by a machineM for some constantd.
2. H(x) = min(Kt∗

U0
+ 5, F (x) + 3).

3.
∑

x∈{0,1}∗ 2−H(x) ≤ 1/8
4. L 6≤p

tt RH

Claim (Revised Claim 4).Given the above propertiesH = Kv
U for somef -efficient

universal prefix machineU (which by Property 4 ensures that the theorem holds)

Proof. By Property 3 we have that
∑

x∈{0,1}∗ 2−F (x)+3 ≤ 1/8. Therefore it holds that
∑

x∈{0,1}∗ 2F (x) ≤ 1. Using this along with Property 1, we then have by Proposition
4.2 thatKu

M ′ = F + 2 for some prefix machineM ′ and constantd′, whereu(x) =
2(tL(t∗(|x|)))d′

. By Proposition 4.4 we have thatKt∗
U ′ = Kt∗

U0
+ 4 for somenc′-efficient

universal prefix machineU ′. Therefore, by Proposition 5.4,H(x) = min(Kt∗
U0

(x) +
5, F (x) + 3) = min(Kt∗

U ′(x),Ku
M ′ (x)) + 1 isKv

U for somef -efficient universal prefix
machineU and constantc > 1, wherev(|x|) = 2(tL(t∗(|x|)))c

. (In this last step we are
using the fact thatf(n) > 2(tL(nk))k

for any constantk to ensure thatU is anf -efficient
universal prefix machine by Proposition5.4). ut

The construction is virtually the same as in Theorem 4.1.
There is one change from Theorem 4.1 in how the games are played. During the pre-

processing step of a gameGe,x, all queriesz such thatt∗(|z|) ≤ |x| are fixed according
to min(Kt∗

U0
(z) + 5, F ∗(z) + 3).

If we get stuck during our lexicographical search to find a suitablex′ to play the
gameGe,x′ , then this implies that the languageL is in PSPACE, since by Proposi-
tion 2.4, for some constantk fixing all queriesz such thatt∗(|z|) ≤ |x| according to
min(Kt∗

U0
(z) + 5, F ∗(z) + 3) can be done in|x|k2|z|t∗(|z|) ≤ |x|kt∗(|z|)2 ≤ |x|k+2

time (and then it is a PSPACE computation to determine which side theF player has a
winning strategy for).

It remains to prove the following claim.

Claim. F (z) is computable in time2(tL(t∗(|z|)))d

for some constantd.

Proof. Suppose during the construction we as theF player make a move that sets a
queryz to be non-random during a gameGe,x. Note thatt∗(|z|) > |x|, otherwisez
would have been fixed during the preprocessing stage of the game.

As in the proof of Claim 4, we can bound the total amount of time steps elapsed
beforez is made non random in the construction to be at most

T = 2|x|
d

2|z|tL(|x|)t∗(|z|) + s < 2(tL(t∗(|z|)))dut

6 Conclusion

We have made some progress towards settling our research question in the case of time-
bounded Kolmogorov complexity, but we have also discovered that this situation is
substantially different from the ordinary Kolmogorov complexity. Solving this latter
case will likely prove to be much harder.

We would like to prove an exact characterization, such as BPP= DTTR (or the
time-bounded analogue thereof), but there seems to be no naive way of doing this. It has
been shown in [7] that the initial segmentR≤log n

K , a string of lengthn, requires circuits
of sizen/c, for somec > 1 and all largen; it is this fact that is used to simulate BPP.
However, much stronger circuit lower bounds for the initial segment do not seem to hold
(cf. Theorems 4–9 of [7]), suggesting thatRK has some structure. This structure can
actually be detected — the reductionM of Theorem 3.4 can be adapted to distinguish
RK from a random oracle w.h.p. — but we still don’t know of any way of usingRK

non-adaptively, other than as a pseudo-random string. A new idea will be needed in
order to either prove or disprove the BPP= DTTR conjecture.

Acknowledgments

The first and third authors acknowledge NSF Grants CCF-0832787 and CCF-1064785.

References

1. E. Allender. Curiouser and curiouser: The link between incompressibility and complexity.
In Proc. Computability in Europe (CiE), LNCS. Springer, 2012. To appear.

2. E. Allender, H. Buhrman, and M. Kouck´y. What can be efficiently reduced to the
Kolmogorov-random strings?Annals of Pure and Applied Logic, 138:2–19, 2006.

3. E. Allender, H. Buhrman, M. Kouck´y, D. van Melkebeek, and D. Ronneburger. Power from
random strings.SIAM Journal on Computing, 35:1467–1493, 2006.

4. E. Allender, G. Davie, L. Friedman, S. B. Hopkins, and I. Tzameret. Kolmogorov complex-
ity, circuits, and the strength of formal theories of arithmetic. Technical Report TR12-028,
Electronic Colloquium on Computational Complexity, 2012. Submitted for publication.

5. E. Allender, L. Friedman, and W. Gasarch. Limits on the computational power of random
strings. Information and Computation, 2012. To appear; special issue on ICALP 2011. See
also ECCC TR10-139.

6. José Luis Balcázar, Josep D́ias, and Joaquim Gabarr´o. Structural Complexity I. Springer-
Verlag, 1988.

7. H. Buhrman, L. Fortnow, M. Kouck´y, and B. Loff. Derandomizing from random strings. In
25th IEEE Conference on Computational Complexity (CCC), pages 58–63. IEEE, 2010.

8. H. Buhrman, L. Fortnow, I. Newman, and N. Vereshchagin. Increasing Kolmogorov com-
plexity. In Volker Diekert and Bruno Durand, editors,STACS 2005, volume 3404 ofLecture
Notes in Computer Science, pages 412–421. Springer Berlin / Heidelberg, 2005.

9. Harry Buhrman and Elvira Mayordomo. An excursion to the kolmogorov random strings.J.
Comput. Syst. Sci., 54(3):393–399, 1997.

10. David W. Juedes and Jack H. Lutz. Modeling time-bounded prefix Kolmogorov complexity.
Theory of Computing Systems, 33(2):111–123, 2000.

11. M. Li and P. Vitanyi.Introduction to Kolmogorov Complexity and its Applications. Springer,
third edition, 2008.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

