Electronic Colloquium on Computational Complexity, Report No. 54 (2012)

Reductions to the set of random strings:
the resource-bounded case

Eric Allender, Harry Buhrmas, Luke Friedman, and Bruno Loff

! Department of Computer Science, Rutgers University, Piscataway, NJ 08855, USA
{allender/Ibfried }@cs.rutgers.edu
2 CWI and University of Amsterdamuhrman@cwi.nl
3 CWI bruno.loff@gmail.com

Abstract. This paper is motivated by a conjecture [1, 4] that BPP can be charac-
terized in terms of polynomial-time nonadaptive reductions to the set of Kolmogorov-
random strings. In this paper we show that an approach laid out in [4] to settle
this conjecture cannot succeed without significant alteration, but that it does bear
fruit if we consider time-bounded Kolmogorov complexity instead.

We show that if a setd is reducible in polynomial time to the set of time-
bounded Kolmogorov-random strings (for all large enough time bouydken

A'is in P/poly, and that if in addition such a reduction exists for any universal
Turing machine one uses in the definition of Kolmogorov complexity, thea

in PSPACE.

1 Introduction

The roots of this investigation stretch back to the discovery that PSPAGE and
NEXP C NP?, whereR is the set of Kolmogorov-random strings [3, 2]. Later, it was
shown that BPRC Pt";” [7], where E{i denotes the class of problems reducibleitgia
polynomial-timenonadaptiveor truth-tablé reductions.

There is evidence indicating that some of these inclusions are in some sense optimal.
The inclusions mentioned in the preceding paragraph hold for the two most-common
versions of Kolmogorov complexity (the plain complexityand the prefix-free com-
plexity K), and they also hold no matter which universal Turing machine one uses when
defining the measurds andC.

Let Rk, denote the set of random strings according to the prefix-free meaSure
given by the universal machiié& Ry, = {z : Ky(z) > |z|}. Last year, it was shown
that the class of decidable sets that are polynomial-time truth-table reducibje téor

everyU is contained in PSPACE. That is, althougﬁ"i17 contains arbitrarily complex
decidable sets, an extremely complex set can only be there because of characteristics of
R, that are fragile with respect to the choicelof

This motivates the following definitio@TTR is the class of all decidable problems
that are polynomial-time truth-table reducible Ry, for every choice of universal
prefix-free Turing machin&. Thus it was proven that

BPPC DTTR C PSPACEC P#x. (1)

ISSN 1433-8092

So we naturally come upon the following.

Research questionDoesDT TR sit closer toBPP, or closer toPSPACE

A conjecture by various authors [4,1] is thaff TR actually characterizes BPP
exactly. Part of the intuition is that a non-adaptive reduction cannot make use of queries
to Rk larger tharO(log n) to solve a decidable problem. Ifindeed true we could use the
strings of length at mogP(log n) as advice and answer the larger queries with NO, to
show that these sets are in P/poly. The rest of the intuition is that the smaller strings can
only be used as a source for pseudo-randomness. If we are able to prove this conjecture,
then we can make use of the tools of Kolmogorov complexity to study various questions
about the class BPP. Because of the inclusions listed in (1) above, this now amounts to
understanding the relative power of Turing reductiesigruth-table reductions t® k.

In an attempt to tackle this question, it was conjectured in [4, 1] thaDthéR C
PSPACE upper bound can be improved to PSPAGHEpoly, and an approach was sug-
gested, based on the above mentioned intuition in connection with formal systems of
arithmetic. In this paper, we show that this approach must fail, or at least requires signif-
icant changes. Interestingly, we can also prove that this intuition — that the large queries
can be answered with NO -eanbe used in the resource-bounded setting to show an
analogue of the P/poly inclusion. While demonstrating this discrepancy we show sev-
eral other ways in which reductions #®x and Rk« are actually very different; in
particular, we construct a counter-intuitive example of a polynomial-time non-adaptive
reduction that distinguishd®x from R+, for any sufficiently large time-bound

To investigate the resource-bounded setting we define a a8 as a time-
bounded analog @ TTR; informally, TTRT is the class of problems that are polynomial-
time truth-table reducible t&® ;- for every sufficiently fast-growing time-bouridand
every “time-efficient” universal Turing machine used to defiie We prove that, for
all monotone nondecreasing computable functiefis) = w(1),

BPPC TTRT C PSPACEa(n) N P/poly.

Here, PSPACFE«a(n) is a “slightly non-uniform” version of PSPACE. We believe that
this indicates thal TRT is “closer” to BPP than it is to PSPACE.

It would be more appealing to avoid the advice function, and we are able to do
so, although this depends on a fine point in the definition of time-efficient prefix-free
Kolmogorov complexity. This point involves a subtle technical distinction, and will be
left for the appropriate section. To summarize:

— In Section 3 we prove that TRT C P/poly, by using the same basic idea of [4,
1]. We further show, however, that this approach will not work to pVa R C
P/poly, and by reversing the logic connection of [4, 1], this will give us an indepen-
dence result in certain extensions of Peano arithmetic.

— Then in section 4 we prove thalTRT C PSPACE«(n), which is a non-trivial
adaptation of the techniques from [5]. In section 5 we show how to get the result
without the super-constant advice term.

In the final section we discuss prospects for future work.

2 Preliminaries

We assume the reader is familiar with basic complexity theory [6] and Kolmogorov
complexity [11]. We use<. and P! when referring to polynomial-time Turing reduc-
tions, and<?, and P} for polynomial-time truth-table (anon-adaptivgreductions. For

a setA of strings,A<" denotes the set of all strings of length at most A.

We let Ky denote Kolmogorov complexity with respect to prefix machine.e.,
Ky(xz) = min{|p| : U(p) = x}. We useR,, to denote the set dk;-randomstrings
{z|Ky(z) > |z|}. In this paper, a function : N — N is called a “time-bound” if it
is non-decreasing and time-constructible. We use the following time-bounded version
of Kolmogorov complexity: for a prefix machiné and a time-bound, K}, (z) is the
length of the smallest string such that/(p) outputsz and halts in fewer that(|«|)
time steps. Thel . is the set ofK},-randomstrings{z| K},(x) > |z|}. Let us define
what it means for a machine to be “universal” in the time-bounded setting:

Definition 2.1. A prefix machiné/ is a time-efficient universal prefix machine if there
exist constants andc,, for each prefix maching/, such that

1. Vx, KU({E) < KM(Q:) +Ccp
2. Vo, K (z) < Ki(z) + ey forall ¢ > €

We will sometimes omit/ in the notationK, Rk, , K}, Ryt in which case we
meanU = Uy, for some arbitrary choice of a time-efficient universal prefix machine
Uyp. Now we can formally define the time-bounded analogue ®f R:

Definition 2.2. TTRT is the class of languages such that there exists a time bound
to (depending onl) such that for all time-efficient universal prefix machiriésand
t>to, L <} Rgy -

Corollary 12 from [7] says that, if > t, = 22", then BPP<?, Ry , for any
time-efficient universal/. This implies:

Theorem 2.3 ([7]).BPPC TTRT.

Proposition 2.4. For any machinel/ and#'(|z|) > 2/°lt(|z|), the queryz € Ry ?
can be computed in timé.

Proof. Simulate the machiné/ on every string of length less thanfor ¢(|x|) steps.
Because there are fewer thalfil such strings, the bound follows. a

Proposition 2.5. Let L <}, RK;,] for some time-bountl Then there exists a constant
k such that the languagk can be computed ity, (n) = 21" ¢(n*) time.

Proof. Let M be a machine that computédy running the polynomial-time truth-table
reduction fromL to Ryt and computing by brute-force the answer to any queries from

the reduction. Using Proposition 2.4, we have that for large enbufthruns in at most
tr(n) = 2”kt(n’“) time, soL is decidable within this time-bound.

It is the ability to compute? i« for short strings that makes the time-bounded case
different from the ordinary case. This will be seen in proofs throughout the paper.

3 How and why to distinguish Rg from R+

At first glance, it seems reasonable to guess that a polynomial-time reduction would
have difficulty telling the difference between an oracle fy¢ and an oracle foR -+,
for large enough. IndeedR i C Ry and in the limit fort — oo they coincide.

One might even suspect that a polynomial-time reduction must behave the same way
with R+ and Rk as oracle, already for modest time bounddowever, this intuition
is wrong. Here is an example for adaptive polynomial-time reductions.

Observation 3.1 There is a polynomial-time algorithm which, given oracle access to
Ry and inputl™, outputs aK -random string of length. However, for any time-bound

t such thatt(n + 1) > 2"¢(n), there is no polynomial-time algorithm which, given
oracle access td&x: and inputl™, outputs aK*-random string of length.

For the algorithm, see [8]; roughly, we start with a small random string and then use
Lemma 3.5 (below) to get a successively larger random string. But in the time-bounded
case in [9] it is shown that on inpat’, no polynomial-time machin&/ can query (or
output) anyK*-random string of length: in fact, M (1") is the same for both oracles
R+ andR' = R37~'. This is proven as follows: sincB’ can be computed in time
t(n) (by Proposition 2.4), then any query of lengthn made byM F (1™) is described
by a pointer of lengttO (log n) in time ¢(n), and hence is not ift k.

3.1 Small circuits for sets reducible toR k-

We now prove thaT TRT is a subset of P/poly. Actually, we will prove that this holds
even for Turing reductions:

Theorem 3.2. Supposed € DTIME(t1) and M : A <% R, for some time-bounds
t,ty with t(n 4 1) > 2"t(n) + 22"t,(2").* ThenA € P/poly; in fact, if M runs in time
ne, andR’ = R,V thenv € {0, 1} ME (z) = A(x).

Proof. Let £(n) = [(c + 1)logn], R'(n) = R, and suppose that/® (™) (z)
A(x) for somez of lengthn. Then we may find the first suchin time 2/ ¢(¢(n)) +
27+1(¢1(n) + O(n®)) (cf. Proposition 2.4), and each query madeMy* (") (x) can
be output by a program of lengthlogn + O(1), running in the same time bound.
But sinceA(z) # M® (") (z), it must be that, with?’(n) as oracleM makes some
queryq of sizem > £(n) + 1 which is random for-bounded Kolmogorov complexity
(because both small and non-random queries are answered correctly whemUsing
instead ofR). Hence we have both thais supposed to be random, and thaan be
output by a program of lengtk £(n) in time 20 ¢(¢(n)) 4 27+ (t1(n) + O(n)) <
20(0(n)) + 22", (247) < t(¢(n) + 1) < t(m), which is a contradiction. O

Corollary 3.3. TTRT C P/poly

* For example, ifA € EXP, thent can be doubly-exponential. i is elementary-time com-
putable, thert can be an exponential tower.

Proof. Let L € TTRT. By the definition ofTTRT, L <[} R+, . Using Proposition
2.5, we then have thdt is decidable in timeé(n) = 2"kt0(n’“) for some constarit.
Choose a time-boundsuch that(n + 1) > 2"t(n) + 22" t1(2"). By the definition of
TTRT, sincet > tq, we have thaf, gﬁ RKED' from which by Theorem 3.2 it follows
thatL € P/poly.

PSPACE</. Rk [3], but Theorem 3.2 implies that PSPAGE,. R for sufficiently-
larget, unless PSPACEC P/poly. This highlights the difference between the time-
bounded and ordinary Kolmogorov complexity, and how this comes to the surface when
working with reductions to the corresponding sets of random strings.

3.2 Areduction distinguishing Rg from Ry, and an incorrect conjecture

Theorem 3.2 shows that a polynomial-time truth-table reductidiytofor sufficiently-
larget will work just as well if only the logarithmically-short queries are answered
correctly, and all of the other queries are simply answered “no”.

The authors of [4] conjectured that a similar situation would hold if the oracle were
Ry instead ofR i +. More precisely, they proposed a proof-theoretic approach towards
proving thatDTTR is in P/poly: Let PA denote Peano Arithmetic, and fbr> 0 let
PA;. denote PA_; augmented with the axiom “BA; is consistent”. In [4] it is shown
that, for any polynomial-time truth-table reductidfireducing a decidable sdtto Ry,
one can construct a true statement of the fotljvVk¥ (n, j, k) (which is provable in
a theory such as Zermelo-Frankel), with the property that if, for each fixg#t Y there
is somek’ such that PA provesy(n,j, k), thenDTTR C P/poly. Furthermore, if these
statements were provable in the given extensions of PA, it would follow that, for each
input lengthn, there is a finite subsdt’ C Ry consisting of strings having length at
mostO(log n), such that\/ 7' (z) = A(z) for all stringsz of lengthn.

Thus the authors of [4] implicitly conjectured that, for any polynomial-time truth-
table reduction of a decidable setRy, and for anyn, there would be some setting of
the short queries so that the reduction would still work on inputs of lengthen all
of the long queries are answered “no”. While we have just seen that this is precisely the
case for the time-bounded situation, the next theorem shows that this does not hold for
Ry, evenif “short” is interpreted as meaning “of lengthn”. (It follows that infinitely
many of the statements(n,j, k) of [4] are independent of every RA)

Theorem 3.4. There is a truth-table reduction/ : {0,1}* <%, Ry, such that, for all
large enoug:

VR C{0,1}5" '3z € {0,1}" MT (z) # 1.
We will use the following lemma in the proof:
Lemma 3.5 (Theorem 15 of [8]).There is a polynomial-time procedure which, given

a string z of even lengtm — 2, will output a list of constantly-many strings, . .. , z.
of lengthn, such that at least one of them will B&random ifz is.

Proof. We define our reductiof/ as follows: on input: = 00. .. 0z of lengthn having
even|z|, we query each of, z1, . .. , z., and every string of length at mdsg n. If there
are no strings of length at malsig » in the oracle, we reject. Else, ifis random but
none of thez; are, we reject. On all other cases we accept.

By Lemma 3.5, and sincBx has strings at every length, it is clear tiddtaccepts
every string with oracleRy, and rejects every string ik’ = &. However, for any
non-empty sef?’ C {0,1}<"~1, let/ < n — 1 be the highest even length for which
R'=" + @, and pickz € R'=". Then we will havex € R’=" but everyz; ¢ R=/+2,
henceM ™ (00...0z) rejects. O

In fact, if we letR' = Rf{}‘l, for evenn, then for the firstr = 00z such that
MF (z) = 0, we will havez € R’ C Ry, but eachz; can be given by a small pointer
in time O(2"~¢(n — 1)) (again we use Proposition 2.4), and hengeZ Ry for
suitably fast-growing. ThusM fixt () = 0 # M % (z), and we conclude:

Observation 3.6 If ¢(n + 1) > 2"t(n), then the non-adaptive reductial above
behaves differently on the oracl&s; and R:.

4 Polynomial Space with Advice

Our single goal for this section is proving the following:
Theorem 4.1. For any computable unbounded functiot) = w(1),
TTRT C PSPACE«(n).

The proof of this theorem is patterned closely on related arguments in [5], although
a number of complications arise in the time-bounded case. The presentation here will
not be self-contained; readers will often be referred to [5]. Before proving the theorem
we present several supporting propositions.

Proposition 4.2 (Analogue to Coding Theorem)Let f be a function such that

1. er{m}* 2-f(@) <1
2. There is a maching/ computingf(x) in timet(|z|)

Lett'(|z]) > 22#l¢(|z|). Then for somé/’, K%, (z) = f(z) + 2.

Proof. The proof is similar to the proof of Proposition 5 from [5]. Let

E = (xo, f(x0)), (1, f(21)) - ..

be an enumeration of the functiginordered lexicographically by the strings.

We identify the set of infinite sequenc8s= {0, 1} with the half-open real in-
terval [0, 1); that is, each real numberbetween 0 and 1 will be associated with the
sequence(s) corresponding to the infinite binary expansienWe will associate each
element(x;, f(x;)) from the enumeratio®’ with a subinterval; C S as follows:

Iy = [0,277@)) and fori > 1, I; = [>,_, 27 @) 3, . 27/@)) That is,

I; is the half-open interval of lengthr/(*) that occurs immediately after the interval
corresponding to the elemeft; 1, f(x;—1)) that appeared just prior t@:;, f(z;)) in
the enumeratior.

Sincey",., 27 f(@) < 1, eachl; C S.

Any finite string z also corresponds to a subinteryal C .S consisting of all infinite
sequences that begin with I, has lengtl2—1#l. Given any elementz;, f(z;)), there
must exist a lexicographically first string of length f(z;) + 2 such thatl"., C I,.
Observe that, since the intervdisare disjoint, no string; is a prefix of any other.

Let M’ be the following machine. On input M’ runsM to compute the enumer-
ation E until it finds an elementz;, f(x;)) that certifies that = z;. If it finds such an
element then\/’ outputsz;.

Suppose thafl/’ outputsz; on inputz, and let(x;, f(z;)) be the element off
corresponding ta;. Before outputtings;, M’ must computé(z;, f(z;))| for every
string z; such thatr; < x; (under the lexicographical ordering). There are at most
2l#:l+1 stringsz; such thatr; < ;, so overall this will take less tha?!=:l¢(|z;|) time.

M’ will be a prefix machine, and we have tHaf,, () = f(z) + 2.

Proposition 4.3 (Analogue to Proposition 6 from [5]).Let U be a time-efficient uni-
versal prefix Turing machine antll be any prefix Turing machine. Suppose that,
andt” are time bounds andl, g are two time-constructible increasing functions, such
that f is upper bounded by a polynomial, atit{|x|) = f(¢(|x])) = g(#'(|z|))-

Then there is a time-efficient universal prefix macHifieuch that

Kl (2) = min(K} (), K4 (2) + 1

Proof. On inputOy, U’ runsU on inputy. If U would output string: ony afters steps,
thenU’ outputs stringe after f(s) steps. Similarly, on inputy, U’ runsM on inputy.
If M would output string: ony afters steps, the/’ outputs stringe afterg(s) steps.
Note that becaus¥ is an efficient universal prefix maching, will be an efficient
universal prefix machine as well. a

Proposition 4.4 (Analogue of Proposition 7 from [5]).Given any time-efficient uni-
versal prefix maching/, time bound:, and constant > 0, there is a time-efficient
universal prefix machin&” such thatk}, (z) = K{,;(z) + c.

Proof. On input0°z, M’ runsM on inputz, and doesn’t halt on other inputs. O

Proof (of Theorem 4.1)Fix «, and suppose for contradiction that €¢ TTRT —
PSPACE «(n). Lett, be the time bound given in the definition ®TRT, and letU,
be some arbitrary time-efficient universal prefix machine. By the definitioR TR T,
L <k RKLD . Therefore, by Proposition 2.5,is decidable in timeé, (n) = 2”kt0(nk’)
for some constarit.

Lett*(n) be an extremely fast-growing function, so that for any constawe have
t*(log(a(n))) > Q”dtL(n) for all largen. To get our contradiction, we will show that

there exists a time-efficient universal prefix machinsuch thatl, £Z R.-s. Note
that becausé" > t, this is a contradiction to the fact thate TTRT. Y

Forany functionf : {0,1}* — N, defineR; = {z : f(z) > |z|}. We will construct
a functionF : {0, 1}* — N and use it to form a functiof : {0,1}* — N such that:

1. F'is a total function and”(z) is computable in time*?(|z|) by a machine\/.
2. H(z) = min(K}, (z) + 5, F(z) + 3).

3. Yiepony- 277 <1/8

4. L £}, Ry

Claim (Analogue of Claim 1 from [5])Given the above propertids = K}}*3 for some
efficient universal prefix machirig.

By Property 4 this ensures that the theorem holds.

Proof. By Property 3we have that, ;. 277" < 1/8.Hence)" (1. 2717 <

1. Using this along with Property 1, we then have by Proposition 4.2Klj§t =F+2
for some prefix machin@/’. By Proposition 4.4 we have thdt{, = K}, + 4 for
some efficient universal prefix machitvé. Therefore, by Proposition 4.3, witf(n) =

n?, g(n) = n, we find that (z) = min(Kg0 (2)+5, F(2)+3) = min(KL, (), K}‘\}?)—l—
lis Kfjs for some efficient universal prefix machite O

We now need to show that, for our given langudgeve can always construct functions
H andF with the desired properties. As part of this construction we will set up and play
a number of games. Our moves in the game will define the funétidPotentially dur-

ing one of these games, we will play a move forcing a stritig be in the complement

of Ry. To do this we will setF'(z) = |z| — 4. Therefore, a maching/ can compute
F(z) by running our construction, looking for the first time during the construction that
F(z) is set to|z| — 4, and outputtingz| — 4. If a certain amount of time elapses during
the construction withouF'(z) ever being set tgz| — 4, then the machiné/ outputs the
default value2|z|.

Asin[5], to ensure that £f, Ry, we need to satisfy an infinite list of requirements
of the form

R. : 7. Is not a polynomial-time truth-table reduction btto Ry, .

In contrast to the situation in [5], we do not need to worry about playing different
games simultaneously or dealing with requirements in an unpredictable order; we will
first satisfyR;, thenRs, etc. To satisfyR. we will set up a gamé. . for an appropriate
string x of our choice, and then play out the game in its entirety. We will chaose
that we can win the gam@. ., which will ensure thai?, is satisfied. If the player
cheats on gamé@. .., then we playg. .- for somez’. For the same reasons as in [5] the
K player cannot cheat infinitely often on games for a particylao eventuallyR, will
be satisfied.

A gameg. , will be played as follows:

First we calculate the circuit. ., which represents the reductignon inputz. Let
F* be the functionF’ as it is at this point of the construction when the gaiieg, is
about to be played. For any quety that is an input of this circuit such that;| <

log(a(|z])) — 1, we calculater; = min(K}, (z;) + 5, F*(z;) + 3). If r; < |z] we
substitute FALSE in for the query, and simplify the circuit accordingly, otherwise we
substitute TRUE in for the query, and simplify the circuit accordingly. (We will refer to
this as the “pregame preprocessing phase”.)

The remaining queries are then ordered by increasing length. There are two play-
ers, theF player (whose moves will be played by us during the construction), and the
player (whose moves will be determined Ry;,). As in [5], in each game th&' player
will either be playing on the YES side (trying to make the final value of the circuit equal
TRUE), or the NO side (trying to make the final value of the circuit equal FALSE).

Let S; be the set of queries from . of smallest length, les, be the set of queries
that have the second smallest length, etc. So we can think of the queries being grouped
into an ordered se&f = (51, 5o, ... ,S,) for somer.

The scoring for the game is similar to that in [5]; originally each player has a score
of 0 and a player loses if his score exceeds some threghdlthen playing a game
Ge,x, We SEte = 2776,

Inround one of the game, thi€ player makes some (potentially empty) subisebf
the queries frond; nonrandom. For any; C S; that he chooses to make nonrandom,
> ez, 27 (F170 — 2727l is added to his score. As in [5], a player can only legally
make a move if doing so will not cause his score to exeeed

Let us provide some explanation of how to interpret this score. Originally the func-
tion H is set so that for alk, H(z) = 2|z|. BecauseHd = min(Kf;O +5,F +3),if
Kfjo (z) < |z| — 6 then this ensures thatwill be non-random according t& . It would
be sub-optimal for thé< player to sethj‘0 (z) to a value lower thafz| — 6, because
this would add more to his score without any additional benefit. Therefore we assume
without loss of generality that when thi€ player makes a move he does so in exactly
this way. Thus the amount that is added to the score of playeorresponds to the
amount by whichK is changing the probability assigned to each stengiewing K
as a probability function). As in [5], for the case of analyzing the games and determin-
ing who has a winning strategy, we assume thatikhplayer is an adversary playing
optimally, even though in reality his moves will be based on an enumeration that knows
nothing of these games.

After the K player makes his move in round 1, theplayer responds, by making
some subseY; of the queries fromb; — Z; nonrandom. After theé” player moves,
> ey, 27 (FI=1 — 27212l is added to his score.

This is the end of round one. Then we continue on to round two, played in the same
way. TheK player goes first and makes some subset of the queriesSsaranrandom
(which makes his score go up accordingly), and thenfthpayer responds by making
some subset of the remaining queries frésmonrandom. Note that if a query frof)
is not made nonrandom by either theplayer or theF' player in roundi, it cannot be
made nonrandom by either player for the remainder of the game.

After r rounds are finished the game is done and we see who wins, by evaluating
the circuity. ., using the answers to the queries that have been established by the play
of the game. If the circuit evaluates to TRUE (FALSE) and fhelayer is playing as
the YES (NO) player, then thE player wins, otherwise th& player wins.

Note that the game is asymmetric between khplayer and the< player; theF
player has an advantage due to the fact that he plays second in each round and can make
an identical move for fewer points than theplayer. Because the game is asymmetric,
it is possible tha¥' can have a winning strategy playing baththe YES and NO sides.
Thus we define a setl(G.) C {0,1} as follows:0 € val(G. ,) if the F' player has
a winning strategy playing on the NO sidegn -, andl € val(G. ,) if the F player
has a winning strategy playing on the YES sid&in,.

Now we describe the construction. Suppesime steps have elapsed during the
construction up to this point, and we are getting ready to construct a new game in order
to satisfy requiremerk,.. (Either because we just finished satisfying requireni&nt,
or becauséds cheated on some garge .., SO we have to start a new gaigie,).

Starting with the string)*”*(*) (i.e. the string oft**(s) zeros), we search strings
in lexicographical order (as we do in [5]) until we find ahsuch that1 — L(2')) €
val(Ge). (Here,L denotes the characteristic function of the 5gt

Once we find such a string (which we will prove we always can), then we play out
the gamey. .- with the F' player (us) playing on the YES sidelif ') = 0 and the NO
side if L(z") = 1. To determine thé(player's move in théth round, we letZ; C S;
be those queries € S; for which K}fa(z) +5 < |z|. Our moves are determined by our
winning strategy, and are played as in [5]. (These determine the fungtias in [5]
initially F(z) = 2|z| for all z). If the game is completed without ttf€ player cheating,
then we will have won the game, aiit} will be satisfied and will stay satisfied for the
rest of the construction.

Note that when a gamg. ., is played,z is always chosen large enough so that any
query that is not fixed during the pregame preprocessing has not appeared in any game
that was played previously, so the games will never conflict with each other.

The analysis for why Properties 3 and 4 hold is basically identical to [5].

To wrap up the proof of the theorem, we need to prove a couple of claims.

Claim (Analogue of Claim 4 from [5])During the construction, for any requirement
R., we can always find a witnesswith the needed properties to constrget,.

Proof. Suppose for some requiremeRy, our lexicographical search goes on forever
without finding anz such that(1 — L(2’)) € val(G. /). ThenL € PSPACH«a(n),
which is a contradiction.

Here is the PSPACE algorithm to decifieHardcode all the answers for the initial
sequence of strings up to the point where we got stuck in the construction*Lie¢
the function/ up to that point in the construction. On a general inputonstructy, ;.

The advice functionv(n) will give the truth-table ofmin(KED(z) +5,F*(z) + 3)
for all queriesz such thatz| < log(a(|x|)) — 1. For any queryz of v, , such that
|z] <log(a(|x])) — 1, fix the answer to the query according to the advice.

If the F' player had a winning strategy for both the YES and NO player on game
G, then we wouldn't have gotten stuck . Also theF player must have a winning
strategy for either the YES or the NO player, since he always has an advantage over the
K player when playing the game. Therefore, because we got stuck, it must be that the
F player has a winning strategy for the YES player if and only.{&) = 1. Once
the small queries have been fixed, finding which side (YES or NOJtipdayer has a

winning strategy for o1g. ., and hence whethdr(x) = 1 or L(x) = 0, can be done
in PSPACES O

Claim. F(z) is computable in time*?(|z|)

Proof. The functionF' is determined by the moves we play in games during the con-
struction. In order to prove the claim, we must show that if during the construction we
as theF' player make a move that involves setting a strinp be non-random, then
fewer than*?(|z|) time steps have elapsed during the construction up to that point. The
machineM that compute$” will on input z run the construction far(|z|) steps. If at
some point before this during the construction we asitptayer makez non-random,
thenM outputs|z| — 4. OtherwiseM outputs2|z|.

Suppose during the construction that we asfhplayer make a move that sets a
queryz to be non-random during a garge .. Note that|z| > log(«a(|z|)), otherwise
z would have been fixed during the preprocessing stage of the game.

There are at most!*I*! stringsz’ that we could have considered during our lex-
icographic search to find a game for which we had a winning strategy before finally
finding z. Let s be the number of time steps that have elapsed during the construction
before this search began.

Let us first bound the amount of time it takes to reject each of these strings
To compute the circuity. . takes at mostz’|* time for some constant. For each
queryy such thaty| < log(a(|z])) — 1 we computenin(K}?U (y)+5,F*(y)+3). To
calculateF* (y) it suffices to rerun the construction up to this point and check whether
a move had been previously made on the stgngo do this takes time steps, and
by construction we have that(|z|) > t*(loga(|z])) > |2'| > t**(s), sos < |z|.

By Proposition 2.4, to computi; (y) takes at moselvlt*(|y|) < 2/=lt*(|z|) times
steps. Therefore, since there can be at mo$t such queries, altogether computing
min(K}, (y) + 5, F*(y) + 3) for all thesey will take fewer than(z’|¥2/=I¢*(|z|) time
steps.

Then we must computg(z’), and check whethdll — L(2")) € val(Ge, /). Com-
puting L(x") takest,(|«’|) time. By Claim 4, once the small queries have been fixed
appropriately, computingal(G. /) can be done in PSPACE, so it takes at st
time for some constarat

Compiling all this information, and using the fact that for each of thésge have
that|z’| < |z|, we get that the total number of timesteps needed to reject all of ifiese

is less thare!*I” 2121t (|2)¢* (|2|) for some constant'.

During the actual gamé. .., beforez is made non-random the construction might
have to computé}, (y) + 5 for all queries ofy. , for which |y| < |z|. By Proposition
2.4 this takes at mogt|*2!#/t*(|z|) time.

Therefore, overall, for some constadit the total amount of time steps elapsed
beforez is made non random in the construction is at most

T =211 2l# g (Jz)e* (J2]) + s < £2(]2)).
5 This follows from [5], as these games are a restricted case of the games from that paper. The
point is that we can write the predicate “Theplayer has a winning strategy as the YES player
ong. ,” as a simple quantified boolean formula.

Here the inequality follows from the fact that(log(a(|z|))) > 2!#1°¢,(||) for
any constand, and thaiz| > log(a(|z|)) . O

5 Removing the Advice

With the plain Kolmogorov complexity functio@, it is fairly clear what is meant by
a “time-efficient” universal Turing machine. Namely, is a time-efficient universal
Turing machine if, for every Turing machine, there is a constantso that, for every
x, if there is a descriptiod for which M (d) = z in ¢ steps, then there is a description
d' of length< |d| + ¢ for whichU(d') = « in at mostctlogt steps. However, with
prefix-free Kolmogorov complexity, the situation is more complicated. The easiest way
to define universal Turing machines for the prefix-free Kolmogorov complexity function
K isin terms ofself-delimiting Turing machine¥hese are machines that have one-way
access to their input tapejs a valid input for such a machine if the machine halts while
scanning the last symbol af For such machines, the notion of time-efficiency carries
over essentially unchanged. However, there are several other ways of characf€rizing
(such as in terms of partial-recursive functions whose domains form a prefix code, or
in terms of prefix-free entropy functions). The running times of the machines that give
short descriptions af using some of these other conventions can be substantially less
than the running times of the corresponding self-delimiting Turing machines. This issue
has been explored in detail by Juedes and Lutz [10], in connection with the P versus NP
problem. Given that there is some uncertainty about how best to define the notion of
time-efficient universal Turing machine fdt‘-complexity, one possible response is
simply to allow much more leeway in the time-efficiency requirement.

If we do this, we are able to get rid of the small amount of non-uniformity in our
PSPACE upper bound.

Definition 5.1. A prefix machind/ is an f-efficient universal prefix machine if there
exist constants,, for each prefix machiné/, such that

1. Vl’, KU({E) < KM(QJ) +Ccpr
2. Va, Kb (x) < K4, (x) + ep forall t(n) > f(¥'(n))

In Definition 2.1 we defined a time-efficient universal prefix machine to be any
poly(n)-efficient universal prefix machine.

Definition 5.2. Define TTRT’ to be the class of languagds such that for all com-
putable f there existg, such that for all f-efficient universal prefix machinés and
t>to, L <{; R .

Theorem 5.3. BPPC TTRT’ C PSPACEN P/poly.
Note thatTTRT’ C TTRT, so from Theorem 3.2 we ga@iTRT’ C P/poly. Also,

the proofs in [7] can be adapted to show that BPRTRT'. So all we need to show is
the PSPACE inclusion.

Proof (of Theorem 5.3).

The proof is similar to the proof of Theorem 4.1, with some minor technical modi-
fications. LetL be an arbitrary language fromMTRT’. Becaus&d TRT’ C TTRT, asin
the proof of Theorem 4.1 we have thafs decidable in time; < 2”kt’(n’“) for some
fixed time bound’ and constant.

Define f to be a fast enough growing function thatn) > 2" for any
constantd. Let ty be the time bound given in the definition ®TRT’ for language
L and functionf. Let t*(n) be a time bound such that for al| t*(n) > f(n) and
t*(n) > to(n). To get our contradiction, we will show that there existsfaefficient
universal prefix maching& and constant > 1 such thatl £/; Ry, whereu(|z|) =
ot (lz)° - to(|z|).

We will make use of the following revised proposition:

Proposition 5.4 (Revised Proposition 4.3L.etU and M be ann¢-efficient universal
prefix Turing machine and a prefix Turing machine respectively:,lzebe time bounds
and f, g be two time-constructible increasing functions, such g{at) < f(n). Let
t"(Jz]) = g(t(Jz|)) = h(t'(Jz|)). Then there is arf-efficient universal prefix machine
U’ such that

Kl (z) = min(K} (z), K& (2) + 1.

Proof. Almostidentical to before: On inp0Oty, U’ runsU on inputy. If U would output
stringz ony after s steps, the/’ outputs stringe afterg(s) steps. Similarly, on input
1y, U’ runsM oninputy. If M would output stringz ony afters steps, the/’ outputs
stringx afterh(s) steps.

Note that becaust is annc-efficient universal prefix maching]’ will be an f-
efficient universal prefix machine. a

We will construct functiond” andH such that

1. F'is a total function such that for all, F'(z) < 2|z|, andF'(z) is computable in
time 2(“(“(‘”‘)))5 by a machiné\/ for some constant.

2. H(zx) = min(Kf, + 5, F(x) + 3).

3. Y cqony- 271 <1/8

4. L 7 Ry

Claim (Revised Claim 4)Given the above propertidd = K7, for some f-efficient
universal prefix machin& (which by Property 4 ensures that the theorem holds)
Proof. By Property 3 we have that,_ (, ,,. 2~ 7(")*% < 1/8. Therefore it holds that

Y eefoy+ 27 < 1. Using this along with Property 1, we then have by Proposition
4.2 thatK},, = F + 2 for some prefix machind/’ and constant’, whereu(z) =
262" ()" By Proposition 4.4 we have that!;, — Kt + 4 for somen -efficient
universal prefix machin&”’. Therefore, by Proposition 5.47 (z) = min(K{;O () +

5, F(z) +3) = min(K}, (x), K¥, (x)) + 1is K}, for somef-efficient universal prefix
machinel/ and constant > 1, wherev(|z|) = 2= (2D)° (In this last step we are

using the fact thaf (n) > 2(t=("*))" for any constant to ensure that’ is an f-efficient
universal prefix machine by Propositiént). a

The construction is virtually the same as in Theorem 4.1.

There is one change from Theorem 4.1 in how the games are played. During the pre-
processing step of a garge ,, all queries: such that*(|z|) < || are fixed according
to min(Kf;O (2) + 5, F*(z) + 3).

If we get stuck during our lexicographical search to find a suitabl® play the
gameg. ./, then this implies that the languadeis in PSPACE, since by Proposi-
tion 2.4, for some constarit fixing all queriesz such that*(|z]) < |z| according to
min(Kgo(z) + 5, F*(2) + 3) can be done ifx|F2121t*(|z|) < |z|Ft*(|2])? < |o|F+?
time (and then it is a PSPACE computation to determine which sidé€'tblayer has a
winning strategy for).

It remains to prove the following claim.

Claim. F(z) is computable in time(z(¢*(12D)" for some constant.

Proof. Suppose during the construction we as f@layer make a move that sets a
query z to be non-random during a gande ... Note thatt*(|z|) > |z|, otherwisez
would have been fixed during the preprocessing stage of the game.

As in the proof of Claim 4, we can bound the total amount of time steps elapsed
beforez is made non random in the construction to be at most

T = 2lel"2l=lt (2)e* (|2]) + s < 2@ 1=D)g

6 Conclusion

We have made some progress towards settling our research question in the case of time-
bounded Kolmogorov complexity, but we have also discovered that this situation is
substantially different from the ordinary Kolmogorov complexity. Solving this latter
case will likely prove to be much harder.

We would like to prove an exact characterization, such as BPBTTR (or the
time-bounded analogue thereof), but there seems to be no naive way of doing this. It has
been shown in [7] that the initial segmeR'°¢ ", a string of lengttn, requires circuits
of sizen/c, for somec > 1 and all largen; it is this fact that is used to simulate BPP.
However, much stronger circuit lower bounds for the initial segment do not seem to hold
(cf. Theorems 4-9 of [7]), suggesting thal, has some structure. This structure can
actually be detected — the reductidn of Theorem 3.4 can be adapted to distinguish
Ryx from a random oracle w.h.p. — but we still don’t know of any way of usitg
non-adaptively, other than as a pseudo-random string. A new idea will be needed in
order to either prove or disprove the BRPDTTR conjecture.

Acknowledgments

The first and third authors acknowledge NSF Grants CCF-0832787 and CCF-1064785.

References

10.

11.

E. Allender. Curiouser and curiouser: The link between incompressibility and complexity.
In Proc. Computability in Europe (CIELNCS. Springer, 2012. To appear.

. E. Allender, H. Buhrman, and M. Kougk” What can be efficiently reduced to the

Kolmogorov-random stringsAnnals of Pure and Applied Logi&38:2—-19, 2006.

. E. Allender, H. Buhrman, M. Kougk D. van Melkebeek, and D. Ronneburger. Power from

random stringsSIAM Journal on Computin@5:1467—-1493, 2006.

. E. Allender, G. Davie, L. Friedman, S. B. Hopkins, and |. Tzameret. Kolmogorov complex-

ity, circuits, and the strength of formal theories of arithmetic. Technical Report TR12-028,
Electronic Colloquium on Computational Complexity, 2012. Submitted for publication.

. E. Allender, L. Friedman, and W. Gasarch. Limits on the computational power of random

strings. Information and Computatiqr2012. To appear; special issue on ICALP 2011. See
also ECCC TR10-139.

. Jo& Luis Bal@zar, Josep s, and Joaquim Gabarr Structural Complexity.| Springer-

Verlag, 1988.

. H. Buhrman, L. Fortnow, M. Kougk ‘and B. Loff. Derandomizing from random strings. In

25th IEEE Conference on Computational Complexity (C@@pes 58-63. IEEE, 2010.

. H. Buhrman, L. Fortnow, I. Newman, and N. Vereshchagin. Increasing Kolmogorov com-

plexity. In Volker Diekert and Bruno Durand, edito&TACS 2005/0lume 3404 ot.ecture
Notes in Computer Sciengeages 412—-421. Springer Berlin / Heidelberg, 2005.

. Harry Buhrman and Elvira Mayordomo. An excursion to the kolmogorov random stings.

Comput. Syst. S¢i54(3):393-399, 1997.

David W. Juedes and Jack H. Lutz. Modeling time-bounded prefix Kolmogorov complexity.
Theory of Computing Systen®3(2):111-123, 2000.

M. Liand P. Vitanyi.Introduction to Kolmogorov Complexity and its Applicatio®pringer,

third edition, 2008.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

