
REDUCTIONS TO THE SET OF RANDOM STRINGS:
THE RESOURCE-BOUNDED CASE

ERIC ALLENDER, HARRY BUHRMAN, LUKE FRIEDMAN, AND BRUNO LOFF

Department of Computer Science, Rutgers University, Piscataway, NJ 08855, USA
e-mail address: allender@cs.rutgers.edu

Centrum Wiskunde & Informatica (CWI), and University of Amsterdam, Amsterdam, The Netherlands
e-mail address: buhrman@cwi.nl

Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043
e-mail address: lbfried@gmail.com

Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
e-mail address: bruno.loff@gmail.com

ABSTRACT. This paper is motivated by a conjecture [All12, ADF+13] that BPP can be characterized
in terms of polynomial-time nonadaptive reductions to the set of Kolmogorov-random strings. In this
paper we show that an approach laid out in [ADF+13] to settle this conjecture cannot succeed without
significant alteration, but that it does bear fruit if we consider time-bounded Kolmogorov complexity
instead.

We show that if a set A is reducible in polynomial time to the set of time-t-bounded Kolmogorov-
random strings (for all large enough time bounds t), then A is in P/poly, and that if in addition
such a reduction exists for any universal Turing machine one uses in the definition of Kolmogorov
complexity, then A is in PSPACE.

1. INTRODUCTION

The roots of this investigation stretch back to the discovery that PSPACE ⊆ PR and NEXP ⊆ NPR,
where R is the set of Kolmogorov-random strings [ABK+06b, ABK06a]. Later, it was shown that
BPP ⊆ PR

tt [BFKL10], where PA
tt denotes the class of problems reducible to A via polynomial-time

nonadaptive (or truth-table) reductions.
There is evidence indicating that some of these inclusions are in some sense optimal. The

reader may, with some justification, be rather confused by this claim of “optimality.” After all, the
inclusions in question all take the form of providing upper bounds for complexity classes, in terms
of efficient reductions to sets such as R that are not even computable! In what sense can these
inclusions be optimal? Let us explain.

The inclusions mentioned in the initial paragraph hold for the two most-common versions of
Kolmogorov complexity (the plain complexity C and the prefix-free complexity K), and (signif-
icantly for our investigation) they also hold no matter which universal Turing machine one uses
when defining the measures K and C.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Allender et al.
Creative Commons

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 54 (2012)



2 ALLENDER ET AL.

Let RKU
denote the set of random strings according to the prefix-free measure K given by the

universal machine U : RKU
= {x : KU (x) ≥ |x|}. In a preceding paper [AFG13], it was shown

that the class of decidable sets that are polynomial-time truth-table reducible to RKU
for every U

is contained in PSPACE. That is, although P
RKU
tt contains arbitrarily complex decidable sets, an

extremely complex set can only be there because of characteristics of RKU
that are fragile with

respect to the choice of U .
This motivates the following definition: DTTR is the class of all problems that are polynomial-

time truth-table reducible toRKU
for every choice of universal prefix-free Turing machine U .1 Thus

it was proven that
BPP ⊆ DTTR ⊆ PSPACE ⊆ PRK . (1.1)

So we naturally come upon the following.
Research question: Does DTTR sit closer to BPP, or closer to PSPACE?
A conjecture by various authors [ADF+13, All12] is that DTTR actually characterizes BPP

exactly. Part of the intuition is that (seemingly) a non-adaptive reduction cannot make use of queries
to RK larger than O(log n) to solve a decidable problem. If this conjecture is indeed true, then we
could use the strings of length at most O(log n) as advice and answer the larger queries with NO, to
show that these sets are in P/poly. The rest of the intuition is that the smaller strings can only be used
as a source for pseudo-randomness. If we are able to prove this conjecture, then we can make use
of the tools of Kolmogorov complexity to study various questions about the class BPP. Because of
the inclusions listed in (1.1) above, this now amounts to understanding the relative power of Turing
reductions vs. truth-table reductions to RK .

In an attempt to tackle this question, it was conjectured in [ADF+13, All12] that the DTTR ⊆
PSPACE upper bound can be improved to PSPACE∩P/poly, and an approach was suggested, based
on the above mentioned intuition, dealing with the provability of true statements in various formal
systems of arithmetic. In this paper, we show that this approach must fail, or at least requires
significant changes. Interestingly, we can also prove that this intuition — that the large queries
can be answered with NO — can be used in the resource-bounded setting to show an analogue of
the P/poly inclusion. While demonstrating this discrepancy we show several other ways in which
reductions to RK and RKt are actually very different; in particular, we construct a counter-intuitive
example of a polynomial-time non-adaptive reduction that distinguishes RK from RKt , for any
sufficiently large time-bound t.

To investigate the resource-bounded setting we define a class TTRT as an analog of DTTR, de-
fined using time-bounded Kolmogorov complexity (for very large time bounds). Informally, TTRT
is the class of problems that are polynomial-time truth-table reducible to RKt for every sufficiently
fast-growing time-bound t, and every “time-efficient” universal Turing machine used to define Kt.
We prove that, for all monotone nondecreasing computable functions α(n) = ω(1),

BPP ⊆ TTRT ⊆ PSPACE/α(n) ∩ P/poly.

Here, PSPACE/α(n) is a “slightly non-uniform” version of PSPACE. That is, we succeed in ob-
taining a P/poly upper bound (of the sort that we were unable to obtain for DTTR in [ADF+13]),
and we “nearly” obtain a PSPACE upper bound (analogous to the PSPACE upper bound that was
obtained for DTTR in [AFG13]). We believe that this indicates that TTRT is “closer” to BPP than
it is to PSPACE. (Recently, Hirahara and Kawamura have announced results of a similar nature,

1In the conference version of this paper [ABFL12], DTTR was defined as the class of all decidable problems that
are polynomial-time truth-table reducible to RKU for every universal prefix machine U . However, it has recently been
shown that this class remains the same, even if the restriction to decidable sets is removed [CDE+]. That is: all sets in
DTTR (as defined above) are already decidable.



REDUCTIONS TO THE SET OF RANDOM STRINGS: THE RESOURCE-BOUNDED CASE 3

stated in terms of plain Kolmogorov complexity, instead of the prefix-free notion considered here
[HK14].)

It would be more appealing to avoid the advice function, and we are able to do so, although
this depends on a fine point in the definition of time-efficient prefix-free Kolmogorov complexity.
This point involves a subtle technical distinction, and will be left for the appropriate section. To
summarize:

• In Section 3 we prove that TTRT ⊆ P/poly, by using the same basic idea of [ADF+13,
All12]. We further show, however, that this approach will not work to prove DTTR ⊆
P/poly, and by reversing the logic connection of [ADF+13, All12], this will give us an
independence result in certain extensions of Peano arithmetic.

• Then in Section 4 we prove that TTRT ⊆ PSPACE/α(n), which is a non-trivial adaptation
of the techniques from [AFG13]. In Section 5 we show how to get an analogous result
without the super-constant advice term.

In the final section we discuss prospects for future work.
We consider the results in Section 3 to be the most important contributions of this paper. The

P/poly upper bound indicates that TTRT is a “feasible” class in some sense, and can perhaps be
viewed as evidence that a similar upper bound should also hold for DTTR – while simultaneously
showing that rather different techniques will be required to establish such a bound for DTTR. If
such a bound can be proved, then this would show BPP ⊆ DTTR ⊆ PSPACE ∩ P/poly, which
would in turn be a significant step toward proving DTTR = BPP. We refer the reader to [ADF+13,
Section 7], for additional motivation for studying the DTTR = BPP question.

In contrast, the results in Sections 4 and 5 are more technical, and draw heavily on the tech-
niques of [AFG13], in order to prove an upper bound for TTRT that is similar to the bound proved
for DTTR in [AFG13].

2. PRELIMINARIES

We assume the reader is familiar with basic complexity theory [BDG88] and Kolmogorov complex-
ity [LV08]. We use ≤p

T and PA when referring to polynomial-time Turing reductions, and ≤p
tt and

PA
tt for polynomial-time truth-table (or non-adaptive) reductions. For example,M : A ≤p

T B means
that M is a polynomial-time Turing reduction from A to B. For a set A of strings, A≤n denotes the
set of all strings of length at most n in A.

We let KU denote Kolmogorov complexity with respect to prefix machine U , i.e., KU (x) =
min{|p| : U(p) = x}. (A prefix machine is a Turing machine with the property that, if it halts
and produces output on some input p, then it does not halt on any input of the form px, for any
nonempty string x. For more details, see [LV08].) We use RKU

to denote the set of KU -random
strings {x|KU (x) ≥ |x|}. In this paper, a function t : N → N is called a “time-bound” if it is
non-decreasing and time-constructible. (We follow the usual convention that a time-constructible
function t satisfies t(n) ≥ n for all n. See [BDG88].) We use the following time-bounded version
of Kolmogorov complexity: for a prefix machine U and a time-bound t, Kt

U (x) is the length of the
smallest string p such that U(p) outputs x and halts in fewer than t(|x|) time steps. Then RKt

U
is

the set of Kt
U -random strings {x|Kt

U (x) ≥ |x|}. Let us define what it means for a machine to be
“universal” in the time-bounded setting:

Definition 2.1. A prefix machine U is a time-efficient universal prefix machine if there exist con-
stants c and cM for each prefix machine M , such that

(1) ∀x, KU (x) ≤ KM (x) + cM , and



4 ALLENDER ET AL.

(2) ∀x, and for all time bounds t and t′ where t > t′c, Kt
U (x) ≤ Kt′

M (x) + cM .

We will sometimes omit U in the notation KU , RKU
,Kt

U , RKt
U

, in which case we mean U =
U0, for some arbitrary choice of a time-efficient universal prefix machine U0. Now we can formally
define the time-bounded analogue of DTTR:

Definition 2.2. TTRT is the class of languages L such that there exists a time bound t0 (depending
on L) such that for all time-efficient universal prefix machines U and for all time-constructible
t ≥ t0, L ≤p

tt RKt
U

.

Clearly, every language in TTRT is decidable.
The proof of Corollary 12 in [BFKL10] shows that, if t ≥ t0 = 222n

, then BPP ≤p
tt RKt

U
, for

any time-efficient universal U . This implies:

Theorem 1 ([BFKL10]). BPP ⊆ TTRT.

Now we prove some basic facts about time-bounded prefix-free Kolmogorov complexity.

Proposition 2. For any machine M and t′(|x|) > 2|x|t(|x|), the query x ∈ RKt
M

? can be answered
in time t′.

Proof. Simulate the machine M on every string of length less than |x| for t(|x|) steps. Because
there are fewer than 2|x| such strings, the bound follows.

Proposition 3. Let L ≤p
tt RKt

U
for some time-bound t. Then there exists a constant k such that the

language L can be decided in tL(n) = 2nk
t(nk) time.

Proof. Let M be a machine that decides L by running the polynomial-time truth-table reduction
from L to RKt

U
, and computing by brute-force the answer to any queries from the reduction. Using

Proposition 2, we have that for large enough k, M runs in at most tL(n) = 2nk
t(nk) time, so L is

decidable within this time-bound.

It is the ability to compute RKt for short strings that makes the time-bounded case different
from the ordinary case. This will be seen in proofs throughout the paper.

3. HOW AND WHY TO DISTINGUISH RK FROM RKt

At first glance, it seems reasonable to guess that a polynomial-time reduction would have difficulty
telling the difference between an oracle for RK and an oracle for RKt , for large enough t. Indeed
RK ⊆ RKt and in the limit for t→∞ they coincide.

One might even suspect that a polynomial-time reduction must behave the same way with RKt

and RK as oracle, already for modest time bounds t. However, this intuition is wrong. Here is an
example for adaptive polynomial-time reductions.

Observation 4. There is a polynomial-time algorithm which, given oracle access to RK and input
1n, outputs a K-random string of length n. However, for any time-bound t such that t(n + 1) �
2nt(n), there is no polynomial-time algorithm which, given oracle access to RKt and input 1n,
outputs a Kt-random string of length n.

For the algorithm, see [BFNV05]; roughly, we start with a small random string and then use
[BFNV05, Theorem 15] (described later) to get a successively larger random string. But in the time-
bounded case in [BM97] it is shown that on input 1n, no polynomial-time machine M can query



REDUCTIONS TO THE SET OF RANDOM STRINGS: THE RESOURCE-BOUNDED CASE 5

(or output) any Kt-random string of length n: in fact, M(1n) is the same for both oracles RKt and
R′ = R≤n−1

Kt . This is proven as follows: since R′ can be computed in time t(n) (by Proposition
2), then any query of length ≥ n made by MR′(1n) is described by a pointer of length O(log n) in
time t(n), and hence is not in RKt .

3.1. Small circuits for sets reducible to RKt . We now prove that TTRT is a subset of P/poly.
Actually, we will prove that this holds even for Turing reductions to RKU

, (for every universal
Turing machine U ):

Theorem 5. Suppose A ∈ DTIME(t1) and M : A ≤p
T RKt , for some time-bounds t, t1 with

t(n + 1) ≥ 2nt(n) + 22n
t1(2n).2 Then A ∈ P/poly; in fact, if M runs in time nc, and R′ =

R
≤d(c+1) log ne
Kt , then ∀x ∈ {0, 1}n MR′(x) = A(x).

Proof. Let `(n) = d(c+1) log ne, and let R′(n) = R
≤`(n)
Kt . Showing that MR′(x) = A(x) for all x

of each length n suffices to show that A ∈ P/poly, because R′ consists of only polynomially-many
strings, which can be encoded in an advice string of length polynomial in n.

Suppose, for the sake of contradiction, that MR′(n)(x) 6= A(x) for some x of length n. Then
we may find the first such x in time 2`(n)t(`(n))+2n+1(t1(n)+O(nc)) (cf. Proposition 2), and each
query made byMR′(n)(x) can be output by a program of length c log n+O(1), running in the same
time bound. But since A(x) 6= MR′(n)(x), it must be that, with R′(n) as oracle, M makes some
query q of size m ≥ `(n) + 1 which is random for t-bounded Kolmogorov complexity (because
both small and nonrandom queries are answered correctly when usingR′ instead ofRKt). Hence we
have both that q is supposed to be random, and that q can be output by a program of length< `(n) in
time 2`(n)t(`(n)) + 2n+1(t1(n) +O(nc)) � 2`(n)t(`(n)) + 22`(n)

t1(2`(n)) ≤ t(`(n) + 1) ≤ t(m),
which is a contradiction.

Corollary 6. TTRT ⊆ P/poly.

Proof. Let L ∈ TTRT. By the definition of TTRT, L ≤p
tt RKt0 for some t0. Using Proposition

3, we then have that L is decidable in time tL(n) = 2nk
t0(nk) for some constant k. Choose a

time-bound t such that t(n + 1) ≥ 2nt(n) + 22n
tL(2n). By the definition of TTRT, since t > t0,

we have that L ≤p
tt RKt

U0
, from which by Theorem 5 it follows that L ∈ P/poly.

PSPACE ≤p
T RK [ABK+06b], but Theorem 5 implies that PSPACE 6≤p

T RKt for sufficiently-
large t, unless PSPACE ⊆ P/poly. This highlights the difference between the time-bounded and
ordinary Kolmogorov complexity, and how this comes to the surface when working with reductions
to the corresponding sets of random strings. We wish to emphasize at this point that the proof of the
inclusion PSPACE ≤p

T RK relies on the ability of a PRK computation to construct a large element
of RK , whereas the P/poly upper bound in the time-bounded case relies on the inability to use the
oracle to find such a string, in the time-bounded setting.

2For example, if A ∈ EXP, then t can be doubly-exponential. If A is elementary-time computable, then t can be an
exponential tower.



6 ALLENDER ET AL.

3.2. A reduction distinguishing RK from RKt , and an incorrect conjecture. Theorem 5 shows
that a polynomial-time truth-table reduction to RKt for sufficiently-large t will work just as well if
only the logarithmically-short queries are answered correctly, and all of the other queries are simply
answered “no”.

The authors of [ADF+13] conjectured that a similar situation would hold if the oracle were
RK instead of RKt . More precisely, they proposed a proof-theoretic approach towards proving
that DTTR is in P/poly: Let PA0 denote Peano Arithmetic, and for k > 0 let PAk denote PAk−1

augmented with the axiom “PAk−1 is consistent”. In [ADF+13] it is shown that, for any polynomial-
time truth-table reduction M reducing a decidable set A to RK , one can construct a true statement
of the form ∀n∀j∀kΨ(n, j, k) (which is provable in a theory such as Zermelo-Frankel), with the
property that if, for each fixed (n,j,k) there is some k′ such that PAk′ proves ψ(n,j, k), then DTTR ⊆
P/poly. Furthermore, if these statements were provable in the given extensions of PA, it would
follow that, for each input length n, there is a finite subset R′ ⊆ RK consisting of strings having
length at most O(log n), such that MR′(x) = A(x) for all strings x of length n.

Thus the authors of [ADF+13] implicitly conjectured that, for any polynomial-time truth-table
reduction of a decidable set toRK , and for any n, there would be some setting of the short queries so
that the reduction would still work on inputs of length n, when all of the long queries are answered
“no”. While we have just seen that this is precisely the case for the time-bounded situation, the next
theorem shows that this does not hold for RK , even if “short” is interpreted as meaning “of length
< n”. (It follows that infinitely many of the statements ψ(n,j, k) of [ADF+13] are independent of
every PAk′ .)

Theorem 7. There is a truth-table reduction M : {0, 1}∗ ≤p
tt RK , such that, for all large enough n:

∀R′ ⊆ {0, 1}≤n−1∃x ∈ {0, 1}n MR′(x) 6= 1.

Proof. Theorem 15 of [BFNV05] presents a polynomial-time procedure which, given a string z of
even length n − 2, will output a list of constantly-many strings z1, . . . , zc of length n, such that at
least one of them will be K-random if z is. We use this to define our reduction M as follows: on
input x = 00 . . . 0z of length n having even |z|, we query each of z, z1, . . . , zc, and every string of
length at most log n. If there are no strings of length at most log n in the oracle, we reject. Else, if
z is in the oracle but none of the zi are, we reject. On all other cases we accept.

By [BFNV05, Theorem 15], and sinceRK has strings at every length, it is clear thatM accepts
every string with oracle RK , and rejects every string if R′ = ∅. However, for any non-empty set
R′ ⊆ {0, 1}≤n−1, let ` ≤ n− 1 be the highest even length for which R′=` 6= ∅, and pick z ∈ R′=`.
Then we will have z ∈ R′=` but every zi 6∈ R=`+2, hence MR′(00 . . . 0z) rejects.

In fact, if we let R′ = R≤n−1
Kt , for even n, then for the first x = 00z such that MR′(x) = 0,

we will have z ∈ R′ ⊆ RKt , but each zi can be given by a small pointer in time O(2n−1t(n − 1))
(again we use Proposition 2), and hence zi 6∈ RKt for suitably fast-growing t. Thus MRKt (x) =
0 6= MRK (x), and we conclude:

Observation 8. If t(n+1) � 2nt(n), then the non-adaptive reductionM above behaves differently
on the oracles RK and RKt .

4. POLYNOMIAL SPACE WITH ADVICE

Our single goal for this section is proving the following:



REDUCTIONS TO THE SET OF RANDOM STRINGS: THE RESOURCE-BOUNDED CASE 7

Theorem 9. For any computable unbounded function α(n) = ω(1),

TTRT ⊆ PSPACE/α(n).

The proof of this theorem is patterned closely on related arguments in [AFG13], although a
number of complications arise in the time-bounded case. Although we aim to make the presentation
here self-contained, [AFG13] is a good primer and a source of additional intuition for the proof.
Also, one can refer to the conference version of this paper [ABFL12] for a presentation that is not
self-contained but emphasizes the differences between the proof in the time-bounded case and the
unbounded case. Before proving the theorem we present several supporting propositions.

Proposition 10. For any time bound t and time-efficient universal prefix machine U ,∑
x∈{0,1}∗

2−Kt
U (x) ≤ 1.

Proof. From the Kraft Inequality (see e.g. [LV08], Theorem 1.11.1),
∑

x∈{0,1}∗ 2−KU (x) ≤ 1 for
any prefix machine U . For any time bound t and string x,Kt

U (x) ≥ KU (x), so adding a time bound
can only decrease the sum on the left side of this inequality.

Proposition 11 (Analogue to Coding Theorem). Let f be a function such that
(1)

∑
x∈{0,1}∗ 2−f(x) ≤ 1, and

(2) there is a machine M computing f(x) in time t(|x|).
Let t′(|x|) > 22|x|t(|x|). Then for some M ′, Kt′

M ′(x) = f(x) + 2.

Proof. The proof is similar to the proof of Proposition 5 from [AFG13]. Let

E = 〈x0, f(x0)〉, 〈x1, f(x1)〉, . . .
be an enumeration of the function f ordered lexicographically by the strings xi.

We identify the set of infinite sequences S = {0, 1}∞ with the half-open real interval [0, 1);
that is, each real number r between 0 and 1 will be associated with the sequence(s) corresponding to
the infinite binary expansion of r. We will associate each element 〈xi, f(xi)〉 from the enumeration
E with a subinterval Ii ⊆ S as follows:

I0 = [0, 2−f(x0)), and for i ≥ 1, Ii = [
∑

k<i 2
−f(xk),

∑
k≤i 2

−f(xk)). That is, Ii is the
half-open interval of length 2−f(xi) that occurs immediately after the interval corresponding to the
element 〈xi−1, f(xi−1)〉 that appeared just prior to 〈xi, f(xi)〉 in the enumeration E.

Since
∑

i≥0 2−f(xi) ≤ 1, each Ii ⊆ S.
Any finite string z also corresponds to a subinterval Γz ⊆ S consisting of all infinite sequences

that begin with z; Γz has length 2−|z|. Given any element 〈xi, f(xi)〉, there must exist a lexico-
graphically first string zi of length f(xi) + 2 such that Γzi ⊆ Ii. Observe that, since the intervals Ii
are disjoint, no string zi is a prefix of any other.

Let M ′ be the following machine. On input z, M ′ runs M to compute the enumeration E until
it finds an element 〈xi, f(xi)〉 that certifies that z = zi. If it finds such an element then M ′ outputs
xi.

Suppose that M ′ outputs xi on input z, and let 〈xi, f(xi)〉 be the element of E corresponding
to xi. Before outputting xi, M ′ must compute |〈xj , f(xj)〉| for every string xj such that xj < xi

(under the lexicographical ordering). There are at most 2|xi|+1 strings xj such that xj < xi, so
overall this will take less than 22|xi|t(|xi|) time.

M ′ will be a prefix machine, and we have that Kt′
M ′(x) = f(x) + 2.



8 ALLENDER ET AL.

Given two Kolmogorov complexity functions, their minimum is not necessarily going to be a
Kolmogorov complexity function; this is the case both in the time-bounded setting and in the tradi-
tional setting without time bounds. But one can come close. The following proposition establishes
that there is a time-bounded Kolmogorov complexity function that is precisely one more than the
minimum of two other given time-bounded Kolmogorov complexity functions.

Proposition 12 (Analogue to Proposition 6 from [AFG13]). Let U be a time-efficient universal
prefix Turing machine and let M be any prefix Turing machine. Suppose that t, t′, and t′′ are time
bounds and f, g are two time-constructible increasing functions, such that f is upper bounded by a
polynomial, and t′′(|x|) ≥ max{f(t(|x|)), g(t′(|x|))}.

Then there is a time-efficient universal prefix machine U ′ such that

Kt′′
U ′(x) = min(Kt

U (x),Kt′
M (x)) + 1.

Proof. On input 0y, U ′ runs U on input y. If U would output string x on y after s steps, then U ′

outputs string x after f(s) steps. Similarly, on input 1y, U ′ runs M on input y. If M would output
string x on y after s steps, then U ′ outputs string x after g(s) steps.

Note that because U is an efficient universal prefix machine, U ′ will be an efficient universal
prefix machine as well.

Proposition 13 (Analogue of Proposition 7 from [AFG13]). Given any time-efficient universal
prefix machine U , time bound t, and constant c ≥ 0, there is a time-efficient universal prefix
machine U ′ such that Kt

U ′(x) = Kt
U (x) + c.

Proof. On input 0cx, M ′ runs M on input x, and doesn’t halt on other inputs.

Proof of Theorem 9. Fix α, and suppose for contradiction that L ∈ TTRT − PSPACE/α(n). Let
t0 be the time bound given in the definition of TTRT, and assume without loss of generality that
t0(n) is greater than the time required to compute the length of the advice α(n), and let U0 be
some arbitrary time-efficient universal prefix machine. By the definition of TTRT, L ≤p

tt RK
t0
U0

.

Therefore, by Proposition 3, L is decidable in time tL(n) = 2nk
t0(nk) for some constant k.

Let t∗(n) be an extremely fast-growing time-constructible function, so that for any constant
d, we have t∗(log(α(n))) > 2nd

tL(n) for all large n. To get our contradiction, we will show that
there exists a time-efficient universal prefix machine U such that L 6≤p

tt RKt∗3

U

. Note that because
t∗ > t0, this is a contradiction to the fact that L ∈ TTRT.

For any function f : {0, 1}∗ → N, define Rf = {x : f(x) ≥ |x|}. We will construct a function
F : {0, 1}∗ → N and use it to form a function H : {0, 1}∗ → N such that:

(1) F is a total function and F (x) is computable in time t∗2(|x|) by a machine M ;
(2) H(x) = min(Kt∗

U0
(x) + 5, F (x) + 3);

(3)
∑

x∈{0,1}∗ 2−H(x) ≤ 1/8;
(4) L 6≤p

tt RH .

Claim 14 (Analogue of Claim 1 from [AFG13]). Given the above properties H = Kt∗3

U for some
efficient universal prefix machine U .

By Property 4 this ensures that the theorem holds.

Proof. By Property 3 we have that
∑

x∈{0,1}∗ 2−(F (x)+3) ≤ 1/8. Hence
∑

x∈{0,1}∗ 2−F (x) ≤ 1.

Using this along with Property 1, we then have by Proposition 11 that Kt∗3

M ′ = F + 2 for some



REDUCTIONS TO THE SET OF RANDOM STRINGS: THE RESOURCE-BOUNDED CASE 9

prefix machine M ′. By Proposition 13 we have that Kt∗
U ′ = Kt∗

U0
+ 4 for some efficient universal

prefix machine U ′. Therefore, by Proposition 12, with f(n) = n3, g(n) = n, we find that H(x) =
min(Kt∗

U0
(x) + 5, F (x) + 3) = min(Kt∗3

M ′ ,Kt∗
U ′(x)) + 1 is Kt∗3

U for some efficient universal prefix
machine U .

All we now need to show is that, for our given language L, we can always construct functions
H and F with the four desired properties.

Let γ1, γ2, . . . be a list of all possible polynomial-time truth-table reductions from L to RH .
This is formed in the usual way: we take a list of all Turing machines and put a clock of ni + i
on the ith one and we will interpret the output on a string x as an encoding of a Boolean circuit on
atoms of the form “z ∈ RH”. (i.e. these atoms form the input gates of the circuit, and their truth
values determine the output of the circuit.) We will refer to the string z as a query.

As in [AFG13], to ensure that L 6≤p
tt RH (Property 4), we need to satisfy an infinite list of

requirements of the form
Re : γe is not a polynomial-time truth-table reduction of L to RH .
As part of our construction we will set up and play a number of games, which will enable us to

satisfy each of these requirementsRe in turn. Our moves in the game will define the function F (and
thus indirectly H). Originally we have that F (z) = 2|z|+3 for all strings z. Potentially during one
of these games, we will play a move forcing a string z to be in the complement ofRH . To do this we
will set F (z) = |z| − 4. Therefore, a machine M can compute F (z) by running our construction,
looking for the first time during the construction that F (z) is set to |z|−4, and outputting |z|−4. If
a certain amount of time elapses (to be determined later) during the construction without F (z) ever
being set to |z| − 4, then the machine M outputs the default value 2|z|+ 3.

4.1. Description of the games. Let us first describe abstractly the games that will be played dur-
ing the construction; afterwards we will explain how it is that we use these games to satisfy each
requirement Re. (Note that these games are defined differently than those in [AFG13]).

For a given requirement Re, a game Ge,x will be played as followed for some string x:
First we calculate the circuit γe,x, which is the output of the reduction γe on input x. Let F ∗ be

the function F as it is at this point of the construction when the game Ge,x is about to be played. For
any atom “zi ∈ RH” that is an input of this circuit such that |zi| ≤ log(α(|x|)) − 1, we calculate
ri = min(Kt∗

U0
(zi) + 5, F ∗(zi) + 3). If ri < |zi| we substitute FALSE in for the atom, and simplify

the circuit accordingly, otherwise we substitute TRUE in for the query, and simplify the circuit
accordingly. (We will refer to this as the “pregame preprocessing phase”.)

The remaining queries zi are then ordered by increasing length. There are two players, the F
player (whose moves will be played by us during the construction), and the K player (whose moves
will be determined by Kt∗

U0
). As in [AFG13], in each game the F player will either be playing on

the YES side (trying to make the final value of the circuit equal TRUE), or the NO side (trying to
make the final value of the circuit equal FALSE).

Let S1 be the set of queries from γe,x of smallest length, let S2 be the set of queries that have
the second smallest length, etc. So we can think of the queries being partitioned into an ordered set
S = (S1, S2, . . . , Sr) for some r.

The scoring for the game is similar to that in [AFG13]; originally each player has a score of
0 and a player loses if his score exceeds some threshold ε. When playing a game Ge,x, we set
ε = 2−e−3.



10 ALLENDER ET AL.

Originally we have that the truth value of all the atoms in the game are TRUE. In round one of
the game, the K player makes some (potentially empty) subset Z1 of the queries from S1 nonran-
dom; i.e. for each z ∈ Z1 he sets the atom “z ∈ RH” to the value FALSE. For any Z1 ⊆ S1 that he
chooses to make nonrandom,

∑
z∈Z1

(2−(|z|−6) − 2−(2|z|+3)) is added to his score. As in [AFG13],
a player can only legally make a move if doing so will not cause his score to exceed ε.

After the K player makes his move in round 1, the F player responds, by making some subset
Y1 of the queries from S1−Z1 nonrandom. After the F player moves,

∑
z∈Y1

2−(|z|−4)−2−(2|z|+3)

is added to his score.
This is the end of round one. Then we continue on to round two, played in the same way. The

K player goes first and makes some subset of the queries from S2 nonrandom (which makes his
score go up accordingly), and then the F player responds by making some subset of the remaining
queries from S2 nonrandom. Note that if a query from Si is not made nonrandom by either the K
player or the F player in round i, it cannot be made nonrandom by either player for the remainder
of the game.

After r rounds are finished the game is done and we see who wins, by evaluating the circuit γe,x

using the answers to the queries that have been established by the play of the game. If the circuit
evaluates to TRUE (FALSE) and the F player is playing as the YES (NO) player, then the F player
wins, otherwise the K player wins.

Note that the game is asymmetric between the F player and the K player; the F player has an
advantage due to the fact that he plays second in each round and can make an identical move for
fewer points than the K player. Because the game is asymmetric, it is possible that F can have a
winning strategy playing on both the YES and NO sides. Thus we define a set val(Ge,x′) ⊆ {0, 1}
as follows: 0 ∈ val(Ge,x′) if the F player has a winning strategy playing on the NO side in Ge,x′ ,
and 1 ∈ val(Ge,x′) if the F player has a winning strategy playing on the YES side in Ge,x′ .

4.2. Description of the construction. Now we describe the construction. In contrast to the situa-
tion in [AFG13], we do not need to worry about playing different games simultaneously or dealing
with requirements in an unpredictable order; we will first satisfy R1, then R2, etc. To satisfy Re we
will set up a game Ge,x for an appropriate string x of our choice, and then play out the game in its
entirety as the F player. We will choose x so that we can win the game Ge,x, and will arrange that
by winning the game we ensure that Re is satisfied.

A complication that arises is that the player K (whose moves are decided by U0) is not con-
strained to make only “legal” moves. That is, player K might decide to make moves that exceed the
legal threshold while playing some of the games. If the K player “cheats” on game Ge,x, then we
quit the game Ge,x and we play Ge,x′ for some new x′. However, we will show that the K player
cannot cheat infinitely often on games for a particular e, so eventually Re will be satisfied.

Originally we define the function F so that F (z) = 2|z| + 3 for all strings z. Suppose s time
steps have elapsed during the construction up to this point, and we are getting ready to construct a
new game in order to satisfy requirementRe. (Either because we just finished satisfying requirement
Re−1, or because K cheated on some game Ge,x, so we have to start a new game Ge,x′). Starting
with the string 0t∗4(s) (i.e. the string of t∗4(s) zeros), we search strings in lexicographical order
until we find an x′ such that (1− L(x′)) ∈ val(Ge,x′). (Here, L denotes the characteristic function
of the set L.)

Once we find such a string x′ (which we will prove we always can), then we play out the game
Ge,x′ with the F player (us) playing on the YES side if L(x′) = 0 and the NO side if L(x′) = 1.
To determine the K player’s move in the ith round, we let Zi ⊆ Si be those queries z ∈ Si for
which Kt∗

U0
(z) ≤ |z| − 6. Our moves are determined by our winning strategy; whenever we play



REDUCTIONS TO THE SET OF RANDOM STRINGS: THE RESOURCE-BOUNDED CASE 11

a move that makes a query z nonrandom, we update the function F so that F (z) = |z| − 4. Note
that whenever either of the player plays a move involving a query z in one of the games (which we
have called “making z nonrandom”), he does make the query z nonrandom in the sense that RH(z)
is fixed to the value 0 for good.

To finish showing that Property 4 will be satisfied, it suffices to prove the following three claims.

Claim 15. If during the construction we win a game Ge,x, then Re will be satisfied and will stay
satisfied for the remainder of the construction.

Proof. Suppose that we win a game Ge,x. Let H∗ = min(Kt∗
U0

+ 5, F ∗ + 3), where F ∗ is the
function F immediately after the game Ge,x is completed. Our having won the game implies that
when evaluating the circuit γe,x, while substituting the truth value of “z ∈ RH∗” for any query of
the form “z ∈ RH”, we have that γe,x 6= L(x), which means that the reduction γe does not output
the correct value on input x and thus Re is satisfied. For any game Ge′,x′ that is played later in the
construction, by design x′ is always chosen large enough so that any query that is not fixed during
the pregame preprocessing has not appeared in any game that was played previously, so Ge′,x′ will
not conflict with Ge,x and Re will remain satisfied for the remainder of the construction.

Claim 16. For any given requirement Re, the K player will only cheat on games Re,x for a finite
number of strings x.

Proof. If the K player cheats on a game Re,x, it means that he makes moves that causes his
score to exceed ε = 2−e−3. By the definition of how K’s moves are determined, this implies

that
∑

z∈Ze,x
2−(Kt∗

U0
(z)−6) ≥ ε, so 2−Kt∗

U0
(z) ≥ ε/64, where Ze,x is defined to be the set of all

the queries that appear in the game Ge,x that are not fixed during the preprocessing stage. How-
ever, for any two games Ge,x and Ge,x′ the sets Ze,x and Ze,x′ are disjoint, so if K cheated
on an infinite number of games associated with the requirement Re, then this would imply that∑

z∈{0,1}∗ 2Kt∗
U0

(z) ≥ ε/64 + ε/64 + · · · . But this divergence would violate Proposition 10.

Claim 17. During the construction, for any requirement Re, we can always find a witness x with
the needed properties to construct Ge,x.

Proof. Suppose for some requirement Re, our lexicographical search goes on forever without find-
ing an x such that (1− L(x′)) ∈ val(Ge,x′). Then we will show that L ∈ PSPACE/α(n), which is
a contradiction.

Here is the PSPACE algorithm to decide L (using small advice). Hardcode all the answers for
the initial sequence of strings up to the point where we got stuck in the construction. Let F ∗ be the
function F up to that point in the construction. On a general input x, construct γe,x. The advice
function α(n) will give the truth-table of min(Kt∗

U0
(z) + 5, F ∗(z) + 3) for all queries z such that

|z| ≤ log(α(|x|))− 1. For any query z of γe,x such that |z| ≤ log(α(|x|))− 1, fix the answer to the
query according to the advice.

If the F player had a winning strategy for both the YES and NO player on game Ge,x, then
we wouldn’t have gotten stuck on Re. Also the F player must have a winning strategy for either
the YES or the NO player, since he always has an advantage over the K player when playing the
game. Therefore, because we got stuck, it must be that the F player has a winning strategy for the
YES player if and only if L(x) = 1. Once the small queries have been fixed, finding the side (YES
or NO) for which the F player has a winning strategy on Ge,x, and hence whether L(x) = 1 or
L(x) = 0, can be done in PSPACE.

To prove this, we will show that the predicate “The F player has a winning strategy as the YES
player on Ge,x” can be computed in alternating polynomial time, which by [CKS81] is equal to



12 ALLENDER ET AL.

PSPACE. To compute this predicate, we must determine if for every move of the K player in round
1, there exists a move for the F player in round 1, such that for every move of the K player in round
2, there exists a move for the F player in round 2... such that when the game is finished the circuit
γe,x evaluates to TRUE. We can represent any state of the game (i.e. which of the polynomial
number of queries have been fixed to be nonrandom so far, the score of the players, the current
round, and whose turn it is) by a number of bits bounded by a polynomial in |x|. Also, given a move
by one of the players, it is easy to determine in polynomial time whether the move is legal and to
compute the new score of the player after the move. (It suffices to add up a polynomial number of
rationals of the form a/2b where b = nO(1)). Also, because there are only a polynomial number
of queries in the circuit γe,x, the total number of moves in the game is bounded by a polynomial.
Finally, evaluating the circuit at the end of the game can be done in polynomial time. Thus the
predicate in question can be computed in alternating polynomial time, which completes the proof.

The following claim shows that Property 1 is satisfied.

Claim 18. F (z) is computable in time t∗2(|z|).

Proof. The function F is determined by the moves we play in games during the construction. In
order to prove the claim, we must show that if during the construction we as the F player make
a move that involves setting a string z to be nonrandom, then fewer than t∗2(|z|) time steps have
elapsed during the construction up to that point. The machine M that computes F will on input z
run the construction for t∗2(|z|) steps. If, at some point before this during the construction, we as
the F player make z nonrandom, then M outputs |z| − 4. Otherwise M outputs 2|z|+ 3.

Suppose during the construction that we as the F player make a move that sets a query z to be
nonrandom during a game Ge,x. Note that |z| ≥ log(α(|x|)), otherwise z would have been fixed
during the preprocessing stage of the game.

There are at most 2|x|+1 strings x′ that we could have considered during our lexicographic
search to find a game for which we had a winning strategy before finally finding x. Let s be the
number of time steps that have elapsed during the construction before this search began.

Let us first bound the amount of time it takes to reject each of these strings x′. To compute
the circuit γe,x′ takes at most |x′|k time for some constant k. For each query y such that |y| ≤
log(α(|x′|))− 1 we compute min(Kt∗

U0
(y) + 5, F ∗(y) + 3). To calculate F ∗(y) it suffices to rerun

the construction up to this point and check whether a move had been previously made on the string
y. To do this takes s time steps, and by construction we have that t∗(|z|) ≥ t∗(logα(|x|)) >

|x| ≥ |x′| ≥ t∗4(s), so s < |z|. By Proposition 2, to compute Kt∗
U0

(y) takes at most 2|y|t∗(|y|) ≤
2|z|t∗(|z|) time steps. Therefore, since there can be at most |x′|k such queries, altogether computing
min(Kt∗

U0
(y) + 5, F ∗(y) + 3) for all these y will take fewer than |x′|k2|z|t∗(|z|) time steps.

Then we must compute L(x′), and check whether (1− L(x′)) ∈ val(Ge,x′). Computing L(x′)
takes tL(|x′|) time. By Claim 17, once the small queries have been fixed appropriately, computing
val(Ge,x′) can be done in PSPACE, so it takes at most 2|x

′|d time for some constant d.
Compiling all this information, and using the fact that for each of these x′ we have that

|x′| ≤ |x|, we get that the total number of timesteps needed to reject all of these x′ is less than
2|x|

d′
2|z|tL(|x|)t∗(|z|) for some constant d′.
During the actual game Ge,x, before z is made nonrandom the construction might have to

compute Kt∗
U0

(y) + 5 for all queries of γe,x for which |y| ≤ |z|. By Proposition 2 this takes at most
|x|k2|z|t∗(|z|) time.



REDUCTIONS TO THE SET OF RANDOM STRINGS: THE RESOURCE-BOUNDED CASE 13

Therefore, overall, for some constant d′′ the total amount of time steps elapsed before z is made
nonrandom in the construction is at most

T = 2|x|
d′′

2|z|tL(|x|)t∗(|z|) + s < t∗2(|z|).

Here the inequality follows from the fact that t∗(log(α(|x|))) > 2|x|
d
tL(|x|) for any constant

d, and that |z| ≥ log(α(|x|)) .

Finally, to finish the proof of the theorem we need to show that Property 3 is satisfied.

Claim 19.
∑

x∈{0,1}∗ 2−H(x) ≤ 1
8 .

Proof. To begin, notice that

∑
x∈{0,1}∗

2−H(x) =
∑

x∈{0,1}∗
2−min(Kt∗

U0
(x)+5,F (x)+3) ≤

∑
x∈{0,1}∗

2−(Kt∗
U0

(x)+5) +
∑

x∈{0,1}∗
2−(F (x)+3).

By Proposition 10,
∑

x∈{0,1}∗ 2−Kt∗
U0

(x) ≤ 1, so
∑

x∈{0,1}∗ 2−(Kt∗
U0

(x)+5) ≤ 1/32. We also have that∑
x∈{0,1}∗ 2−(F (x)+3) = (1/8)

∑
x∈{0,1}∗ 2−F (x). Therefore, it is enough that

∑
x∈{0,1}∗ 2−F (x) ≤

1/2, as this would imply that ∑
x∈{0,1}∗

2−H(x) ≤ 1
32

+
1
8
× 1

2
≤ 1

8
.

Let ZF be the set of all those queries that we (the F player) make nonrandom during the
construction by playing a move in one of the games. We have that∑

x∈{0,1}∗
2−F (x) =

∑
x∈ZF

2−(|x|−4) +
∑

x 6∈ZF

2−(2|x|+3)

=
∑

x∈{0,1}∗
2−(2|x|+3) +

∑
x∈ZF

(2−(|x|−4) − 2−(2|x|+3))

≤ 1
8

+
∑

x∈ZF

(2−(|x|−4) − 2(2|x|+3)).

Thus it now suffices to show that totF =
∑

x∈ZF
(2−(|x|−4) − 2(2|x|+3)) ≤ 1/4. Notice that

totF is exactly the total number of points that the F player accrues in all games throughout the
lifetime of the construction. First let us consider those games on which the K player cheats. We
know that in all these games, the F player accrues fewer points than the K player, and in particular
accrues fewer points during these games than totK , the total number of points the K player accrues
in all games throughout the lifetime of the construction. Let ZK be the set of all those queries that
the K player makes nonrandom during the construction by playing a move in one of the games. We
have that

totK =
∑

z∈ZK

2−(|z|−6) − 2−(2|z|+3) ≤
∑

z∈ZK

2−(Kt∗
U0

(z)+5) ≤
∑

z∈{0,1}∗
2−(Kt∗

U0
(z)+5) ≤ 1

32
,

where the first inequality uses that for all z ∈ ZK , Kt∗
U0

(z) ≤ |z| − 6, and the last inequality again
comes from Proposition 10.



14 ALLENDER ET AL.

Now consider games on whichK does not cheat – for eachRe there will be exactly one of these.
On each of these games the F player can accrue at most ε = 2−e−3 points. Thus the total number
of points the F player accrues on all games that K does not cheat on is at most

∑∞
e=1 2−e−3 = 1/8.

Therefore totF ≤ 1/32 + 1/8 ≤ 1/4.

5. REMOVING THE ADVICE

With the plain Kolmogorov complexity function C, it is fairly clear what is meant by a “time-
efficient” universal Turing machine. Namely, U is a time-efficient universal Turing machine if, for
every Turing machine M , there is a constant c so that, for every x, if there is a description d for
which M(d) = x in t steps, then there is a description d′ of length ≤ |d| + c for which U(d′) = x
in at most ct log t steps. However, with prefix-free Kolmogorov complexity, the situation is more
complicated. The easiest way to define universal Turing machines for the prefix-free Kolmogorov
complexity function K is in terms of self-delimiting Turing machines. These are machines that
have one-way access to their input tape; x is a valid input for such a machine if the machine halts
while scanning the last symbol of x. For such machines, the notion of time-efficiency carries over
essentially unchanged. However, there are several other ways of characterizing K (such as in terms
of partial-recursive functions whose domains form a prefix code, or in terms of prefix-free entropy
functions). The running times of the machines that give short descriptions of x using some of
these other conventions can be substantially less than the running times of the corresponding self-
delimiting Turing machines. This issue has been explored in detail by Juedes and Lutz [JL00], in
connection with the P versus NP problem. Given that there is some uncertainty about how best
to define the notion of time-efficient universal Turing machine for Kt-complexity, one possible
response is simply to allow much more leeway in the time-efficiency requirement.

If we do this, we are able to get rid of the small amount of non-uniformity in our PSPACE
upper bound.

Definition 5.1. A prefix machine U is an f -efficient universal prefix machine if there exist constants
cM for each prefix machine M , such that

(1) ∀x, KU (x) ≤ KM (x) + cM ; and
(2) ∀x, Kt

U (x) ≤ Kt′
M (x) + cM for all t(n) > f(t′(n)).

In Definition 2.1 we defined a time-efficient universal prefix machine to be any poly(n)-efficient
universal prefix machine.

Definition 5.2. Define TTRT′ to be the class of languages L such that for all computable f there
exists t0 such that for all f -efficient universal prefix machines U and t ≥ t0, L ≤p

tt RKt
U

.

Theorem 20. BPP ⊆ TTRT′ ⊆ PSPACE ∩ P/poly.

Note that TTRT′ ⊆ TTRT, so from Theorem 5 we get TTRT′ ⊆ P/poly. Also, the proofs
in [BFKL10] can be adapted to show that BPP ⊆ TTRT′. So all we need to show is the PSPACE
inclusion.

Proof of Theorem 20. The proof is similar to the proof of Theorem 9, with some minor technical
modifications. Let L be an arbitrary language from TTRT′ − PSPACE. Because TTRT′ ⊆ TTRT,
as in the proof of Theorem 9 we have that L is decidable in time tL < 2nk

t′(nk) for some fixed
time bound t′ and constant k.



REDUCTIONS TO THE SET OF RANDOM STRINGS: THE RESOURCE-BOUNDED CASE 15

Define f to be a fast enough growing function that f(n) > 2(tL(nd))d
for any constant d, for all

large n. By the definition of TTRT′, for this f there exists a t0 such that for all t ≥ t0, L ≤p
tt RKt

U
.

Let t∗(n) be a time bound such that for all n, t∗(n) > f(n) and t∗(n) > t0(n). To get our
contradiction, we will show that there exists an f -efficient universal prefix machine U and constant
c > 1 such that L 6≤p

tt RKv
U

, where v(|x|) = 2(tL(t∗(|x|)))c
> t0(|x|).

We will make use of the following revised proposition:

Proposition 21 (Revised Proposition 12). Let U and M be an nc-efficient universal prefix Turing
machine and a prefix Turing machine respectively. Let t, t′ be time bounds and f, g be two time-
constructible increasing functions, such that g(nc) < f(n). Let t′′(|x|) = g(t(|x|)) = h(t′(|x|)).
Then there is an f -efficient universal prefix machine U ′ such that

Kt′′
U ′(x) = min(Kt

U (x),Kt′
M (x)) + 1.

Proof. Almost identical to before: On input 0y, U ′ runs U on input y. If U would output string x
on y after s steps, then U ′ outputs string x after g(s) steps. Similarly, on input 1y, U ′ runs M on
input y. If M would output string x on y after s steps, then U ′ outputs string x after h(s) steps.

Note that because U is an nc-efficient universal prefix machine, U ′ will be an f -efficient uni-
versal prefix machine.

We will construct functions F and H such that
(1) F is a total function such that for all x, F (x) ≤ 2|x| + 3, and F (x) is computable in time

2(tL(t∗(|x|)))d
by a machine M for some constant d.

(2) H(x) = min(Kt∗
U0

+ 5, F (x) + 3).
(3)

∑
x∈{0,1}∗ 2−H(x) ≤ 1/8

(4) L 6≤p
tt RH

Claim 22 (Revised Claim 14). Given the above properties H = Kv
U for some f -efficient universal

prefix machine U (which by Property 4 ensures that the theorem holds)

Proof. By Property 3 we have that
∑

x∈{0,1}∗ 2−F (x)+3 ≤ 1/8. Therefore it holds that∑
x∈{0,1}∗

2F (x) ≤ 1.

Using this along with Property 1, we then have by Proposition 11 that Ku
M ′ = F + 2 for some

prefix machine M ′ and constant d′, where u(x) = 2(tL(t∗(|x|)))d′
. By Proposition 13 we have that

Kt∗
U ′ = Kt∗

U0
+ 4 for some nc′-efficient universal prefix machine U ′. Therefore, by Proposition 21,

H(x) = min(Kt∗
U0

(x) + 5, F (x) + 3) = min(Kt∗
U ′(x),K

u
M ′(x)) + 1 is Kv

U for some f -efficient
universal prefix machine U and constant c > 1, where v(|x|) = 2(tL(t∗(|x|)))c

. (In this last step
we are using the fact that f(n) > 2(tL(nk))k

for any constant k to ensure that U is an f -efficient
universal prefix machine by Proposition 21).

The construction is virtually the same as in Theorem 9.
There is one change from Theorem 9 in how the games are played. During the preprocessing

step of a game Ge,x, all queries z such that t∗(|z|) ≤ |x| are fixed according to min(Kt∗
U0

(z) +
5, F ∗(z) + 3).

If we get stuck during our lexicographical search to find a suitable x′ to play the game Ge,x′ ,
then this implies that the language L is in PSPACE, since by Proposition 2, for some constant k
fixing all queries z such that t∗(|z|) ≤ |x| according to min(Kt∗

U0
(z) + 5, F ∗(z) + 3) can be done



16 ALLENDER ET AL.

in |x|k2|z|t∗(|z|) ≤ |x|kt∗(|z|)2 ≤ |x|k+2 time (and then it is a PSPACE computation to determine
which side the F player has a winning strategy for).

It remains to prove the following claim.

Claim 23. F (z) is computable in time 2(tL(t∗(|z|)))d
for some constant d.

Proof. Suppose during the construction we as the F player make a move that sets a query z to be
nonrandom during a game Ge,x. Note that t∗(|z|) > |x|, otherwise z would have been fixed during
the preprocessing stage of the game.

As in the proof of Claim 18, we can bound the total amount of time steps elapsed before z is
made nonrandom in the construction to be at most

T = 2|x|
d
2|z|tL(|x|)t∗(|z|) + s < 2(tL(t∗(|z|)))d

And this concludes the proof of Theorem 20.

6. CONCLUSION

We have made some progress towards settling our research question in the case of time-bounded
Kolmogorov complexity, but we have also discovered that this situation is substantially different
from the ordinary Kolmogorov complexity. Solving this latter case will likely prove to be much
harder.

We would like to prove an exact characterization, such as BPP = DTTR (or the time-bounded
analogue thereof), but there seems to be no naive way of doing this. It has been shown in [BFKL10]
that the initial segment R≤log n

K , a string of length n, requires circuits of size n/c, for some c > 1
and all large n; it is this fact that is used to simulate BPP. However, much stronger circuit lower
bounds for the initial segment do not seem to hold (cf. Theorems 4–9 of [BFKL10]), suggesting
that RK has some structure. This structure can actually be detected — the reduction M of Theorem
7 can be adapted to distinguish RK from a random oracle w.h.p. — but we still don’t know of any
way of using RK non-adaptively, other than as a pseudo-random string. A new idea will be needed
in order to either prove or disprove the BPP = DTTR conjecture.

ACKNOWLEDGMENTS

The first and third authors acknowledge NSF Grants CCF-0832787 and CCF-1064785. The sec-
ond author acknowledges NWO grant Networks. The fourth author acknowledges FCT grant
SFRH/BD/43169/2008.

REFERENCES

[ABFL12] E. Allender, H. Buhrman, L. Friedman, and B. Loff. Reductions to the set of random strings:the resource-
bounded case. In B. Rovan, V. Sassone, and P. Widmayer, editors, Proceedings of the 37th MFCS, volume
7464 of LNCS, pages 88–99. Springer, 2012.

[ABK06a] E. Allender, H. Buhrman, and M. Koucký. What can be efficiently reduced to the Kolmogorov-random
strings? Annals of Pure and Applied Logic, 138:2–19, 2006.

[ABK+06b] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneburger. Power from random strings.
SIAM Journal on Computing, 35:1467–1493, 2006.

[ADF+13] E. Allender, G. Davie, L. Friedman, S. B. Hopkins, and I. Tzameret. Kolmogorov complexity, circuits, and
the strength of formal theories of arithmetic. Chicago J. Theor. Comput. Sci., 2013, 2013.



REDUCTIONS TO THE SET OF RANDOM STRINGS: THE RESOURCE-BOUNDED CASE 17

[AFG13] E. Allender, L. Friedman, and W. Gasarch. Limits on the computational power of random strings. Informa-
tion and Computation, 222:80–92, 2013.

[All12] E. Allender. Curiouser and curiouser: The link between incompressibility and complexity. In S. B. Cooper,
A. Dawar, and B. Loewe, editors, Proc. Computability in Europe (CiE), volume 7318 of LNCS, pages
11–16. Springer, 2012.

[BDG88] J. L. Balcázar, J. Dı́as, and J. Gabarró. Structural Complexity I. Springer-Verlag, 1988.
[BFKL10] H. Buhrman, L. Fortnow, M. Koucký, and B. Loff. Derandomizing from random strings. In 25th IEEE

Conference on Computational Complexity (CCC), pages 58–63. IEEE, 2010.
[BFNV05] H. Buhrman, L. Fortnow, I. Newman, and N. Vereshchagin. Increasing Kolmogorov complexity. In V. Diek-

ert and B. Durand, editors, STACS 2005, volume 3404 of Lecture Notes in Computer Science, pages 412–
421. Springer Berlin / Heidelberg, 2005.

[BM97] H. Buhrman and E. Mayordomo. An excursion to the Kolmogorov random strings. J. Comput. Syst. Sci.,
54(3):393–399, 1997.

[CDE+] M. Cai, R. Downey, R. Epstein, S. Lempp, and J. Miller. Random strings and truth-table degrees of Tur-
ing complete c.e. sets. Unpublished. Available online at http://homepages.msor.vuw.ac.nz/
∼downey/publications/tt-min.pdf.

[CKS81] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114–
133, 1981.

[HK14] S. Hirahara and A. Kawamura. On characterizations of randomized computation using plain Kolmogorov
complexity. In Proceedings of the 39th MFCS, LNCS. Springer, 2014. To appear.

[JL00] D. W. Juedes and J. H. Lutz. Modeling time-bounded prefix Kolmogorov complexity. Theory of Computing
Systems, 33(2):111–123, 2000.

[LV08] M. Li and P. Vitanyi. Introduction to Kolmogorov Complexity and its Applications. Springer, third edition,
2008.

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


