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Abstract

We study the challenging problem of learning decision lists attribute-efficiently, giving both
positive and negative results.

Our main positive result is a new tradeoff between the running time and mistake bound
for learning length-k decision lists over n Boolean variables. When the allowed running time is
relatively high, our new mistake bound improves significantly on the mistake bound of the best
previous algorithm of Klivans and Servedio [8].

Our main negative result is a new lower bound on the weight of any degree-d polynomial
threshold function (PTF) that computes a particular decision list over k variables (the “ODD-

MAX-BIT” function). The main result of Beigel [1] is a weight lower bound of 2Ω(k/d2), which was

shown to be essentially optimal for d ≤ k1/3 by Klivans and Servedio. Here we prove a 2Ω(
√

k/d)

lower bound, which improves on Beigel’s lower bound for d > k1/3. This lower bound establishes
strong limitations on the effectiveness of the Klivans and Servedio approach and suggests that
it may be difficult to improve on our positive result. The main tool used in our lower bound is
a new variant of Markov’s classical inequality which may be of independent interest; it provides
a bound on the derivative of a univariate polynomial in terms of both its degree and the size of
its coefficients.

1 Introduction

Learning in the presence of irrelevant information is a central problem both in machine learning the-
ory and in many practical applications. A clean theoretical formulation of this problem is provided
by the framework of attribute-efficient learning that was introduced by Blum more than twenty
years ago [2]. A class C of Boolean functions over {0, 1}n is said to be attribute-efficiently learnable
if there is an online algorithm that learns any k-variable function in C with a mistake bound that is
only poly(k, log n).1 While attribute-efficient algorithms are known for simple classes of functions
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such as k-variable conjunctions, disjunctions, and linear threshold functions with coefficients that
are integers of magnitude at most poly(k) [13], researchers have been less successful in developing
attribute-efficient algorithms for richer classes of Boolean functions.

A particularly well-studied – and challenging – problem in this area is that of attribute-efficiently
learning decision lists. This question was first posed by Blum [2] and considered subsequently by
many authors [3, 4, 17, 15, 8, 14]. We revisit this problem, presenting both positive and negative
results that significantly improve upon prior work. Both our upper and lower bounds rely on a
careful study of the achievable tradeoffs between the degree and weight of polynomial threshold
functions (PTFs) for decision lists. (See Section 2 for the standard definitions of decision lists,
polynomial threshold functions, and the ODD-MAX-BIT function that we use throughout the paper.)

Prior Work on Attribute-Efficiently Learning Decision Lists. Given the apparent difficulty
of obtaining a poly(k, log n)-mistake-bound algorithm that runs in time poly(n) for learning length-
k decision lists, it is natural to try to obtain some nontrivial tradeoff between running time and
mistake bound for this problem. It has long been known that the Winnow algorithm [13] can learn
any length-k decision list running in poly(n) time per trial but with a mistake bound of 2Θ(k) log n.
On the other hand, it is also well known that by running Winnow over an “expanded feature space”
of all monomials (i.e. monotone conjunctions) of length at most k, the algorithm can learn any
length-k decision list with a mistake bound of poly(k, log n) but running in time nk per trial. Is it
possible to trade off between these two simple results?

Klivans and Servedio [8] observed that by running the Winnow algorithm over an expanded
feature space of all monomials of length at most d, weight upper bounds for degree-d PTFs that
compute decision lists directly yield tradeoffs between running time and mistake bound for learning
decision lists.

More precisely, they showed the following:

Fact 1 Let C be a class of Boolean functions with the property that each f ∈ C has a polynomial
threshold function (over {0, 1}n or {−1, 1}n) of degree at most d and weight at most W . Then the
Expanded-Winnow algorithm runs in nO(d) time per trial and has mistake bound O(W 2 · d · log n)
for C.

As their main result, Klivans and Servedio showed that for every 1 ≤ d ≤
√
k, any length-k

decision list has a PTF of degree d and weight 2Õ(k/d2+d). Together with Fact 1, for d ≤ k1/3

this yields a nontrivial tradeoff between running time (nO(d)) and mistake bound (2Õ(k/d2) log n)
for learning length-k decision lists over {0, 1}n. The tradeoff breaks down for larger settings of d,
though, because for d > k1/3 the weight bound of Klivans and Servedio is worse than the bound
obtained at d = k1/3.

In earlier work Beigel [1] had already proved that any degree-d PTF for the ODD-MAX-BIT
decision list over k variables must have weight 2Ω(k/d2). The Klivans and Servedio upper bound
shows that this lower bound is essentially optimal for d ≤ k1/3, but again it was not clear what is
the right bound for larger values of d.

Several natural questions present themselves given this state of prior work: for d > k1/3, is
there an nd-time algorithm that can learn length-k decision lists with a better mistake bound than
2Õ(k1/3) log n? Is there a stronger lower bound than 2Ω(k/d2) for the weight of degree-d PTFs that
compute length-k decision lists? As the main results of this paper we give affirmative answers to
both these questions.
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Our Positive Result for Learning Decision Lists. For any d ≥ k1/3, we give an algorithm
that learns an unknown length-k decision list in time nO(d) per trial with a mistake bound of

Õ(kd2) · 2Õ(
√
k/d) log n. For all d ≥ k1/3 this improves on the 2Õ(k/d2+d) log n mistake bound of

Klivans and Servedio [8], and it also improves on the O(d log(n)) · 2O(k/d) mistake bound, which
holds for all d < k, achieved by an intermediate result of that paper [8, Page 593].

Our approach uses a simple extension of Fact 1 to “generalized PTFs” (GPTFs), which are
linear combinations of arbitrary conjunctions of length at most d (note that in contrast a “standard”
degree-d PTF over {0, 1}n is a linear combination of monotone conjunctions of length at most d).
In order to use this extension of Fact 1, we prove a new weight upper bound on degree-d GPTFs
that compute decision lists; see Section 3.

Our Lower Bounds for Decision Lists. In Section 4, we show that for d > k1/3, any degree-d

PTF for the length-k decision list ODD-MAX-BITk must have weight 2Ω(
√
k/d). (This weight lower

bound holds over both domains {0, 1}k and {−1, 1}k.) This strictly improves Beigel’s lower bound
for k1/3 < d ≤ k, and suggests that our positive result may be essentially optimal for d in this
range.

Our lower bound proof augments the approach of Beigel with a new technical ingredient which
may be of independent interest, namely a variant of the classical Markov’s inequality for real
polynomials. While the original inequality gives a uniform upper bound on the derivative of a real
univariate polynomial in terms of its degree, our new variant also takes into account the size of
the coefficients of the polynomial to obtain a sharper bound when the coefficients are small; see
Lemma 1. As described in Sections 3 and 4, a common intuition underlies both the key lower bound
ingredient, Lemma 1, and the GPTF construction that gives our positive result.

We also improve Beigel’s 2Ω(k/d2) lower bound in another direction, by extending it to a wider
space of allowable features. Beigel’s result may be interpreted as saying that any sign-representation
of ODD-MAX-BITk as an integer combination of length-d monotone conjunctions must have total
weight 2Ω(k/d2). We show that if F is any family of 2d Boolean functions over k-bit inputs that is
closed under restrictions, then there is some decision list over at most k variables such that any
sign-representation as an integer combination of functions from F must have total weight 2Ω(k/d2).
This result can be viewed as a refinement of a closely related bound due to Buhrman, Vereshchagin,
and de Wolf [6]. See Section 5.

2 Preliminaries: Decision lists, PTF weight and degree, and Markov’s
inequality

A decision list L : {0, 1}n → {−1, 1} of length k over the Boolean variables x1, . . . , xn computes
a Boolean function in the following way: given an input assignment, the output bit is determined
according to the rule

“if `1 then output b1 else . . . else if `k then output bk else output bk+1, ”

where each `i is a literal and each bi is either −1 or 1.
A decision list of particular interest to us is the function ODD-MAX-BITn: {0, 1}n → {−1, 1}.

This function outputs 1 on an n-bit input string z ∈ {0, 1}n if and only if the rightmost bit of z
that is set to 1 is in an odd bit position, i.e. z is of the form x10j where the length of x is even,
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In the above definition, decision lists are defined over the domain {0, 1}n, but we may just as
well view these functions as being defined over domain {−1, 1}n.

PTFs. Let p(x1, . . . , xn) be an n-variable polynomial of total degree d with integer coefficients
whose absolute values sum to W . Let f be any function from {0, 1}n to {−1, 1}. If f(x) = sign(p(x))
for all x ∈ {0, 1}n, then we say that p is a polynomial threshold function for f (PTF) over {0, 1}n
of degree d and weight W . Similarly, for f : {−1, 1}n → {−1, 1} we say that p is a PTF for f over
{−1, 1}n of degree d and weight W if f(x) = sign(p(x)) for all x ∈ {−1, 1}n. Finally, we say that a
PTF p has length s if the polynomial p has at most s non-zero coefficients.

It is easy to see that a PTF of degree d and weight W over {0, 1}n corresponds to a depth-2
circuit with a majority gate as the output gate and W AND gates each of fan-in at most d at the
bottom, where we allow negations between each AND gate and the majority gate. A PTF over
{−1, 1}n corresponds to a similar circuit but with W parity gates of fan-in at most d, rather than
AND gates of fan-in at most d, at the bottom layer.

Markov’s Inequality. We will also need the following well-known inequality due to Markov.

Fact 2 (Markov) Let P (t) be a univariate real polynomial of degree k. Then for all t ∈ [−1, 1] we
have

|P ′(t)| ≤ k2 · max
t∈[−1,1]

|P (t)|.

3 An improved tradeoff between runtime and mistake bound for
large d.

In this section we present our main positive result, giving an improved mistake bound for learning
length-k decision lists in time nd when k1/3 ≤ d ≤ k:

Corollary 1 For any k1/3 ≤ d ≤ k, there is an algorithm that learns length-k decision lists over n

Boolean variables in time nO(d) with a mistake bound of Õ(kd2) · 2Õ(
√
k/d) · log n.

We first introduce our new approach of learning via GPTFs and state a GPTF analogue of
Fact 1. Then, after briefly reviewing the Klivans and Servedio construction, we modify their
construction to fit the new GPTF framework and thereby prove the main positive result. We close
this subsection by noting that our GPTF approach can be combined with ingredients from Krause
and Pudlák [10] to obtain a weight upper bound for honest-to-goodness PTFs over the domain
{−1, 1}n (which is somewhat weaker, though, than the weight upper bound that we establish for
GPTFs.)

Learning using GPTFs. Let Cd denote the class of all conjunctions (not necessarily monotone)
of at most d literals over Boolean variables x1, . . . , xn, where we view conjunctions as outputting
either 0 (false) or 1 (true). A degree-d generalized PTF (GPTF) for f : {0, 1}n → {−1, 1} is an
expression of the form

p(x1, . . . , xn) =
∑
c∈Cd

wc · c(x1, . . . , xn),
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where each coefficient wc is an integer, which is such that f(x) = sign(p(x)) for all x ∈ {0, 1}n. The
weight of p is

∑
c∈Cd |wc|.

What is the point of using GPTFs instead of PTFs over {0, 1}n? It is clear that if f has a
GPTF of degree d and weight W , then f also has a PTF of degree d and weight W2d over {0, 1}n:
simply replace each conjunction c(x) in the GPTF with its interpolating 0/1-valued polynomial
(which has integer coefficients whose magnitudes sum to at most 2d). Thus for weight bounds
W ≥ 2d, GPTFs cannot have much smaller weight than PTFs over {0, 1}n; but if 2d �W , then it
is possible that GPTFs may offer a significant savings in weight over ordinary PTFs. We exploit
precisely this phenomenon to obtain our main positive result. For d ≥ n1/3 we do not know how to
prove a stronger weight bound than 2Õ(n1/3) for degree-d PTFs over {0, 1}n that compute length-n
decision lists, but for GPTFs we will show the following (which, together with Fact 3, immediately
gives Corollary 1):

Theorem 1 Let f be any length-n decision list. For all n1/3 ≤ d ≤ n, there is a degree-d GPTF

for f that has weight Õ(
√
nd) · 2Õ

(√
n/d

)
.

The following fact is a straightforward analogue of Fact 1:

Fact 3 Let F be a class of Boolean functions over {0, 1}n with the property that each f ∈ F has a
degree-d GPTF of weight at most W. Then there is an online learning algorithm for F which runs
in nO(d) time per trial and has mistake bound O(W 2 · d · log n).

The algorithm simply runs Winnow over the feature space of all (not just monotone) conjunc-
tions of length at most d over x1, . . . , xn. Fact 3 follows directly from [8, Theorem 1] since there
are

∑d
i=0

(
n
i

)
2i ≤ (2n)d such conjunctions.

Proof outline for Theorem 1. We first recall the high-level structure of the Klivans and Servedio
[8] construction of low-weight PTFs for decision lists. Given a decision list L over n variables and a
degree bound d, Klivans and Servedio first break the decision list into n/Õ(d2) “inner lists” of length
Õ(d2), and view L as a consisting of an “outer” decision list over the n/Õ(d2) inner lists. (This
is referred to as the “Outer Construction.”) Next, using Chebyshev polynomials, they construct
a polynomial of degree d that gives a very accurate uniform approximation for each Õ(d2)-length
inner list; they call this the “Inner Construction.” The final PTF is obtained by composing the
inner and outer constructions; it has weight 2Õ(n/d2+d).

As mentioned in the Introduction, the lower bound of Beigel [1] shows that the Klivans and
Servedio weight upper bound is essentially optimal for d ≤ n1/3. However, for d ≥ n1/3 the weight
bound of Klivans and Servedio is essentially 2d; roughly speaking this is because the degree-d
Chebyshev polynomial used in the inner construction has weight essentially 2d, which is quite high.
In our construction we avoid this 2d weight factor by exploiting the fact that, with GPTFs at our
disposal, we can instead use a lower -degree Chebychev polynomial within the inner construction.
Intuitively, this is because with GPTFs we can “use non-monotone ANDs as variables in our
polynomial” without paying for it in the weight bound, as each such AND has GPTF weight 1.
(This is reminiscent of the intuition that underlies the main technical lemma for our lower bounds,
see Section 4.)

Outer construction. Fix any decision list f , and recall that f can be written as “if `1 then
output b1 else · · · else if `n then output bn else output bn+1,” where each `i is a Boolean literal and
each bi is an output bit in {−1, 1}.
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Claim 1 Let f be a length-n decision list. For every r ≤ n there is a degree-r GPTF for f that
has weight r · 3O(n/r).

Proof: We assume below that r divides n evenly and prove an O(r · 3n/r) weight bound; this
implies the claim as stated above. We break f into length-r “modified decision lists” f1, . . . , fn/r
which output values in {−1, 0, 1} as described below. The first function f1 may be expressed as a
±1 sum of r conjunctions as follows:

f1(x) = b1`1 + b2(`1 ∧ `2) + · · ·+ br(`1 ∧ · · · ∧ `r−1 ∧ `r)

(recall that each bi ∈ {−1, 1} and each conjunction gives a value in {0, 1}). It is clear that f1

outputs the correct value bi of the decision list f if any literal `i ∈ {`1, . . . , `r} is satisfied by input
x, and otherwise f1 outputs the value 0 (since no conjunction is satisfied). The other functions
f2, . . . , fn/r are defined similarly. Notice that each modified decision list fi has GPTF weight r and
GPTF degree r. Combining these expressions for the modified decision lists as

P (x) = 3n/rf1 + 3n/r−1f2 + · · ·+ 31fn/r + bn+1, (1)

we get that P (x) is a GPTF for f that has weight O(r · 3n/r) and degree r.

Inner Construction. In the outer construction we broke f into ` := n/r modified decision lists
f1, . . . , f` each of length r, as in Eq. (1). We set parameters ` =

√
n/d and r =

√
nd.

Claim 2 Let n1/3 ≤ d ≤ n and let fi be a modified decision list of length r =
√
nd. There is an

integer linear combination pi of conjunctions of width 2d log(n/d), such that

• The weight of pi is 2
Õ
(√

n/d
)
;

• There is an integer C = 2
Õ
(√

n/d
)

such that for every input x ∈ {0, 1}r that satisfies at least
one literal in fi, we have |pi(x)− Cfi(x)| ≤ C/r; and

• fi(x) = 0 implies pi(x) = 0.

We note that in [8, Corollary 9] the Chebyshev polynomial is used to construct a polynomial of

degree 2
√
r log r and weight 2O(

√
r log2 r) that satisfies the last two properties of the lemma. Here,

exploiting the fact that our pi may be a linear combination of conjunctions, we show how to achieve
the same properties using higher weight but lower degree; this will be useful for us later when we
combine with the outer construction.

Proof of Claim 2: Recall that fi may be expressed as fi(x) = b1T1(x) + · · ·+ brTr(x), where each
Tj is a conjunction of length j ≤ r. We view Tj as an AND-of-ANDs, where

• The top AND has fanin t := djr/d2e ≤ dr2/d2e = dn/de, and

• Each bottom AND has fanin at most b := dj/te ≤ dd2/re = d
√
d3/ne. (Note that d3/n ≥ 1

since d ≥ n1/3 by assumption.)
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Let ANDt(y1, . . . , yt) denote the top AND gate, so the inputs y1, . . . , yt are the bottom-level
ANDs. To construct p we first apply the construction of [8, Corollary 9] to ANDt (which is itself
a decision list on t variables). This yields a polynomial q (in 0/1 variables y1, . . . , yt) of degree at

most 2
√
n/d log(n/d) and weight 2O(

√
n/d log2(n/d)), and an integer C = 2O(

√
n/d log2(n/d)) such that

|q(y1, . . . , yt)−C ·ANDt(y1, . . . , yt)| ≤ C
t for all y ∈ {0, 1}t \{0t}. Moreover, if y = 0t then q(y) = 0.

The inputs to the top AND gate are themselves conjunctions of width b ≤
√
d3/n, so we obtain

our final representation pi by simply composing q with the exact representation of each bottom
AND gate as a conjunction of width b. (For example, if the polynomial q contains a monomial
y1y3y4 we simply AND together the first, third and fourth bottom-level AND gates.) Since q
has degree at most 2

√
n/d log(n/d), pi is a linear combination of conjunctions of width at most

b · 2
√
n/d log(n/d) = 2d log(n/d) as required. The weight of the linear combination equals the

weight of q, which is 2O(
√
n/d log2(n/d)).

Proof of Theorem 1: The remainder of the analysis necessary to prove Theorem 1 follows exactly
as in [8, Theorem 10]; we present the details for completeness. We assume that f is the decision list
(x1, b1), . . . , (xn, bn), bn+1 (the case when f contains negated literals is entirely similar). We begin
with the outer construction and note that

f(x) = sign

(
C ·

(∑̀
i=1

3`−i+1fi(x) + bn+1

))
,

where C is the value from Claim 2 and each fi is a modified decision list of length r :=
√
nd

computing the restriction of f to its i-th block (so the total number of modified decision lists is
` := n/r =

√
n/d). Next we replace each Cfi by pi, the approximating polynomial given by the

inner construction in Claim 2, and consider

H(x) =
∑̀
i=1

(3`−i+1pi(x)) + Cbn+1.

We will argue that sign(H(x)) is a GPTF for f with the claimed degree and weight. Fix any
x ∈ {0, 1}n. If x = 0n then by Claim 2 each pi(x) = 0 and so H(x) = Cbn+1 agrees in sign with
bn+1. Now suppose that t = (i− 1)r + c is the first index such that xt = 1 (i.e. the input x “exits
the overall decision list” at the modified decision list ft, and f(x) = ft(x) = bt). By Claim 2, we
have

• 3`−j+1pj(x) = 0 for all j < i,

• 3`−i+1pi(x) differs from 3`−i+1Cbt by at most C3`−i+1 · 1
r , and

• the magnitude of 3`−j+1pj(x) is at most C3`−j+1(1 + 1
r ) for all j > i.

Combining these bounds, the value of H(x) differs from 3`−i+1Cbt by at most

C

(
3`−i+1

r
+

(
1 +

1

r

)
(3`−i + 3`−i−1 + . . .+ 3) + 1

)
,

which can be checked to be less than C3`−i+1 in magnitude for r > 1. Consequently, sign(H(x)) =
bt = f(x) as claimed. Finally, applying the degree and weight bounds for each pi given by Claim 2
completes the proof.
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3.1 A New Upper Bound for PTFs over {−1, 1}n

We do not know whether n-variable decision lists have degree-d PTFs (as opposed to GPTFs) of

weight Õ(
√
nd) · 2Õ

(√
n/d

)
, though in the next section we will prove that they do not have PTFs

of weight 2
o
(√

n/d
)
. For PTFs over {−1, 1}n, though, we can combine the approach of Theorem 1

with ideas from Krause and Pudlák [10] to give a new upper bound on weight which improves on
the Klivans and Servedio weight upper bound for d ≥ n1/2. In Appendix A we prove:

Theorem 2 For any n1/4 ≤ d ≤ n, any decision list f on n variables has a degree-d PTF over the

domain {−1, 1}n of weight 2(n/d)2/3·polylog(n).

4 Degree-d PTFs for ODD-MAX-BITn Require Weight 2Ω(
√
n/d)

In this section we prove our main lower bound:

Theorem 3 For any d = o
(

n
log2 n

)
, any degree-d PTF for ODD-MAX-BITn requires weight 2Ω(

√
n/d).

This holds for PTFs over both domains {0, 1}n and {−1, 1}n.

Proof Outline. To explain our proof it is helpful to first recall the 2Ω(n/d2) lower bound proof of
Beigel [1]. Beigel first breaks the list of n variables into k = n/` blocks of length ` := Θ(d2) each.
His argument proceeds for k stages; in the i-th stage he argues that there exists an n-bit input xi
with |p(xi)| ≥ 2|p(xi−1)| which is such that xi and xi−1 differ only in the i-th block. After the k-th
stage this yields an input xk that has |p(xk)| ≥ 2k; such an input clearly implies that the weight of
p is at least 2k.

The existence of the desired xi is established in each stage using Markov’s inequality for uni-
variate real polynomials (see Fact 2 of Section 2). Beigel shows that if no such xi existed, then
by using xi−1 and symmetrizing p with respect to an appropriate distribution, one would obtain
a univariate polynomial P of degree d such that (roughly speaking) P “stays bounded” on the
interval [0, 1], and P has large derivative at some point in this interval (i.e. |P ′(x)| = Ω(`) for some
x ∈ [0, 1/`]). But Markov’s inequality implies that any such polynomial must have Ω(

√
`) > d;

consequently, the desired xi must indeed exist.
While Beigel’s lower bound is essentially optimal for d ≤ n1/3, it becomes vacuous for d ≥ n1/2

(and we show below that it is not tight even for d = ω(n1/3).) Intuitively, the reason that the
bound is loose in the high-degree regime is that Markov’s inequality only takes the degree of the
polynomial P into account and does not use information about the weight of P . With this intuition
in mind, we prove a generalization of Markov’s inequality that takes into account P ’s weight. More
specifically, we show that if P has degree d and weight W , “stays bounded” in the interval [0, 1],
and satisfies maxx∈[0,1] |P (x)| ≥ 1/2, then |P ′(x)| = O(d logW ) for all x ∈ [0, 1]. Notice that for

W = 2d this bound matches Markov’s inequality, but – crucially – it is significantly stronger if W
is subexponential in d.

With this Markov-type inequality in hand, our proof follows the same outline as Beigel. We
break the list into blocks of length `; with our stronger inequality we are able to take ` to be o(d2),
which is why we improve on Beigel’s bound. We iteratively construct inputs xi with |p(xi)| ≥
2|p(xi−1)|, arguing at each stage i that if no such xi existed, then one could obtain a univariate
polynomial P of weight 2O(`/d) which satisfies the conditions of our Markov-type inequality. By

8



invoking our inequality, we conclude that P must have degree greater than d, and so this implies
that the desired xi must exist at each stage.

The Markov-Type Inequality. Below we state our Markov-type inequality as Lemma 1. This
lemma generalizes a result of Borwein and Erdélyi [5, Corollary 3.2] and may be of independent
interest.

Lemma 1 Let P : R→ R be a degree-d polynomial satisfying the following:

1. The coefficients of P (which need not be integers) each have absolute value at most W ; and

2. 1/2 ≤ maxx∈[0,1] |P (x)| ≤ R.

Then maxx∈[0,1] |P ′(x)| = O(d ·R ·max{logW, log d}).

At a high level, the proof first shows that |P (y)| is not just “small” for all y ∈ [0, 1], but in fact
is small everywhere within a sufficiently large ellipse Bρ surrounding [0, 1] in the complex plane.
Cauchy’s Integral Formula then completes the result, as this formula expresses P ′(y) as an average
of P ’s values on Bρ, scaled by (the squared reciprocal of) the diameter of Bρ.

Proof: Borwein and Erdélyi proved the following lemma, which is a consequence of Hadamard’s
Three Circle Theorem, a classical result in complex analysis.

Lemma 2 [5, Corollary 3.2] Let M ∈ R and d ∈ N satisfy 1 ≤ M ≤ 2d. Suppose f is analytical
inside and on the complex ellipse Ad,M with foci at 0 and 1 and major axis

[
−M

d , 1 + M
d

]
. Let Bd,M

be the complex ellipse with foci at 0 and 1 and with major axis
[
− 1
dM , 1 + 1

dM

]
. Then there is an

absolute constant c1 > 0 such that

max
z∈Bd,M

ln |f(z)| ≤ max
z∈[0,1]

ln |f(z)|+ c1

M

(
max
z∈Ad,M

ln |f(z)| − max
z∈[0,1]

ln |f(z)|
)
.

Note that for all z ∈ Ad,M , we have

ln |P (z)| ≤ ln

(
(d+ 1)W

(
1 +

M

d

)d)

≤ ln(d+ 1) + ln(W ) + d · M
d

= ln(d+ 1) + ln(W ) +M,

where the first inequality holds because P has at most d+1 coefficients, each of which has absolute
value at most W , and |z| ≤ 1 + M

d for all z ∈ Ad,M and each monomial in P has degree at most d.
If we take M ≥ ln(W ) + ln(d+ 1), the upper bound on ln |P (z)| is at most 2M.

Now applying Lemma 2 to the function P and M = ln(W ) + ln(d+ 1), we get that there is an
absolute constant c1 such that

max
z∈Bd,M

ln |P (z)| ≤ lnR+
c1

M
(3M + ln 2) ≤ lnR+ c2

for some universal constant c2, where we have used the assumption that 1/2 ≤ maxz∈[0,1] |P (z)| ≤ R.
As a result, we have that

max
z∈Bd,M

|P (z)| ≤ c3R

9



for some universal constant c3 > 0.
Now for any y ∈ [0, 1], there is a positive number ρ = Θ( 1

dM ) such that Bρ(y) = {z ∈ C :
|z − y| = ρ}, the closed disk of radius ρ around y, is contained in Bd,M . Consequently Cauchy’s
integral formula implies that for all y ∈ [0, 1], we have

|P ′(y)| =

∣∣∣∣∣ 1

2πi

∫
Bd,M

P (z)

(z − y)2
dz

∣∣∣∣∣ =

∣∣∣∣∣ 1

2πi

∫
Bρ

P (z)

(z − y)2
dz

∣∣∣∣∣
≤ 1

2π
c3R

∣∣∣∣∣
∫
Bρ

1

(z − y)2dz

∣∣∣∣∣ ≤ c3R
1

ρ
= Θ(R · d ·M).

Here, the first equality holds by Cauchy’s Theorem, because P (z)
(z−y)2

is analytical except at y,

and the penultimate inequality combines parametric evaluation of the complex integral
∫
Bρ

1
(z−y)2dz

with the fact that |z − y| = ρ for all z ∈ Bρ. Since we took M = log(W ) + log(d + 1), the lemma
follows.

Discussion. For R = 1, Lemma 1 is tight up to constant factors for a wide range of values of
W . To see this, let W ∈ [d, 3d] be a power of 3, and let d′ = d d

log3W
e. Consider the function

P (x) = Tlog3W (xd
′
), where Tk denotes the degree-k Chebyshev polynomial of the first kind. Basic

properties of Tk give that all of P ’s coefficients have absolute value at most 3log3W = W ; that P
has degree d′ · log3W = O(d); and that maxx∈[0,1] |P (x)| = 1. Since T ′k(1) = k2 for any k, the chain
rule implies that P ′(1) = (log3W )2 · d′ = Ω(d logW ).

This tight example formalizes the following intuition: Recalling that the Chebyshev polynomials
are a tight example for Markov’s inequality, Markov’s inequality can be understood to say that in
order to maximize the derivative of a polynomial P of degree d which stays bounded on the interval
[0, 1], the best approach is to “spend all the allowed degree on a Chebyshev polynomial.” Lemma 1
says that in order to maximize the derivative of a polynomial of degree d and weight W which
stays bounded on the interval [0, 1], the best approach is to “spend all of the allowed weight on
a Chebyshev polynomial T , and then spend any remaining allowed degree by composing T with
a suitable monomial xd

′
.” This is the intuition that underlies our construction in the positive

result Claim 2, where we use conjuntions (the bottom-level AND gates) as inputs for the top-level
polynomial q (which is essentially a Chebychev polynomial).

Proof of Theorem 3. Here we prove the result for PTFs over the domain {0, 1}n; the proof over
the domain {−1, 1}n is similar and is given in Appendix B.

Let p be a degree d, weight W PTF for ODD-MAX-BITn over {0, 1}n. Suppose further that

W < 2
√
n/d−1. We partition the n variables x1, . . . , xn into n/` blocks of length ` := 2

√
nd. We

refer to a string yi ∈ {0, 1}`·i as a partial input to p. Let V (yi) denote p(yi ◦0n−`·i), where ◦ denotes
concatenation.

We say that partial input yi ∈ {0, 1}`·i is good if |V (yi)| ≥ 2i−1. We will attempt to iteratively
construct good partial inputs y1, . . . , yn/`; if we succeed at all iterations, then y = yn/` is an input

such that |p(y)| ≥ 2
√
n/d−1, which clearly contradicts the assumption that W < 2

√
n/d−1. Thus,

there must be some i∗ < n/` such that there is a good partial input yi∗ ∈ {0, 1}i
∗·`, but no good

partial input yi∗+1 ∈ {0, 1}(i
∗+1)·`. Moreover we have i∗ ≥ 1, because it is easy to construct y1:

since p has integer coefficients we may assume without loss of generality that |p(x)| ≥ 1 for all

10



x ∈ {−1, 1}n (if p(x) = 0 for some x we can simply add 1/2 to p and multiply the resulting
polynomial by two). So we may take y1 to be any string in {0, 1}`.

Below we show how to use the yi∗ whose existence was established above to construct a certain

univariate polynomial P . By applying Lemma 1 to P , we will conclude that W = 2Ω(
√
n/d) as

desired.

We may assume without loss of generality that V (yi∗) < 0. Given a string w ∈ {0, 1}`/2, let
zw ∈ {0, 1}n be the string defined as follows:

• the first i∗ blocks of zw agree with yi∗ ;

• the even bits in the (i∗ + 1)-th block are all 0;

• the odd bits in the (i∗ + 1)-th block are successively w1, w2, . . . , w`/2; and

• the remaining blocks i∗ + 2, . . . , n/` have all bits set to 0.

Define q to be the function which, on input w ∈ {0, 1}`/2, outputs p(zw), i.e. q(w) := p(zw).
Note that deg(q) ≤ deg(p).

Define the univariate polynomial

Q(t) := Ex←µt [q(x)].

Here µt is the product distribution over the discrete cube {0, 1}`/2 where each coordinate j satisfies
Ex←µt [xj ] = t (that is, each xj is independently set to 1 with probability t). The following properties
of Q are easily verified:

1. Q(0) = q(0`/2) and Q(1) = q(1`/2).

2. |Q(t)| ≤ 2i
∗

for all t ∈ [0, 1]. This holds by the assumption that there is no good partial input
yi∗+1, i.e. |V (yi∗+1)| ≤ 2i

∗
for all yi∗+1 ∈ {0, 1}(i

∗+1)·`.

3. deg(Q) ≤ deg(q) ≤ deg(p). Indeed, given the multivariate polynomial expansion of q(w1, . . . , w`/2),
we can obtain Q easily just by “erasing all the subscripts in each variable”. For example, if
q(w) = 5w1w2w3 − 8w1w2 − 4w1w3w4 − 3w3 then Q(t) = 5t3 − 8t2 − 4t3 − 3t = t3 − 8t2 − 3t.
This follows from linearity of expectation along with the fact that µt is defined to be the
product distribution satisfying Ex←µt [xi] = t for all coordinates i. So indeed we have
deg(Q) ≤ deg(q) ≤ deg(p).

4. The sum of the absolute value of the coefficients of Q is at most W . (Since this holds for p
it holds for q, and since it holds for q it holds for Q by the previous remark.)

Note that we have q(0`/2) = V (yi∗) < −2i
∗−1. Crucially, we also have q(w) ≥ 1/2 for all

w ∈ {0, 1}`/2 \ {0`/2} (this is because for any such w, every input z ∈ Zw has p(z) ≥ 1, because p
is a PTF for ODD-MAX-BITn).

The final polynomial we seek is the univariate polynomial

P (t) := Q(t)−Q(0).

We trivially have P (0) = 0. On the other hand, for any t ∈ [2/`, 1] we have P (t) = Ex←µt [q(x)−
q(0`/2)]. Recalling the bounds on q(0`/2) and on q(w) from the previous paragraph, and observing
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that for t ∈ [2/`, 1] we have Prx←µt [x = 0`/2] ≤ (1− 2
` )
`/2 < 1/e, we get that P (t) ≥ 2i

∗−1 ·(1− 1
e ) ≥

2i
∗−2 for t ∈ [2/`, 1].

Thus, P (t) is a degree-d polynomial that has the following properties:

1. The coefficients of P each have absolute value at most W + |V (yi∗)| ≤ 2W ;

2. 1/2 ≤ maxx∈[0,1] |P (x)| ≤ 2i
∗+1;

3. There exists some t ∈ [0, 2/`] such that P ′(t) ≥ ` · 2i∗−3. This follows from the Mean Value
Theorem, as P (0) = 0 and P (2/`) ≥ 2i

∗−2.

By Lemma 1, the first two properties of P imply that maxx∈[0,1] |P ′(x)| = O(d·2i∗ ·max{logW, log d}).
Combining this with the third property of P , we get that d ·max{logW, log d} = Ω(`) = Ω(

√
nd).

Recalling that d = o
(

n
log2 n

)
, we conclude that W = 2

Ω
(√

n/d
)

as desired. This concludes the proof

of Theorem 3.

5 Extending Beigel’s Lower Bound to More General Features

Our next result extends Beigel’s lower bound to significantly more general feature spaces. We say
that a class F of functions over {0, 1}n is closed under restrictions if for all i ∈ [n] and all b ∈ {0, 1},
we have that if f(x1, ..., xn) ∈ F then f(x1, . . . , xi−1, b, xi+1, . . . , xn) ∈ F . Note that many natural
classes of functions are closed under restrictions, including the set of parities of degree at most d, as
well as the set of conjunctions of degree at most d. The following theorem can be understood as a
refinement of a closely related result of Buhrman, Vereshchagin, and de Wolf [6] (see the discussion
following the theorem). The proof is in Appendix C.

Theorem 4 Fix d > 0, and let F be any set of at most 2d boolean-valued functions from {0, 1}n
to {0, 1}. Assume F is closed under restrictions. There exists a decision list L on n variables such
that, for any integer-weight representation L(x) = sign(

∑
fi∈F wifi + θ) of L as a linear threshold

function over the feature space F , the absolute value of the wi’s and θ sum to 2Ω(n/d2).

Several remarks are in order. First, Buhrman, Vereshchagin, and de Wolf [6, Section 3] show
a related lower bound that applies to arbitrary classes of Boolean functions F , not just to classes
closed under restrictions. They couch their argument in terms of communication complexity, study-
ing a natural formulation of the ODD-MAX-BITn function as a communication problem. They show
that any (quantum) communication protocol for this problem that requires the exchange at at most
d bits and achieves bias β satisfies d + log(1/β) = Ω(n1/3). Examination of their proof in fact re-
veals the slightly stronger result that m2 log(1/β) = Ω(n), where m = d + log(1/β). Translating
this bound into our terminology yields the following theorem.

Theorem 5 (Buhrman, Vereshchagin, and de Wolf [6]) Fix d > 0, and let F be any set
of at most 2d boolean-valued functions from {0, 1}n to {0, 1}. Suppose that every decision list
L can be written as the threshold of an integer linear combination of functions from F , L(x) =
sign(

∑
fi∈F wifi + θ), with |θ|+

∑
i |wi| ≤W . Then

m2 logW = Ω(n),
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where m = d+ logW . Elementary manipulations then yield the following bound on logW :

log(W ) =

{
Ω(n/d2) if d ≥ n1/3,

Ω(n1/3) otherwise.

We explain formally how to derive Theorem 5 from the communication lower bound of [6, Section
3] in Appendix D. The proof is similar to Lemma 5.7 of Feldman [7], and is relatively standard.

In contrast to Theorem 5, our bound in Theorem 4 shows that if F is closed under restrictions,
then logW = Ω

(
n/d2

)
for all d. Thus, for classes closed under restrictions, our lower bound matches

that of Buhrman et al. when d is relatively large, but is a strict improvement when d = o(n1/3). At
a high level, our improvement can be traced to the fact that in Buhrman et al.’s argument, they
break each decision list up into “blocks” of length ` = Θ(m2) = Θ

(
(d+ logW )2

)
, while we are

able to use blocks of length ` = Θ
(
d2
)
. For d = o(n1/3), our block length is strictly smaller than

that of Buhrman et al..
Second, we clarify that given any set F of boolean-valued functions, the decision list L whose

existence is guaranteed by Theorem 4 is actually a restriction of ODD-MAX-BITn – this is easily
seen by examining the proof of the theorem (and holds for Theorems 5 as well). However, the
specific decision list L necessarily depends on F . Indeed for any fixed decision list L, there exists
a trivial set F which computes L exactly (specifically, the unique function in F is L itself).

Third, we note that Theorem 4 implies that any degree-d GPTF that computes ODD-MAX-

BITn must have weight 2Ω(n/(d2 log2 n)). Indeed, the set F of all conjunctions of width at most d has
size nO(d) = 2O(d logn) and is closed under restrictions; applying Theorem 4 to F guarantees the

existence of some decision list L such that any degree d GPTF for L requires weight 2Ω(n/(d2 log2 n)).
Since L is in fact a restriction of ODD-MAX-BITn, this lower bound applies to ODD-MAX-BITn
itself. This lower bound could actually have been derived from prior work: it follows immediately
from Beigel’s weight lower bound for degree-d PTFs over {0, 1}n when d ≤ n1/3 (see the discussion
preceding Theorem 1), while for d > n1/3, the bound follows from Theorem 5. Theorem 4 has the
appealing property of providing a “unified” proof of an almost matching bound.

6 Conclusion

We have given new constructions of low-weight GPTFs, and new weight lower bounds for ordinary
PTFs, for decision lists. Our new constructions yield improved tradeoffs between runtime and
mistake bounds for learning decision lists, while our lower bounds imply that new algorithms or
analyses are needed to improve over current results.

A number of interesting questions remain open. For example, it would be interesting to general-

ize our 2Ω(
√
n/d) weight lower bound for decision lists to more general feature spaces. In particular,

generalizing the lower bound to arbitrary length-d conjunctions would show that the weight up-
per bound of Theorem 1 is the best possible for GPTFs. It would also be interesting to prove
stronger lower bounds for PTF weight-degree tradeoffs for richer classes of functions such as DNFs
or decision trees.

Acknowledgements. We are grateful to Vitaly Feldman, Ronald de Wolf, and Alexander Sherstov
for helping us to clarify the relationship of Theorem 4 to prior work.
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A Proof of Theorem 2: Weight Upper Bounds for PTFs over
{−1, 1}n.

Since Theorem 1 employs GPTFs rather than PTFs, it does not show that the weight lower bound
of Theorem 3 is tight. It is thus a natural question to determine whether the lower bound of
Theorem 3 is tight for PTFs. Towards this goal, Theorem 2 gives an upper bound showing that
Theorem 3 is close to tight for PTFs over {−1, 1}n. This result improves on the PTF weight
upper bound in Klivans and Servedio [8] for any d ≥ n1/2. We restate Theorem 2 for the reader’s
convenience:

Theorem 2 For any n1/4 ≤ d ≤ n, any decision list f on n variables has a degree-d PTF over the

domain {−1, 1}n of weight 2(n/d)2/3·polylog(n).

Intuitively, the difficulty in extending Theorem 1 to PTFs over {0, 1}n is that in the inner
construction, the bottom AND gates in the proof of Claim 2 may not have low-weight exact rep-
resentations over {0, 1}n even if we allow very high degree. Instead, we will use the fact that over
{−1, 1}n any AND gate has a low-weight uniform approximation. More specifically, the following
fact is an easy extension of [11, Proposition 2.1] (we note explicitly that the function AND(j) in the
following fact does not have any dependence on j; we use this notation because it will be useful in
the context of the proof of Theorem 2):

Fact 4 Let AND(j) : {−1, 1}n → {0, 1} denote some conjunction of exactly n literals, so there
is a distinguished input z ∈ {−1, 1}n such that AND(j)(z) = 1 and AND(j)(x) = 0 for all x ∈
{−1, 1}n \ {z}. Then for any ε > 0, there is a polynomial g(x1, . . . , xn) of degree at most n such
that

1. All coefficients of g are integers, and the sum of their absolute values is O(n/ε2);

2. There is an integer C1 = O(n/ε2) such that |gj(y)−C1AND
(i)(y)| ≤ C1ε for all y ∈ {−1, 1}n;

and

3. gj(−z) = 0. That is, g evaluates to precisely 0 on the input in {−1, 1}n that satisfies none of

the literals in AND(j).

With this fact in hand we now prove Theorem 2.

Proof: We break f into ` := (n/d)2/3 modified decision lists as in Equation 1, each of length
r = n/` = n1/3d2/3. The proof uses the following variant of Claim 2.

Claim 3 Fix d ≥ n1/3 and let fi be a modified decision list of length r = n1/3d2/3. There is an
degree-Õ(d) polynomial pi(x1, . . . , xr) with integer coefficients such that

• The weight of pi is 2Õ((n/d)2/3);

• There is an integer C = 2Õ((n/d)2/3), such that for every input x ∈ {−1, 1}r that satisfies at
least one literal in fi, we have |p(x)− Cfi(x)| ≤ C/r; and

• fi(x) = 0 implies pi(x) = 0.
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Proof: Recall that fi may be expressed as fi(x) = b1T1(x) + · · ·+ brTr, where Tj is a conjunction
of length j ≤ r. We view Tj as an AND-of-ANDs where

• The top AND has fanin t := djr/d3e ≤ dr2/d2e = d(n/d)2/3e,

• Each bottom AND has fanin at most b := dj/te ≤ dd2/re = d d4/3
n1/3 e. Note that d4/3

n1/3 ≥ 1 since

d ≥ n1/4 by assumption.

Compared to the proof of Claim 2, we have reduced the top fan-in to minimize the propagation
of error due to the approximations we will use for the bottom AND gates.

Let ANDt(y1, . . . , yt) denote the top AND gate, so the inputs y1, . . . , yt are the bottom-level
ANDs (which take values in {0, 1}). To construct p we apply [8, Corollary 9] to ANDt to obtain

a polynomial q of degree d′ = Õ(
√
t) and weight 2Õ(

√
t), and an integer C2 = 2Õ(

√
t) such that

|q(y1, . . . , yt)− C2 · ANDt(y1, . . . , yt)| ≤ C2
t for all y ∈ {0, 1}t. Moreover, q(0t) = 0.

The inputs to the top AND gate are themselves conjunctions of width b over {−1, 1} inputs.

Denote the j-th bottom-level AND gate by AND(j). Set ε = 2−Θ̃(
√
t), and let gj denote the polyno-

mials for the functions AND(j) given by Fact 4. We obtain our final representation p by composing
q with the functions gj/C1, and then scaling the resulting coefficients to be integers. More precisely,
viewing the polynomials gj as functions over r variables (though only t variables are relevant for

each gj), the polynomial p is p(x1, . . . , xr) = (C1)d
′
q(g1(x)

C1
, . . . , gt(x)

C1
). This polynomial p has degree

Õ(
√
t) · b = Õ((n/d)1/3) · d4/3

n1/3 = Õ(d) as desired. It has integer coefficients, and the sum of the

absolute values of its coefficients is at most (n/ε2)Õ(
√
t) = 2Õ(t)·logn = 2(n/d)2/3·polylog(n).

All that remains to show is that there is an integer C = 2(n/d)2/3·polylog(n) such that for every
input x ∈ {−1, 1}r, it holds that |p(x)− Cfi(x)| ≤ C/r, and that fi(x) = 0 implies p(x) = 0. The
latter property follows from the fact that each gj(0

t) = 0 for all j, and q(0t) = 0. To see the first

property, notice that q has at most 2Õ(
√
t) ≤ 1

rε monomials, since it has degree d′ = Õ(
√
t). Since

each
gj
C1

is a pointwise ε-approximation to the j’th bottom gate AND(j), for each monomial the

difference between its value evaluated at
(
AND(1)(x), . . . ,AND(t)(x)

)
and at

(
g1(x)
C1

, . . . , gt(x)
C1

)
is

most ε. Thus, letting C = C2 · Cd
′

1 , the total error |p(x) − C · fi(x)| at any point is at most C/r.
This concludes the proof of the claim.

Theorem 2 now follows by replacing each modified decision list fi with the corresponding polyno-
mial pi from Claim 3. The result is a PTF P over {−1, 1}n for f which has weight 2(n/d)2/3·polylog(n)

and has degree Õ (d). The analysis showing that sign(P (x)) = f(x) for all x ∈ {−1, 1}n follows
exactly as in Theorem 1 and is omitted.

B Proof of Theorem 3 over domain {−1, 1}n.
We describe the changes to the proof for domain {0, 1}n that are required to obtain the lower bound
for a PTF p over domain {−1, 1}n. As in the {0, 1}n proof we may assume that V (yi∗) < 0. Given
a string w ∈ {−1, 1}`/2 we now let zw ∈ {−1, 1}n be the input defined as follows:

• the first i∗ blocks of zw agree with yi∗ ;
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• the even bits in the (i∗ + 1)-th block are all 1;

• the odd bits in the (i∗ + 1)-th block are successively w1, w2, . . . , w`/2; and

• the remaining blocks i∗ + 2, . . . , n/` have all bits set to 1.

As before, define q to be the function which, on input w ∈ {−1, 1}`/2, outputs p(zw). Also as
before, define

Q(t) := Ex←µt [q(x)],

where now µt is the product distribution over the Hamming cube {−1, 1}`/2 where each coordinate
j satisfies Ex←µt [xj ] = t (so each xj is independently 1 with probability 1+t

2 rather than with
probability t as before). The earlier arguments show that Q satisfies the following properties:

1. Q(−1) = q(−1, . . . ,−1) and Q(1) = q(1, . . . , 1).

2. |Q(t)| ≤ 2i
∗

for all t ∈ [−1, 1].

3. deg(Q) ≤ deg(q) ≤ deg(p).

4. The sum of the absolute value of the coefficients of Q is at most W .

Finally, we now define P as
P (t) := Q(t)−Q(−1).

The earlier arguments imply that P (t) is a degree-d polynomial with the following properties:

1. The coefficients of P have absolute value at most W + |V (yi∗)| ≤ 2W .

2. 1/2 ≤ maxx∈[−1,1] |P (x)| ≤ 2i
∗+1.

3. P (−1) = 0 and P (−1 + (4/`)) ≥ 2i
∗−2. In particular, there exists some t ∈ [−1,−1 + (4/`)]

such that P ′(t) ≥ ` · 2i∗−4.

Note that the main difference compared to the argument for the {0, 1}n domain is that in item
(3) above, the “jump” now occurs near −1, not in the domain [0, 1], so we cannot directly invoke
Lemma 1. On the other hand, the polynomial P stays bounded on the larger domain [−1, 1] rather
than [0, 1], and so we can easily transform P into a polynomial which satisfies all of the conditions
of Lemma 1. Indeed, defining P1(x) = P (−x), it is easy to check that we may apply Lemma 1 to

P1 to conclude that W = 2
Ω
(√

n/d
)

as desired.

C Proof of Theorem 4

Proof Outline. Fix a polynomial p which sign-represents ODD-MAX-BIT. In proving his lower
bound, Beigel breaks the n variable domain into blocks of length `, and iteratively constructs inputs
xi such that |p(xi)| grows exponentially. We explained in Section 4 that at each stage the existence
of an input xi with |p(xi)| ≥ 2|p(xi−1)| follows from Markov’s inequality. However, another way to
understand the existence proof is as follows. If no such xi existed, then we could in fact obtain a
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degree d polynomial which uniformly approximates the OR function on ` variables. By a result of
Nisan and Szegedy [16], such a polynomial requires degree Ω(

√
`).

In [9, Theorem 4.2], the authors prove a generalization of Nisan and Szegedy’s result, showing
that if one wants to uniformly approximate all disjunctions on ` variables using any feature space,

then the size of the feature space must be 2Ω(
√
`). It is therefore plausible that Beigel’s argument

can be extended to more general feature spaces, using the feature-independent result of Klivans
and Sherstov in place of Nisan and Szegedy, and indeed this is how our proof proceeds. Details
follow.

Proof of Theorem 4. Fix ` := Θ(d2). We will iteratively consider decision lists defined on i · `
variables, for each i ∈ {1, . . . , n/`}. Refer to the set of all such decision lists as DLi, and refer to
the function ODD-MAX-BIT defined over i · ` variables as ODD-MAX-BITi. Furthermore, let Fi
denote the set of features over i · ` variables obtained from F by “ignoring” the last n− i variables
in each feature. That is,

Fi = {ψ : {0, 1}i·` → {0, 1}|ψi(x) = φi(x ◦ 0) for some φ ∈ F}.

Notice that since F is closed under restrictions, Fi is as well.
We iteratively construct decision lists Li ∈ DLi such that for every representation Li(x) =

sign(h(x)) of Li as the sign of a integer linear combination of the features in Fi, there exists a
yi(Li) ∈ {0, 1}`·i such that |h(yi(Li))| ≥ 2i−1. Moreover, each Li will be obtained from ODD-MAX-
BITi by restricting some of the variables in block i. If we succeed at all iterations, it clearly follows
that the decision list in the final iteration satisfies the properties guaranteed by the theorem. Notice
we can take L1 to simply be ODD-MAX-BIT1, as we can assume all sign-representations of L1 have
margin at least 1.

Suppose this process fails at stage i > 1. Then

1. There is a decision list Li ∈ DLi such that for every sign-representation h for Li as an integer
linear combination of features in Fi, there is an input yi ∈ {0, 1}i·` such that |h(yi)| ≥ 2i−1.
Moreover, Li is obtained from ODD-MAX-BITi by restricting some of the variables.

2. For all decision lists L ∈ DLi+1, there exists a sign-representation L(x) = sign(h(x)) such
that |h(yi+1)| ≤ 2i for all yi+1 ∈ {0, 1}(i+1)·`.

We show that there is a feature space F ′ with |F ′| ≤ |F|5 which uniformly approximates the
set of all disjunctions on `/2 variables within additive error 1/3. By [9, Theorem 4.2], this implies
that |F ′| = 2Ω(d), and hence F = 2Ω(d) as well.

Let yi ∈ {0, 1}i·` be any vector, and assume that Li(yi) < 0. Consider the set S of decision lists
in DLi+1 which are obtained from ODD-MAX-BITi+1 by

• Restricting variables in blocks {1, . . . , i} in the same manner as Li;

• Restricting all even variables in block i+ 1 to 0;

• Restricting some subset of the odd variables in block i+ 1 to 0.

There is a natural one-to-one correspondence between decision lists in S and disjunctions on
`/2 variables: if LS ∈ S denotes the decision list such that the “active” odd variables in block i are
precisely those in S, then LS naturally corresponds to the disjunction ORS(x1, . . . , x`/2) := ∨j∈Sxj .
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The key observation is that any sign-representation hLS for LS as an integer linear combination of
features in Fi+1 can be transformed into a uniform approximation for ORS , using features which
are themselves (products of) restrictions of features in Fi+1. Since Fi is closed under restrictions,
this means that we have in fact obtained a uniform approximation for ORS using features which
are themselves products of those in Fi+1.

Indeed, consider the disjunction ORS(x1, . . . , x`/2) := ∨j∈Sxj . Let hLS (x) =
∑

φj∈Fi+1
cjφj(x)

be the sign-representation of LS guaranteed by Property 2 above. Then we conclude the following.

• There is some yi such that W := |hLS (yi ◦0)| ≥ 2i−1. This holds by Property 1 above because
Li(yi) = sign(hLS (yi ◦0)), and the function g(y) = hLS (y ◦0) is an integer linear combination
of features in Fi.

• hLS (yi+1) ≤ 2i for all yi+1 ∈ {0, 1}(i+1)·` by definition of hLS .

• Assume without loss of generality that Li(yi) < 0. Then ORS(x1, . . . , x`/2) = LS(yi∗ ◦ x̃),

where x̃ ∈ {0, 1}` denotes the vector obtained by placing xi in the ith odd coordinate, and
placing 0 in all even coordinates.

Consider the function h1 : {0, 1}(i+1)·` → {0, 1} given by h1(x) = hLS (x)−hLS (yi ◦0). Trivially,
h1(yi ◦ 0) = 0, and the first and second bullets above imply that, W ≤ h1(x) ≤ 3W for all x.
Combining this with the third bullet point above, we conclude that the function

h2(x1, . . . , x`/2) = 2 ·
(
hLS (yi ◦ x̃)

3W
− 1

)5

+ 1

uniformly approximates ORS to within error 1/3. Indeed, h2(0) = −1, and for all x 6= 0, h2(x) ∈
[2/3, 1]. Notice h2 is a linear combination of features which can be written as the product of at
most 5 features in Fi+1 (possibly after adding the constant-function to Fi+1). As every disjunction
over `/2 variables can be uniformly approximated in this way, we conclude from [9, Theorem 4.2],
that Fi+1 ≥ 2Ω(d). Since |Fi+1| ≤ |F|, we conclude that |F| = 2Ω(d), completing the proof.

D Proof of Theorem 5

We restate Theorem 5 here for the reader’s convenience.

Theorem 5 (Buhrman, Vereshchagin, and de Wolf [6]) Fix d > 0, and let F be any set of at most
2d boolean-valued functions from {0, 1}n to {0, 1}. Suppose that every decision list L can be written
as the threshold of an integer linear combination of functions from F , L(x) = sign(

∑
fi∈F wifi+θ),

with |θ|+
∑

i |wi| ≤W . Then
m2 logW = Ω(n),

where m = d+ logW . Elementary manipulations then yield the following bound on logW :

log(W ) =

{
Ω(n/d2) if d ≥ n1/3,

Ω(n1/3) otherwise.

Proof: Buhrman, Vereshchagin, and de Wolf prove a communication lower bound for the function
ODD-MAX-BITn(x ∧ y), which outputs 1 if and only if the smallest i such that xi = yi = 1 is odd.

19



Specifically, they show that any quantum communication protocol for ODD-MAX-BITn(x∧ y) that
requires the exchange at at most c bits and achieves bias β satisfies m2 log(1/β) = Ω(n), where
m = c+ log(1/β). Here, a protocol is said to have bias β if it outputs ODD-MAX-BITn(x∧ y) with
probability at least 1/2 + β.

Suppose by way of contradiction that every decision list can be written as a threshold of a
weight-W integer linear combination of functions in F . We show how to obtain a (classical) one-
way communication protocol for ODD-MAX-BITn(x∧ y) as follows. This protocol is similar to that
described in Lemma 5.7 of [7].

For a fixed x, the decision list (in the entries of y) given by ODD-MAX-BITn(x ∧ y) has a
representation as sign(

∑
fi∈F wifi(y)) with

∑
i |wi| = W . Alice picks a function fi with probability

wi/W , and with d + 1 bits of communication she tells Bob the number i as well as sign(wi). Bob
outputs sign(wi) ·sign(fi(y)). This protocol is easily seen to have communication d+1 and bias 1

2W .
It follows from the communication lower bound of Buhrman et al. that (d+logW )2 · logW = Ω(n).
This completes the proof.

20

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


