
Pseudorandomness from Shrinkage

Russell Impagliazzo
University of California, San Diego and

Institute for Advanced Study∗

Raghu Meka†

Institute for Advanced Study

David Zuckerman‡

University of Texas at Austin and
Institute for Advanced Study

Abstract

One powerful theme in complexity theory and pseudorandomness in the past few decades
has been the use lower bounds to give pseudorandom generators (PRGs). However, the general
results using this hardness vs. randomness paradigm suffer a quantitative loss in parameters,
and hence do not give nontrivial implications for models where we don’t know super-polynomial
lower bounds but do know lower bounds of a fixed polynomial. We show that when such lower
bounds are proved using random restrictions, we can construct PRGs which are essentially best
possible without in turn improving the lower bounds.

More specifically, say that a circuit family has shrinkage exponent Γ if a random restriction
leaving a p fraction of variables unset shrinks the size of any circuit in the family by a factor
of pΓ+o(1). Our PRG uses a seed of length s1/(Γ+1)+o(1) to fool circuits in the family of size s.
By using this generic construction, we get PRGs with polynomially small error for the following
classes of circuits of size s and with the following seed lengths:

1. For de Morgan formulas, seed length s1/3+o(1);

2. For formulas over an arbitrary basis, seed length s1/2+o(1);

3. For read-once de Morgan formulas, seed length s.234...;

4. For branching programs of size s, seed length s1/2+o(1).

The previous best PRGs known for these classes used seeds of length bigger than n/2 to output
n bits, and worked only when the size s = O(n) [BPW11].

1 Introduction

Two of the most important general challenges for complexity are to prove constructive lower bounds
for non-uniform measures of computational complexity such as circuit size, and to show that

∗Work supported by the Simons Foundation, the Ellentuck Fund, the Friends of the Institute for Advanced Study,
and NSF grants DMS-0835373, CCF-121351 and CCF-0832797 subcontract No. 00001583. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect
the views of the National Science Foundation, Simons Foundation Ellentuck Fund, or Friends of the Institute for
Advanced Study.
†Supported in part by NSF grant DMS-0835373.
‡Supported in part by NSF Grants CCF-0916160 and DMS-0835373.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 57 (2012)

randomized algorithms have efficient deterministic simulations. The “Hardness vs. Randomness”
paradigm ([BM84, Yao82, AW85, NW94, Nis91, BFNW93]) shows that these questions are linked.
More precisely, these results show how to use any problem that is hard for a class of circuits to
create a pseudorandom generator (PRG) for the same class of circuits. This PRG can then be
used to construct a relatively efficient deterministic version of any probabilistic algorithm with a
corresponding complexity. This has been used both to create unconditional PRGs for circuit classes
with known lower bounds, such as AC0, and conditional results, implications between the existence
of hard problems and derandomization for classes where no strong lower bounds are known. In
the converse direction, it is easy to see that any PRG for a circuit class immediately gives a cor-
responding lower bound for the class. Somewhat more surprisingly, it has been shown that any
efficient deterministic simulation of some probabilistic algorithms would yield circuit lower bounds
([IKW02, KI04, Wil10]). This hardness vs. randomness connection is one of the most important
tools in computational complexity. It formalizes the intuition that efficient algorithms for “meta-
computational problems”, where the input is a computational device from a certain class, is linked
to our ability to prove lower bounds for that class.

However, being so general comes at a quantitative price. Ideally, the stretch of a PRG (the
output length as a function of the input length) equals the known lower bound. However, in
the hardness to randomness constructions, there are a number of stages that each lose a large
polynomial factor. In particular, this means, that, for example, a quadratic or cubic circuit lower
bound for a class does not immediately give any nontrivial PRG. For completely generic, “black-
box”, reductions between a hard problem and a PRG, some of these costs are inherent ([GV08,
SV08, Wat11, AS11b]). In particular, this is an issue for those models where super-linear but not
super-polynomial bounds are known, such as Boolean formulas.

In this work, we show a general method for obtaining tight “hardness to randomness” results
from the proofs of lower bounds, rather than as a black-box consequence of the lower bounds. In
particular, our methods apply to lower bound proofs that involve restricting some of the inputs
to the circuit. Our construction goes in two stages. We start with a lower bound proved by the
following kind of shrinkage argument: if we restrict a size s circuit leaving a p fraction of variables
unset, the expected size of the restricted circuit is O(pΓs). The best Γ for which this holds is
known as the “shrinkage exponent” of the circuit class. The first stage of our construction is to
derandomize the shrinkage argument, showing that there is a distribution with similar shrinkage
properties that can be sampled with few bits. This stage of our argument is general, but not totally
generic. While the same general construction and analysis ideas work in a variety of models, the
details depend on the model. Then we show how to go from such a distribution on restrictions to a
PRG. This part is generic, being identical for all models, and is very related to the generator from
[NZ96]. The total number of bits r used by the generator is roughly s1/(1+Γ) times the number of
bits needed to sample from the distribution on restrictions.

Every generator using r bits to fool tests of size s = s(r) immediately gives a problem requiring
size Ω(s(r)) to compute in the model. So, if our function s(r) is close to the known lower bounds, this
shows that we have essentially converted all of the “hardness” in the lower bound to “randomness”.
This is indeed the case for a variety of natural models of computation. For Boolean formulas over the
de Morgan basis, we give a generator with s(r) = r3−o(1), almost matching the known lower bound of
s(n) = Ω(n3/ log2 n) due to H̊astad ([H̊as98], based on earlier work by [Sub61, And87, IN93, PZ93]).
To avoid technicalities, we assume that the size s is at least the number of input variables n in the
following statements.

2

Theorem 1.1. For any constant c > 0, there is an explicit PRG using a seed of length s1/3 ·
2O(log2/3 s) = s1/3+o(1) random bits that s−c-fools formulas of size s over the de Morgan basis.

For Boolean formulas over an arbitrary basis, our generator has stretch s(r) = r2−o(1), almost
matching the Khrapchenko bound of s(n) = Ω(n2) ([Khr71]).

Theorem 1.2. For any constant c > 0, there is an explicit PRG using a seed of length s1/2 ·
2O(log1/2 s) = s1/2+o(1) random bits that s−c-fools formulas of size s over an arbitrary basis.

For branching programs, with size being the total number of edges, we get a similar bound.

Theorem 1.3. For any constant c > 0, there is an explicit PRG using a seed of length s1/2 ·
2O(log1/2 s) = s1/2+o(1) random bits that s−c-fools branching programs of size at most s.

We also consider the case of read-once formulas over the DeMorgan basis. Here, there is no
sensible notion of lower bound, since all functions computable in the model have size exactly n, but
the notion of shrinkage is defined. The optimal shrinkage exponent for such read-once DeMorgan
formulas was shown by [PZ93, HRY95] to be Γ = log 2/ log(

√
5− 1) = 3.27...; using this result, we

get a PRG with stretch s(r) = Ω(r4.27...).

Theorem 1.4. For any constant c > 0, there is an explicit PRG using a seed of length s1/(Γ+1) ·
2O(log2/3 s) = s1/(Γ+1)+o(1) random bits that s−c-fools read-once formulas of size s over the de Morgan
basis, where Γ = log 2/ log(

√
5− 1) = 3.27....

Any substantial improvement in our PRGs would thus yield better lower bounds than what is
currently known.

Our results dramatically improve previous work. The only directly comparable PRG was by
Bogdanov, Papakonstantinou, and Wan [BPW11], who constructed a PRG using a (1−Ω(1))n bit
seed to output n bits that fool read-once formulas and read-once branching programs, where the
order of the bits is unknown beforehand. There has been significant work on read-once branching
programs where the order of the bits is known in advance (e.g., [Nis91, INW94, NZ96]), but that
is a much simpler model and the generators of [Nis91, INW94] are known to fail if the order of bits
is unknown [BPW11].

1.1 Outline of Constructions

Our techniques build upon those of [Nis92, INW94, NZ96]. The intuition behind all of these PRGs
is to exploit communication bottlenecks in the computation. If the random inputs to a computation
can be partitioned into two subsets X and Y , and the computation can be simulated with k bits
of communication between these two subsets, then given the communication pattern, the two sets
of bits have high entropy conditioned on each other. Then, instead of using independent bits for
the two sides, we can use a randomness extractor to convert the conditional entropy of X given the
communication into random bits to be used in place of Y .

Our construction follows the same basic intuition. The key insight is that shrinkage under
random restrictions is a form of communication bottleneck, between X, the set of variables with
values specified by the restriction ρ, and Y , the set of variables left unrestricted (and chosen later).
Consider a one-way protocol where the player knowing X has to send a message allowing the Y -
player to compute the function f . What this message exactly needs to specify is the restricted

3

function fρ. If the circuit size of fρ is small, much smaller than the size of X, the message can be
the circuit computing the restricted function, showing low communication.

Most of the previous constructions were for computational models like read-once branching
programs, where one had an explicit description of which sets X and Y had a communication
bottleneck, and there was a hierarchical structure available on such sets so that the construction
could be defined recursively. Here, we do not have either one, but we know the bottleneck occurs
for most sets X and their complements. Instead of explicitly partitioning the variables into blocks
with low communication, we randomly sample sets that exhibit this bottleneck until all variables
are covered. So far, we are not able to utilize recursion, which blocks us from making the seed size
sub-polynomial (and hence proving super-polynomial lower bounds).

More concretely, consider the case of read-once width w branching programs, where the bits may
be read in any order (as opposed to some fixed order, which is the setting of Nisan [Nis92]). In this
arbitrary-order case, we show that the Nisan-Zuckerman PRG [NZ96], without recursion, gives a
PRG with seed length Õ(

√
n). Recall that this PRG uses an extractor E : {0, 1}s×{0, 1}d → {0, 1}m

and is defined byG(x, y1, . . . , yt) = E(x, y1)E(x, y)2) . . . E(x, yt), where x ∈ {0, 1}s and yi ∈ {0, 1}d.
To see that this works, suppose a branching program accepts a uniform input with significantly

different probability than the output of G. By a hybrid argument, changing some Zi = E(X,Yi)
to uniform must change the probability significantly. However, if we fix all bits except the m
bits corresponding to Zi, we are left with a read-once branching program on these m bits. There
are at most wwm such branching programs on m bits. Thus, if we condition on a typical such
branching program for these m bits, X still has min-entropy at least s − 2mw logw. As long
as this exceeds the min-entropy requirement of the extractor, the extractor output is close to
uniform, contradicting the assumption of significantly different acceptance probabilities. We can
set t = m =

√
n, s = 4mw logw, and d = O(log n).

For general branching programs, we need to handle variables that are read many times, which
we can do by pseudorandomly permuting the output of the above generator. However, for general
formulas and to get a general reduction, we need to extend the above generator. We do this by
combining the extractor outputs with pseudorandom restrictions that shrink with high probability
(and leave every bit unfixed with the same probability). Specifically, for a restriction ρ that leaves
m bits unfixed, we can define the random variable Vρ ∈ {0, 1}n that takes the values of ρ for the
fixed bits and the values of E(X,Yρ) for the unfixed bits. We do this for enough independent
pseudorandom restrictions that with high probability every coordinate has some ρ which leaves
that coordinate unfixed (via a coupon collector bound). The PRG output is the xor of all these Vρ.

In fact, the above achieves the desired bounds only when the shrinkage Γ = 1. For larger
shrinkage, we must also apply a k-wise independent distribution to E(X,Yρ).

Derandomized Shrinkage Bounds. To use our main generator construction, we need a family
of random restrictions that can be sampled with few random bits, and still causes the circuits to
shrink. For branching programs and formulas over an arbitrary basis (shrinkage exponent Γ = 1)
these are not too hard to get by taking O(log n)-wise independent random restrictions. For formulas
over the de Morgan basis and read-once formulas getting such restrictions is far trickier.

The first difficulty we face is that H̊astad’s original proof [H̊as98] only shows shrinkage in
expectation and does not give a high probability bound for the formulas to shrink. We get around
this difficulty as follows. Let f be a formula over the DeMorgan basis. We first show shrinkage
under restrictions for which the probability of being unset p = n−α for some α = o(1) and have

4

k = no(1)-wise independence. By repeating this process independently, we get shrinkage for all
values of p (both in the known lower bounds and in our PRG construction we need p ∼ n1/(Γ+1)).
To do this, we decompose the target formula f into O(n/`) subformulas gi of size at most `, for a
suitable ` < k. Since each gi now has size at most k, the behavior of gi under restrictions should be
the same under k-wise independent restrictions or truly random restrictions. Thus, we can roughly
expect each gi to shrink by pΓ in expectation.

For read-once formulas, the events that the different gi shrink are independent, and hence by a
Chernoff bound with high probability the total shrinkage is as promised. For the read-t case (each
variable appears at most t times in the formula), we partition the subformulas into t` + 1 color
classes, such that within a color class the subformulas are on disjoint sets of variables. We can then
proceed as in the read-once case. For the general case, we condition on heavy variables (the ones
that appear many times) in a subtle way and reduce to the read-t case.

1.2 Related Work

Independently and concucurrently to this work, Komargodski and Raz [KR12] showed an average-
case lower bound for de Morgan formulas nearly matching Andreev’s [And87] worst-case lower
bound: [KR12] give an explicit function on n variables such that any de Morgan formula of size
n2.499 agrees with the function on at most 1/2 + ε fraction of the inputs, where ε = exp(n−Ω(1)) is
exponentially small. In the course of showing their result, Komargodski and Raz also show that
shrinkage happens with high probability as opposed to in expectation which compares to Lemmas
4.2 and 4.8 in this work. However, the corresponding results in [KR12] work with truly random
restrictions and achieve an exponent of 1.5 for de Morgan formulas.

2 Preliminaries

We start with some definitions and notations.

• For a restriction ρ ∈ {0, 1, ∗}n, let the set of active variables be A(ρ) = {i : ρi = ∗}.

• For ρ ∈ {0, 1, ∗}n and f : {0, 1}n → {0, 1}, define the ρ-restricted function fdρ: {0, 1}A(ρ) →
{0, 1} by fdρ(y) = f(x), where x ∈ {0, 1}n satisfies xi = yi, i ∈ A(ρ) and xi = ρi otherwise.
When there is no ambiguity about subscripts, we sometimes use fρ to denote fdρ.

• Call a distribution D on {0, 1, ∗}n p-regular if for every i ∈ [n], Prρ←D[ρi = ∗] = p. We say D
is k-wise independent if any k coordinates of D are independent. There exist explicit k-wise
independent distributions samplable with O (k(log n) log(1/p)) random bits [AS11a].

• For a class of functions F on n variables we say s : F → N \ [n] is a size function if |{f ∈ F :
s(f) ≤ m}| ≤ mO(m) for m ≥ n. By default, we shall assume that F is closed under negating
the input variables and for any f ∈ F , s(g) = O(s(f)) if g is obtained from f by negating
some input variables. We also assume that any f ∈ F depends on at most s(f) variables.

• We say two distributions D,D′ (on the same universe) are ε-close if the statistical distance
between D and D′ is at most ε.

5

• We say a generator G : {0, 1}r → {0, 1}n δ-fools a function f : {0, 1}n → {0, 1} if∣∣∣∣ Pr
x∈u{0,1}n

[f(x) = 1]− Pr
y∈u{0,1}r

[f(G(y)) = 1]

∣∣∣∣ ≤ δ.
Similarly, we say G δ-fools a class of functions F if G δ-fools all functions in F . We refer
to the parameter r as the seed-length of the generator G and say G is explicit if G can be
computed in poly(n, 1/δ) time.

• Throughout, we use upper case letters for random variables and lower case for constants.

As mentioned in the introduction, our generator is motivated by the pseudorandom generator
for small space machines of Nisan and Zuckerman [NZ96]. As in their paper, our construction will
make use of extractors for linear min-entropy sources1.

Definition 2.1 (Extractor). We say E : {0, 1}N × {0, 1}d → {0, 1}m is a (k, ε)-extractor if for
every random variable X over {0, 1}N with H∞(X) ≥ k, and Y ∈u {0, 1}d, E(X,Y) is ε-close to the
uniform distribution on {0, 1}m. We say E() is explicit if it can be computed in time poly(N, d).

We use the following explicit extractor as given by the work of Zuckerman [Zuc97].

Theorem 2.2 ([Zuc97]). There exists an explicit function E : {0, 1}N × {0, 1}d → {0, 1}m that is
an (N/2, ε)-extractor with m = N/4 and d = O(log(N/ε)).

We also use the following large-deviation bounds for k-wise independent random variables. The
first is an easy corollary of Theorem 4 in [SSS95].

Lemma 2.3. Let a1, . . . , an ∈ R+ with maxi ai = m, and suppose X1, . . . , Xn ∈ {0, 1} are k-wise
independent indicator random variables with Pr[Xi = 1] = p. Let X =

∑
i aiXi and µ = E[X] =

p
∑

i ai. Then, Pr[X ≥ 2k(m+ µ)] ≤ 2−k.

When the expectation is small, the following simple lemma sometimes gives better bounds.

Lemma 2.4. Suppose X1, . . . , Xn ∈ {0, 1} are k-wise independent indicator random variables with
Pr[Xi = 1] = p. Let X =

∑
iXi and µ = E[X] = np. Then, Pr[X ≥ k] ≤ µk/k!.

Proof. This probability is at most
(
n
k

)
pk ≤ (np)k/k!.

3 Pseudorandom Generators from Shrinkage

We now describe our main construction which allows us to use classical lowerbound arguments
based on random restrictions to get pseudorandom generators (PRGs). Our main result will apply
to any class of functions with nontrivial “shrinkage exponent”. We next define this central notion.

Definition 3.1. Let F be a class of functions with an associated size function s : F → R+ and let
D be a p-regular distribution on {0, 1, ∗}n. We say F has shrinkage exponent Γ with respect to D
if for all f ∈ F ,

E
ρ←D

[s(fρ)] = O
(
pΓ · s(f) + 1

)
.

We say F has ε-shrinkage exponent Γ w.r.t D if, there exists a constant c such that for all f ∈ F ,

Pr
ρ←D

[
s(fρ) > c (pΓs(f) + 1) · log(1/ε)

]
≤ ε.

1The min-entropy of a variable X is defined by H∞(X) ≡ −maxx (log2 (Pr[X = x])).

6

The shrinkage exponent is a classical concept in complexity theory with its origins going back
to the very first lowerbounds of Subbotovskaya (1961) [Sub61]. The best lowerbounds we know for
several important complexity classes such as read-once formulas, de Morgan formulas are based on
estimating the shrinkage exponent of the associated class. This connection can be summarized in
the following informal statement:

Theorem 3.2 ([And87]). If a class F has shrinkage exponent Γ, then there is an explicit Boolean
function h : {0, 1}n → {0, 1} that cannot be computed by functions in F of size at most nΓ+1/poly(log n).

Our main result shows that with some additional guarantees on the behavior of F under ran-
dom restrictions, one can actually get very strong average-case lowerbounds, PRGs, for F . Our
construction and its analysis are quite different from that of Andreev, and give the first pseudo-
random generators with o(n) seed-length for several well-studied classes of functions like read-once
formulas, de Morgan formulas, branching programs of linear size.

Theorem 3.3. Fix ε > 0 and let F : {0, 1}n → {0, 1} be a class of functions with an associated size
function s : F → N. Fix s > 0 and let p = 1/sΓ+1. Let Dp be a p-regular distribution on {0, 1, ∗}n
such that F has ε-shrinkage exponent Γ w.r.t D. Then, there exists an explicit pseudorandom
generator G : {0, 1}r → {0, 1}n that δ-fools all functions of size at most s in F for δ = O(ε · r) and
has seed-length

r = O
(

(R(s) + log(s/ε)) · log(n/ε) · s1/(Γ+1)
)
,

where R(s) denotes the number of bits needed to efficiently sample from Dp.

Proof of Theorem 3.3. Here is a high-level description of the generator. We use the restriction
family Dp to sample t restrictions ρ1, . . . , ρt so that together, the set of active variables in them
covers [n] (with high probability). We next have to choose the assignments for the active (∗)
variables in the restrictions. Instead of choosing these variables independently (which would lead
to no gains in the number of bits used), we use a single string X and independent seeds Y1, . . . , Yt
(which are much shorter) to set the values for the unassigned variables in the restrictions according
to Gk(E(X,Y1)), Gk(E(X,Y2)), . . . , Gk(E(X,Yt)), where E() is an explicit extractor as given by
Theorem 2.2.

Fix p = 1/s1/(1+Γ) and t = dlog(n/ε)/pe . For k to be chosen later, let Gk : {0, 1}rk → {0, 1}n
be an explicit function generating a k-wise independent distribution on {0, 1}n. Let N ≥ 4rk and
let E : {0, 1}N ×{0, 1}d → {0, 1}rk be an explicit extractor that works for entropy rate at least 1/2
sources with d = O(log(N/ε)) and error at most ε as given by Theorem 2.2.

We now describe our PRG by giving a randomized algorithm to compute the output of the
generator.

1. Sample t independent restrictions ρ1, ρ2, . . . , ρt from Dp.

2. Sample X ∈u {0, 1}N and Y1, . . . , Yt ∈u {0, 1}d independently.

3. For 1 ≤ i ≤ t, let Zi = Gk(E(X,Yi)).

4. For 1 ≤ i ≤ t, define Vi ∈ {0, 1}n by (Vi)j = (Zi)j if j ∈ A(ρi) and (ρi)j otherwise.

5. Output V ≡ G(ρ1, . . . , ρt, X, Y1, . . . , Yt) = V1 ⊕ V2 ⊕ · · · ⊕ Vt, where ⊕ denotes bit-wise xor.

7

We will show that for N = Õ(pΓs) sufficiently large, functions in F of size at most s cannot
distinguish V from a truly random string. We will do so by a hybrid argument. To this end, let Z ′i
be independent uniformly random strings in {0, 1}n and with ρ1, . . . , ρt as in the definition of V ,
define Ui ∈ {0, 1}n, 1 ≤ i ≤ t, by (Ui)j = (Z ′i)j if j ∈ A(ρi) and (ρi)j otherwise.

For 0 ≤ i ≤ t, let Wi = U1⊕· · ·⊕Ui⊕Vi+1⊕Vi+2⊕· · ·⊕Vn. Then, W0 ≡ V and Wt = U1⊕· · ·⊕Ut.
We first observe that Wt is ε-close to the uniform distribution on {0, 1}n.

Claim 3.4. The distribution of Wt is ε-close to the uniform distribution on {0, 1}n.

Proof. Observe that if ∪ti=1A(ρi) = [n], then Wt is exactly the uniform distribution on {0, 1}n.
Thus, it suffices to bound the probability that ∪ti=1A(ρi) ([n]. Now, as Dp is p-regular, for every
i ∈ [t], j ∈ [n], Pr[j ∈ A(ρi)] = p and these events are independent for different i ∈ [t]. Thus,
Pr[j /∈ ∪ti=1A(ρi)] = (1− p)t ≤ ε/n. The claim now follows by a union bound.

From the above claim, it suffices to show that F cannot distinguish W0 from Wt. Fix a f ∈ F
with s(f) ≤ s and i ≥ 1. We will show that f cannot distinguish between Wi−1 and Wi.

Claim 3.5. For i ≥ 1, |Pr[f(Wi−1) = 1]− Pr[f(Wi) = 1]| ≤ 5ε.

Proof. Let W = U1 ⊕ · · · ⊕ Ui−1 ⊕ Vi+1 ⊕ · · · ⊕ Vn. Then, Wi−1 ≡ W ⊕ Vi and Wi = W ⊕ Ui.
The intuition behind our argument is as follows. Note that W does not depend on ρi, Yi. Let
fW : {0, 1}n → {0, 1} be given as fW (x) = f(x ⊕ W). Now, by our assumption about the
shrinkage exponent of F , for any fixing of W , with high probability over the choice of ρi, s(fW dρi) ≤
cpΓs log(1/ε) = s0. Let E denote this event. Observe that conditioned on E , the restricted function
fW dρi can be described with roughly O(s0 log s0) bits (as it has size at most s0). We then argue that
under conditioning on E (which is independent of Yi), X has min-entropy at least N −O(s0 log s0)
even when given the function g = fW dρi . Therefore, for N sufficiently large, E(X,Yi) is ε-close
to a uniformly random string on {0, 1}rk so that Gk(E(X,Yi)) is ε-close to a k-wise independent
distribution on {0, 1}n. Finally, as g depends only on at most s(fW dρi) ≤ s0 variables, we get that
g cannot distinguish Vi from a truly random string if k ≥ s0. We now formalize this intuition.

For brevity, let H denote the random variable fW dρi : {0, 1}A(ρi) → {0, 1}. Observe that H
is independent of Yi and the domain of H is independent of X. We abstract the two essential
properties of the random restriction family Dp that we shall exploit.

Fact 3.6. With probability at least 1− ε, s(H) ≤ s0. In particular, with probability at least 1− ε:
(1) H can be described by O(s0 log s0) bits and (2) H is fooled by s0-wise independent distributions.

Proof. By our assumption about Dp, for every W , Prρi [s(fW dρi) ≥ s0] < ε. The claim now follows

as the number of functions in F of size at most s0 is s
O(s0)
0 and any function of size s0 has at most

s0 relevant variables.

Let F ′i denote the set of all possible values for H obtained under arbitrary settings of W and ρi.
Let Fi = {g ∈ F ′i : PrW,ρi [H = g] ≥ ε/scs00 }. Let E ′ denote the event that the conclusions of
Fact 3.6 hold and let E be the event that H ∈ Fi and E ′. Note that conditioned on E ′, the number

of possibilities for H is at most s
O(s0)
0 as H is described completely by O(s0 log s0) bits. Therefore,

1− Pr[E] ≤ Pr[¬E ′] + Pr[(H /∈ Fi) ∧ E ′] ≤ ε+ s
O(s0)
0 · ε/scs00 ≤ 2ε, (3.1)

for c a sufficiently large constant.

8

In the remaining argument, we condition on the event E . From the above equation, this will
only effect our error estimate by an additive 3ε. Fix an element g ∈ Fi. Then, as the random
function H equals g with probability at least ε/scs00 , conditioning on this event cannot change the
min-entropy of X much:

H∞(X|H = g) ≥ N − log(1/ε)− cs0 log s0.

Recall that H is independent of Yi. Thus, by the definition of the extractor, for N ≥ 2cs0 log s0+
2 log(1/ε), E(X,Yi) is ε-close to the uniform distribution on {0, 1}rk even conditioned on H = g.
In particular, Zi = Gk(E(X,Yi)) is ε-close to a k-wise independent distribution. Therefore, even
conditioned on H = g, (Vi)A(ρi) = (Zi)A(ρi) is ε-close to k-wise independent. Finally, note that
f(Wi−1) = (fW dρi)((Vi)ρi) = H((Vi)ρi) and similarly, f(Wi) = H((Ui)ρi). Thus, for k ≥ s0,

E [f(Wi−1) | E , H = g] = E [(fW)ρi ((Vi)ρi)) | E , H = g]

= E
[
g((Vi)A(ρi)) | E , H = g

]
= E

[
g((Ui)A(ρi)) | E , H = g

]
± ε (Fact 3.6)

= E [f(Wi)|E , H = g]± ε.

As the above is true for every g ∈ Fi, it follows that

|E[f(Wi−1)− f(Wi) | E]| ≤ ε.

Combining Equation 3.1 and the above equation, we get

|E[f(Wi−1)]− E[f(Wi)]| = Pr[E] · |E[f(Wi−1)− f(Wi) | E]|+ Pr[¬E] · |E[f(Wi−1)− f(Wi) | ¬E]|
≤ ε+ 2Pr[¬E] ≤ 5ε.

The claim now follows.

Combining Claims 3.4, 3.5 and summing from 1 ≤ i ≤ t, we get that

|E[f(V)]− E
U∈u{0,1}n

[f(U)]| ≤ 5εt+ ε.

Let us now estimate the seed-length of the generator. To generate V we need to sample ρ1, . . . , ρt
and X,Y1, . . . , Yt for a total of

r = (R(s) + d)t+N = O (R(s) + log(s0/ε)) · (log(n/ε))/p+O(s0 log s0).

Substituting s0 = cpΓs log(1/ε), in the above equation gives us the theorem. The above calcu-
lation explains our choice of p = 1/s(Γ+1): we want to balance out 1/p and pΓs.

We next use Theorem 3.3 to get PRGs for specific classes of functions.

9

4 PRGs for Formulas

A formula is a tree where each leaf is labeled by a literal (either a variable or its negation) and
each internal node by an operation of constant arity. Any such tree naturally defines a function
f . Let L(f) denote the formula size (number of leaves) of f . We assume without loss of generality
that L(f) = n, the number of variables, since we can always add dummy variables otherwise. A de
Morgan formula is a binary tree with the set of allowed operations being {∧,∨}.

The simplest case for our arguments is formulas over an arbitrary basis, since these have shrink-
age 1. More challenging are de Morgan formulas. It has been known for many years that shrinkage
for general such formulas is 2 [H̊as98] and for read-once formulas (no variable appears more than
once) is log 2/ log(

√
5 − 1) = 3.27... [HRY95]. In this section, we show that even pseudorandom

restrictions using no(1) random bits achieve essentially the same shrinkage with high probability.
This will be shown in Lemmas 4.2, 4.8. We then use Theorem 3.3 to get Theorems 1.2, 1.1, 1.4.

In our arguments, we will often have to handle “heavy” variables – variables that appear in
many leaves. The following lemma shows that any s variables can only increase the formula size
by a factor of about 2s.

Lemma 4.1. Let f be any formula, and let H denote any subset of the variables. For each
h ∈ {0, 1}H , let ρh denote the restriction formed by setting variables in H to h, leaving all other
variables unfixed. Then L(f) ≤

∑
h∈H(L(fdρh) + |H|) ≤ 2|H| (maxh∈H L(fdρh) + |H|).

Proof. Let x(H) = h denote the formula of size |H| which is true iff all variables in H are set to h.
Then f =

∨
h∈{0,1}H ((x(H) = h) ∧ (fdρh)).

We begin with formulas over an arbitrary basis.

4.1 Arbitrary Basis

Here Lemma 4.1 and concentration bounds imply shrinkage with Γ = 1 for O(log n)-wise indepen-
dent restrictions.

Lemma 4.2. For any constant c and formula f with L(f) = n, a (p = 1/
√
n)-regular c log n-wise

independent random restriction ρ yields

Pr[L(fdρ) ≥ 23
√
c lognpn] ≤ 2n−c.

Proof. Let k = c log n. The formula f depends on at most n variables x1, . . . , xn. Let variable
xi appear as a leaf ni times, so n = L(f) =

∑
i ni. For α to be chosen later, call xi heavy if

ni ≥ p1−αn and light otherwise. Then for H the set of heavy variables, |H| ≤ pα−1. Let H(ρ)
denote the heavy variables set to * by ρ, and h(ρ) = |H(ρ)|. Define a new restriction ρ′ with
ρ′(x) = ρ(x) for x 6∈ H(ρ), and adversarially chosen in {0, 1} otherwise. Lemma 4.1 implies that
L(fdρ) ≤ 21+h(ρ)L(fdρ′). We bound

Pr[L(fdρ) ≥ 2h+3k · p1−αn] ≤ Pr[h(ρ) ≥ h] + Pr[L(fdρ′) ≥ 4k p1−αn].

Define random variables Xi = 1 if ρ(xi) = ∗, and 0 otherwise. We bound the first term with
Lemma 2.4. Here, we have µ = |H|p ≤ pα. Thus as long as hα ≥ 2c this term will contribute at
most n−c.

10

For the second term, we need only consider light variables L and apply Lemma 2.3. Now the
coefficients are the ni. Note that µ ≤ pn and m = maxxi∈L ni < pα−1n, so m+µ ≤ 2p1−αn. Hence
Lemma 2.3 bounds the second term by 2−k ≤ n−c.

Setting h = d2c/αe, we minimize 2h(1/p)α by setting α = 2
√
c/ log n.

Combining this with Theorem 3.3 with Γ = 1, yields Theorem 1.2.

4.2 de Morgan Basis

We follow the high-level intuition described in the introduction. One subtle issue we face in carrying
out the approach is that the subformulas gi in our decomposition will have some overlapping nodes,
which in turn forces some additional constraints on these nodes. We next show that these additional
constraints can be removed with only a minor loss. Throughout this section we assume that Γ
denotes the shrinkage exponent for the class of formulas under consideration — Γ = 2 for general
formulas and Γ = 3.27... for read-once formulas.

Lemma 4.3. For any positive ` and any formula f on a set of variables X with L(f) ≥ `, there
exists at most 6n/` formulas gi with L(gi) ≤ `, where the gi may depend on variables outside X,
such that the following holds. For any restriction ρ, L(fdρ) ≤

∑
i L(gidρ′), where ρ′(x) = ρ(x)

for x ∈ X, and ρ′(x) = ∗ otherwise. Moreover, each gi depends on at most 2 variables outside X
(called special variables).

This follows from the following claim.

Claim 4.4. Any binary tree of size n ≥ ` can be decomposed into at most 6n/` subtrees of size at
most `, such that each subtree has at most two other subtree children. Here subtree T1 is a child of
subtree T2 if there exists nodes t1 ∈ T1, t2 ∈ T2, such that t1 is a child of t2.

Proof. Proceed inductively, using the well-known fact that any binary tree of size s can be divided
into two edge-disjoint subtrees, each of size between s/3 and 2s/3. This results in subtrees of size
between `/3 and `, and hence there are at most 3n/` of them. For each subtree T with more than
two subtree children, find a subtree T ′ of T with exactly two subtree children, and divide T into
T ′ and T \ T ′. Note that T \ T ′ now has one fewer subtree children. Continue doing this until all
subtrees have at most two subtree children. This process can continue at most the original number
of subtrees steps, and hence the total number of such subtrees is as desired.

Proof of Lemma 4.3. View the formula f as a tree. By Claim 4.4, we can decompose f into
subformulas gi, where each input to gi is either an ordinary variable in X or a special input: the
output of some other gj . In each gi, replace these special inputs with distinct, new variables not
in X. The total number of new variables is at most the number of subformulas.

We’d now like to show that restricting by ρ′ is not much worse than restricting by ρ, i.e.,
requiring a few variables to be * does not hurt the restricted size too much. We want to show this
simply using results about restrictions by ρ as a black box. For general formulas, this follows from
Lemma 4.1. However, for read-once formulas we need a different method. This method involves
replacing these special variables by relatively short formulas which are unlikely to get fixed. We
show that such read-once formulas exist using a result of Valiant [Val84] on computing the majority
function by monotone formulae.

11

Lemma 4.5. For any 0 < p, ε < 1, there exists a read-once formula h of size at most (log(1/ε)/p)4

such that a p-regular (truly) random restriction fixes h with probability less than ε.

Proof. We shall use Valiant’s result on computing the majority function using monotone formulas
[Val84]. His main result is a probabilistic way to construct monotone formulas for majority. How-
ever, the formulas he constructs come from a distribution on read once formulas of size poly(1/p)
so that, if the inputs have bias 1/2 + p (of being 1), they almost always output 1, and if they have
bias 1/2−p, they almost always output 0. He then boosts the error probability to be exponentially
small in n. We don’t need to do that last step.

The point is that if a monotone formula has the above property, then it is resistant to restrictions
leaving p fraction of bits unrestricted. Because, if we go back and set the unset bits to 1, we get
random bits biased towards 1 as inputs, and if we set them to 0, we get random inputs biased
towards 0. Since the output has to change with high probability, the circuit cannot be constant
after the restriction.

The precise bound one gets from Valiant’s arguments is O
(
(log(1/ε))2/p3.27...

)
< (log(1/ε)/p)4.

Lemma 4.6. Suppose that for all formulas f of size `0, and a p-regular random restriction ρ,
E[L(fdρ)] ≤ pΓL(f). Suppose g is a formula with w special variables with L(g) ≥ `0. Let ρ′ be a
p-regular restriction with the constraint that the special variables in g be unrestricted. Then,

E
[
L(gdρ′)

]
≤ pΓL(g) +O

(
w · pΓ−4 · log4

(
w pΓ L(g)

))
.

Proof. Construct a new formula g′ by replacing each special variable in g by the formula h given in
Lemma 4.5 for ε = 1/w pΓL(g), on disjoint sets of variables. Let A denote the event that none of
these formulas h is fixed. The key observation is that conditioned on A, we have L(g′dρ) ≥ L(gdρ′).
Therefore,

E
[
L(g′dρ)

]
≥ Pr[A] · E

[
L(g′dρ) |A

]
≥ (1− wε)E

[
L(gdρ′) |A

]
.

Thus, for r = (log(1/ε)/p)4,

E[L(gdρ′)|A] ≤ (1 + 2wε)E[L(g′dρ)] ≤ (1 + 2wε)
(
pΓ(L(g) + 2w r)

)
.

The lemma follows.

We next show that k-wise independent restrictions shrink formulas in which no variable is read
too many times with high probability.

Lemma 4.7. There is a large enough constant c, such that for any ε > 0, any p ≥ n−1/(4Γ),
any t ≤ p9Γn/(c log(n/ε)), and any read-t formula f on n variables with L(f) = n, a p-regular(
k = c log(n/ε)/pΓ

)
-wise independent restriction ρ yields Pr

[
L(fdρ) ≥ 60 pΓn

]
≤ ε.

Proof. Set ` = 1/p4Γ. Use Lemma 4.3 to get the formulas gi. By Lemma 4.1 and Lemma 4.6, for
any gi, we have E[L(gidρ′] ≤ 5 pΓ`.

Form a graph where the vertices are the gi, with an edge between gi and gj if they share a
variable. This graph has m vertices, where n/` ≤ m ≤ 6n/`, and degree at most `t. Hence we can
divide the vertices into independent sets of size at least s = bm/(`t+ 1)c ≥ c log(n/ε)/(2pΓ).

12

For any such independent set I, note that Yi = L(gidρ′)/` are independent random variables in
the range [0, 1]. Hence we can apply Lemma 2.3 for large enough c to show that

Pr

[∑
i∈I

L(gidρ′) ≥ 2E

[∑
i∈I

L(gidρ′)

]]
≤ ε/n.

Thus, by a union bound, with probability at least 1− ε no such event occurs. The lemma follows
because ∑

I

E

[∑
i∈I

L(gidρ′)

]
≤ 5pΓ` ·

∑
I

|I| = 5pΓ`m ≤ 30 pΓn.

We now remove the assumption that the formula is read t, leading to our final derandomized
shrinkage bound.

Lemma 4.8. For any constant c ≥ 11, any p ≥ n−1/Γ, and any formula f on n variables with

L(f) = n, there is a a p-regular distribution on restrictions ρ using a 2O(log2/3 n) bit seed such that

Pr
[
L(fdρ) ≥ 23c log2/3 n · pΓn

]
≤ n−c.

Before proving the lemma we first note that combining the lemma with Theorem 3.3, and the
shrinkage exponent estimates of [H̊as98], [HRY95] directly implies Theorem 1.1 and Theorem 1.4
respectively.

We now prove Lemma 4.8. We will implement this p-regular restriction as a sequence of r
q-regular restrictions, where p = qr and q = n−α for some α only slightly sub-constant. For each of
the r rounds of restriction, we will have a set of at most n6α heavy variables, which can change in
each round. We handle the heavy variables by conditioning on the values of the restrictions applied
to the heavy variables for the current round and 6 rounds ahead, and then applying Lemma 2.4.
We handle all other variables with Lemma 4.7. Note that the shrinkage exponents proved in
[H̊as98], [HRY95] have an extra polylogarithmic term. However, the extra factor when restricting
by q = n−α is polylog(n), so the total extra factor is (polylog(n))r, which can be absorbed into the

2O(log2/3 n) term. We now formalize this.

Proof. Set q = p1/r for an r ≥ 11 such that q = n−α for α to be chosen later. Let k0 = n6α,
and k = rk0. Our pseudorandom p-regular restriction will be the composition of r independent
restrictions ρi, where each ρi is a k-wise independent q-regular restriction.

The analysis proceeds in rounds. Let X0 = X denote the n variables for f . Let Xi denote the
unfixed variables in round i, and let ni = |Xi|. Let f0 = f , and let fi denote the restricted formula
after i rounds. Call a variable xj heavy in round i if xj appears more than ti = L(fi)/n

10α times
in fi. Letting Hi denote the heavy variables in round i, we see that |Hi| ≤ n10α. Let H = ∪Hi,
and Yi = Xi \H. Let pi = p/qi.

We now condition on the heavy variables in a somewhat subtle way. In round 1, we condition
on all of ρ1, as well as the values of all ρi on the variables H1. Now all the ρi on H1 determine ρ
on H1. Since all ρi are k-wise independent, so is ρ. Since k ≥ |H1|, Lemma 2.4 implies that

Pr [ρ leaves at least s variables from H1 unfixed] ≤
(
n10αp

)s ≤ n−αs. (4.1)

13

Now, conditioned on all ρi on H1, ρ1 remains k0-wise independent on X \H1. Suppose ρ leaves
s1 < s variables unfixed from H1. Then for each setting τ of these s1 variables, Lemma 4.7 implies
that

Pr
[
L
(
fdρ1∪ρ(H)∪τ

)
≥ 60 qΓn

]
≤ exp(n−Ω(α)). (4.2)

Combining (4.1) and (4.2) with Lemma 4.1, we obtain

Pr
[
L
(
fdρ1∪ρ(H)

)
≥ 2s+6qΓn

]
≤ 2n−αs.

We continue in this manner, in round i fixing ρi as well as all ρj , j ≥ i, on Hi. We do this for
r − 11 rounds, as in (4.1) the p becomes pi and we need to ensure that n10αpi ≤ n−α. Thus,

Pr[L(fdρ) ≥ (2s+6qΓ)r−11 · n] ≤ 2(r − 11)n−αs.

Since qΓr = pΓ, the extra factor we lose in the formula size beyond pΓ is at most 2(s+6)(r−11)n11α.
To make the error at most n−c, we set s = 2c/α. Since p ≥ 1/n, we have r ≤ 1/α. Thus the extra
factor is at most 2rsn11α = 22c/α2+11α logn. To minimize this exponent (up to constants), we set
α = (log n)−1/3. We restrict c ≥ 11 in the lemma statement so that 2c+ 11 ≤ 3c.

5 PRGs for Branching Programs

We now apply our main generator construction to get PRGs for branching programs to get a PRG
with seed-length s1/2+o(1) for branching programs of size s. We first formally define branching
programs.

Definition 5.1. An n-variable branching program (BP) M is a directed acyclic graph with the
following properties:

• There are three special vertices—start which has no incoming edges and two terminal vertices
accept, reject which have no outgoing edges.

• Every vertex in the graph is labeled with a variable from {x1, . . . , xn}.

• Every non-terminal vertex has two outgoing edges labeled {0, 1}.

The size of M , s(M), is defined as the number of vertices in M . The length of M is defined as the
length of the longest path from start to either of the terminals. We say M is read-once if no two
vertices in a path from start to the terminals have the same label.

A branching program M as above, naturally induces a function M : {0, 1}n → {0, 1} that on
input x ∈ {0, 1}n, traverses the graph according to x and outputs 1 if the computation reaches accept
and 0 otherwise.

We shall construct an explicit pseudorandom generator for branching programs of size at most s
with seed-length s1/2+o(1) and error 1/poly(s). Previously, only PRGs with seed-length Ω(n) were
known even for the special case of layered read-once branching programs2 (ROBPs) with each layer
constrained to have a constant number of nodes (constant width). For the more restricted class of
oblivious ROBPs (these are ROBPs where the labeling of the layers is known apriori) of length at

2Meaning, the vertices can be partitioned into layers so that edges always go between consecutive layers and all
the vertices in a layer are labeled with the same variable.

14

most T and width at most W , Nisan [Nis92] and Impagliazzo, Nisan and Wigderson [INW94] gave
PRGs with seed-length O((log T)(log(T/ε) + logW)) to get error ε.

We now prove Theorem 1.3. The arguments here are basically the same as those from Sec-
tion 4.1. To this end, we first show an analogue of Lemma 4.1 for branching programs.

Lemma 5.2. Let f be any BP, and let H denote any subset of the variables. For each h ∈ {0, 1}H ,
let ρh denote the restriction formed by setting variables in H to h, leaving all other variables unfixed.
Then s(f) ≤ 2|H| · (maxh∈H s (fdρh) + 2).

Proof. Build a complete decision tree T of depth |H| so that leaves correspond to specific assign-
ments for the variables in h. We can now obtain a BP Mf for f , by appending a BP for fdρh to
the leaf of T corresponding to the assignment h. Clearly, the resulting BP has size as stated.

Lemma 5.3. For any constant c and BP f with s(f) = n, a (p = 1/
√
s)-regular c log s-wise

independent random restriction ρ yields

Pr
[
s(fdρ) ≥ 23

√
c logn · p s

]
≤ 2 s−c.

Proof. Let k = c log s. The BP f on at most s variables x1, . . . , xs. For i ≤ s, let the number of
vertices labeled xi be ni. Then, s = s(f) =

∑
i ni. We now repeat the calculations from Lemma 4.2

for this setting of ni’s.
For α to be chosen later, call xi heavy if ni ≥ p1−αs and light otherwise. Then for H the set of

heavy variables, |H| ≤ pα−1. Let H(ρ) denote the heavy variables set to * by ρ, and h(ρ) = |H(ρ)|.
Define a new restriction ρ′ with ρ′(x) = ρ(x) for x 6∈ H(ρ), and adversarially chosen in {0, 1}
otherwise. Lemma 4.1 implies that s(fdρ) ≤ 2h(ρ)+1s(fdρ′). We bound

Pr
[
s(fdρ) ≥ 2h+3k · p1−αs

]
≤ Pr[h(ρ) ≥ h] + Pr

[
s(fdρ′) ≥ 4k p1−αs

]
.

Define random variables Xi = 1 if ρ(xi) = ∗, and 0 otherwise. We bound the first term with
Lemma 2.4. Here, we have µ = |H|p ≤ pα. Thus as long as hα ≥ 2c this term will contribute at
most s−c.

For the second term, we need only consider light variables L and apply Lemma 2.3. Now the
coefficients are the ni. Note that µ ≤ ps and m = maxxi∈L ni < pα−1n, so m+ µ ≤ 2p1−αs. Hence
Lemma 2.3 bounds the second term by 2−k ≤ s−c.

Setting h = d2c/αe, we minimize 2h(1/p)α by setting α = 2
√
c/ log s.

Combining this with Theorem 3.3 with Γ = 1, yields Theorem 1.3.

Acknowledgments

We are grateful to Avi Wigderson for useful discussions and suggestions.

References

[And87] A.E. Andreev, On a method for obtaining more than quadratic effective lower bounds
for the complexity of π-schemes., Moscow Univ. Math. Bull. 42 (1987), no. 1, 63–66.

15

[AS11a] N. Alon and J.H. Spencer, The probabilistic method, Wiley Series in Discrete Mathe-
matics and Optimization, John Wiley & Sons, 2011.

[AS11b] Sergei Artemenko and Ronen Shaltiel, Lower bounds on the query complexity of non-
uniform and adaptive reductions showing hardness amplification, APPROX-RANDOM,
2011, pp. 377–388.

[AW85] Miklós Ajtai and Avi Wigderson, Deterministic simulation of probabilistic constant
depth circuits (preliminary version), FOCS, 1985, pp. 11–19.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson, BPP has subexponen-
tial time simulations unless EXPTIME has publishable proofs, Computational Com-
plexity 3 (1993), 307–318.

[BM84] Manuel Blum and Silvio Micali, How to generate cryptographically strong sequences of
pseudo-random bits, SIAM J. Comput. 13 (1984), no. 4, 850–864.

[BPW11] Andrej Bogdanov, Periklis A. Papakonstantinou, and Andrew Wan, Pseudorandomness
for read-once formulas, FOCS, 2011, pp. 240–246.

[GV08] Dan Gutfreund and Salil P. Vadhan, Limitations of hardness vs. randomness under
uniform reductions, APPROX-RANDOM, 2008, pp. 469–482.

[H̊as98] Johan H̊astad, The shrinkage exponent of de Morgan formulas is 2, SIAM J. Comput.
27 (1998), no. 1, 48–64.

[HRY95] Johan H̊astad, Alexander A. Razborov, and Andrew Chi-Chih Yao, On the shrinkage
exponent for read-once formulae, Theor. Comput. Sci. 141 (1995), no. 1&2, 269–282.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson, In search of an easy
witness: exponential time vs. probabilistic polynomial time, J. Comput. Syst. Sci. 65
(2002), no. 4, 672–694.

[IN93] Russell Impagliazzo and Noam Nisan, The effect of random restrictions on formula
size, Random Struct. Algorithms 4 (1993), no. 2, 121–134.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson, Pseudorandomness for network
algorithms, STOC, 1994, pp. 356–364.

[Khr71] V.M. Khrapchenko, Complexity of the realization of a linear function in the class of
π-circuits, Math. Notes Acad. Sciences USSR 9 (1971), 21–23.

[KI04] Valentine Kabanets and Russell Impagliazzo, Derandomizing polynomial identity tests
means proving circuit lower bounds, Computational Complexity 13 (2004), no. 1-2,
1–46.

[KR12] Ilan Komargodski and Ran Raz, Average-case lower bounds for formula size, ECCC 19
(2012), no. 62.

[Nis91] Noam Nisan, Pseudorandom bits for constant depth circuits, Combinatorica 11 (1991),
no. 1, 63–70.

16

[Nis92] , Pseudorandom generators for space-bounded computation, Combinatorica 12
(1992), no. 4, 449–461.

[NW94] Noam Nisan and Avi Wigderson, Hardness vs randomness, J. Comput. Syst. Sci. 49
(1994), no. 2, 149–167.

[NZ96] Noam Nisan and David Zuckerman, Randomness is linear in space, J. Comput. Syst.
Sci. 52 (1996), no. 1, 43–52.

[PZ93] Mike Paterson and Uri Zwick, Shrinkage of de Morgan formulae under restriction,
Random Struct. Algorithms 4 (1993), no. 2, 135–150.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan, Chernoff-Hoeffding bounds
for applications with limited independence, SIAM J. Discrete Math. 8 (1995), no. 2,
223–250.

[Sub61] B. A. Subbotovskaya, Realizations of linear functions by formulas using +, *, -, Sov.
Math. Dokl. 2 (1961), 110–112.

[SV08] Ronen Shaltiel and Emanuele Viola, Hardness amplification proofs require majority,
STOC, 2008, pp. 589–598.

[Val84] Leslie G. Valiant, Short monotone formulae for the majority function, J. Algorithms 5
(1984), no. 3, 363–366.

[Wat11] Thomas Watson, Query complexity in errorless hardness amplification, APPROX-
RANDOM, 2011, pp. 688–699.

[Wil10] Ryan Williams, Improving exhaustive search implies superpolynomial lower bounds,
STOC, 2010, pp. 231–240.

[Yao82] Andrew Chi-Chih Yao, Theory and applications of trapdoor functions (extended ab-
stract), FOCS, 1982, pp. 80–91.

[Zuc97] David Zuckerman, Randomness-optimal oblivious sampling, Random Struct. Algo-
rithms 11 (1997), no. 4, 345–367.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

