
How to Garble Arithmetic Circuits∗

Benny Applebaum† Yuval Ishai‡ Eyal Kushilevitz§

May 5, 2012

Abstract

Yao’s garbled circuit construction transforms a boolean circuit C : {0, 1}n → {0, 1}m into a
“garbled circuit” Ĉ along with n pairs of k-bit keys, one for each input bit, such that Ĉ together
with the n keys corresponding to an input x reveal C(x) and no additional information about
x. The garbled circuit construction is a central tool for constant-round secure computation and
has several other applications.

Motivated by these applications, we suggest an efficient arithmetic variant of Yao’s original
construction. Our construction transforms an arithmetic circuit C : Zn → Zm over integers
from a bounded (but possibly exponential) range into a garbled circuit Ĉ along with n affine
functions Li : Z → Zk such that Ĉ together with the n integer vectors Li(xi) reveal C(x) and
no additional information about x. The security of our construction relies on the intractability
of the learning with errors (LWE) problem.

1 Introduction

Yao’s garbled circuit (GC) construction [41] is an efficient transformation which maps any boolean
circuit C : {0, 1}n → {0, 1}m together with secret randomness into a “garbled circuit” Ĉ along
with n pairs of short k-bit keys (K0

i ,K
1
i) such that, for any (unknown) input x, the garbled circuit

Ĉ together with the n keys Kx = (Kx1
1 , . . . ,Kxn

n) reveal C(x) but give no additional information
about x. The latter requirement is formalized by requiring the existence of an efficient decoder
which recovers C(x) from (Ĉ,Kx) and an efficient simulator which, given C(x), samples from a
distribution which is computationally indistinguishable from (Ĉ,Kx). The keys are short in the
sense that their length, k, does not depend on the size of C. Yao’s celebrated result shows that
such a transformation can be based on the existence of any pseudorandom generator [9, 40], or
equivalently a one-way function [20].

The GC construction was originally motivated by the problem of secure multiparty computa-
tion [40, 18]. Until recently, Yao’s construction provided the only general technique for constant-
round secure computation [41, 8, 27, 25]. The recent breakthrough results on fully homomorphic
encryption [16, 17, 10] give an alternative technique for constant-round secure computation that has
better (in fact, nearly optimal) asymptotic communication complexity, but is still quite inefficient
in practice. Along the years, the GC construction has found a diverse range of other applications to

∗An extended abstract appeared in the Proceedings of the 52nd Annual Symposium on Foundations of Computer
Science (FOCS), 2011.
†School of Electrical Engineering, Tel-Aviv University. Supported by Alon Fellowship, ISF grant 1155/11 and by

the Check Point Institute for Information Security.
‡Department of Computer Science, Technion. Supported by ERC Starting Grant 259426, ISF grant 1361/10, and

BSF grant 2008411.
§Department of Computer Science, Technion. Supported by ISF grant 1361/10 and BSF grant 2008411.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 58 (2012)

problems such as computing on encrypted data [38, 11], parallel cryptography [4, 3], verifiable com-
putation [15, 5], software protection [19], functional encryption [37], and key-dependent message
security [6, 1].

In some natural application scenarios, the GC construction still provides the only known tech-
nique for obtaining general feasibility results. As a simple example, imagine a scenario of sending
a computationally weak device U to the field in order to perform some expensive computation C
on sensitive data x. The computation is too complex for U to quickly perform it on its own, but
since the input x is sensitive U cannot just send the entire input out. The GC technique provides
the only known non-interactive solution: In an offline phase, before going to the field, U publishes
Ĉ and privately keeps the list of keys (K0

i ,K
1
i). Once it observes the input x, it suffices for U

to select the corresponding keys Kx and send them out – an inexpensive operation whose cost is
independent of the complexity of C. The rest of the world can, at this point, recover C(x) and
nothing else.

It is instructive to take a slightly more abstract view at the features of the GC construction
that are useful in the above application. The device U uses its secret randomness r to generate a
garbled circuit Ĉ and n pairs of keys in an offline phase. When the input x arrives, it selects the
n keys Kx corresponding to x. Overall, x is mapped via an efficient randomized transformation
into the string ŷ = (Ĉ,Kx) which reveals the output y = C(x) but hides all additional information
about x. Thus ŷ can be viewed as a randomized encoding of C(x) [22, 4]. An important feature of
this encoding is that each input xi influences only a small part of the encoding ŷ (a single short
key) via a simple function. The simple and short dependency of the encoded output on the inputs
xi makes the above solution efficient. This is the key feature of the GC construction that is used
by essentially all of its applications.

The arithmetic setting. Despite its fundamental nature and the wide array of applications, Yao’s
original result has not been significantly improved or generalized since the 1980s. One longstanding
question is that of finding an efficient variant of the GC construction which applies to arithmetic
circuits. An arithmetic circuit over a ring R is defined similarly to a standard boolean circuit, except
that each wire carries an element of R and each gate can perform an addition or multiplication
operation over R. Since arithmetic computations arise in many real-life scenarios, this question has
a natural motivation in the context of most of the applications discussed above.

Before we formulate our precise notion of garbling arithmetic circuits, let us briefly explain
the disadvantages of some natural solution approaches. Yao’s original construction requires Ĉ to
include an “encrypted truth-table” for each binary gate of C. This can be naturally extended to
the case of non-binary gates, but at the cost of a quadratic blowup in the size of the input domain
(cf. [32]). In particular, this approach is not feasible at all for arithmetic computations over rings
of super-polynomial size.

An asymptotically better approach is to implement the arithmetic circuit by an equivalent
boolean circuit (replacing each R-operation by a corresponding boolean sub-circuit). Given the
bit-representation of the inputs, this approach can be used to simulate the arithmetic computation
with an overhead which depends on the boolean complexity of ring operations. While providing
reasonable asymptotic efficiency in theory (e.g., via fast integer multiplication techniques), the
concrete overhead of this approach is quite high. Moreover, there are scenarios where one does not
have access to bits of the inputs and must treat them as atomic ring elements. For example, in the
context of computing on encrypted data,1 one may wish to compactly encrypt large integers using

1In the problem of computing on encrypted data, a Receiver publishes an encryption c of her input x, so that any
Sender holding a secret function f can reveal f(x) to the Receiver (and nothing else about f) by sending her a single
message that depends on c.

2

an additively homomorphic encryption scheme such as Paillier’s encryption [33]. In this scenario,
there is no efficient non-interactive procedure for obtaining (encrypted) individual bits of the input;
the only feasible operations on encrypted inputs include addition and scalar multiplication.

Garbling arithmetic circuits. The above discussion motivates the following
arithmetic analogue of Yao’s result:

Can we efficiently transform an arithmetic circuit C : Rn → Rm into a garbled circuit
Ĉ, along with n affine key functions Li : R → Rk, such that Ĉ together with the n
outputs Li(xi) reveal C(x) and no additional information about x?

We refer to a general transformation as above as a decomposable affine randomized encoding
(DARE) compiler over R. An affine function Li is of the form Li(xi) = aixi + bi where ai, bi are
vectors in Rk that may depend on the secret randomness but not on the input x. We view the
output of Li as a “key” and require its length k to be independent of the size of C, as in the
boolean case. The above requirement captures the abstract feature discussed above of a “simple”
and “short” dependency of the encoded output on the inputs, where the notion of simplicity is
adapted to the arithmetic setting.

It is instructive to observe that the original formulation of the GC construction coincides with
the above formulation of a DARE compiler over the binary field. Indeed, when R = F2, the i-th
key function aixi+ bi outputs a selection between bi and ai⊕ bi depending on the value of xi, which
is equivalent to having xi select between a pair of short keys. A DARE compiler can be used to
efficiently extend the applications of the GC construction to the arithmetic setting while avoiding
the need to access individual bits of the input. This can lead to stronger theoretical feasibility
results (where parties are restricted to arithmetic computations on ring elements) as well as to
efficiency improvements.

1.1 Our Contribution

We present a general framework for constructing DARE compilers along with an efficient instanti-
ation over the ring of integers. Our main compiler transforms an arithmetic circuit C : Zn → Zm
over integers from a bounded (but possibly exponential) range2 into a garbled circuit Ĉ along with
n affine functions Li : Z → Zk such that Ĉ together with the n integer vectors Li(xi) reveal C(x)
and no additional information about x. The security of this construction relies on the hardness of
the learning with error (LWE) problem of Regev [35].

We also present a simpler direct construction of a DARE compiler over the integers based on
a general assumption (the existence of a one-way function). This is done by combining Yao’s con-
struction with previous information-theoretic randomization techniques via the Chinese Remainder
Theorem (see Section 8). While this approach provides a stronger feasibility result, it does not en-
joy the efficiency and generality advantages of our main approach. For example, for some natural
classes of arithmetic circuits (including ones computing constant-degree polynomials over integers)
we obtain a “constant rate” encoding whose length is only a constant multiple of the description
length of the function, independently of the integer size or the security parameter (see Section 7.3).
This type of efficiency seems inherently impossible to get using the approach of Section 8 or any
alternative technique from the literature. The technical core of our LWE-based construction relies

2More precisely, the DARE compiler uses a bound U on the values of circuit wires as an additional input, and
provides no correctness or privacy guarantees when this bound is not met. Efficient arithmetic computations over
integers with polynomial bit-length are captured by Valiant’s algebraic complexity class VP [39], and are believed to
be strictly stronger than log-space variants that are captured by arithmetic formulas and branching programs [24, 30].

3

on a special “functional encryption” scheme which yields a succinct encoding for affine circuits (see
Section 6). This scheme may be of independent interest.

A new framework for garbled circuits. On the conceptual level, we suggest a new general
view of garbled circuits. This view provides a clean reduction from the task of constructing DARE
compilers over a general ring R to the construction of a simple primitive over R (see Section 2). As
a result, any new instantiation of this primitive over a ring R would immediately imply a DARE
compiler over R with related efficiency. This has the potential to improve both the efficiency of
our LWE-based instantiation (e.g., achieving a constant rate for larger classes of circuits) and its
generality (e.g., applying to general circuits over large finite fields Fp). Our new framework also
leads to a conceptually simpler derivation of Yao’s original result for boolean circuits (see Section 2).
We believe that this more general view leads to a better understanding of Yao’s classical result which
has remained essentially untouched since the 1980s.

2 Our Techniques

Our starting point is an information-theoretic DARE for simple low-depth circuits. Previous ran-
domized encoding techniques from the literature [26, 12, 23, 13] imply DARE compilers over finite
rings that are weaker than our main notion of DARE compiler in two ways. First, these compilers
can only efficiently apply to restricted classes of circuits such as arithmetic formulas and branching
programs. Second, even for these classes, known constructions require the length of each key to
be bigger than the representation size of the function (i.e., formula or branching program size),
contradicting our requirement of having short keys. A key idea which underlies our approach is
that a solution for the second problem can lead to a solution for the first one. Details follow.

Imagine that we have a key-shrinking gadget which allows us to transform an affine encoding
with long keys c, d into an affine encoding with short keys a, b. Now we can encode an arithmetic
circuit C as follows. Instead of individually considering each wire and gate of C as in the original
garbled circuit construction, we view C as a composition of “simple” circuits, called layers, and
will build the encoder by processing one layer at a time, starting from the outputs (top layer) and
proceeding towards the inputs (bottom layer).

Assume that C consists of i+ 1 layers of depth 1 each, and that we already encoded the top i
layers of C. Specifically, let C ′ denote the sub-circuit which consists of the top i layers, B denote
the depth-1 circuit in the bottom layer, and y′ = B(x). Namely, C(x) = C ′(B(x)). Suppose that
Enc′ is an affine encoding with k-bit long keys for the function C ′(y′). Then, an encoding Enc of
C(x) is obtained using the following three steps:

• (Substitution) First we take the encoding Enc′(y′) and substitute y′ with B(x). Let f(x) =
Enc′(B(x)) denote the resulting randomized function. Since Enc′ encodes C ′, we have that f
encodes C. However, even if Enc′ is affine (in y′), the encoding f may not be affine (in x)
as the layer B may contain multiplication gates. For instance, if the first entry of y′ is the
product of the pair x1, x2, then f will contain outputs of the form Q = a1 ∗ (x1 ∗ x2) + b1.

• (Affinization) We turn f into an affine encoder g by applying to each of its outputs the
information-theoretic encoder of arithmetic formulas. Here we rely on the fact that the above
expression Q is finite and thus has a constant size formula. (See Section 5 for more details.)
The problem is that now the keys of the encoding g are longer (by a constant factor) than
those of Enc′, and so if we repeat this process, the size of the keys will become exponential in
the depth.

4

• (Key shrinking) We fix the latter problem by first rearranging terms into blocks (grouping
together outputs that depend on the same variable) and then applying the key-shrinking
gadget to each output block. As a result, the size of the keys is reduced at the cost of
generating additional outputs that do not depend on the inputs and thus can be accumulated
in the garbled circuit part.

See Section 6.1 for more details.

Shrinking the keys in the binary case. The above process reduces the construction of DARE
compilers to an implementation of the key-shrinking gadget. In the binary case, this can be done
quite easily with the help of a standard symmetric encryption scheme. For simplicity, let us treat
affine functions as “selector” functions in which a bit s selects one of two vectors K0 and K1.
We denote this operation by s � (K0,K1) = Ks. (Selectors and affine functions are essentially
equivalent in the binary domain.) Our goal can be described as follows: We are given the function
f(y, c, d) = y � (c, d), where y is a bit and c, d are long keys, and we would like to encode it by
a function of the form g(y, c, d; r) = (W, y � (a, b)). The new keys a, b may depend on c, d and
on the randomness r (but not on y) and should be shorter than c and d (e.g., of length equal to
the security parameter). The string W can also depend on c, d and r, and may be of arbitrary
polynomial length.3 A simple way to implement g is to employ symmetric encryption, where c is
encrypted under the random key a and d under the random key b. Then g can output the two
ciphertexts Ea(c), Eb(d) together with the value y � (a, b). The ciphertexts should be permuted in a
random order, as otherwise the value of y is leaked and the security of the encoding is compromised.

It is not hard to see that g satisfies our syntactic requirements and, in addition, its output
allows one to recover the value y � (c, d) by decrypting the corresponding ciphertext using the key
y � (a, b). This variant of the gadget assumes that the encryption is verifiable (i.e., decryption
with incorrect key can be identified), and it typically leads to a statistically small decoding error
(as in the GC variant of [28]). A perfectly correct version can be achieved by appending to the
encoding the value π⊕ y, where π is the random bit which determines the order of the ciphertexts
(i.e., the pair Ea(c), Eb(d) is permuted if and only if π = 1). During the decoding, this additional
information points to the ciphertext which should be decrypted, without revealing any additional
information. (This version corresponds to the GC variant in [8, 32, 3].)

Shrinking the keys in the arithmetic case. In the arithmetic case, the function f is affine,
i.e., f(y, c, d) = cy + d, and we would like to encode it by the function g(y, c, d; r) = (W,ay + b)
where y is an element from the ring R and a, b, c, d are vectors over R. The syntactic properties
are similar to the previous case (e.g., a and b should be short). For simplicity, assume in the
following that R is a finite field. We reduce the key shrinking problem to the following primitive:
find a randomized function which maps a pair of keys c, d ∈ Rn into a pair of (possibly longer)
keys u, v ∈ RN such that (1) yu + v encodes yc + d, and (2) for every choice of y, c, d and z in
the support of yu + v, the distribution of u conditioned on yu + v = z can be “hidden” (planted)
in a linear space of dimension k, proportional to the security parameter. That is, a random linear
space containing u is computationally indistinguishable from a totally random linear space. Given
this primitive, the key-shrinking gadget g can be constructed as follows: Pick u, v ∈ RN using the

primitive, pick random a, b
R← Rk and a matrix W ∈ RN×k such that Wa = u and Wb = v, and

finally output (W, ya+b). Decoding is done by computing the product W · (ya+b) which, by linear
algebra, equals to yu+ v and thus reveals yc+ d. The “hiding” requirement implies that no other
information is revealed. While we do not know how to implement the primitive over finite fields

3Recall that the notion of encoding requires that the value g(y, c, d; r) reveal f(y, c, d), i.e., the value of the key
chosen by y, but no other information.

5

(nor can we rule out the existence of such an implementation), we implement a similar primitive
over the integers under the LWE assumption. The main technical content of our work is devoted
to this construction, which is described in detail in Section 6.

3 Preliminaries

General. For real numbers a < b, let [a, b] denote the set of integers i such that a ≤ i ≤ b. For
b > 0, let [b] denote the set [0, b] and [±b] denote the set [−b, b]. For x ∈ R, define bxe as the integer
closest to x or, in case two such integers exist, the smaller of the two. For an integer p ≥ 2, we
write Zp for the ring {0, . . . , p− 1} with addition and multiplication modulo p. For a distribution
D, let Dn denote the probability distribution over vectors of length n in which each entry is chosen
independently at random from D. For a group G, a scalar ∆ ∈ G and a distribution D over vectors
in Gn, let D+∆ denote the distribution D shifted by ∆, i.e., first choose a vector from D and then
shift each of its entries by ∆.

Indistinguishability. We say that a pair of probability distributions X,Y over {0, 1}n are (t, ε)-
indistinguishable (denoted by X ≡t,ε Y) if for every circuit A of size at most t we have that

|Pr[A(X) = 1]− Pr[A(Y) = 1]| ≤ ε.

The special case whereX,Y are (t, ε)-indistinguishable for every t (denoted byX ≡ε Y) corresponds
to the case where the statistical distance between X and Y is ε. If, in addition, ε = 0 then
the two distributions are identical (denoted by X ≡ Y). We naturally extend this notation to
ensembles of distribution {Xn}n∈N and {Yn}n∈N; in this case, t and ε are viewed as functions of
the security parameter n. The standard notion of computational indistinguishability corresponds
to the case where t = nω(1) and ε = n−ω(1) (denoted by {Xn}n∈N

c≡ {Yn}n∈N), whereas statistical

indistinguishability corresponds to unbounded t and ε = n−ω(1).

3.1 Randomized Encoding

Intuitively, a randomized encoding of a function f(x) is a randomized mapping f̂(x; r) whose
output distribution depends only on the output of f . We formalize this intuition via the notion
of computationally-private randomized encoding (in short RE) from [3]. Unlike [3], we define here
concrete security for finite functions rather than asymptotic security for infinite families of functions.

Consider a function f : Σn → Σl and a randomized function f̂ : Σn × {0, 1}m → Σs, where Σ is
some finite alphabet. (We view the symbols of Σ as integers with the standard binary representa-
tion.) We say that f̂ is a perfectly-correct (t, ε)-private encoding of f (in short, (t, ε)-encoding), if
there exist a decoder algorithm Dec and a simulator Sim that satisfy the following conditions:

• perfect correctness. For every x ∈ Σn, Prr[Dec(f̂(x; r)) 6= f(x)] = 0.

• (t, ε)-privacy. For every x ∈ Σn, f̂(x; r) ≡t,ε Sim(f(x)).

Our default notion of privacy is computational, but we will also consider stronger variants: an
encoding is ε-private if the encoding is (t, ε)-private for any t (this corresponds to statistically
private encoding [22]). The encoding is perfectly private (or just perfect) if it is 0-private. The
complexity of the RE is s if the circuit size of f̂ ,Dec and Sim is bounded by s.

6

Public randomness. We say that an RE f̂(x; r, w) of f(x) has public coins w if part of the
output of f̂ consists of the coins w, i.e., if we can write f̂(x; r, w) = (w, g(x, r, w)) for some function
g. Moreover, we require a simulator Sim of a similar form; namely, given y (supposedly y = f(x))
and internal randomness (ρ, w), the output of Sim(y; ρ, w) can be written as (w, h(y, ρ, w)) for some
function h. The notion of public coins RE has appeared in [7]. The public coins w can be chosen
once and for all and be reused in different instantiations of REs as we will show in Facts 3.1–3.3
below. (This is similar to the role of public parameters in other cryptographic applications, e.g.,
a generator of some cyclic group.) Observe that every RE f̂(x; r) can be augmented with public
coins w by letting g and h ignore w. We will sometimes use the notation f̂w(x; r) to emphasize
that w is used as public coins.

We make use of the following standard facts regarding REs (cf. [4, 3, 5]). The statements refer
to REs with public coins w.

Fact 3.1 (Substitution). Suppose that the function f̂w(x; r) is a (t, ε)-encoding of f(x) with
simulator and decoder (Sim,Dec). Let h(z) be a function of the form f(g(z)) where z ∈ {0, 1}k and
g : {0, 1}k → {0, 1}n. Then, the function ĥw(z; r) = f̂w(g(z); r) is a (t, ε)-encoding of h with the
same simulator and the same decoder.

Proof. Follows immediately from the definition. For correctness we have that for all z

Pr
w,r

[Dec(ĥw(z; r)) 6= h(z)] = Pr
w,r

[Dec(f̂w(g(z); r)) 6= f(g(z))] = 0,

and for privacy we have that for all z

Simw(h(z)) ≡ Simw(f(g(z))) ≡t,ε f̂w(g(z); r) ≡ ĥw(z; r),

as required.

Fact 3.2 (Concatenation). Suppose that f̂wi (x; ri) is a (t, ε)-encoding of a function fi : {0, 1}n →
{0, 1}`i with simulator Simw

i , decoder Deci and complexity at most s, for every 1 ≤ i ≤ c. Then, the
function f̂w(x; (r1, . . . , rc)) = (f̂wi (x; ri))

c
i=1 is a (t − cs, cε)-encoding of f(x) = (f1(x), . . . , fc(x))

with simulator Simw(y) = (Simw
i (yi))

c
i=1 and decoder Dec(ŷ) = (Deci(ŷi))

c
i=1.

Proof. Perfect correctness follows from Prr,w[Dec(f̂w(x; r)) 6= f(x)] ≤
∑c

i=1 Prr,w[Dec(f̂wi (x; ri)) 6=
fi(x)] = 0. Privacy is proved via a standard hybrid argument. Specifically, suppose towards a
contradiction, that A is a (t − cs) size adversary that distinguishes f̂w(x; r) from Simw(f(x); ρ)
with advantage cε. Then, by an averaging argument, for some j ∈ {1, . . . , c} the adversary A
distinguishes with advantage at least ε between the tuple

(f̂w1 (x; r1), . . . , f̂wj−1(x; rj−1),Simw
j (fj(x)), . . . ,Simw

c (fc(x)))

and the tuple
(f̂w1 (x; r1), . . . , f̂wj (x; rj),Sim

w
j+1(fj(x)), . . . ,Simw

c (fc(x))).

Now, we can define an adversary B that ε-distinguishes f̂wj (x; rj) from Simw
j (fj(x)). Given a

challenge ŷwj , the adversary B samples (f̂wi (x; ri))i<j and (Simw
i (fi(x)))i>j with complexity c · s,

and invokes A on the resulting vector with the challenge planted in the j-th position. This gives
rise to a (t, ε)-adversary, contradicting our hypothesis.

We say that a function gw(x) = (y, w) with public randomness w is (t, ε)-encoded by hw(x; r)
if privacy holds with respect to a random w, i.e., for every x the distribution Simw(gw(x)) is (t, ε)-
indistinguishable from hw(x; r) where w and r are uniformly chosen. (Perfect correctness holds, as
usual, for every choice of x,w and r.)

7

Fact 3.3 (Composition). Suppose that:

• gw(x; rg) is a (t1, ε1)-encoding of f(x) with decoder Decg and simulator Simw
g , and

• hw((x, rg); rh) is a (t2, ε2)-encoding of the function gw(x, rg), viewed as a single-argument
function, with decoder Dech, simulator Simw

h and complexity s.

Then, the function f̂w(x; (rg, rh)) = hw((x, rg); rh) is a (min(t1 − s, t2), ε1 + ε2)-encoding of f(x)
where (rg, rh) are its random inputs, w is the public coins, and the simulator and decoder are
Simw(y) = Simh(Simw

g (y)) and Dec(ŷ) = Decg(Dech(ŷ)).

Proof. To prove perfect correctness, note that Prrg ,rh,w[Dec(f̂w(x; rg, rh)) 6= f(x)] is upper-bounded
by

Pr
rg ,rh,w

[Dec(hw(x, rg; rh)) 6= g(x, rg, w)] + Pr
rg ,w

[Dec(ĝw(x; rg)) 6= f(x)] = 0.

We prove privacy by noting that Simw
g (f(x)) is (t1, ε1)-indistinguishable from gw(x; rg). Hence,

Simw
h (Simw

g (f(x))) is (t1− s, ε1) indistinguishable from Simw
h (gw(x; rg)). However, the latter distri-

bution is (t2, ε2)-indistinguishable from hw((x, rg); rh), and so hw(x; (rg, rh)) is (min(t1−s, t2), ε1 +
ε2)-indistinguishable from Simw

g (f(x)).

In Fact 3.3 (Composition), we assumed that g(x; rg) encodes f and that h((x, rg); rh) encodes
the function g(x, rg). In order to improve efficiency, one may try to replace the latter condition with
the following weaker requirement: For every fixed rg the function grg(x) = g(x; rg) is encoded by
some function hrg(x; rh). This variant of the composition lemma is valid provided that there exist
a universal simulator and universal decoder that work for all the rg’s. In this case, we say that
the collection

{
hrg(x; rh)

}
rg

is a universal encoding [7] of
{
grg
}
rg

. Several known constructions of

REs are universal. Let us summarize the modified version of composition.

Fact 3.4 (Composing Universal Encoding). Suppose that:

• g(x; rg) is a (t, ε)-encoding of f(x).

• For every rg, the function hrg(x; rh) is a (t, ε)-encoding of the function grg(x) = g(x; rg).
Furthermore, all the encodings share a single (universal) decoder Dech and a single (universal)
simulator Simh of complexity s.

Then, the function f̂(x; (rg, rh)) = hrg(x; rh) is a (t− s, 2ε)-encoding of f(x).

The proof follows from Fact 3.3 by defining h((x, rg); rh) = hrg(x; rh) and noting that h is a
(t, ε)-encoding of g(x, rg) with the decoder Dech and simulator Simh.

Partial functions. We will sometimes refer to randomized encodings of partial functions f which
are defined over a strict subset of the input domain. In this case, we make no correctness or privacy
requirements for inputs on which f is undefined. All the above properties of REs extend naturally
to this case.

3.2 The Learning With Errors Problem

We recall the learning with errors (LWE) problem, explicitly put forward by Regev [35]. Let κ be
a security parameter and let k = k(κ) (dimension) and q = q(κ) (modulus) be positive integers.
Let χ = χ(κ) (noise distribution) and S = S(k) (information distribution) be a pair of probability
distributions over Zq(κ). Let Uq denote the uniform distribution over Zq.

8

Definition 3.5 (Learning with Errors). The decisional learning with errors problem LWE(k, q, χ,S)
is (t(κ), ε(κ)) hard if the LWEt(k, q, χ,S) distribution

(M, r = Ms+ e), where M
R← U t×kq , s

R← Sk, e R← χt,

is (t, ε)-indistinguishable from the uniform distribution (U t×kq ,U tq). The LWE(k, q, χ,S) assumption

asserts that the above holds with t = κω(1) and ε = κ−ω(1).

Standard choices of parameters. Typically, S is taken to be the uniform distribution Uq. For
the noise distribution χ, the standard choice is to use a discrete Gaussian. Recall that for any
α > 0, the density function of a one-dimensional Gaussian probability distribution over R is given
by ρα(x) = exp(−π(x/α)2)/α. Then, for an integer q, we define Ψ̄q,α to be the distribution over Zq
obtained by drawing y

R← ρα and outputting bqye mod q. (We write Ψ̄α when q is clear from the
context.) Viewing elements of Zq as integers in the range [−bq/2c , bq/2c], the random variable Ψ̄α

has mean 0 and standard deviation roughly αq/
√

2π. In typical applications of LWE, the standard
deviation of the noise is qε for some 0 < ε < 1. See [35, 34, 29, 36] for a survey of LWE and related
lattice problems.

Our parameters. Given a security parameter κ and an upper bound U on the range of wire
values, our construction can be based on LWE with q = (U + 2κ)O(1), k = logγ q for some constant
γ > 1 (see below for the choice of γ), Gaussian noise with standard deviation qΩ(1), and a uniform
information word Sk = Ukq . (Hence, the modulus q is sub-exponential in the dimension, i.e.,

q = 2(k1/γ).) The choice of γ affects the efficiency of the construction. Smaller γ means better
efficiency under a stronger assumption. Known approximation algorithms for the lattice shortest
vector problem (SVP) imply that the assumption is false for γ < 1. For γ > 1, the best known
attacks require superpolynomial time. Furthermore, by choosing q properly (e.g., a power of a
small prime such as 2`) our assumption reduces to the conjectured hardness of approximating SVP
to within subexponential factors [34], i.e., 2k

ε
where ε vanishes with γ.4

LWE under Rectangular Distributions. The Gaussian noise model is useful for security
reductions because of its robustness under linear transformations. For instance, the sum of two
independent Gaussians is a Gaussian. For our purposes, however, it will be more convenient (but
not essential) to sample the noise from a “rectangular” probability distribution Φρ in which an
element of Zq is chosen uniformly at random from the interval [−ρ,+ρ], where ρ = qΩ(1). Since our
choice of parameters will always let q be superpolynomial in κ, this variant reduces to a similar
variant with Gaussian noise of standard deviation αq = ρΩ(1) = qΩ(1). Moreover, even if the
information distribution S is sampled from the same (rectangular) distribution as the noise, this
does not affect the strength of the assumption provided that q is a prime power.

Lemma 3.6. Let q(κ) > κω(1) be an integer function such that, for every κ, the integer q(κ) is
a prime power. Let 0 < α(κ) < 1 and 0 < ρ(κ) < q(κ) be integer valued functions for which
αq/ρ < neg(κ). Let k(κ) = poly(κ). If LWE(k, q, Ψ̄α,Uq) holds then so does LWE(k, q,Φρ,Φρ).

The proof is deferred to Section 3.2.1. From here on, we will only use distributions of noise
and information words that are uniform over intervals of length qΩ(1), and a modulus q which is a
power of 2.

4The reduction consists of two steps. First show that, for appropriate modulus (e.g., q = 2`), the hardness
of decisional-LWE with Gaussian noise Ψ̄α follows from the hardness of search-LWE with similar parameters and
Gaussian noise Ψ̄β where α < 1/ω(

√
log k) and β ≥ α(ω(

√
log k))2 [31, Thm. 3.1]. Then, show that the latter is as

hard as approximating k-dimensional SVP within a factor of q ·α ·poly(k) = 2O(k1/γ) via the reduction of Peikert [34,
Thm. 3.1].

9

3.2.1 Proof of Lemma 3.6

We will need the following simple facts.

Fact 3.7 (Shifted Rectangle). For any integers 0 < ρ < q and 0 < β < ρ, the statistical distance
between Φρ and Φρ + β is exactly β/ρ.

Claim 3.8. Let q be an integer, ρ < q be an integer and 0 < α < ρ/q be a real. Then, the statistical
distance between Φρ and A = Φρ + Ψ̄α is at most 1

t exp(−t2/2) + tαq/ρ, for every t.

Proof. We write A as a convex combination of two probability distributions: A1 which is A condi-
tioned on the event E that the outcome of Ψ̄α is not in [−tαq, tαq], and A2 which is A conditioned
on the complementary event Ψ̄α. The statistical distance between A and Φρ is bounded by

Pr[E] · ‖A1 − Φρ‖+ (1− Pr[E]) · ‖A2 − Φρ‖,

where ‖X − Y ‖ denotes the statistical distance between X and Y . By a standard tail inequality,
the probability of the event E is at most 1

t exp(−t2/2). On the other hand, ‖A2 −Φρ‖ is bounded
by tαq/ρ. To see this, note that as in Fact 3.7, this quantity bounds the statistical distance for
every fixing of Ψ̄α conditioned on Ē. Hence, the claim follows.

We can now prove Lemma 3.6.

Proof of Lemma 3.6. First, we show that LWE(k, q, Ψ̄α,Uq) implies LWE(k, q,Φρ,Uq). Indeed, given
an instance (M, r) for the LWE(k, q, Ψ̄α,Uq) problem, sample a noise vector e′ from Φn

ρ and add it to
r. This mapping takes a uniform instance into a uniform instance, and an LWE instance r = Ms+e

where s
R← Uq and e

R← Ψ̄α into r′ = Ms+ e+ e′. The claim now follows by Claim 3.8, as e+ e′ is
statistically indistinguishable from Φn

ρ .
The next step is to show that the LWE(k, q,Φρ,Uq) assumption implies the LWE(k, q,Φρ,Φρ)

assumption. This follows by the more general results of [2, Lemma 2], which show that when q is
a prime power the error distribution can be shifted to S.

4 Decomposable Affine Randomized Encodings

In this section, we define our main goal of garbling arithmetic circuits. This goal can be viewed as
an instance of the general notion of randomized encoding put forward in [22, 4] (see Section 3.1).
Here we would like to transform a “complex” arithmetic computation into a “simple” randomized
arithmetic computation, where the output of the latter encodes the output of the former and
(computationally) hides all additional information about the input.

Our notion of simplicity directly generalizes the features of Yao’s construction in the boolean
case: On input x = (x1, . . . , xn) ∈ Zn, the output (W,L1, . . . , Ln) includes a “garbled circuit part”
W , which is independent of the input and depends only on the randomness, and n short “keys”
where the i-th key is computed by applying an affine (degree-1) function Li, determined only by the
randomness, to the i-th input xi. The complexity of the construction should be polynomial in the
size of the circuit being encoded, a cryptographic security parameter, and an upper bound on the
bit-length of the values of circuit wires. Furthermore, the size of the keys should be independent
of the circuit size.

We now formalize the above. We use a minimal model of arithmetic circuits which allows only
addition, subtraction, and multiplication operations. The circuit does not have access to the bit
representation of the inputs. In the randomized case, we allow the circuit to pick random inputs
from {0, 1}.

10

Definition 4.1 (Arithmetic circuits). An arithmetic circuit C is syntactically similar to a
standard boolean circuit, except that the gates are labeled by ‘+’ (addition), ‘-’ (subtraction) or ‘*’
(multiplication). Each input wire can be labeled by an input variable xi or a constant c ∈ {0, 1}. In a
randomized arithmetic circuit, input wires can also be labeled by random inputs rj. Given a ring R,
an arithmetic circuit C with n inputs and m outputs naturally defines a function CR : Rn → Rm. In
the randomized case, CR(x) outputs a distribution over Rm induced by a uniform and independent
choice of rj from {0, 1}. We denote by CR(x; r) the output of CR on inputs xi ∈ R and independent
random inputs rj ∈ {0, 1}. When R is omitted, it is understood to be the ring Z of integers.

Definition 4.2 (Decomposable affine circuits). We say that a randomized arithmetic circuit C
is decomposable if each output depends on at most a single deterministic input xi (but possibly on
many random inputs). The circuit is affine if each of its outputs is either constant in x (i.e., depends
only on the rj) or is a degree-1 polynomial in the deterministic inputs x = (x1, . . . , xn) (viewing
the rj as constants). Taken together, affinity and decomposability implies that each output can be
written as a degree-1 polynomial in a single input xi. This is syntactically enforced by partitioning
the output of C into n + 1 vectors (y0, y1, . . . , yn), where y0 depends only on the random inputs
rj, and each yi is of the form ai ∗ xi + bi where ai and bi are vectors of ring elements that depend
only on the random inputs rj. In the context of our construction, we will refer to y0 as the garbled
circuit part and to the other yi, 1 ≤ i ≤ n, as keys. For 1 ≤ i ≤ n, we denote the i-th key length
|yi| by `i.

We now define the notion of a decomposable affine randomized encoding compiler, which cap-
tures our main goal of garbling arithmetic circuits. Here we restrict the attention to the ring of
integers R = Z, though later we will also refer to variants that apply to arithmetic computations
over finite fields or rings.

Definition 4.3 (DARE Compiler: Syntax). A decomposable affine randomized encoding
(DARE) compiler is a PPT algorithm T with the following inputs and outputs.

• Inputs: a security parameter 1κ, an arithmetic circuit C over the integers, and a positive
integer U bounding the values of circuit wires.

• Outputs: randomized decomposable affine circuit Enc (encoder), randomized arithmetic cir-
cuit Sim (simulator), and boolean circuit Dec (decoder). By default, we require that Enc
output short keys. That is, each key length `i (see Definition 4.2) should be bounded by a
fixed polynomial in κ and logU , independently of |C|. We will sometimes refer to Enc as a
decomposable affine randomized encoding (or DARE) of C.

We note that while the above definition allows the compiler T to be randomized, our main
compiler will be deterministic.

We require a DARE compiler to satisfy the following correctness and privacy requirements.

Definition 4.4 (DARE Compiler: Correctness). A polynomial-time algorithm T , as above, is
(perfectly) correct if for every positive integer κ, arithmetic circuit C with n inputs, and positive
integer U , the following holds. For every input x ∈ Zn such that the value of each wire of C on
input x is in the interval [±U],

Pr[Dec(Enc(x; r)) = C(x)] = 1,

where (Enc,Dec, Sim)
R← T (1κ, C, U) and the input for Dec is given in standard binary representa-

tion.

11

Towards defining privacy, we consider the following game between an adversary A and a chal-
lenger. (All integers are given to the adversary in a standard binary representation.) First, A on
input 1κ outputs an arithmetic circuit C with input length n, a positive integer U , and an input
x ∈ Zn such that the value of each wire of C on input x is in the interval [±U]. The challenger

then lets (Enc,Dec, Sim)
R← T (1κ, C, U) and picks a random bit b as well as random inputs re for

Enc and rs for Sim. It feeds the adversary with Enc(x; re) if b = 0 or with Sim(C(x); rs) if b = 1,
together with the randomness used by T . The adversary outputs a guess b′. The adversary wins
the game if b′ = b.

Definition 4.5 (DARE Compiler: Privacy). A DARE compiler T , as above, is (computation-
ally) private if every nonuniform adversary A of size poly(κ) wins the above game with at most
1/2 + κ−ω(1) probability. We say that T is statistically-private if the above holds for an unbounded
A, and is perfectly private if the winning probability is 1/2.

The above definitions can be naturally modified to capture DARE over a finite ring R by letting
C,Enc,Dec, and Sim be defined by arithmetic circuits over R. In this case, Enc and Sim are allowed
to sample uniform elements from R and we also eliminate the bound U on the values of circuit
wires.

We now make a few remarks on other variants of the above definition that can be satisfied by
our construction or by previous techniques.

Remark 4.6 (Applicability of previous techniques). Previous randomized encoding techniques from
the literature [26, 12, 23, 13] imply DARE compilers over finite rings that are weaker than our
main notion of DARE compiler in two ways. First, these compilers can only efficiently apply to
restricted classes of circuits such as arithmetic formulas and branching programs. Second, even for
these classes, the previous constructions yield DAREs in which the length of each key is bigger than
the representation size of the function (i.e., formula or branching program size), contradicting our
requirement of having short keys. See Section 5 for further details on these previous constructions.
In Section 8, we describe an indirect approach for combining these previous techniques with Yao’s
construction for boolean circuits to yield a general DARE compiler that meets the above definition.
However, this compiler does not have the efficiency and generality advantages of the main compiler
we present in Section 7.

Remark 4.7 (An alternative notion of privacy). A seemingly stronger variant of privacy allows the
adversary to first choose the circuit C and the bound U , and specify the input x only after seeing the
output of the compiler (Enc,Dec, Sim). Equivalently, we may require that the output of the compiler
(Enc,Dec,Sim) is always a (κω(1), 1/κω(1))-encoding of C (restricted to inputs that do not violate
the bound U). Our construction satisfies this variant since we get a deterministic compiler.

Remark 4.8 (On alternative notions of arithmetic simplicity). As in the case of boolean randomized
encodings, different applications motivate different restrictions on the encoder. Here we discuss
three such alternative notions of “arithmetic simplicity” that may replace our default requirement.
The first two seem more liberal and the last more strict.

1. A more liberal notion of decomposable affine encoding allows the length of the keys yi to
grow with the circuit size. (Previous affine encodings for arithmetic formulas and branch-
ing programs suffer from this disadvantage.) Our technique will in fact show that any such
decomposable affine encoding can be efficiently converted into one that satisfies our stricter
definition (settling for computational privacy under the LWE assumption).

12

2. Another relaxation is to allow each output of Enc to be a degree-1 polynomial in all inputs
xi rather than just one input (i.e., require affinity but not decomposability). This notion can
be shown equivalent to our more stringent notion by adapting the locality reduction technique
of [4, Lemma 4.17] to computations over the integers.

3. Finally, we will also consider a version of decomposable affine encodings where the total
degree of each output of Enc, as a polynomial in both the inputs xi and the random inputs rj,
is bounded by a constant. This coincides with the notion of randomizing polynomials from [22,
13], except that here the random inputs ri are picked uniformly from {0, 1} rather than from
the entire ring, and computation is done over integers from a bounded range rather than over
a finite ring. Our DARE compiler can be combined with previous results on randomizing
polynomials [3] to satisfy this notion.

We will rely on natural concatenation and composition properties of randomized encodings: a
circuit C with multiple outputs can be encoded by concatenating the encodings for each output [4,
Lemma 4.9], and two encoders can be composed by using one to encode the function computed by
the other [3, Lemma 3.5] (see Section 3.1).

In the following, we will be more loose in our use of notation. We will sometimes implicitly
identify a concrete function f with an arithmetic circuit computing it and (following [4]) will
denote by f̂ the encoder Enc corresponding to f . We will also replace arithmetic circuits by
weaker arithmetic computational models such as arithmetic branching programs. Finally, while
our presentation does not make the compiler T explicit, it is easy to verify that the encoder,
decoder and simulator we describe can be efficiently constructed given the inputs for T .

5 Affinization Gadgets

The first building block of our DARE compiler is an affinization gadget, which provides a statistical
DARE for simple arithmetic functions. We start with a self-contained presentation of the simplest
instance of this gadget that suffices for the main instance of our construction, and then survey some
extensions which follow from previous work.

Lemma 5.1 (Affinization over finite rings). Define the following functions over a finite ring R:

• f1(x1, x2) = x1 + x2

• f2(x1, x2, x3) = x1x2 + x3.

Then:

1. f̂1(x1, x2; r) = (x1 +r, x2−r) is a perfect DARE of f1 over R (where r is a uniformly random
ring element).

2. f̂2(x1, x2, x3; r1, r2, r3, r4) = (a1x1 + b1, a2x2 + b2, a3x3 + b3) is a perfect DARE of f2 over R,
where a1 = (1, r2), b1 = (−r1,−r1r2 + r3), a2 = (1, r1), b2 = (−r2, r4), a3 = 1, b3 = −r3 − r4,
and r1, r2, r3, r4 are random and independent ring elements.

Proof. A decoder and simulator for f̂1 can be defined by Dec(y1, y2) = y1+y2 and Sim(y) = (s, y−s),
where s is uniformly random over R. Their correctness follows from the fact that the output of f̂1

is uniformly random over pairs (y1, y2) such that y1 + y2 = x1 + x2.

13

To prove the correctness of f̂2, we use the following intermediate encoding of f2 (which does
not have the required affine form):

f̂ ′2(x1, x2, x3 ; r1, r2) = (x1 − r1 , x2 − r2 , r2x1 − r1r2 + r1x2 + x3).

It is not hard to see that f̂ ′2 is a perfect DARE for f2: the decoder and simulator can be defined by
Dec(y1, y2, y3) = y1y2 +y3, and Sim(y; s1, s2) = (s1, s2, y−s1s2). Their correctness follows from the
fact that the first two outputs y1, y2 of f̂ ′2 are uniformly random and independent, and the third
output is y3 = f2(x1, x2, x3) − y1y2. The encoding f̂2 is obtained from f̂ ′2 by first applying the
encoding f̂1 (twice, using the additional randomness r3, r4) to break the terms in the last entry of
f̂ ′2 and then arranging the outputs in a canonic affine form.

Our main affinization gadget is a DARE of the above f2 when viewed as a function over the
integers. For this, we first embed the computation in a sufficiently large finite ring Zp and then
encode the computation modulo p over the integers by adding a sufficiently large random multiple
of p. The latter step relies on the following easy fact.

Lemma 5.2 (Encoding modular reduction). Let X, p, µ be positive integers such that X > p.
Define f : [−X,X]→ Zp by f(x) = xmod p. Then, for a uniformly random r ∈ [0, µ], the function

f̂(x; r) = x+ rp (computed over the integers) is a randomized encoding of f with statistical privacy
error ε ≤ 2X/(pµ).

We will sometimes need a variant of the above construction in which the output of f̂ should be
non-negative. This can be easily achieved by adding the public constant X to the output.

Combining Lemma 5.1 and Lemma 5.2, we get our main affinization gadget.

Claim 5.3 (Affinization gadget over the integers). Let f(x1, x2, x3) = x1x2 +x3, where xi ∈ [0, 2λ].
Then, f admits a statistically 2−κ-private DARE over the integers with non-negative keys ai, bi of
length `i ≤ 2 and bit-length O(λ) + κ (concretely, 2λ+ κ+ 2 bits suffice).

Proof. We start by viewing f as a function over Zp, choosing large enough p (say, p = 22λ+2)
to avoid modular reduction. We then apply the DARE of Lemma 5.1, yielding a perfect DARE
over Zp with key length 2. Viewing this DARE as a function over the integers, its outputs have
bit-length O(λ). Applying Lemma 5.2, we get a statistical DARE over the integers with key-length
2 and bit-length O(λ) + κ.

While the above gadget suffices for the basic variant of our DARE compiler, one can sometimes
get better efficiency by relying on more complex affinization gadgets. These can be based on perfect
DARE compilers for functions in low arithmetic complexity classes that are implicit in the secure
computation literature. In particular, any arithmetic circuit C over a finite ring R for which each
output depends on at most d inputs admits a perfect DARE with key length 2O(d). More generally:

Fact 5.4 (Generalized affinization gadget over finite rings). There is a perfect DARE compiler for
arithmetic branching programs or arithmetic formulas over any finite ring R. For a formula or
branching program of size s, the resulting key length is O(s2).

The above result can be obtained via a randomization of an iterated matrix product [26, 12,
14, 13] or the determinant [21, 23, 13]. See [13, 5] for further discussion and pointers. Combining
Fact 5.4 with Lemma 5.2, we get a similar variant over the integers:

14

Corollary 5.5 (Generalized affinization gadget over the integers). There is a perfectly correct,
statistically-private DARE compiler for arithmetic branching programs or arithmetic formulas over
the integers. For a formula or branching program of size s, the resulting keys have length O(s2)
and bit-length O(logU + κ), where U is an upper bound on the absolute value of the output, and κ
is a statistical security parameter. Furthermore, the encoding is universal (see Section 3.1) for the
class of arithmetic formulas (resp., branching program) of size at most s and output bounded by U .

6 The Key-Shrinking Gadget

In this section, we describe an efficient LWE-based implementation of the key-shrinking gadget: a
computationally-private randomized encoding of the function g(y, c, d) = yc + d, where c, d ∈ Zn
and y ∈ Z (see below for restrictions on the input domain), by a function of the form

ĝ(y, c, d; r) = (W (c, d, r), y · a(r) + b(r))

where the outputs of a and b are shorter than c and d. More concretely, the length requirement
is that a and b output vectors in Zk for k which may depend (polynomially) on κ and logU but
not on n. In the main instance of our final construction, n will be a constant multiple of k. We
will also need the bit-length of each entry of a (resp., b) to be smaller by a constant factor than
the maximal bit-length of each entry of c (resp., d). In contrast to our main notion of DARE, we
do not restrict the functions W,a, b other than being computable in polynomial time from the bits
of their inputs. Since we will only apply the gadget on inputs c, d that are derived from bits of
randomness (rather than from an input xi of the original circuit), this will not violate the syntactic
requirements of DARE in our final construction.

6.1 The Construction

Intuition. The encoding ĝ follows the outline described in Section 2. First, c and d are represented
by ĉ and d̂ via an invertible randomized mapping, i.e., by multiplying by a large constant ∆ and
adding some noise. (The mapping is invertible because of the low magnitude of the noise). Then,
the vectors ĉ and d̂ are planted in a random linear space W of a low dimension k. The space W
is made public. Now every linear combination of ĉ and d̂ lies in W , and so it can be succinctly
described by its coefficients with respect to W . In particular, to reveal the output yc+d, it suffices
for the encoding to reveal the coefficients of its representation yĉ+ d̂. A formal description is given
in Figure 1.5

Decoder and Simulator. In order to decode yc+d from (W, f = ya+b), we define the following
decoder Dec: (1) ComputeW ·f modulo q and represent the entries of the resulting vector as integers
in the interval [±(q − 1)/2]. (2) Divide each entry of the vector by ∆, and round the result to the

nearest integer. Next, we define the simulator. Given z = yc+d and public randomnessW1
R← Un×kq ,

the simulator Sim simulates the output (W, f) of ĝ(y, c, d) as follows: (1) Let ẑ := z∆ + ez where

ez
R← Φn

µd
; (2) Choose f = (f1, f2, f3)

R← ([ρb]
k, [ρb], 1) and let W = (W1|W2|W3) where W2

R← Unq
and W3 := ẑ − (W1f1 + W2f2). The analysis of the decoder and simulator is summarized in the
following lemma:

5The definition of ĝ here is slightly different than the one which appears in the conference version of this paper.
Both versions are correct but the current one allows to employ a non-prime modulus q.

15

The Encoding ĝ

Input: (y, c, d) where y ∈ [±U], c ∈ [0, ρc]
n, d ∈ [0, ρd]

n.

Public coins: W1
R← Un×kq .

1. Choose ec
R← Φn

µc and ed
R← Φn

µd
.

2. Let ĉ := c ·∆ + ec and d̂ := d ·∆ + ed.

3. Choose a = (a1, a2, a3)
R← ([ρa]

k, 1, 0) and b = (b1, b2, b3)
R← ([ρb]

k, [ρb], 1).

4. Let W2 := ĉ−W1 · a1 (mod q) and W3 := d̂− (W1 · b1 +W2 · b2) (mod q).

Output: (W = (W1|W2|W3), ya+ b).

Figure 1: The Key-Shrinking Gadget. The construction is parameterized with positive integers
k, ρa, ρb, µc, µd,∆ and modulus q (that does not have to be a prime number). The parameter k
determines the key length of the encoding and ρa, ρb determine a bound on the key entries. The
parameters ∆ and µc, µd are used to define the (randomized) embedding of c and d in the (larger)
vectors ĉ and d̂. We assume that k < n, ρc ≥ ρa, and ρd ≥ ρb, where ρc, ρd upper-bound the values
of c, d. (These upper-bounds are given as part of the input.) Recall that Φα denotes the uniform
distribution over the integers in the interval [±α].

Lemma 6.1. Suppose that LWE(k, q,Φµc ,Φρa/2) holds and that

k ≤ poly(κ), n ≤ poly(k), Uρa/ρb ≤ neg(κ)

Uµc/µd ≤ neg(κ), 3µd < ∆, 3∆(Uρc + ρd) < q.

Then, for every y, c and d:

Pr[Dec(ĝ(y, c, d)) = yc+ d] = 1, and Sim(yc+ d)
c≡ ĝ(y, c, d).

Proof. To see that the decoder is perfectly correct, note that: (a) By linear algebra, the outcome of
step (1) is equal to yĉ+ d̂ modulo q; (b) The above equality holds over the integers as well; Indeed,
the lower bound on q ensures that the absolute value of each entry in yĉ + d̂ (computed over the
integers) is smaller than (q − 1)/2 and therefore there is no wraparound. (c) ∆ is large enough to
ensure that there is no rounding error in step (2). To see this, note that

yĉ+ d̂ = y(c∆ + ec) + (d∆ + ed) = ∆(yc+ d) + (yec + ed),

where the absolute value of each entry in yec + ed is at most Uµc + µd < 1.5µd < ∆/2.
In Section 6.2 we use a hybrid argument to show that, under LWE, the above distribution is

computationally indistinguishable from ĝ(y, c, d). Roughly speaking, we first show that ĝ(y, c, d)
is statistically close to a distribution D(y, c, d) in which instead of planting the vectors ĉ and d̂ in
span(W), we plant the vectors ĉ and ẑ (as defined above). Then, we show that, under LWE, the
vector ĉ is hidden in span(W) and W is indistinguishable from a random matrix which spans ẑ.

Setting the parameters. Fix ρ > 1 corresponding to the strength of the LWE assumption.
Suppose that ρa = 2κ+1, ρb = U · 22κ, µc = 2κ, µd = U · 22κ, ∆ = U · 22κ+2, q is a power of two

16

where q = Θ(22κU(Uρc + ρd)), k = logγ q, and n ≤ poly(k). With this choice of parameters, the
conditions of Lemma 6.1 are met under a conservative instance of the LWE assumption. (Namely,
LWE(k, q,Φ2κ ,Φ2κ).) Note that, in the above choice of parameters, both the key-length (i.e., number
of entries) and the bit-length of the keys a, b are independent of the corresponding parameters of
the inputs c, d. In particular, they can be polynomially smaller.

Complexity. Let τ = log(q) = O(κ+logU+log ρc+log ρd). We partition the output of the gadget
to three parts: (1) Elements that depend on the “key selector” y, namely the vector y · a(r) + b(r)
which consists of k = τγ elements each of bit length smaller than τ . (2) The submatrix W1 which
consists of n(k−2) = O(nτγ) elements of bit length τ ; and (3) the submatrix W2|W3 which consists
of O(n) elements of bit length τ . We distinguish the submatrix W1 from the other entries, since this
part of the encoding consists only of public coins, and can be reused among different instantiations
of the gadget. (See Section 3.1 for more details.) This will allow us to improve the efficiency of our
DARE as our general construction employs many copies of the key-shrinking gadget.

6.2 Computational Privacy

We establish the correctness of the simulator Sim defined in Section 6.1. Namely, we show that,
under the assumptions of Lemma 6.1, the distribution Sim(cy+ d;W1) is computationally indistin-
guishable from ĝ(y, c, d;W1) for every fixing of y, c, d. The proof follows from a hybrid argument
as shown in Claims 6.2–6.5. The simulator and the hybrids are described in Table 1.

Step D1(y, c, d;W1) D2(y, c, d;W1) D3(y, c, d;W1) Sim(yc+ d;W1)

1 ec
R← Φn

µc

ed
R← Φn

µd

ez
R← Φn

µd
2 ĉ := c∆ + ec

d̂ := d∆ + ed
ẑ := yĉ+ d̂ ẑ := (cy + d)∆ + ez

3 a
R← ([ρa]

k, 1, 0)

b
R← ([ρb]

k, [ρb], 1)

f := ya+ b f
R← ([ρb]

k, [ρb], 1)

4 W2 := ĉ−W1a1 W2
R← Unq

W3 := ẑ − (W1f1 +W2f2)
Output: (W = (W1|W2|W3), f)

Remark: Linear algebra Linearity+Fact 3.7 Fact 3.7 LWE

Table 1: The hybrids. All hybrids take W1 as public randomness. To avoid clutter only the modifications
appear, and blanks indicate that no change has occurred wrt the previous hybrid. (For example, the vector
ec in D2 is defined exactly as in D1.) In Step 4, arithmetic is performed modulo q.

Claim 6.2. ĝ(y, c, d;W1) ≡ D1(y, c, d;W1), for every fixed y, c, d,W1.

Proof. Fix y, c, d,W1 and all the random coins in both experiments. The two experiments are
defined similarly, except that in D1 the value of W3 is defined to be ẑ − (W1 · f1 +W2 · f2) where

17

f1 = ya1 + b1 and f2 = y + b2. (All arithmetic is performed modulo q.) By linear algebra, this is
equal to d̂ − (W1W1 + W2b2) which is the value given to W2 in ĝ. Indeed, ẑ − (W1 · f1 + W2 · f2)
can be written as

(yĉ+ d̂)−W1(ya1 +b1)−W2(y+b2) = y(ĉ−(W1a1 +W2))+ d̂−(W1b1 +W2b2) = d̂−(W1b1 +W2b2),

as required.

Claim 6.3. D1(y, c, d;W1) ≡n·Uµc/µd D2(y, c, d;W1) for every fixed y, c, d,W1.

Recall that Lemma 6.1 guarantees that n · Uµc/µd = neg(κ).

Proof. Fix y, c, d,W1 and all the random coins in both experiments except ed and ez. Let us
compare the distribution of the vector ẑ in both experiments. In D1, we have

ẑ = yĉ+ d̂ = (cy + d)∆ + (ed + yec),

while in D2 we changed ẑ to (cy + d)∆ + ez. Since c, y, d and ec are fixed, it suffices to show that
ez is statistically indistinguishable from (ed + yec). Indeed, by noting that yec is a fixed vector
whose entries are in [±Uµc], we can apply Fact 3.7 and show that the statistical distance is at most
n · Uµc/µd.

Claim 6.4. D2(y, c, d;W1) ≡kUρa/ρb D3(y, c, d;W1), for every fixed y, c, d,W1.

Recall that Lemma 6.1 guarantees that kUρa/ρb = neg(κ) (this follows from the first three
items).

Proof. Fix y, c, d,W1 and all the random coins in both experiments except b and f . We compare the

distribution of the vector f in both experiments. In D3, the vector f
R← ([ρb]

k, [ρb], 1), while in D2

the f is taken to be ya+b, where b
R← ([ρb]

k, [ρb], 1) and ya is a fixed vector in ([0, Uρa]
k, 1, 0). Hence,

by Fact 3.7, the statistical distance between the two distributions is at most kUρa/(0.5ρb).

Finally, we derive the following claim:

Claim 6.5. If LWE(k, q,Φµc ,Φρa/2) is (t, ε)-hard then D3(y, c, d;W1) ≡t−O(kn lg2 q),ε Sim(yc+d;W1),
for every fixed y, c, d.

Proof. First observe that the coins ed and b have no affect on the output in both distribution and
therefore they can be ignored. Fix y, c, d and all the random coins in both experiments except
W1, a1, ec and W2. Under this fixing, we can define a function σy,c,d,,ez ,f (W1,W2) computable by a
circuit of size O(nk log q) such that the outcome of Sim is σ(Un×kq ,Unq) and the outcome of D3 is

σ(W1,W2) where W1
R← Un×kq and

W2 = ĉ−W1a1 = W1 · (−a1) + ec + c∆, where a1
R← [ρa]

k, ec
R← Φn

µc .

(All arithmetic is performed modulo q.) Hence, it suffices to show that the distribution

(W1,W1 · (−a1) + ec + c∆) (1)

is (t − O(kn log2 q), ε)-indistinguishable from the uniform distribution. This distribution is quite
similar to the LWE distribution (which is assumed to be pseudorandom), except that a1 is uniform
over [ρa]

k and not over Φk
ρa/2

. We now show that the two variants are actually equivalent.

18

We define an efficient mapping α : Zn×kq ×Znq → Zn×kq ×Znq which maps (M,v) to (M,v+ c∆−
M · 1ρa/2) where 1ρa/2 denotes the length-k vector whose entries are all equal to bρa/2c. (Recall
that ρa is assumed to be even.) Observe that α takes the uniform distribution to itself. In addition

the LWE distribution M
R← Un×(k)

q , v = Ms+ e where s
R← Φk

ρa/2
and e

R← Φn
µc is mapped by α to

the distribution (M
R← Un×(k)

q , v′) where

v′ = Ms+ e+ c∆−M · 1ρa/2 = M(s− 1ρa/2) + e+ c∆ = Ms′ + e+ c∆,

where s′
R← [ρa/2]k and e

R← Φn
µc . The latter distribution is exactly the distribution of Eq. 1. Since

α is computable by a circuit of size O(nk lg2 q), it follows that (t−O(nk lg2 q), ε) distinguishing (1)
from the uniform distribution allows to (t, ε) distinguish LWE(k, q,Φµc ,Φρa/2) from the uniform
distribution, contradicting our hypothesis.

It follows from Claims 6.2–6.5, that, under the conditions of Lemma 6.1, the distribution
Sim(cy + d;W1) is computationally indistinguishable from ĝ(y, c, d;W1) for every fixing of y, c, d.

7 Garbling Arithmetic Circuits

In this section we combine the affinization gadget and the key-shrinking gadget for obtaining our
main result: an efficient DARE compiler for general arithmetic circuits over integers from a bounded
range. Some optimizations for specific families of functions (e.g., low degree polynomials) will be
presented in Section 7.3.

7.1 The Main Construction

Let C be an arithmetic circuit. Instead of individually considering each wire and gate of C as in the
original garbled circuit construction, we will build the encoder by processing one layer at a time. For
simplicity, we assume that C is already given in a layered form. That is, C(x) = B1◦B2◦· · ·◦Bh(x)
where each Bi is a depth-1 circuit.6 We denote by yi (values of) variables corresponding to the
input wires of layer Bi. That is, yi = Bi+1 ◦ · · · ◦Bh(x), where y0 = C(x) and yh = x. We denote
by Ci the function mapping yi to the output of C; that is, Ci(yi) = B1 ◦ . . . ◦Bi(yi), where C0(y0)
is the identity function on the outputs.

The DARE compiler, on inputs κ, U,C, starts by setting the parameters for the key-shrinking
gadget. The bounds ρc, ρd are set to 2η(κ+logU) for some constant η > 1. (The constant η is derived
from the parameters of the affinization gadget; for our basic affinization gadget, η = 4 suffices.)
The remaining parameters are picked as discussed following Lemma 6.1. The value of n may vary
in different invocations of the gadget, but will be at most 2kφ, where φ is the maximal fan-out of
gates of C.

The compiler builds the encoding Enc in an iterative fashion, processing the layers of C from
top (outputs) to bottom (inputs). It starts with a trivial encoding of the identity function C0. In
iteration i, i = 1, 2, . . . , h, it transforms a DARE for Ci−1(yi−1) into a DARE for Ci(yi) by first
substituting Bi(y

i) into yi−1, then applying the affinization gadget to bring the resulting function
into a decomposable affine form (at the cost of increasing the size of the keys), and finally applying

6The construction can be generalized by letting each Bi compute any “simple” arithmetic function that can be
handled by the generalized affinization gadgets of Corollary 5.5 (e.g., an arithmetic NC1 circuit or a sequence of
polynomial-size arithmetic branching programs). This generalization can give useful efficiency tradeoffs, see Sec-
tion 7.3 below.

19

the key-shrinking gadget to reduce the size of the keys (at the cost of generating additional outputs
that do not depend on the inputs). This process terminates with a DARE of Ch(yh) = C(x).

More precisely, the encoder Enc produced by the DARE compiler is obtained as follows. For
simplicity, we treat encoders as probabilistic circuits and omit their random inputs from the nota-
tion.

1. Let Enc0(y0) = y0 be the identity function on the variables y0 (one variable for each output
of C).

2. For i = 1, 2, . . . , h, obtain an encoding Enci(yi) of Ci(yi) from an encoding Enci−1(yi−1) of
Ci−1(yi−1) using the following three steps:

(a) Substitution. Let F (yi) = Enci−1(Bi(y
i)).

It is clear that if Enci−1 encodes Ci−1, then F encodes Ci. However, even if Enci−1 is
affine, F is no longer affine: for instance, if the first output of Bi is yi−1

1 = yi1 ∗ yi2, then
F will contain outputs of the form Q = a1 ∗ (yi1 ∗ yi2) + b1.

(b) Affinization. Turn F into a decomposable affine encoder G of the same function by
applying to each output that depends on two inputs yij the basic affinization gadget
(Claim 5.3). For instance, a term Q as above can either be handled directly via the
generalized gadget of Corollary 5.5, or by applying the basic gadget of Claim 5.3 to
Q = z ∗ yi2 + b1 and substituting a1y

i
1 into z. The resulting encoding of Q can be written

in the form Q′ = (a′1y
i
1+b′1, a

′
2y
i
2+b′2, w) where a′i, b

′
i, w are vectors in Z2 that depend only

on random inputs and whose bit-length is O(logU + κ). Applying this transformation
to every term Q in the output of F and concatenating different affine functions of the
same input, we get a decomposable affine encoding G of Ci. However, now the keys of
G are longer than those of Enci−1 (by a factor which is at most twice the fan-out of Bi)
and have bigger entries.

(c) Key shrinking. To avoid the exponential blowup of keys, the compiler applies the key-
shrinking gadget. For every output Q = cjy

i
j+dj of G that has length n > k or has large

key entries (i.e., cj,h > ρa or dj,h > ρb for some h), the key-shrinking gadget is applied
to bring it to the form (W,ajy

i
j + bj), where aj ∈ [0, ρa]

k, bj ∈ [0, ρb]
k, and aj , bj ,W

depend only on random inputs. (In fact, in our implementation of the key-shrinking
gadget aj , bj are picked uniformly at random from their domain.) The W entries will
be aggregated and will form the garbled circuit part of the output. Let Enci(yi) be the
decomposable affine encoding resulting from this step.

3. Output the arithmetic circuit computing Enc(x) = Ench(x).

The decoder and simulator are obtained by applying a similar iterative process based on the
decoders and simulators of the two gadgets. Correctness and privacy follow from the natural
concatenation and composition properties of randomized encodings (see Section 3.1). Indeed, for
all 1 ≤ i ≤ h, the randomized function Ei(x) = Enci(Bi+1 ◦ · · ·◦Bh(x)) is a randomized encoding of
Ei−1(x) = Enci−1(Bi ◦ · · · ◦Bh(x)). It follows from the composition property that Enc(x) = Eh(x)
is a randomized encoding of C(x) = E0(x), as required. Note that since gadgets are applied on
the values of all intermediate wires yij , the correctness and privacy of the final encoding Enc is only
guaranteed on inputs x for which the absolute value of every wire in C is bounded by U .

The security properties of the construction are captured by the following main theorem:

Theorem 7.1. Suppose γ > 1 is such that for every choice of q(κ) ∈ 2O(κ) and discrete Gaussian χ
over Zq with standard deviation qΩ(1), the assumption LWE(k, q, χ,S) holds with k = max(log q, κ)γ

20

and a uniform information distribution S. Then the above construction (with dimension parameter
γ) yields a perfectly correct, computationally-private DARE compiler as defined in Section 4.

Complexity. We measure the output length of the encoding in terms of elements whose bit
length is τ = O(κ + logU). Each key consists of k = O(τγ) elements. In addition, each input
or internal gate with fan-out ` adds an overhead of O(k`τγ) elements to the “garbled-circuit”
part of the encoding. By reusing the public randomness of the key-shrinking gadget, this can be
improved to O(k`) plus an additional “one-time” cost of O(kLτγ) where L is the maximal fan-out.
This makes the total complexity O(k) elements per wire, plus O(kLτγ) additional elements. In
a typical scenario, where the integers are large enough compared to the security parameter (i.e.,
κ = O(logU)) and the circuit is large enough compared to the integers (i.e., L(logU)2γ = O(|C|)),
the encoding contains O((logU)γ) elements of bit-length O(logU) per wire.

7.2 Proof of Theorem 7.1

Fix κ, U and C, let bi be the number of entries in yi, and let ci be the size of the circuit Ci. We
assume that the affinization gadget has (statistical) εaff-privacy and complexity saff and that the
key-shrinking gadget is a (tshr, εshr)-encoding with complexity sshr. The proof of Theorem 7.1 will
follow from the following lemma.

Lemma 7.2. For every 1 ≤ i ≤ h, the function Enci(yi) is a (ti, εi)-encoding of Ci(yi) with
simulator Simi and decoder Deci of size si, where ti ≥ tshr − ci(saff + sshr), εi ≤ ci(εaff + εshr) and
si ≤ ci(saff + sshr).

With our choice of parameters we have εaff = 2−κ, saff = poly(κ), sshr = poly(κ, logU), and
(tshr, εshr) = (κω(1), 1/κω(1)) assuming that LWE is hard.

Proof. It will be convenient to prove a stronger claim, namely that ti = tshr − (ci(saff + sshr) −
bisaff), εi = ci(εaff + εshr)− biεaff and si = ci(saff + sshr)− bisaff . The proof is by induction on i. For
i = 0, the identity function C0(y0) is perfectly encoded by the identity function Enc0(y0) and so
the claim is trivially correct by letting Sim0 and Dec0 be the identity functions over [±U]b0 .

Suppose that the function Enci(yi−1) is a (ti−1, εi−1)-encoding of Ci−1(yi−1) with simulator
Simi−1 and decoder Deci−1 of circuit size si−1. By Fact 3.1 (substitution), we have

Claim 7.3. The function F defined in the i-th iteration is a (ti−1, εi−1)-encoding of Ci(yi) with
the simulator Simi−1 and decoder Deci−1.

Recall that the function G of the i-th iteration is defined by applying an εaff-encoding to each
of the bi−1 outputs of F . (The complexity of each of the encodings and the simulator and decoder
is saff .) Hence, by Fact 3.2 (concatenation), the function G is a bi−1 · εaff-encoding of F whose
complexity (resp., simulator and decoder complexity) is bi−1 · saff . By Fact 3.3 (composition) we
get that:

Claim 7.4. The function G is (ti−1− bi−1 · saff , εi−1 + bi−1 · εaff)-encoding of Ci(yi) with simulator
and decoder of complexity at most si−1 + bi−1 · saff .

Recall that Enci is defined by viewing G as the concatenation of bi functions and by encoding
each of these functions by a (tshr, εshr)-encoding whose complexity for encoding, simulation and
decoding is sshr. Hence, by Fact 3.2 (concatenation), Enci is a (tshr − bi−1sshr, biεshr)-encoding of
complexity bi · sshr. By Fact 3.3 (composition) we get that:

21

Claim 7.5. The function Enci is (ti−1 − bi−1 · saff − bi · sshr, εi−1 + bi−1 · εaff + bi · εshr)-encoding of
Ci(yi) with simulator and decoder of complexity at most si−1 + bi−1 · saff + bi · sshr.

By noting that the above quantities equal to ti, εi and si (as follows from the equality b0 + . . .+
bi = ci), we complete the induction.

Uniformity of the simulator and decoder. The circuits for the simulator Simi and decoder
Deci are uniform in the following sense: There exists a polynomial-time algorithm M that given the
circuit Ci, the security parameter 1κ, and the upper-bound U (in binary representation) outputs the
circuits Simi and Deci. This follows from the proof of Lemma 7.2 by noting that: (1) the above claim
is trivially true for i = 0; and (2) there is a polynomial-time algorithm T which takes as an input
the parameters (1κ, U), together with Bi (the i-th layer of Ci) and the circuits (Simi−1,Deci−1),
and outputs the circuits (Simi,Deci). The description of T is implicit in Facts 3.1–3.3 and in the
definitions of the affinization and shrinking gadgets.

7.3 Constant-Rate Instances

For some natural circuit classes, we can obtain a “constant rate” encoding, namely a DARE whose
output length is a constant multiple of the description size of the circuit. This type of efficiency
cannot be achieved using alternative approaches we are aware of (including Yao’s boolean construc-
tion or its DARE variant in Section 8). We demonstrate this for the case of functions whose output
can be written as a constant-degree polynomial in the inputs.

Theorem 7.6. Let f : Zn → Z be a polynomial of constant degree d defined by the sum of monomials
T1(x) + . . . + Tm(x). Let ai be the number of monomials which depend on xi. Let τ = κ + logU
and k = τγ as in Section 7.1, where κ is the security parameter and U upper-bounds the value of
the inputs, output and the intermediate values Ti(x). Then, under the assumption of Theorem 7.1,
f has a DARE whose output consists of k(n+ max(ai)) +

∑
ai elements of bit-length O(τ).

Most polynomials of degree d have description length Θ(nd logU), which in a typical setting
of the parameters is the same (up to a multiplicative constant) as the length of our encoding.7

As an immediate application, let us consider the task described in the introduction, where a weak
client wishes to publicly announce the value of a polynomial f applied to a sensitive input x while
keeping x private. Here, a constant-rate encoding gives rise to a non-interactive solution whose
offline communication complexity is just a constant multiple of the description size of f . This is
essentially optimal when f is not fixed beforehand.

Proof of Theorem 7.6. The proof consists of two steps. First, we show that the task of encoding
f reduces to the task of encoding certain constant-depth (NC0) arithmetic circuits C : Zn → Zm
while preserving the output complexity; then, we use the main DARE compiler to encode C with
the desired complexity.

The first step relies on the locality reduction of [4, Appendix B] which allows to perfectly
encode f via the arithmetic encoding f̂(x; r) = (T1(x)− r1, . . . , Tm(x)− rm,

∑
ri), where addition

and subtraction are performed modulo 2U+1. (Recall that Ti(x) and
∑
Ti(x) are all in the interval

[±U], hence there is no wraparound.) Observe that when r is fixed f̂r(x) is an NC0 circuit in which
each output depends on at most d inputs and each input xi affects exactly ai outputs. Furthermore,

all the different functions
{
f̂r

}
have the same input-output dependency graph (i.e., for i ∈ [m] the

7For instance, this is the case when the inputs are in [±2n
ε

], κ = nε, k = nεγ = o(n), and when
∑
ai = O(nd)

and max(ai) = O(nd−1); the latter two conditions hold for most polynomials.

22

i-th output depends on the inputs that participate in Ti, and the last output is fixed). Now, by

Fact 3.4, it suffices to encode this class of functions
{
f̂r(x)

}
by a universal encoding {gr(x; r′)} of

output complexity k(n+ max(ai)) +
∑
ai.

It remains to encode the constant-depth (NC0) arithmetic circuit f̂r : Zn → Zm. To obtain
a constant-rate encoding, we combine the key-shrinking gadget with the information-theoretic en-
coding of Corollary 5.5. Specifically, by applying the corollary to each output of the circuit (which
can be computed by a constant-size arithmetic formula) and concatenating the results (Fact 3.2)
we get a decomposable affine encoding for f̂r with key length O(ai). Applying the key-shrinking
gadget and employing standard composition (Fact 3.3) we get a decomposable affine encoding with
n short keys of size k, and a garbled circuit part which consists of additional O(

∑
ai) entries and

a single “public” matrix of size O(kmax ai), as required. To see that the encoding is universal

for
{
f̂r(x)

}
observe that the simulator and decoder depend only on the dependency graph of f̂r

(which is universal) and on the simulator and decoder of the information theoretic encoding for
size s arithmetic formulas (Corollary 5.5) which are also universal.

We note that Theorem 7.6 can be generalized to the case of multi-output functions where each
output is a constant-degree polynomial. In this case, the value ai counts the number of different
monomials Tj which (1) contain xi and (2) appear as a summand in one of the outputs.

8 A CRT-Based DARE Compiler

In this section, we sketch an alternative construction of a DARE compiler over the integers, via
a reduction to Yao’s original garbled circuit construction. The reduction is based on the Chinese
Remainder Theorem. Similarly to Yao’s construction, the resulting construction can be based on
any one-way function. However, it does not possess the efficiency and generality advantages of our
main LWE-based construction.

Recall that Yao’s construction requires to use each bit of the input for selecting one key from a
pair of keys (k0, k1). Since we cannot directly access bits of the input in the arithmetic model, we will
instead settle for encoding the selection. Concretely, for each input x ∈ Z and every 1 ≤ i ≤ dlogUe
(where U is an upper bound on x), we will define a DARE of a function fi(x, k0, k1) = kx[i], where
x[i] denotes the i-th bit in the binary representation of x. By using the Chinese Remainder Theorem
(CRT), we reduce the latter task to encoding functions of the form

fp,i(x, k0, k1) = k(xmod p)[i],

where p is a small prime (p ≤ polylog(U)). Indeed, applying such a selector function with O(logU)
distinct primes pj for each i, we get a selection of keys corresponding to a binary CRT encoding
of x. We can now feed these keys to Yao’s construction applied to the following boolean circuit C ′.
The circuit C ′ first applies CRT decoding to the bits of the CRT encoding of each input x (whose
keys are given by the outputs of fp,i), and then computes C on the bit-representation of its inputs.

It remains to describe a DARE for the functions fp,i. We can assume, without loss of generality,
that the keys k0, k1 are integers in the range [0, p−1]. (The construction can be repeated in parallel
to handle κ-bit keys.) The function fp,i can now be written as

fp,i(x, k0, k1) =
∑

0≤a<p : a[i]=0

k0 · (1− (x− a)p−1) +
∑

0≤a<p : a[i]=1

k1 · (1− (x− a)p−1) mod p .

23

Using Lemma 5.2, the latter expression can be statistically encoded by

f ′p,i(x, k0, k1) =
∑

0≤a<p : a[i]=0

k0 · (1− (x− a)p−1) +
∑

0≤a<p : a[i]=1

k1 · (1− (x− a)p−1) +Rp,

where R is a uniformly random integer in [0, 2κ + pp]. Finally, since f ′p,i can be computed by an
arithmetic branching program of size poly(logU) (modulo a prime of bit-length poly(κ, logU)), we
can apply Fact 5.4 and again Lemma 5.2 to get a statistical DARE for f ′p,i and hence for fp,i.

Acknowledgments

We thank Shai Halevi, Vadim Lyubashevsky and Amir Shpilka for helpful discussions.

References

[1] B. Applebaum. Key-dependent message security: Generic amplification and completeness
theorems. In EUROCRYPT, 2011.

[2] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In CRYPTO, pages 595–618, 2009.

[3] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing polynomials
and their applications. Computational Complexity, 15(2):115–162, 2006.

[4] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM J. Comput.,
36(4):845–888, 2006.

[5] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification
via secure computation. In ICALP (1), pages 152–163, 2010.

[6] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message security. In
EUROCRYPT, pages 423–444, 2010.

[7] O. Barkol and Y. Ishai. Secure computation of constant-depth circuits with applications to
database search problems. In CRYPTO, pages 395–411, 2005.

[8] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended
abstract). In STOC, pages 503–513, 1990.

[9] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudorandom
bits. SICOMP, 13(4):162–167, 1984.

[10] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
lwe. In FOCS, 2011.

[11] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation and secure
autonomous mobile agents. In ICALP, pages 512–523, 2000.

[12] R. Cleve. Towards optimal simulations of formulas by bounded-width programs. In STOC,
pages 271–277, 1990.

24

[13] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party computation over rings.
In EUROCRYPT, pages 596–613, 2003.

[14] U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation. In STOC, 1994.

[15] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In CRYPTO, 2010.

[16] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[17] C. Gentry and S. Halevi. Fully homomorphic encryption without squashing using depth-3
arithmetic circuits. In FOCS, 2011.

[18] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In STOC, pages
218–229, 1987.

[19] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive proofs
for muggles. In STOC, 2008.

[20] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM J. Comput., 28(4):1364–1396, 1999. Preliminary versions appeared
in STOC’ 89 and STOC’ 90.

[21] Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with applications. In
ISTCS, pages 174–184, 1997.

[22] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications
to round-efficient secure computation. In FOCS, pages 294–304, 2000.

[23] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect random-
izing polynomials. In ICALP, pages 244–256, 2002.

[24] M. J. Jansen and B. V. R. Rao. Simulation of arithmetical circuits by branching programs
with preservation of constant width and syntactic multilinearity. In CSR, pages 179–190, 2009.

[25] J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation with a
dishonest majority. In EUROCRYPT, 2003.

[26] J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[27] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. In
CRYPTO, pages 171–189, 2001.

[28] Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-party computation. J.
Cryptology, 22(2):161–188, 2009.

[29] V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors,
and the minimum distance problem. In CRYPTO, pages 577–594, 2009.

[30] M. Mahajan and B. V. R. Rao. Small-space analogues of valiant’s classes. In FCT, pages
250–261, 2009.

[31] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, pages 700–718, 2012.

25

[32] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In
Electronic Commerce, pages 129–139, 1999.

[33] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EU-
ROCRYPT, pages 223–238, 1999.

[34] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In STOC, pages 333–342, 2009.

[35] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC,
pages 84–93, 2005. Full version in JACM 56(6), article 34, 2009.

[36] O. Regev. The learning with errors problem (invited survey). In IEEE Conference on Com-
putational Complexity, pages 191–204, 2010.

[37] A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with public keys. In
ACM Conference on Computer and Communications Security, pages 463–472, 2010.

[38] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1. In FOCS,
pages 554–567, 1999.

[39] L. Valiant. Completeness classes in algebra. In STOC, pages 249–261, 1979.

[40] A. C. Yao. Protocols for secure computation. In FOCS, pages 160–164, 1982.

[41] A. C. Yao. How to generate and exchange secrets. In FOCS, pages 162–167, 1986.

26

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

