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Abstract

We explore the relationships between circuit complexity, the complexity of generating circuits, and
circuit-analysis algorithms. Our results can be roughly divided into three parts:

• Lower Bounds Against Medium-Uniform Circuits. Informally, a circuit class is “medium uni-
form” if it can be generated by an algorithmic process that is somewhat complex but not infeasible.
We prove several unconditional lower bounds against medium uniform circuit classes, including

– For every k, P 6⊆ P-uniformSIZE(nk). Namely, for any k, there is some language L ∈ P
such that if size O(nk) circuits for L exist, they take super-polynomial time to generate.

– For every k, LOGSPACE does not have LOGSPACE-uniform branching programs of size nk.
– For every k, NP does not have PNP

|| -uniform circuits of size nk.

– For every k, either P does not have non-uniform circuits of size nk, or QBF (the language
of true quantified Boolean formulae) does not have P-uniform branching programs of size
2n

o(1)

.

These lower bounds apply an indirect diagonalization argument which simulates a “medium uni-
form” class with a low-uniform class using small amount of non-uniformity.

• Eliminating Non-Uniformity. We complement these results by proving a “uniformization” lemma
for NC1, showing that any simulation of NC1 in ACC0/poly or TC0/poly can be transformed into
a uniform simulation using small advice. This lemma can be used to simplify part of the proof
that faster SAT algorithms imply NEXP circuit lower bounds, and show that a nondeterministic
2n−ω(logn)-time algorithm for the following promise problem suffices for proving NEXP lower
bounds against TC0: given a TC0 circuit C of nO(1) size which is promised to be either unsatisfi-
able or have at least 2n−1 satisfying assignments, determine which is the case.
We also use this lemma to prove that if NC1 ⊂ ACC0/poly, then for all constants k, c > 0,
the validity of quantified Boolean formulas (QBF) of size nk on n variables can be decided in
deterministic time O(2n/nc).

• The complexity of QBF. Finally, we study the time complexity of QBF itself, and its application
to lower bounds. As a partial converse to the above results, we show that if for each k, c > 0, the
validity of quantified Boolean CNFs of size nk with at most k log n alternations can be decided in
time 2n/nc, then NEXP 6⊂ NC1/poly.
We also show that the exponential time complexities of quantified k-CNF and quantified (unre-
stricted) formulas are essentially identical. As a consequence, if quantified 3CNF formulas of n
variables and poly(n) size can be decided in 2n−n

1/2+ε

time deterministically (for some ε > 0)
then NEXP 6⊂ NC1/poly. (Compare with the 3SAT problem, where 1.4n-time deterministic algo-
rithms are known.) This extends the recent connections of Williams between SAT algorithms and
circuit lower bounds, to QBF algorithms.
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1 Introduction
In this paper, we explore the relationship between the complexity of circuits for solving problems, and the

complexity of processes that can generate those circuits from scratch. In the non-uniform setting, we put
no bounds on the complexity of generating circuits, and in this case it is extraordinarily difficult to prove
lower bounds even against low-complexity circuits. In low-uniform1 settings like DLOGTIME-uniformity,
the circuits are extremely easy to construct – circuit complexity in this regime falls in line with standard
machine-based complexity classes. The “medium-uniformity” settings, where the circuit-generating process
is neither too easy nor too hard, are less well-understood, and studying them will help us better understand
the two extremes.

Lower bounds by amplifying uniformity. In the first part of the paper, we prove a series of new lower
bounds against “medium-uniform” circuits. The key insight behind the results is that under certain as-
sumptions, medium-uniformity can sometimes be simulated with “low-uniformity” augmented with a small
amount of advice. It is then possible to diagonalize against the low-uniformity small-advice simulation to
derive a contradiction to the assumption.

The common theme of our results in the first part is that of proving lower bounds against notions of unifor-
mity for which it is not possible to directly obtain lower bounds by diagonalization. Consider for example,
the class of linear-size circuits. If a DLOGTIME-uniformity condition is imposed on the class, then it can
be simulated in nearly-linear deterministic time, and we can easily diagonalize in P against it. However, for
a notion of medium uniformity such as P-uniformity, it is not possible to directly diagonalize, as the notion
of uniformity has more power than the diagonalizing language (which must lie in some fixed polynomial
time bound). Our primary observation is that the uniformity condition can be made more succinct, and that
this succinctness can then be used to give a low-uniform small-advice simulation.

Our first main result strengthens both the deterministic time hierarchy theorem and the classical result of
Kannan [Kan82] that for any k, NP is not in P-uniformSIZE(nk).

Theorem 1.1 Let k > 0 be any constant. P 6⊆ P-uniformSIZE(nk)

The idea in the proof of Theorem 1.1 can also be applied to smaller classes to get interesting separations.
Note that the best non-uniform branching program lower bounds we know are Ω(n2), using the Neciporuk
method [Nec66]. However, if the branching programs are required to be LOGSPACE-uniform, we can prove:

Theorem 1.2 For any k, LOGSPACE does not have LOGSPACE-uniform branching programs of size
O(nk).

We are also able to strengthen Kannan’s lower bound for NP in a different direction, by relaxing the notion
of uniformity used. To prove this result, we combine the uniformity trade-off idea used in the results above
with ideas in an recent paper of Fortnow, Santhanam and Williams [FSW09] showing that fixed-polynomial
size lower bounds can be “amplified”.

Theorem 1.3 Let k ≥ 1 be any constant. Then NP 6⊆ PNP
|| -uniformSIZE(nk).

It is still an open question whether QBF has P-uniform branching programs of polynomial size. We make
progress on this question by showing that one of two alternatives holds: either P requires large non-uniform
circuits, or QBF requires very large P-uniform branching programs.

1Note that somewhat counter-intuitively, the conventional meaning of “low-uniform” is very uniform
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Theorem 1.4 For each constant k > 1, P does not have non-uniform circuits of size nk, or else QBF does
not have P-uniform branching programs of size 2n

o(1)
.

Eliminating non-uniformity. The lower bounds above work by introducing a little non-uniformity into
the process. In the second part of the paper, we study a situation where one can go in the opposite direction,
and simulate non-uniform circuits by “medium-uniform” ones. We prove a lemma relating non-uniform
circuits for NC1 to subexponential-time uniform circuits for NC1:

Lemma 1.1 Suppose NC1 ⊂ C/poly, where C ∈ {ACC,TC0}. For every ε, k > 0, there is a 2O(nε) time
and O(nε) space algorithm that, given any circuit C of size n and depth k log n, prints an O(k/ε)-depth,
nO(k)-size C-circuit that is equivalent to C.

That is, a non-uniform inclusion of NC1 in TC0 implies small-space uniform (and hence subexponential-
time uniform) TC0 circuits for NC1. This lemma simplifies and strengthens one of the main components of
the proof that faster C-SAT algorithms imply NEXP 6⊂ C/poly [Wil10, Wil11]. In particular, an intermediate
result says that, if there are SAT algorithms running in O(2n/n10) time on all polynomial-size C-circuits,
and NEXP ⊂ C/poly, then there is a nondeterministic o(2n) time algorithm which generates C-circuits
equivalent to a given SUCCINCT 3SAT instance. By exploiting the structure of NC1, Lemma 1.1 can be
used to deterministically generate equivalent TC0 (respectively, ACC) circuits in subexponential (2n

ε
) time,

without assuming any algorithmic improvement on circuit satisfiability.
Moreover, Lemma 1.1 can be used to weaken the conditions necessary to prove lower bounds like NEXP 6⊂

TC0/poly. In particular, we prove that a nondeterministic 2n−ω(logn)-time algorithm for the following
promise problem suffices for proving NEXP 6⊂ TC0/poly: given a TC0 circuit C of nO(1) size which is
promised to be either unsatisfiable or have at least 2n−1 satisfying assignments, determine which is the
case.

Thus, while the weakness of medium uniformity was exploited in the first part of the paper to show lower
bounds, here the strength of medium uniformity is exploited to show algorithmic results.

Another consequence of Lemma 1.1 is that, for simulations of NC1 in smaller classes, non-uniformity can
be simulated by low-uniformity with small advice:

Corollary 1.1 For C ∈ {ACC,TC0}, NC1 ⊂ C/poly ⇐⇒ for all ε > 0, NC1 ⊂ C/nε.

Another consequence of Lemma 1.1 is:

Theorem 1.5 If NC1 ⊂ ACC/poly then for every k, c > 0, quantified Boolean formulas of nk size and n
variables can be solved in (deterministic) O(2n/nc) time.

Theorem 1.5 is significant because we obtain a faster deterministic QBF algorithm from a non-uniform
assumption on NC1 (previous arguments could only derive a nondeterministic algorithm for FORMULA

SAT). With luck, Theorem 1.5 may be useful in a proof that EXP 6⊂ ACC/poly. (To complete such a proof,
we may also need a component which reduces every language in TIME[2n] to quantified Boolean formulas of
n+O(log n) variables and polynomial size, and runs in subexponential time. Assuming EXP ⊂ ACC/poly,
it is plausible that such a reduction exists, since EXP = PSPACE = MA in this case.)
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The complexity of QBF. Inspired by the second part, we further explore the prospects for proving non-
uniform NC1 lower bounds via faster QBF algorithms.

Define QB-kCNF, QB-CNF, QB-FORMULAS to be the quantified Boolean formula problem over k-
CNF predicates, arbitrary CNF predicates, and formula predicates, respectively. In satisfiability problems,
the choice of predicate can play a major role in the time complexity of the problem: for every k there is a
δ < 1 such that k-SAT is in 2δn time, but no 1.999n time algorithm is known for general CNF-SAT (the
Strong Exponential Time Hypothesis posits that none exists). For FORMULA-SAT, there is no algorithm
known to run in faster than O(2n/n) time for polynomial-size formulas. However, in the case of quantified
Boolean formulas, the time complexities of QB-FORMULA and QB-kCNF are very tightly related:

Theorem 1.6 If there an ε > 0 such that for all k, c, QB-kCNF of size nc is in time 2n−n
ε
, then QB-

FORMULA for nc-size formulas is in time 2n−n
ε

(hence NEXP 6⊂ NC1/poly [Wil11]).

Therefore, Quantified 3-CNFs are essentially equivalent in exponential time complexity to Quantified
Boolean Formulas. This is very different from what we know for satisfiability. It is well-known that 3-SAT
can be solved in less than O(1.4n) time [PPSZ98, DH09, Her11], and CNF-SAT on poly(n) clauses can
be solved in 2n−n/O(logn) time [Sch05, CIP06]. However it is believed that CNF-SAT cannot be solved in
O(1.9n) (this is implied by the Strong Exponential Time Hypothesis [IP01, CIP09]). Yet Formula SAT is
not known to be in O(2n/n10) time (and if it were, then NEXP would not be in NC1/poly [Wil10, Wil11]).
The proof of Theorem 1.6 yields the consequences:

Corollary 1.2 If QB-CNF on nk size instances with k log n alternations can be solved in 2n/nc time for
every c, k > 0, then NEXP 6⊂ NC1/poly.

Corollary 1.3 If there is an ε > 0 such that QB-3CNF of size nk can be solved in 2n−n
1/2+ε

time for all
k, then NEXP 6⊂ NC1/poly.

Therefore, even mild improvements on solving 3-CNF QBFs would imply NC1 lower bounds.

1.1 Preliminaries and Notation

We assume basic knowledge of complexity theory [AB09]. For all complexity classes C defined as a
class of polynomial-size circuits, we use C to denote the uniform version of the complexity class (with
LOGTIME-uniformity being the default), and C/poly to denote the non-uniform version. For instance, in
this notation, we would say that prior work has established that NEXP 6⊂ ACC/poly [Wil11]. This notation
makes it clear when we are discussing uniform versus non-uniform classes.

Given a language L, Ln is the “slice” of L at length n, i.e., Ln = L ∩ {0, 1}n.
Given size function s and depth function d, SIZE(s) is the class of languages with circuits of size O(s),

DEPTH(d) the class of languages with circuits of depth d, and SIZEDEPTH(s, d) the class of languages
which simultaneously have size O(s) and depth d.

We need standard notions of uniformity for circuits. Given a class C of languages, a language L is said to
have C-uniform circuits of a certain size if there is a sequence of circuits of that size whose direct connection
language is in C. The direct connection language for a sequence of circuits {Cn}, where Cn is on n input
bits, consists of all tuples of the form 〈1n, g, h, r〉, where g and h are indices of gates, r is the type of
g (AND/OR/NOT/INPUT, and in case of INPUT, which of the n input bits g is, with an additional bit
to specify whether g is the designated output gate), and h is a gate feeding in to g in case the type r is
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not INPUT. Other encodings of the direct connection language are possible, but for the classes C we will
consider, the encoding will not affect the result we prove.

By a description of a circuit Cn, we mean the adjacency list representation of the labelled DAG corre-
sponding to Cn.

In one of our results, we also require the notion of a direct connection language for a branching program.
This is defined in the same way as for a circuit, and at least for the notions of uniformity we use, the precise
encoding will not matter.

For a uniform complexity class defined using machines or circuits, and given an advice length function a,
we incorporate advice into the class in the standard way: the machines or circuits defining the class receive
an additional advice input, which depends only on the input length n, and is of length at most a(n).

2 Lower Bounds against Medium Uniformity
We will use a folklore result about a time hierarchy for deterministic time, where the lower bound holds

against sublinear advice.

Proposition 1 Let d ≥ 1 and d′ > d be any constants. Then DTIME(nd
′
) 6⊆ DTIME(nd)/o(n).

The following result simultaneously strengthens the time hierarchy theorem for deterministic time [HS65,
HS66] and Kannan’s result [Kan82] that for any fixed k, NP 6⊆ P-uniformSIZE(nk).

Reminder of Theorem 1.1 Let k > 0 be any constant. P 6⊆ P-uniformSIZE(nk)

Proof of Theorem 1.1. Assume, to the contrary, that P ⊆ P-uniformSIZE(nk). Let L ∈ P be arbitrary. We
will show that L can be simulated in a fixed deterministic time bound with small advice, which will yield a
contradiction to Proposition 1.

Since L ∈ P-uniformSIZE(nk) by assumption, there is a sequence of circuits {Cn} for L, with each Cn
having size at most cnk for some constant c, such that the direct connection language Ldc of this sequence of
circuits is in P. Now consider a “succinct” version Lsucc of the language Ldc defined as follows. LetBin(n)

be the binary representation of n. Then the tuple 〈Bin(n)01dn
1/(3k)e, g, h, r〉 ∈ Lsucc iff 〈1n, g, h, r〉 ∈ Ldc.

We claim that Lsucc ∈ P. To decide Lsucc in P, run the following procedure given an input y for Lsucc.
First, check if y can be parsed as a “valid” tuple 〈z, g, h, r〉, where z = Bin(n)01dn

1/(3k)e for some positive
integer n, g and h are valid gate indices between 1 and cnk, and r is a valid gate type. If this check fails,
reject. Else simulate the polynomial-time machine deciding Ldc on 〈1n, g, h, r〉, accepting iff the machine
accepts. The check on well-formedness can be done easily in polynomial time. The simulation of the
polynomial-time machine for Ldc runs in time poly(n). Since the input length of y is at least n1/3k, this is
still polynomial time as a function of |y|. Clearly, the procedure accepts y iff Lsucc.

Now, crucially, we use the assumption that P ⊆ P-uniformSIZE(nk) a second time. Since Lsucc ∈ P,
there is a sequence {Dm} of circuits for Lsucc such that for each m, Dm has size O(mk). Given an integer
n, let m(n) be the least integer such the size of the tuple 〈Bin(n)01dn

1/(3k)e, g, h, r〉 is at most m(n) for
any valid gate indices g and h for Cn and any valid gate type r. Using a standard encoding of tuples, we can
assume, for large enough n, that m(n) ≤ n1/(2k), since g, h, r can all be encoded with O(log n) bits each.

We now describe a simulation of L in time O(n2k+2) with o(n) bits of advice. Let M be an advice-taking
machine which operates as follows. M receives an advice string of length O(n1/2 log n). It interprets this
advice as a circuit Dm for the language Lsucc on inputs of length m = n1/(2k). For each pair of gate indices
g and h of Cn and each gate type r, M simulates the circuit Dm on 〈Bin(n)01dn

1/(3k)
, g, h, r〉 to decide
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whether gate h is an input to gate g and whether the type of gate g is r. Each such simulation can be done in
time O(n) since the circuit size is O(n1/2). There are at most O(n2k+1) such simulations that M performs,
since there are at most that many triples 〈g, h, r〉, where g and h are gate indices of Cn and r is a gate type.
Once all these simulations are performed, M can construct a description of the circuit Cn. It then simulates
Cn on its input x to determine whether x ∈ L. This simulation can be done in time O(n2k) since the circuit
Cn is of size O(nk). The total time taken by M is O(n2k+2), and M uses O(n1/2 log n) bits of advice. By
our assumptions on Cn and Dm, the simulation is correct. Thus L ∈ DTIME(n2k+2)/O(n1/2 log n).

Note that this is true for an arbitrary language L ∈ P, hence we have that P ⊆ DTIME(n2k+2)/O(n1/2).
However, this is is contradiction to Proposition 1. �

A significant property of Theorem 1.1 is that the lower bound holds for a notion of uniformity which we
cannot directly diagonalize against in polynomial time. Indeed, the following proposition shows that for
each d, the class against which we show a lower bound contains a language that is not in DTIME(nd).

Proposition 2 For each k ≥ 1 and d > 0, P-uniformSIZE(nk) 6⊆ DTIME(nd).

Proof. The standard proof of the deterministic time hierarchy theorem [HS65, HS66] can be adapted to
show that for each d, there is a unary language L which is in DTIME(nd+1) but not in DTIME(nd). This
unary language L can be recognized by P-uniform circuits of linear size – for each n, decide whether 1n ∈ L
in time O(nd+1), outputting the trivial circuit which outputs the AND of its input bits if yes and the trivial
circuit which outputs 0 on all inputs if no. �

The proof ideas of Theorem 1.1 can be adapted to prove lower bounds for other classes. We next show that
there for each k, there are languages in NC which do not have NC-uniform formulas of size nk, or indeed
NC-uniform circuits of fixed polynomial size and fixed polylogarithmic depth. Note that the best-known
formula size lower bound in NC against non-uniform formulas is Ω(n3−o(1)) [Has98].

We will require a hierarchy theorem for NC, which can again be shown using standard diagonalization.

Proposition 3 For every k, NC 6⊆ DLOGTIME-uniformSIZEDEPTH(nk, (log n)k)/o(n).

Theorem 2.1 For any k, NC 6⊆ NC-uniformSIZEDEPTH(nk, (log n)k)).

Proof. Assume for a contradiction that there is a k such that NC ⊆ NC-uniformSIZEDEPTH(nk, (log n)k).
Let L ∈ NC be arbitrary. Let {Cn} be a sequence of circuits of size O(nk) and depth (log n)k solving L,
and Ldc ∈ NC be the direct connection language of {Cn}. Define the succinct version Lsucc of Ldc as in
the proof of Theorem 1.1, with the same parameter m(n). Observe that Lsucc ∈ NC since checking whether
a “succinct” tuple is valid, and then converting to a full tuple that can be offered as input to Ldc are both
procedures that can be implemented in polylogarithmic depth. Hence Lsucc has circuits of depthO(mk) and
depth O((logm)k), by assumption.

We now define DLOGTIME-uniformSIZEDEPTH(nk
′
, (log n)k

′
) circuits taking o(n) bits of advice which

decide if x ∈ L, where k′ is a fixed constant depending on k. The circuits interpret the advice as small-depth
circuits for Lsucc on inputs of length m(n). The circuits simulate Cn on x implicitly, running the small-
depth circuit for Lsucc to retrieve any bit of Cn that is required. Since m(n) ≤ n1/(2k), each run of the
small-depth circuit for Lsucc incurs a depth cost at most O((log n)k) and size cost at most n2/3. Simulating
a circuit of depth O((log n)k) and size O(nk) on an input can be done uniformly in size O(n2k) and depth
O((log n)k). Because the circuit is being simulated implicitly, we incur an additional cost in size and depth,
but the overall size is at most O(n3k) and depth at most O((log n)k

2
). Thus, by setting k′ = k2, we have

the required simulation. But this contradicts Proposition 3, since L is arbitrary. �
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Similarly, the following can be shown. We omit the proof because of its similarity to the previous ones.

Reminder of Theorem 1.2 For any k, LOGSPACE does not have LOGSPACE-uniform branching programs
of size O(nk).

Theorem 1.1 improves Kannan’s result that NP 6⊆ P-uniformSIZE(nk) by showing a better upper bound
for the hard language, i.e., P rather than NP. We can improve his result in a different way by relaxing the
uniformity condition instead to PNP

|| -uniformity. The main idea is to first relativize Theorem 1.1 to allow
parallel access to an NP oracle both in the upper bound and in the uniformity bound, and then to strengthen
the upper bound using an idea of Fortnow, Santhanam and Williams [FSW09].

Reminder of Theorem 1.3 Let k ≥ 1 be any constant. Then NP 6⊆ PNP
|| -uniformSIZE(nk).

Proof of Theorem 1.3. First we show that PNP
|| 6⊆ PNP

|| -uniformSIZE(nk) in a completely analogous way to
Theorem 1.1. Then we claim that if PNP

|| 6⊆ PNP
|| -uniformSIZE(nk), then NP 6⊆ PNP

|| -uniformSIZE(nk−1).
This result was shown without the uniformity conditions by Fortnow, Santhanam and Williams [FSW09].
An examination of their proof shows that a circuit Cn for any language in PNP

|| can be constructed using
fixed polynomial-time oracle access to circuits for two specific languages in NP. If the circuit sequences for
these languages is each PNP

|| -uniform, then so is the small circuit sequence for the PNP
|| -uniform language,

by converting the polynomial-time oracle machine to an oracle circuit and then substituting the circuits for
the two oracles. Since k is arbitrary, we are done. �

For E = DTIME(2O(n)), we do not get an unconditional lower bound, but rather a “gap result” in the style
of Impagliazzo and Wigderson [IW01] or Buresh-Oppenheim and Santhanam [BOS06]. The result states
that if we can diagonalize in E against an arbitrarily small exponential amount of advice, then we get lower
bounds against E-uniform circuits of size close to the best possible. The main idea is to use the proof idea
of Theorem 1.1 recursively.

Theorem 2.2 If E 6⊆ DTIME(22n)/2εn for some ε > 0, then E 6⊆ E-uniformSIZE(2δn) for any δ < 1.

Proof. Let δ < 1 be any constant. Assume that for any L ∈ E, L ∈ E-uniformSIZE(2δn). We will show
that it follows that L ∈ DTIME(22n)/2εn for any constant ε > 0.

We define a sequence of languages Li as follows. L0 = L. In general, Li will be a “succinct” version
of a connection language of circuits for Li−1. The direct connection language we used before will not be
succinct enough for our purposes, so we use instead what we call the indirect connection language Lic of
a sequence of circuits, where a tuple 〈1n, g, i, b1, b2, r〉 is in Lic iff the gate with index g has type r, and
moreover, if the type r is not INPUT, then if the bit b1 = 0, the i’th bit of the index of the first input to g
is b2, and if the bit b1 = 1, the i’th bit of the index of the second input to g is b2. Essentially, Lic encodes
the adjacency list corresponding to the DAGs of the circuit sequence rather than the adjacency matrix. Note
that for any sequence of circuits of size 2O(n), Lic ∈ E iff Ldc ∈ E.

We now define L1 more precisely. By assumption, there is a sequence of circuits {Cn} for L such that
Cn is of size O(2δn) for each n, and the indirect connection language Lic,0 of the sequence of circuits
can be decided in E (since by assumption, the direct connection language can be decided in E). L1 is
the succinct version of Lic,0 defined as follows: a tuple 〈Bin(n), g, i, b1, b2, r〉 belongs to L1 iff the tuple
〈1n, g, i, b1, b2, r〉 belongs to Lic,0. Note that since the gate index of g requires at least δn bits to describe,
we can decide L1 in E, hence by assumption, L1 has E-uniform circuits of size 2δm.

Let {C1
m} be an E-uniform sequence of circuits of size 2δm for L1. As a function of n, the size of C1

m is at
most O(2δ(δn+O(logn))) = O(2δ

2npoly(n)). Let Lic,1 be the indirect connection language of the sequence
{C1

m}. We define L2 to be the succinct version of Lic,1 completely analogously to the previous paragraph.
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Continuing in this way, we get a sequence of languages L1, L2 . . . such that Lk has E-uniform circuits of
size O(2δ

knpoly(n)). Let k be such that δk < ε. Since δ < 1, there exists such a k.
We now define a simulation of L in time O(22n) with O(2εn) bits of advice. The advice is the description

of a circuit for Lk. Given this description, we can recover in time 2(δ
k−1+δk+o(1))n the description of a

circuit for Lk−1. Again, from this description, we can recover in time 2(δ
k−1+δk−2+o(1))n the description of

a circuit for Lk−2. Continuing in this way, we can recover in total time 2(δ+δ
2+o(1))n = O(22n) the circuit

Cn for L, whereupon we can run Cn on L to determine whether the input belongs to L or not.
�

Note that the conditional lower bound of Theorem 2.2 is close to best possible, as shown by the following
easy result.

Proposition 4 E has E-uniform circuits of size at most n2n.

Proof. For any language L in E, the truth table of L can be computed in linear exponential time, and from
the truth table it is easy to compute canonical DNFs or CNFs of size at most n2n for L. �

The ideas above can also be used to say something about lower bounds for QBF. It is an open question
whether QBF is in P-uniformNC. What we can show is that either P requires large non-uniform circuits, or
QBF requires large P-uniform branching programs of exponential size. Note that the second disjunct is a
substantially stronger statement than separating QBF from P-uniformNC.

The following proposition can be shown using a simple diagonalization.

Proposition 5 For constructible space bounds S1 and S2 such that S1 = Ω(log n) and S1 = o(S2),
SPACE(S2) 6⊆ SPACE(S1)/n.

Reminder of Theorem 1.4 For each constant k > 1, P does not have non-uniform circuits of size nk, or
else QBF does not have P-uniform branching programs of size 2n

o(1)
.

Proof of Theorem 1.4. Assume, to the contrary, that there is a constant k such that P has circuits of size
nk, and moreover that QBF has P-uniform branching programs of size 2n

o(1)
. Under these assumptions, we

will show a simulation of QBF in sublinear space with sublinear advice, and then derive a contradiction to
the space hierarchy theorem.

Let {Bn} be a sequence of P-uniform branching programs for QBF of size 2n
o(1)

, and let Ldc ∈ P be
the direct connection language of this sequence. Consider the succinct version Lsucc of Ldc defined as
in the proof of Theorem 1.1. Since Ldc ∈ P, Lsucc ∈ P, and hence Lsucc has a sequence of circuits
{Dm} of size O(mk). We define a machine M accepting QBF in sublinear space with sublinear advice as
follows: M treats its advice as a circuit Dm for Lsucc on inputs of length m(n), where m(n) ≤ n1/(2k)

is the same function as in the proof of Theorem 1.1. This circuit can be encoded using at most n2/3 bits
of advice. M implicitly generates parts of the branching program Bn as and when needed. It does this by
repeatedly calling the circuit Dm on different inputs, and determining which state is the currently relevant
one in the computation. It begins by cycling over all possible state inputs to Dm and checking which one
has type “Start”. Note that since Bn has size 2n

o(1)
, the name of a state can be maintained using space no(1).

Each time Bn makes a transition, M figures out which state Bn transitions to, again calling the circuit Dm

repeatedly to determine this. Note that since Dm has size O(
√
n), simulating Dm on any given input of

length m(n) can be done in space O(n2/3). M continues the implicit simulation of Bn until an accept or
reject state is reached in Bn, at which point it accordingly accepts or rejects.
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The total space requirement of M is O(n2/3), and M uses O(n2/3) bits of advice. Therefore QBF is in
SPACE(n2/3)/O(n2/3). Now, since QBF is complete for SPACE(n · (log n)O(1)) under quasilinear-time
reductions, we have that SPACE(n · (log n)O(1)) ⊆ SPACE(n3/4)/n3/4 for large enough n, which is a
contradiction to Proposition 5. �

3 A Uniformization Lemma For NC1

We now turn to the problem of eliminating non-uniformity in low-complexity circuit classes. Recall the
FORMULA EVAL problem: given a formula F and input v to it, determine whether F (v) = 1. Buss [Bus87]
showed that FORMULA EVAL is complete under DLOGTIME-reductions for DLOGTIME-uniform NC1.
Hence FORMULA EVAL can be solved efficiently (in, for example, TC0) iff NC1 ⊆ TC0.

Theorem 3.1 Suppose NC1 ⊂ C/poly, where C ∈ {ACC,TC0}. For every ε > 0, there is a 2O(nε) time and
O(nε) space algorithm that, given 1n, prints an O(1/ε)-depth, nO(1)-size C-circuit that solves FORMULA

EVAL on formulas of size n.

The following lemma is an immediate corollary:

Reminder of Lemma 1.1 Suppose NC1 ⊂ C/poly, where C ∈ {ACC,TC0}. For every ε, k > 0, there is
a 2O(nε) time and O(nε) space algorithm that, given any circuit C of size n and depth k log n, prints an
O(k/ε)-depth, nO(k)-size C-circuit that is equivalent to C.

The proof is inspired by Allender and Koucky [AK10] who showed that if NC1 ⊂ C/poly, then the
problem BALANCED FORMULA EVALUATION has n1+ε size C-circuits, for C ∈ {ACC,TC0}. Rather than
focusing on reducing circuit sizes, we focus on reducing non-uniformity.

Proof of Theorem 3.1. Assuming NC1 ⊂ C/poly, let k ≥ 1 be such that the FORMULA EVAL problem on
formulas of size n has C-circuits of nk size. Buss [Bus87] showed that FORMULA EVAL can be solved in
LOGTIME-uniform NC1. Applying this algorithm, we can generate (in polynomial time) an nc size formula
G(F, x) such that G(F, x) = 1 ⇐⇒ F (x) = 1, for all formulas F of size n and all potential inputs x of
length up to n. WLOG, G has depth at most c log n, for some fixed c ≥ 1.

Partition G into t = nc−ε/k subformulas F1, . . . , Ft of at most nε/k gates each. More precisely, we break
the c log n levels of G into kc/ε groups, where each group contains (ε/k) log n adjacent levels. Each group
consists of subformulas of depth (ε/k) log n and size at most nε/k. WLOG, we may assume each Fi has the
same number of inputs (roughly nε/k).

Next, we “brute force” a small C circuit for small instances of FORMULA EVAL. Try all possible C circuits
of size nε for FORMULA EVAL on all formula-input pairs of length up to nε/k. For each trial circuit T , we
try all possible 2Õ(nε/k) formula-input pairs, and check that T correctly evaluates the input on the formula.
By our choice of k, at least one T will pass this check on all of its inputs.

Once a suitable T has been found, we replace every subformula Fi(y1, . . . , yq) in G with the C circuit
T (Fi, y1, . . . , yq). By our choice of T , the resulting circuit is equivalent to G, has size O(nc−ε/k · nε) ≤
O(nc+ε), and has depth dkc/ε, where d is the depth of T .

It is clear that the algorithm can run in 2O(nε) time for any ε > 0. Furthermore, it can also be implemented
to run in O(nε) space: any desired bit of the nc size formula G for FORMULA EVAL instance can be
generated in LOGTIME, so the brute-force search for an nε size C circuit T equivalent to FORMULA EVAL

can be carried out in O(nε) space. Given T , the rest of the C can easily be generated in O(nε) space by
reading the appropriate bits from G. �
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Note that, rather than brute-forcing the small C circuit for FORMULA EVALUATION, we could have simply
provided it as advice. This implies:

Reminder of Corollary 1.1 For C ∈ {ACC,TC0}, NC1 ⊂ C/poly ⇐⇒ for all ε > 0, NC1 ⊂ C/nε.
Lemma 1.1 and Corollary 1.1 have consequences for lower bounds as well as algorithms. We first give

a consequence for lower bounds, showing that either TC0 computations cannot be speeded up in general
using logarithmic depth and bounded fan-in, or NC1 does not have non-uniform polynomial-size threshold
circuits of bounded depth.

We need a hierarchy theorem for TC0, which can be shown analogously to Proposition 1 and Proposi-
tion 3.

Proposition 6 For any constants k and d and any ε < 1, there is a language in TC0 which cannot be
decided by DLOGTIME-uniformTC0 circuits of size nk and depth d with nε bits of advice.

Theorem 3.2 At least one of the following holds:

• For all constants k, there is a language in TC0 which does not have DLOGTIME-uniform circuits of
depth k log n.

• NC1 6⊂ TC0/poly.

Proof. Assume that NC1 ⊂ TC0/poly and that there is a constant k such that each language in TC0 has
DLOGTIME-uniform circuits of depth k log(n). We derive a contradiction.

Let L be an arbitrary language in TC0. By the second assumption, L has DLOGTIME-uniform circuits
of depth k log(n). From the first assumption and using Corollary 1.1 with ε = 1/(2k), we have that there
exists constants c and d such that FORMULA EVAL can be decided by uniform threshold circuits of size mc

and depth d with mε bits of advice. This implies that any language with DLOGTIME-uniform circuits of
depth k log(n) can be decided by uniform threshold circuits of size O(nkc) and depth d with O(n1/2) bits
of advice, and hence so can L. Since L is an arbitrary language in TC0, this contradicts Proposition 6. �

3.1 Algorithms From NC1 Upper Bounds

We next derive some algorithmic consequences of Lemma 1.1.

Corollary 3.1 If NC1 ⊂ ACC/poly then for all c, satisfiability of nc size formulas with n variables can be
computed (deterministically) in O(2n−n

ε
) time, for some ε > 0 depending on c.

Proof. Given a formula F of size nc, apply Lemma 1.1 to generate an equivalent nO(c/δ) size ACC circuit
of depth O(1/δ), in 2O(nδ) time, for some δ < 1. Satisfiability of the ACC circuit can be determined in
2n−n

ε
time via an ACC-SAT algorithm [Wil11]. �

This corollary can be extended to conclude not just faster SAT algorithms but also faster QBF algorithms.
Define QB-CNF, QB-CIRCUITS, QB-FORMULAS to be the quantified Boolean formula problem over CNF
predicates, arbitrary circuit predicates, and formula predicates, respectively. In satisfiability problems, the
choice of predicate can play a major role in the time complexity of the problem.

Reminder of Theorem 1.5 If NC1 ⊂ ACC/poly then for every k, c > 0, QB-FORMULAS on formulas of
nk size and n variables can be solved in (deterministic) O(2n/nc) time.

Proof of Theorem 1.5. Given a formula F , we first use Lemma 1.1 to generate an equivalent ACC circuit
A in subexponential time. Let A have nq size. We determine the truth of the quantified circuit A as follows.
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By trying all nk possible settings to the last k log n quantified variables of the QBF, we can create a
balanced formula T of size O(nk) and k log n depth, with copies of the ACC circuit A at its leaves, such
that this overall circuit with n − k log n quantified variables is true if and only if the original quantified
ACC circuit A is true. In particular, the ith level of T will have AND gates (resp., OR gates) if the ith
quantified variable (out of the last k log n quantified variables) is universal (resp., existential). Each leaf of
T represents an assignment on these last k log n variables, which is plugged into a copy of A and this copy
is inserted at the appropriate leaf of T . The overall circuit has size O(nk+q).

Next, we apply Lemma 1.1 to T . In 2O(nε) time, we can generate an ACC circuit A′ of nO(k/ε) size which
equals T on all of its inputs. Replacing T with A′ in the circuit, we now have a nO(k/ε)+q-size circuit A′′

composed of A′ and copies of A, with only n− k log n inputs.
Using the ACC Circuit Evaluation algorithm of [Wil11], we can evaluateA′′ on all of its 2n−k logn possible

inputs in O(2n/nk−3 + npoly(k/ε,q,logn)) time. Since k, ε, and q are constant, the running time is dominated
by the first term. From the truth table of A′′ we can determine whether the original quantified A is true in
O(2n/nk−3) time. Setting k to be arbitrarily large, the theorem holds. �

3.2 Very Weak Derandomization For TC0 Lower Bounds

Another consequence of Lemma 1.1 is that we can further weaken the algorithmic hypotheses needed
to prove NEXP 6⊂ TC0/poly. For C ∈ {P,NC1,TC0}, define DERANDOMIZE-C to be the following
promise problem: given a C/poly circuit C which is promised to be either unsatisfiable or have at least
2n−1 satisfying assignments, determine which is the case. We say that a nondeterministic algorithm A
solves DERANDOMIZE-TC0 if for all circuits C satisfying the promise,

• every computation path of A(C) leads to one of three states: reject, unsatisfiable, or satisfying,

• at least one path of A(C) is not a reject,

• if C is satisfiable then no path of A(C) is unsatisfiable,

• if C is unsatisfiable then no path of A(C) is satisfiable.

Theorem 3.3 Suppose for all k, there is an O(2n/n10) time algorithm for solving DERANDOMIZE-TC0 on
all TC0 circuits of n inputs, nk size, and depth k. Then NEXP 6⊂ TC0/poly.

Proof. (Sketch) Using the succinct PCPs of Ben-Sasson et al. [BGH+05], Williams [Wil10] proved that if
DERANDOMIZE-P on all n-input nk-size circuits can be solved in O(2n/n10) time, then NEXP 6⊂ P/poly.
The construction of Ben-Sasson et al. in fact has the following property: given any L ∈ NTIME[2n], they
can generate (in polynomial time) an NC1 circuit C with n+O(log n) inputs and nc size for some universal
c, such that

• if x ∈ L then the truth table of C encodes a satisfiable k-CSP (for some fixed constant k),

• if x /∈ L then the truth table of C encodes a k-CSP that is at most 1/2 satisfiable (namely, all
assignments satisfy at most 1/2 of the constraints).

Using the arguments of Williams [Wil10, Wil11], this can be used to show that if DERANDOMIZE-NC1 on
all n-input nk-size circuits can be solved in O(2n/n10) time, then NEXP 6⊂ NC1/poly. Briefly, the idea
is to assume that DERANDOMIZE-NC1 has the O(2n/n10)-time algorithm, and that NEXP ⊂ NC1/poly,
and use the two assumptions to nondeterministically simulate an arbitrary L ∈ NTIME[2n] in o(2n) time
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(a contradiction to the nondeterministic time hierarchy). This simulation of an arbitrary L can be done by
constructing the NC1 circuitC encoding a PCP for L on the input x, guessing an NC1 circuitC ′ that encodes
a proof to the PCP, then composing C and C ′ to form an NC1 circuit D which is either unsatisfiable (the
truth table of C ′ is a valid proof) or at most half the assignments are satisfying (x /∈ L and the truth table
of C ′ is an invalid proof). Running an algorithm for DERANDOMIZE-NC1 on D that takes O(2n/n10) time
results in the contradiction to the nondeterministic time hierarchy.

Now, assume that NEXP ⊂ TC0/poly and that DERANDOMIZE-TC0 can be solved in O(2n/n10) time,
via some algorithm A. We wish to derive a contradiction. The first assumption, along with Lemma 1.1,
implies that there is a deterministic subexponential time algorithm B which, when given an NC1 circuit
D, can generate an equivalent TC0 circuit E that is only polynomially larger than D. Therefore, we can
solve DERANDOMIZE-NC1 in O(2n/n10) time as well, by simply applying the algorithm B to convert a
given NC1 circuit to a TC0 one, then applying the algorithm A for DERANDOMIZE-TC0. By the previous
paragraph, this implies that NEXP 6⊂ NC1/poly, a contradiction (as TC0 is contained in NC1). �

3.3 Quantified Formulas versus Quantified k-CNF

Finally, we establish a rather tight relationship between the time complexity of solving quantified formulas
and that of solving quantified 3-CNF. We will show that the choice of predicate in a quantified problem
essentially does not matter: if quantified 3-CNF is solvable in 1.9n time then all quantified Boolean formulas
are solvable in about 1.9n time.

Definition 3.1 A quantified Boolean formula φ has k quantifier blocks or k alternations if it has the form

φ = (Q1 x1, . . . , xt1)(Q2 xt1+1, . . . , xt1+t2) · · · (Qk xt1+···+tk−1+1, . . . , xt1+···+tk)F,

where each Qi ∈ {∃,∀}.

Theorem 3.4 There is a polynomial time algorithm that takes any Boolean formula of n inputs and s size
and outputs an equivalent QB-CNF instance of n+O(log s) variables, O(s4) clauses, and O(log n) quan-
tifier blocks (alternations).

Proof. We first do some general massaging of a given formula F , construed as a tree with interior nodes
labeled by AND/OR gates, and leaves labelled by literals. We can assume WLOG that F has depth c log s
where c < 4. (If this is not true, we can make it the case, at a cost of squaring the formula size, via a standard
reduction.) Moreover, we may assume that the depth is even, and odd depths of F contain no AND gates
(only OR gates, along with possibly 0 − 1 constants and literals), while even depths contain no OR gates.
(Enforcing this only increases the depth by a factor of two, and at most squares the size.) Finally, we can
make the length of every path in F from the output gate to a literal exactly d = 4 log s. (Suppose a path
ends early at a literal `; since b ∧ b = b and b ∨ b = b for b ∈ {0, 1}, we can duplicate occurrences of ` to
match the desired alternations of ANDs and ORs and the desired length of each path.) Notice that F now
has exactly 2d leaves.

Let d be the depth of F , and let L = {x1, . . . , xn,¬x1, . . . ,¬xn} be the set of literals of F . Define a
mapping φF : {0, 1}d → L as follows. Given a d-bit string b, label every edge in F to a left child with a 0,
and every edge to a right child with 1. Follow the path from the output gate (the root of the tree) by reading
the bits of b from left to right, then output the literal at the leaf found. Note that by our above reductions on
F , the map φF is a bijection.

The variables of our QB-CNF instance will be x1, . . . , xn along with new variables y1, . . . , yd. For
convenience, we use the notation y1i := yi and y0i := ¬yi. The instance of QB-CNF includes all 2d possible
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clauses of the form
(y1−b11 ∨ · · · ∨ y1−bdd ∨ φF (b1, . . . , bd)),

over all possible vectors (b1, . . . , bd) ∈ {0, 1}d. Noticing that

(y1−b11 ∨ · · · ∨ y1−bdd ∨ φF (b1, . . . , bd)) ≡ ((yb11 ∧ · · · ∧ y
bd
d )→ φF (b1, . . . , bd)),

we have that (a) for every assignment to (y1, . . . , yd), at most one of the above clauses is not trivially
satisfied, and (b) this remaining clause is satisfied iff the literal at the leaf defined by the root-to-leaf path
b1 · · · bd is true. The final formula is then

(Q1x1, . . . , Qnxn)(∀y1)(∃y2) · · · (∀yd)[C]

where C is the above collection of clauses and Qi ∈ {∃,∀} is the quantifier on variable xi from the original
quantified Boolean formula. �

Corollary 3.2 There is a polynomial time reduction from QB-FORMULA instances of n inputs and s size
to QB-CNF instances of n+O(log s) variables and O(s4) size.

Corollary 3.3 There is a polynomial time reduction from FORMULA-SAT instances of n inputs and s size
to QB-CNF instances of n+O(log s) variables, O(s4) size, and O(log n) quantifier blocks.

Corollary 3.4 If QB-CNF on nk size instances with k log n alternations can be solved in 2n/nc time for
every c, k > 0, then NEXP 6⊂ NC1/poly.

Proof. Williams [Wil11] shows that if FORMULA-SAT instances of n inputs and nk size can be solved in
O(2n/n10) time for all k, then NEXP 6⊂ NC1/poly. Hence the proof follows from Corollary 3.3. �

We can reduce from quantified CNF formulas to quantified k-CNF formulas, by applying a reduction of
Calabro, Impagliazzo, and Paturi [CIP10].

Theorem 3.5 ([CIP10]) For all k, there is a polynomial-time reduction from CNF-SAT with n variables
andm clauses to QB-kCNF with n+O(m1/(k−1)) variables, poly(m,n) clauses, and two quantifier blocks.

Their proof easily extends to a reduction from QB-CNF with q quantifier blocks to QB-kCNF with
q + 1 quantifier blocks, with the same increase in the number of variables. Combining Corollary 3.2 and
Theorem 3.5, we find a close relation between the time complexity of QB-kCNF and QB-FORMULA:

Reminder of Theorem 1.6 If there an ε > 0 such that for all k, c, QB-kCNF of size nc is in time 2n−n
ε
,

then QB-FORMULA for nc-size formulas is in time 2n−n
ε

(hence NEXP 6⊂ NC1/poly [Wil11]).
We conclude with an algorithmic hypothesis for QB-3CNF, which follows from the above:

Corollary 3.5 If QB-3CNF with poly(n) clauses andO(log n) alternations can be solved inO(2n−n
1/2+ε

)
time for some ε > 0, then NEXP 6⊂ NC1/poly.

Many other interesting consequences can be derived along these lines. An intriguing question is whether
one can find an algorithm for QB-3CNF with running time that is close to the hypothesis: can QB-3CNF
with poly(n) clauses be solved in 2n−n

1/2
time?
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