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Abstract

Given a DNF formula f on n variables, the two natural size measures are the
number of terms or size s(f), and the maximum width of a term w(f). It is folklore
that short DNF formulas can be made narrow. We prove a converse, showing that
narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its
size can be ε-approximated by a width w DNF with at most (w log(1/ε))O(w) terms.

We combine our sparsification result with the work of Luby and Velikovic [LV91,
LV96] to give a faster deterministic algorithm for approximately counting the number
of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms,

we give a deterministic nÕ(log log(n)) time algorithm that computes an additive ε ap-
proximation to the fraction of satisfying assignments of f for ε = 1/poly(log n). The
previous best result due to Luby and Velickovic from nearly two decades ago had a
run-time of nexp(O(

√
log logn)) [LV91,LV96].

∗Work done while an intern at Microsft Research, Silicon Valley.
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1 Introduction

A natural way to represent a Boolean function f : {0, 1}n → {0, 1} is to write it as a
CNF or DNF formula. The class of functions that admit compact representations of this
form (aka polynomial size CNF and DNF formulae) are central to Boolean function analysis,
computational complexity and machine learning.

Given a DNF formula f on n variables, the two natural size measures are the number of
terms or size s(f), and the maximum width of a term w(f). The analogous measures for a
CNF, are the number of clauses and clause width. It is folklore that every DNF formula f with
m terms can be ε-approximated by another DNF g where s(g) ≤ m and w(g) ≤ log(m/ε),
regardless of w(f). The formula g is a sparsification of f obtained by simply discarding
all terms of width larger than log(m/ε). In other words, short DNF formulas can be made
narrow. An analogous statement can be derived for CNFs.

In this work, we show the reverse connection: narrow formulae can be made short.
Indeed, we prove the existence of a strong form of approximation known as sandwiching
approximations which are important in pseudorandomness. In this work we only consider
approximators which are also Boolean functions.

Definition 1.1. Let f : {0, 1}n → {0, 1}. We say that functions fu, f` : {0, 1}n → {0, 1} are
ε-sandwiching approximators for f if f`(x) ≤ f(x) ≤ fu(x) for every x ∈ {0, 1}n, and

Pr
x∈{0,1}n

[f`(x) 6= f(x)] = Pr
x∈{0,1}n

[(f`(x) = 0) ∧ (f(x) = 1)] ≤ ε,

Pr
x∈{0,1}n

[fu(x) 6= f(x)] = Pr
x∈{0,1}n

[(fu(x) = 1) ∧ (f(x) = 0)] ≤ ε.

Our main result is the existance of ε-sandwiching approximators for arbitrary width w
DNFs using short width w DNFs where the number of clauses depends only on w and ε.

Theorem 1.1. For every width-w DNF formula f and every ε > 0, there exist DNF formulae
f`, fu each of width w and size at most (w log(1/ε))O(w) which are ε-sandwiching approxmi-
ators for f .

Our result is proved by a sparsification procedure for DNF formulae which uses the notion
of quasi-sunflowers due to Rossman [Ros10]. The best previously known result along these
lines was due to Trevisan [Tre04], who built on previous work by Ajtai and Wigderson
[AW85]. Trevisan shows that every width w DNF has ε-sandwiching approximators that are
decision trees of depth d = O(w2w log(1/ε)).

A k-junta is a function which depends only on k variables. We say that f, g : {0, 1}n →
{0, 1}, we say that g ε-approximates f if

Pr
x∈{0,1}n

[f(x) 6= g(x)] ≤ ε.

A corollary of our result is the following junta theorem for DNFs.

Corollary 1.2. Every width-w DNF formula is ε-approximated by a (w log(1/ε))O(w)-junta.
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A similar but incomparable statement can be derived from Friedgut’s junta theorem
[Fri98]. It is easy to see that width w DNFs have average sensitivity at most 2w 1, so by

Friedgut’s theorem any width w DNF is ε-close to a 2Õ(w/ε)-junta. Friedgut’s result gives
better dependence on w, whereas we achieve much better dependence on ε. Friedgut’s
approximator is not a priori a small-width DNF, and one does not get sandwiching approx-
imations. Trevisan’s result implies that any width w DNF is ε-approximated by a k-junta
for k = exp(O(w2w log(1/ε))) [Tre04].

Theorem 1.1 has interesting consequences for other parameter settings. One example is
the following:

Corollary 1.3. Every width-O(log n) DNF formula on n variables is n−O(1) close to a DNF
of width O(log n) and size nO(log log(n)).

In Section 6, we conjecture that a better bound should be possible in Theorem 1.1, which
is singly exponential in w. If true, this conjecture will give better bounds for both Corollaries
1.2 and 1.3.

1.1 DNF Counting and Pseduorandom Generators

The problem of estimating the number of satisfying solutions to CNF and DNF formulae
is closely tied to the problem of designing pseudorandom generators for such formulae with
short seed-length. These problems have been studied extensively [KL83,AW85,NW94,Nis91,
LV91,LV96,LVW93,Tre04,Baz09,Raz09,DETT10].

For a formula f , let
Bias(f) = Pr

x∈{0,1}n
[f(x) = 1].

Given a formula f from a class F of functions, the goal of a counting algorithm for the class
F is to compute Bias(f). We refer to the counting problems for CNFs and DNFs as #CNF and
#DNF respectively. The problem of computing Bias(f) exactly is #P-hard [Val79], hence
we look to approximate Bias(f).

An algorithm gives an ε-additive approximation for Bias(f) if its output is in the range
[Bias(f)−ε,Bias(f)+ε]. It is easy to see that additive approximations for CNFs and DNFs are
equivalent. There is a trivial solution based on random sampling, but finding a deterministic
polynomial time algorithm has proved challenging.

Computing multiplicative approximations to Bias(f) is harder, and here the complexi-
ties of #CNF and #DNF are very different. An algorithm is said to be a c-approximation
algorithm if its output lies in the range [Bias(f), cBias(f)]. It is easy to see that obtain-
ing a multliplicative approximation for #CNF is NP-hard. Karp and Luby gave the first
multiplicative approximation for #DNF, their algorithm is randomized [KL83]. There is a
reduction between additive and multiplicative approximations for #DNF: for DNF formu-
lae with m terms, the problem of computing a (1 + ε)-multiplicative approximation can be

1 [Ama11] shows a sharp bound of w
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reduced deterministically to the problem of computing an (ε/m)-additive approximation to
#DNF. This reduction is stated explicitly in [LV96], where is attributed to [KL83,KLM89]

Derandomizing thes Karp-Luby algorithm is an important problem in derandomization
that has received a lot of attention starting form the work of Ajtai and Wigderson [AW85,
LN90, LV91, LVW93, LV96, Tre04]. The best previous result is due to Luby and Velickovic
[LV91, LV96] from nearly two decades ago: they gave a deterministic nexp(O(

√
log logn)) time

algorithm that can compute an ε-additive approximation for any fixed constant ε.
A natural approach to this problem is to design pseudorandom generators (PRGs) with

small seeds that can ε fool depth two circuits. This problem and its generalization to constant
depth circuits are central problems in pseudorandomness [AW85,NW94,Nis91,LV96,LVW93,
Tre04,Baz09,Raz09,Bra10,DETT10].

Definition 1.4. A generator G : {0, 1}r → {0, 1}n δ-fools a class F of functions if∣∣∣∣ Pr
y∈{0,1}r

[f(G(y))]− Bias(f)

∣∣∣∣ ≤ δ

for all f ∈ F . The genrator is said to be explicit if G is computable in time polynomial in r
and n.

A generator with seed-length r that ε-fools DNFs with m clauses gives an ε-additive
approximation for Bias(f) in poly(m,n, 2r) time by enumerating over all seeds. Such an
algorithm only requires black-box access to f . The reduction form [KL83, KLM89] implies
that an optimal pseduorandom generator for DNFs with seedlength O(log(mn/ε)) will give
a deterministic multiplicative approximation algorithm for #DNF. However, the best known
generator currently due to De, Etesami, Trevisan and Tulsiani [DETT10] requires seed length
O((log(mn/ε)2). The Luby-Velikovic algorithm is a not a black-box algorithm, but PRGs for
small-width DNFs are an important ingredient.

Our Results

We use our sparsification lemma to give a better PRG for the class of width w DNF formulae
on n variables, which we denote by DNF(w, n). 2

Theorem 1.5. For all δ, there exists an explicit generator G : {0, 1}r → {0, 1}n that δ-fools
DNF(w, n) and has seed-length

r = Õ

(
w2 + w log

(
1

δ

)
+ log log(n)

)
.

In comparison, Luby and Velickovic [LV96] give a PRG with seed-length O(2w +log log n)
for fooling width w DNFs. Note that for w = O(log log n) and δ constant, the seed-
length of the our generator is Õ((log log n)2), whereas Luby and Velickovic need seed-length
O(logO(1) n). For w = log log(n) and δ ≥ 1/poly(n), our seed-length is still Õ(log n).

2The Õ() notation is used to hide terms that are logarithmic in the arguments.
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The improved generator for small-width DNFs is obtained by using our sparsification
result to reduce fooling width w DNFs with an arbitrary number of terms to fooling width w
DNFs with 2Õ(w) terms. We then apply recent results by De et al. on fooling DNF formulas
using small-bias spaces. The fact that our sparsification gives sandwiching approximators is
critical for this result.

The Luby-Velickovic counting algorithm can be viewed as a (non black-box) reduction
from fooling DNFs of size poly(n) to fooling DNFs of smaller width. Given Theorem 1.5,
we can improve and simplify their analysis to get a faster deterministic counting algorithm.
This is the first progress on this well-studied problem in nearly two decades. In addition, we
can allow for smaller values of ε.

Theorem 1.6. There is a deterministic algorithm which when given a DNF formula on n
variables of size m as input, returns an O(ε)-additive approximation to Bias(f) in time(mn

ε

)Õ(log log(n)+log log(m)+log(1/ε))

For m ≤ poly(n) and ε ≥ 1/poly(log n), the running time is O(nÕ(log log(n))).

H̊astad’s celebrated Switching Lemma [H̊as86] is a powerful tool in proving lower bounds
for small-depth circuits. It also has applications in computational learning [LMN93,Man95]
and PRG constructions [AW85,GMR+12]. As an additional application of our sparsification
result, we give a partial derandomization of the switching lemma. The parameters we obtain
are close to that of the previous best results due to Ajtai and Wigderson [AW85] and perhaps
more importantly, our argument is conceptually simpler, involving iterative applications of
our sparsification result and a naive union bound. We defer the details to Section 5.

2 DNF Sparsification

We will consider DNF formulas that are specified as f = ∨mi=1Ti where the representation is
minimal in the following sense:

• Each Ti is non-constant. Hence each term is non-empty (else we replace it by 1), and
does not contain a variable and its negation (else we replace it by 0). This guarantess
that Prx[Ti = 1] ≤ 1/2.

• Each that Ti is not implied by some other Tj; if this is so, we can simply drop Ti from
the definition of f . This means that when viewed as a set of literals, Tj 6⊂ Ti. A
consequence is that Ti ∩ Tj ( Tj.

If some stage of our sparsification produces a representation which is not minimal, we
can convert it to a minimal represntation without increasing the number of terms.

We call a DNF f unate if it does not contain a variable and its negation.
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2.1 Sparsification using Sunflowers

We will first show the following weaker version of Theorem 1.1 with a bound of (w2w ln(m/ε))w,
and assumes that f is unate. The proof will illustrate the key ideas behind our sprsification
procedure.

Theorem 2.1. For every unate DNF formula f with width w and size m every ε > 0,
there exist DNF formulae f`, fu each with width w and at most (w log(m/ε))O(w) which are
ε-sandwiching approxmiators for f .

The starting point of our sparsification result is the Erdős-Rado Sunflower Lemma [ER60].

Definition 2.1. Let k ≥ 3. A collection of subsets S1, . . . , Sk ⊆ [n] is a sunflower with core
Y if Y ( Si for all i and Si ∩ Sj = Y for all i 6= j. The sets Si \ Y are called the petals.

The set systems that we consider will arise from the terms in some minimal representation
of a monotone DNF. This will ensure that the petals are always non-empty, although the
core might be empty.

The celebrated Erdős-Rado Sunflower Lemma guarantees that every sufficiently large set
system of bounded size sets contains large sunflowers.

Theorem 2.2. (Sunflower Lemma, [ER60]) Let F = {S1, . . . , Sm} be a collection of subsets
of [n], each of cardinality at most w. If m > w!(k − 1)w, then F has a sunflower of size k.

The lemma and its variants have found several applications in complexity theory, we refer
the reader to [Juk01, Chapter 7] for more details. We will use it to prove Theorem 2.1.

Proof. (Proof of Theorem 2.1.) Fix a unate, width w DNF f = T1 ∨ T2 ∨ · · · ∨ Tm and for
simplicity suppose that f is monotone. Since f is monotone, we can think of each term Ti
as a set of variables of size at most w. Set k = 2w ln(m/ε). Provided

m ≥
(
w2w ln

(m
ε

))w
≥ w!(k − 1)w (2.1)

the Sunflower Lemma guarantees the existance of a collection of terms Ti1 , . . . , Tik with a
core Y = ∩kj=1Tij and disjoint petals Tij \ Y . Hence we can write

∨kj=1Tij = Y ∧
(
∨kj=1(Tij \ Y )

)
= Y ∧ g where g = ∨ki=1(Tij \ Y ).

Note that g is a read-once DNF of width w and size k = 2w ln(m/ε), so it is almost surely
satisfied by a random assignment:

Pr
x

[g(x) = 0] =
k∏
i=1

Pr
x

[Tij \ Y = 0] ≤
(

1− 1

2w

)k
≤ ε

m
.

The first inequality holds because each Tij \ Y is a term with width at most w, and the
second by our choice of k.
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Thus a natural way to get an upper sandwiching approximation is to replace g(x) by the
constant 1, which is equivalent to replacing ∨kj=1Tij with Y . Let f ′ : {0, 1}n → {0, 1} be the
DNF formula obtained by this replacement. It is clear that f(x) ≤ f ′(x). Further,

Pr
x

[f(x) = 0f ′(x) = 1] ≤ Pr
x

[g(x) = 0] ≤ ε

m
.

Finally, we have s(f ′) ≤ s(f)− (k − 1).
We can now iteratively apply the above argument as long as the number of terms is

larger than the bound in Equation (2.1). In each iteration we reduce s(f) by k − 1. Thus,
we repeat the process at most m/(k − 1) times, obtaining an upper approximating formula
fu where

f(x) ≤ fu(x) ∀x ∈ {0, 1}n,

Pr
x

[f(x) 6= fu(x)] ≤ m

k − 1
· ε
m

= ε,

s(fu) ≤
(
w2w ln

(m
ε

))w
.

We next describe the construction of the lower approximating formula f`. We start with
the sunflower Ti1 , · · · , Tik with core Y . Now consider the formula f ′′ obtained from f by
dropping one of the terms, say Ti1 . Then, f ′′(x) ≤ f(x). Further, the two of them differ
only if f ′′(x) = 0 and f(x) = 1, which happens if Ti1 = 1 whereas Tij = 0 for j ∈ {2, . . . , k}.
Hence we can bound this probability by

Pr
x

[f ′′(x) 6= f(x)] = Pr
x

[Tij = 1] · Pr
x

[(∨kj=2Tij) = 0|Tij = 1]

=
1

2
Pr
x

[(∨kj=2Tij \ Y ) = 0] =
1

2

(
1− 1

2w

)k−1
≤ ε

m

where the second inequality holds since by the sunflower property, conditioning on Ti1 = 1
fixes the core Y = 1, but does not affect the other petals. Note that s(f ′′) ≤ s(f) − 1. We
now iterate this step no more than m times to obtain a formula f` where

f`(x) ≤ f(x) ∀x ∈ {0, 1}n,

Pr
x

[f`(x) 6= f(x)] ≤ m · ε
m

= ε,

s(fu) ≤
(
w2w ln

(m
ε

))w
.

Theorem 2.1 is weaker than Theorem 1.1 in the assumption of unateness, the dependence
on m and the dependence on w. We briefly sketch how one can handle the first two issues.

1. Unateness. One can remove this assumption by using Lemma 2.7 which guarantees
that any DNF formula contains a large sub-formula which is unate. The resulting
statement already suffices for Corollary 1.3, since any width log(n) DNF can have at
most nO(log(n)) many clauses.
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2. Dependence on m. The size of the approximators depends logarithmically on m.
One can avoid this by observing that when the formula size is large, the error resulting
from each step of the sparsification is tiny. One can use this argument to get a size
bound of (2w ln(1/ε))O(w) which is independent of m.

3. Dependence on w. The final bound is exponential in w2 rather than w. This comes
from the (k − 1)w term in the Sunflower Lemma, which we apply for k = 2w. The
question of whether the w! term in the Sunflower Lemma is necessary is a well-known
open problem in combinatorics. But there is a lower bound of (k − 1)w [Juk01]. So
even if the lower bound were to be right answer, it does not (directly) imply a better
bound for Theorem 2.1.

2.2 Sparsification using Quasi-Sunflowers.

The main property of the sunflower system we used in Theorem 2.1 is that the formula g
on the petals is highly biased towards 1. As shown by Rossman [Ros10], one can guarantee
the existence of such “quasi-sunflower” systems satisfying this weaker property, even when
the number of terms is much smaller than in the usual sunflower lemma. We adapt our
argument to use quasi-sunflowers instead of sunflowers, to obtain Theorem 1.1.

We shall use the notion of quasi-sunflower due to Rossman [Ros10].

Definition 2.2. (Quasi-Sunflowers, [Ros10]) A unate DNF formula h = ∨ki=1Ti where k ≥ 2
is a γ-quasi-sunflower with core Y = ∩kj=1Ti, and petals {Ti \ Y }ki=1 if

Pr
x

[∨ki=(Ti \ Y ) = 1] ≥ 1− e−γ.

Quasi-sunflowers extend the notion of a sunflower in the sense that even though the
“petals” (Tij \ Y ) are not necessarily disjoint, the probability that none of them is satisfied
is small. We disallow k = 1, since otherwise every term is trivially a quasi-sunflower. Since
we insist that no term of a DNF is contained in another, the petals are non-empty. Hence
each petal is satified with probability at most 1/2, so every γ-sunflower has k = Ω(γ) petals.

Lemma 2.3. (Quasi-Sunflower Lemma, [Ros10]) Any unate width w DNF formula with m
terms contains a γ(m)-quasi-sunflower where

γ(m) :=
1

5

(m
w!

)1/w
. (2.2)

Rossman states the result in the language of set systems, which we have rephrased in the
language of DNFs. We show the equivalence of the two in the appendix.

The following lemma will be used to analyze a single step of our sparsification.

Lemma 2.4. Let g = ∨mi=1Ti be a unate DNF. Then

Pr
x

[(T1 = 1) ∧ ((∨ki=2Ti) = 0)] ≤ Pr
x

[(∨ki=1Ti) = 0].
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Proof. Without loss of generality suppose that g is monotone. Since every term in g is also
monotone, Kleitman’s lemma [AS11, Chapter 6] implies that

Pr
x

[(T1 = 0) ∧ ((∨ki=2Ti) = 0)] ≥ Pr
x

[T1 = 0] · Pr
x

[(∨ki=2Ti) = 0]

Pr
x

[(T1 = 1) ∧ ((∨ki=2Ti) = 0)] ≤ Pr
x

[T1 = 1] · Pr
x

[(∨ki=2Ti) = 0]

Hence we have

Prx[(T1 = 0) ∧ ((∨ki=2Ti) = 0)]

Prx[T1 = 0]
≥ Pr

x
[(∨ki=2Ti) = 0] ≥ Prx[(T1 = 1) ∧ ((∨ki=2Ti) = 0)]

Prx[T1 = 1]
.

But this implies that

Pr
x

[(T1 = 1) ∧ ((∨ki=2Ti) = 0)] ≤ Pr
x

[(∨ki=1Ti) = 0] · Prx[T1 = 1]

Prf [T1 = 0]
≤ Pr

x
[(∨ki=1Ti) = 0]

where the last inequality follows because for any (non-empty) term T ,

Pr
x

[T = 1] ≤ 1

2
≤ Pr

x
[T = 0]. (2.3)

The only property of T1 that we use is that Prx[T1 = 1] ≤ Prx[T1 = 0]. Indeed, we can
drop any set of terms {Ti}i∈S which satisfies Prx[∨i∈STi = 1] ≤ Prx[∨i∈STi = 0].

The following is our key technical lemma. It applies to unate formulae and allows us to
reduce the size of formula by (at least) 1.

Lemma 2.5. For every unate width-w DNF formula g of size m, there exist width-w DNF
formulae g`, gu each of size at most m− 1 that are e−γ(m) sandwiching approximators for g.

Proof. Let g = ∨mi=1Ti. Lemma 2.3 guarantees the existance of a γ(m)-quasi-sunflower
h = ∨ki=1Tij where γ(m) is given by Equation (2.2). Letting p(x) = ∨ki=1(Tij \ Y ) be the

formula on the petals, we have Prx[p(x) = 0] ≤ e−γ(m). We can write

h(x) = ∨kj=1Tij = Y ∧
(
∨kj=1(Tij \ Y )

)
= Y ∧ p(x)

We get an upper sandwiching DNF formula gu : {0, 1}n → {0, 1} from g(x) by replacing
p(x) by the constant 1, which is equivalent to replacing h(x) with the core Y . It is clear that

g(x) ≤ gu(x), s(gu) ≤ s(g)− (k − 1) ≤ s(g)− 1.

Further,

Pr
x

[g(x) 6= gu(x)] = Pr
x

[(g(x) = 0) ∧ (gu(x) = 1)]

≤ Pr
x

[p(x) = 0]

≤ e−γ(m).
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We now construct the lower sandwiching approximation. Let g` be the formula obtained
from g by dropping the term Ti1 . Then, it is clear that

g`(x) ≤ g(x), s(g`) ≤ s(g)− 1.

Further,

Pr
x

[g(x) 6= g`(x)] = Pr
x

[g(x) = 1 ∧ g`(x) = 0]

≤ Pr
x

[((Ti1 \ Y ) = 1) ∧ (∨kj=2(Tij \ Y )) = 0]

≤ Pr
x

[p(x) = 0] (By Lemma 2.4)

≤ e−γ(m).

One can prove Theorem 1.1 for unate DNFs by repeated applications of this Lemma.
To handle the general case, we use the following simple lemmas to reduce the problem of
constructing sandwiching approximations to the unate case.

Lemma 2.6. Let f, g, h : {0, 1}n → {0, 1} be such that f = g∨h. Let g`, gu be ε-sandwiching
approximators for g. Then g` ∨ h and gu ∨ h are ε-sandwiching approximators for f .

Proof. It is easy to see that for every x ∈ {0, 1}n,

g`(x) ∨ h(x) ≤ g(x) ∨ h(x) ≤ gu(x) ∨ h(x).

We bound the approximation error for g` ∨ h, the proof for gu ∨ h is similar.

Pr
x

[(g`(x) ∨ h(x)) 6= (g(x) ∨ h(x))] = Pr
x

[(g`(x) ∨ h(x) = 0) ∧ (g(x) ∨ h(x) = 1)]

= Pr
x

[(g`(x) = 0) ∧ (g(x) = 1) ∧ (h(x) = 0)]

≤ Pr
x

[(g`(x) = 0) ∧ (g(x) = 1)]

≤ ε.

Lemma 2.7. For every width w DNF f = ∨mi=1Ti of size m, there exists S ⊆ [m] where
|S| ≥ m/2w such that the formula g = ∨j∈STij is unate.

Proof. Pick a random set of literals S as follows: for each of the variables xi add one of xi
or x̄i to S uniformly at random. Let gS be the sub-formula of f formed of terms containing
only literals from S. Then, gS is always unate.

Each term has at least a 2−w chance of being in gS. By linearity of expectation

E
S
[s(gS)] ≥ m

2w
.
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We will use the following asymptotic bound whose proof is a calculation and is deferred
to the appendix.

Fact 2.8. For γ : R+ → R+ defined by Equation 2.2, W = (2w)3w(50 log(1/ε))w, and
ε ≤ 1/4,

m∑
j=W+1

e−γ(j/2
w) ≤ ε.

We can now prove Theorem 1.1:

Proof. Let f = ∨mi=1Ti. By applying Lemma 2.7, we can write f = g ∨ h where g is unate
and has m′ ≥ m/2w terms. By Lemma 2.5, there exist sandwiching approximators g`, gu
each of width w and size at most m′ − 1, whose error is bounded by

e−γ(m
′) ≤ e−γ(m/2

w).

By Lemma 2.6, f 1
` = g` ∨ h and f 1

u = gu ∨ h are e−γ(m
′) sandwiching approximations for f .

Further
s(f 1

` ) = s(g`) + s(h) ≤ s(g)− 1 + s(h) ≤ s(f)− 1

and similarly s(f 1
u) ≤ s(f)− 1.

We iterate this construction separately for the upper and lower approximator till the size
of the formulae drops below W . This gives the sequence

f(x) ≤ f 1
u(x) · · · ≤ fkuu (x) := fu(x)

f(x) ≥ f 1
` (x) · · · ≥ fk`` (x) := f`(x)

where s(f`), s(fu) ≤ W . We can bound the error of these approximators by

m∑
j=W+1

e−γ(j/2
w) ≤ ε. (2.4)

where the inequality is from Fact 2.8. This completes the proof of Theorem 1.1.

3 Fooling Small-Width DNFs

We next use our sparsification result to construct a pseudorandom generator for small-width
DNFs, obtaining an exponential improvement in terms of the width over the generator of
Luby and Velickovic [LV96]. We restate Theorem 1.5 with the exact asymptotics for r.

Theorem 3.1. For all δ, there exists an explicit generator G : {0, 1}r → {0, 1}n that δ-fools
all width w DNFs and has seed-length

r = O

(
w2 log2(w) + w log(w) log

(
1

δ

)
+ log log(n)

)
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We prove the theorem as follows: we first use our sparsification result to reduce the case
of fooling width w DNFs with an arbitrary number of terms to that of fooling width w DNFs
with 2Õ(w) terms and then apply the recent results due to De et al. [DETT10] showing that
small-bias spaces fool DNFs with few terms.

Definition 3.2 (k-wise ε-biased spaces). A distribution D over {0, 1}n is said to be (k, ε)-
biased space if for every non-empty subset I ⊆ [n] of size at most k,∣∣∣∣ Prx←D

[⊕i∈Ixi = 1]− 1

2

∣∣∣∣ ≤ ε.

Naor and Naor [NN93] constructed explicit (k, ε)-biased spaces that require only O(k +
log(1/ε) + log log n) bits to sample from.

Next, we need the following result of De et al. [DETT10] showing that (k, ε)-biased spaces
fool DNFs for suitable choices of k and ε.

Theorem 3.3. [DETT10, Theorem 4.1] For every δ > 0, every DNF with width w and size
m is δ-fooled by (k, ε)-biased distributions for

k = O
(
w log

(m
δ

))
,

log

(
1

ε

)
= O

(
w log(w) log

(m
δ

))
.

De et al. prove the above statement only for the case of k = n, and they use the bound w ≤
log(m/δ). Their proof proceeds by constructing small `1-norm sandwiching approximators.
The above statement is obtained by repeating their proof keeping w and m separate, and
bounding both the degree and the `1 norm of the resulting approximators. It is easy to
see from their proof that the approximators have degree k ≤ O(w log(m/δ)) and `1-norm
bounded (m/δ)O(w log(w)).

We use the fact that to fool a class of functions, it suffices to fool sandwiching approxi-
mators [BGGP07,Baz09].

Fact 3.4. Let F ,G be classes of functions such that every f ∈ F has ε-sandwiching approx-
imators in G. Let G : {0, 1}r → {0, 1}n be a pseudorandom generator that ε-fools G. Then
G (ε+ δ)-fools F .

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. Recall that DNF(w, n) denotes the class of all width w DNF s on n
variables. Let G ⊂ DNF(w, n) denote the subset of all formulae with size at most m =
(w log(1/δ))cw for some sufficiently large constant c. By Theorem 1.1, every f ∈ DNF(w, n)
can has δ-sandwiching approximators in G.

Next, we apply Theorem 3.3 with m = (w log(1/δ))cw. Note that

log
(m
δ

)
= O

(
w log(w) + log

(
1

δ

))
.
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So we conclude that (k, ε)-biased distributions δ-fool G where

k = O

(
w2 log(w) + w log

(
1

δ

))
log

(
1

ε

)
= O

(
w2 log2w + w log(w) log

(
1

δ

))
.

Note that we can sample from such a distribution using a seed of length

r = O

(
k + log

(
1

ε

)
+ log log(n)

)
= O

(
w2 log2(w) + w log(w) log

(
1

δ

)
+ log log(n)

)
Finally, by Fact 3.4, such distributions 2δ fool the class DNF(w, n).

4 Deterministic Counting for DNFs

We now use the PRG for small-width DNFs from the previous section in the Luby-Velickovic
counting algorithm [LV96]. The better seed-length means that we do not need to balance
various parameters as carefully, and can redo their arguments with simpler and better settings
of parameters.

The input to our algorithm is a DNF formula f = ∨mj=1Tj on n variables with size m and
width w, and the output is an ε-additive approximation to Bias(f). We set the following
parameters

k := log
(w
ε

)
, t :=

w

k
, w′ = 6k, δ =

ε

t

Let H = {h : [n] → [t]} be a family of k-wise independent hash functions. Fix a hash
function h ∈ H and let Bj = {i : h(i) = j}. We say the term Ti bad for h if

max
j∈[t]
|Bj ∩ Ti| > w′

where we view Ti as a set of variables. Let fh be the formula obtained from f by dropping
all terms that are bad for h.

Let G : {0, 1}r → {0, 1}n be the generator from Theorem 1.5 that fools DNF(w′, n) with
error at most δ. Define a new generator Gh : ({0, 1}r)t → {0, 1}n as follows:

Gh(z1, . . . , zt) = x, where for j ∈ [t], x|Bj = G(zj). (4.1)

Thus Gh applies an independent copy of G to each bucket defined by the hash function h.
We now state the counting algorithm:

13



Algorithm DNFCount

For each h ∈ H,
Drop all bad terms for h from f to obtain fh.
By enumeration over all z ∈ {0, 1}rt, compute

ph = Pr
z∈{0,1}rt

[fh(Gh(z)) = 1]. (4.2)

Return pH = maxh∈H ph.

We need the following lemma about k-wise independent hash functions.

Lemma 4.1. Let H : [n]→ [t] be a k-wise independent family of hash functions. Then, for
every set S ⊆ [n] of size |S| ≤ kt, and every j ∈ [t],

Pr
h∈uH

[
|h−1(j) ∩ S| ≥ 6k

]
≤ 2−k.

Proof. Fix j ∈ [t]. Let S = {1, . . . , kt} without loss of generality. Let {Xi}kti=1 be indicator
random variables that are 1 if h(i) = j and 0 otherwise. Then

E
h∈H

 ∑
I⊆S,|I|=k

∏
i∈I

Xi

 ≤ (kt
k

)
· 1

tk
≤ ek.

Applying Markov’s inequality,

Pr
h∈uH

[
|h−1(j) ∩ S| ≥ 6k

]
≤ ek(

6k
k

) ≤ 2−k.

Our analysis requires two Lemmas from [LV96]. Since their terminology and notation
differs from ours, we provide proofs of both these Lemmas in Appendix B.

The first Lemma relates the bias of fh with that of f .

Lemma 4.2. [LV96, Lemma 11] We have

∀h ∈ H, Bias(fh) ≤ Bias(f),

E
h∈H

[Bias(fh)] ≥ Bias(fh)− ε.

The next lemma showing that Gh fools the formula fh is essentially [LV96, Lemma 7].
Recall that by Equation (4.2), ph is the bias of fh under distribution generated by Gh.

Lemma 4.3. [LV96, Lemma 7] We have |ph − Bias(fh)| ≤ ε.
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With these Lemmas in hand, we now analyze the algorithm.

Theorem 4.4. Algorithm DNFCount when given a DNF on n variables with width w and
size m as input, returns an O(ε)-additive approximation to Bias(f) in time

O(nO(log(w/ε))(log n)O(w)2Õ(w log(1/ε))m).

Proof. The correctness of the algorithm is easy to argue. For every h ∈ H,

ph ≤ Bias(fh) + ε (By Lemma 4.3)

≤ Bias(f) + ε (By Lemma 4.2)

Further by Lemma 4.2, there exists h ∈ H such that

Bias(fh) ≥ Bias(f)− ε,

hence by Lemma 4.3,

ph ≥ Bias(fh)− ε ≥ Bias(f)− 2ε.

Thus pH is a 2ε-additive approximation Bias(f).
We now bound the running time. Computing fh for any h ∈ H and evaluating it on

Gh(z) for z ∈ {0, 1}rt can be done in time O(mn). Thus the running time is dominated by
|H|2rt. By standard constructions of k-wise independent hash functions,

|H| ≤ nO(k).

Next we bound the seed-length r. Recall that

k = log
(w
ε

)
, δ =

ε

t
=
kε

w

Hence log

(
1

δ

)
= log

( w
εk

)
= k − log(k).

Further, w′ = 6k. Hence Theorem 3.1,

r = O

(
w′2 log2(w′) + w′ log(w′) log

(
1

δ

)
+ log log(n)

)
= O(k2 log2(k) + log log(n))

rt = O
(w
k

(k2 log2(k) + log log(n))
)

= O(wk log2 k + w log log(n)).

So we get

|H|2rt ≤ exp(O(k log(n) + wk log2 k + w log log(n))).
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Overall the runtime is bounded by

O(mn)|H|2rt = exp(O(log(w/ε) log(n) + w log(w/ε)(log log(w/ε))2 + w log log(n) + log(m)))

= nO(log(w/ε))(log n)O(w)2Õ(w log(1/ε))m.

Theorem 1.6 is obtained from Theorem 4.4 by setting parameters appropriately.

Proof. (Proof of Theorem 1.6.) Given a DNF formula with size m, we can ignore all terms
of width larger than log(m/ε) while only changing the bias by ε. Plugging in w = log(m/ε),
we can bound the running time by(mn

ε

)Õ(log log(n)+log log(m)+log(1/ε))

For m = poly(n), ε = 1/poly(log n), this gives nÕ(log log(n)).

5 A Derandomized Switching Lemma

H̊astad’s celebrated Switching Lemma [H̊as86] is a powerful tool in proving lower bounds for
small-depth circuits. It also has applications in computational learning [LMN93,Man95] and
PRG constructions [AW85,GMR+12]. This lemma builds on earlier work due to Ajtai [Ajt83],
Furst, Saxe and Sipser [FSS84] and Yao [Yao85].

To state the Switching lemma, we need to set up some notation. Given L ⊆ [n] and
x ∈ {0, 1}[n]\L define a restriction ρ := ρL,x ∈ {∗, 0, 1}n by ρi = ∗ if i ∈ L and ρi = xi
otherwise. We call the set L ≡ L(ρ) as the set of “live” variables. For f : {0, 1}n → {0, 1},
and ρ ∈ {∗, 0, 1}n, define fρ : {0, 1}L(ρ) → {0, 1} by fρ(y) = f(x), where xi = yi for i ∈ L(ρ)
and xi = ρi otherwise.

Given a distribution D on 2[n], let D (abusing notation, the meaning will be clear from
context) denote the distribution on ρ ∈ {∗, 0, 1}n by setting ρ = ρL,x where L ← D and
x ∈u {0, 1}[n]\L. Call a distribution D as above p-regular if for each i ∈ [n], PrL←D[i ∈ L] = p.
Let Dp(n) (we omit n if clear from context) denote the p-regular distribution on subsets L
of [n] where each element i ∈ [n] is present in L independently with probability p. For
f : {0, 1}n → {0, 1}, let DT(f) denote the minimum depth of a decision tree computing f .

Theorem 5.1 (Switching Lemma, [H̊as86]). Let f : {0, 1}n → {0, 1} be a DNF of width w
and let ρ← Dp(n). Then,

Pr[DT(fρ) ≥ s] < (5pw)s.

There has been work on finding a derandomized version of the switching lemma, moti-
vated by better PRG constructions . Such a lemma would choose the set of live variables
in a pseudorandom way, as in [AW85]. One could even ask for a stronger derandomization
where the assignments to the non-live variables are also chosen pseudorandomly, this is done
in [GMR+12]. We limit ourselves to the former case here.
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Derandomized switching lemmas were first studied in the seminal work of Ajtai and
Wigderson [AW85], with the aim of constructing better PRGs for constant depth circuits.

Theorem 5.2 ( [AW85]). For all γ ∈ (0, 1], p < 1/nγ, there is a p-regular distribution D on
2[n] with L← D samplable using Oγ(log n) random bits, and k = Oγ(1) such that for ρ← D,
and any polynomial size DNF f ,

Pr[fρis not an k-junta] ≤ 1/poly(n).

A very recent result along these lines is due to the authors together with Trevisan and
Vadhan, which gives a near-optimal derandomization in the special case of read-once DNFs
[GMR+12]. They use this to give near PRGs for read-once DNFs with seed-length Õ(log n).

We remark that if instead of finding a small set of restrictions that work for all formulas
f , we are given the formula f as input, Agrawal et al. [AAI+01] give a polynomial-time
algorithm to find a restriction that simplifies the formula as well as the bounds given by the
switching lemma Theorem 5.1.

5.1 Our Result

We give a different argument that essentially recovers the result of Ajtai and Wigderson and
further gives a trade-off between the survival probability p, the complexity of the restricted
function and the failure probability of the restriction. Our argument is through repeated
applications of Theorem 1.1 and it seems to us to be simpler than those of Hastad [H̊as86]
and Ajtai-Wigderson [AW85].

Theorem 5.3. There exists a constant C such that for any w, s, δ > 0 and all p such that

p ≤ δ

(w log(1/ε))C logw
,

there is a distribution D on 2[n] such that L← D can be sampled using r random bits where

r = r(n, s, ε, δ) = O ((logw) · (log n+ s log(1/δ)) + w log(w log(1/ε))) ,

the indicator events 1{i ∈ L} are p-biased and the following holds: for any width w DNF
f : {0, 1}n → {0, 1}, and ρ← D,

Pr[fρ does not have ε-sandwiching approximations in DNF(s, n)] < ε+ δs/4

In particular, by setting δ = 1/nγ, s = Θ(1/γ), ε = 1/poly(n), w = O(log n), we
almost recover the derandomized switching lemma of Ajtai and Wigderson, with the main
difference being that we need O((log n)(log log n)) bits to sample from D and we only get fρ
has sandwiching approximations by width Oγ(1) DNFs.

Our derandomization is based on the intuition that the switching lemma is easy to show
when the number of terms in the original DNF f is small in terms of the width w of f . Let
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f = ∨2wj=1Tj be a width w DNF. Note that for 0 < p < 1, and ρ ← Dp, the probability that
a single term Ti survives the restriction fρ (is not set to be a constant) is at most

w∑
i=1

(
w

i

)
pi
(

(1− p)
2

)w−i
≤
(

1 + p

2

)w
.

In particular if p ≤ 1/w, the above probability is at most e/2w. Thus, by linearity of
expectation, the expected number of terms that survive the restriction is at most O(1).
Hence, by Markov’s inequality, the restricted DNF fρ has very few surviving terms with high
probability. Further, as we are only using Markov’s inequality, the above argument would
work even if the restriction ρ is sampled from a distribution where the choices for different
variables are only k-wise independent for k = O(w).

We use Theorem 1.1 to reduce the case of arbitrary DNFs of small-width to that of DNFs
with a small number of terms and then use an argument similar to the above. Unfortunately,
the bound in Theorem 1.1 is not sufficiently strong, so we need to use somewhat stronger
restrictions where the sruvival probability is p = w−r for r ≥ 1. Such a restriction can be
viewed as a sequence of r rounds of random restrictions, leaving with a 1/w fraction of live
variables. We argue that in each round, the width of the formula decreases by 1/2 with high
probability and then iteratively apply the argument to the new width w/2 formulas. After
O(logw) rounds, the width reduces to a constant. This corresponds to a random restriction
where the probability of being alive is exp(−Ω(log2w)). Moreover, this argument works even
when the random restrictions only have limited independence, yielding Theorem 5.3.

For k ≤ n, let Dp(k) denote the class of p-regular distributions on 2[n] such that for
L ← D ∈ Dp(k), Pr[I ⊆ L] ≤ 2p|I| for all I ⊆ [n], |I| ≤ k. There exist explicit distributions
D ∈ Dp(k) that can be sampled using O(k log(1/p) + log n)-random bits. For instance, one
can use pk-almost k-wise independent p-biased variables from [NN93].

Claim 5.4. There exists a constant c < 1 such that the following holds for all δ, ε > 0,
0 < s ≤ w and

p ≤ p(w, s) :=
cδs/2w

(w3 log(1/ε))2

For any width w DNF f : {0, 1}n → {0, 1} and ρ ← D ∈ Dp(w), with probability at least
1 − δs/4 − ε there exist width w/2 DNFs f `ρ, f

u
ρ : {0, 1}Lρ → {0, 1} that are ε-sandwiching

approximators for fρ.

Proof of Claim 5.4. Let f `, fu be width w DNFs with at most h(w) = w3w(C log(1/ε))w

terms that are ε2/2-sandwiching approximators for f as guaranteed by Theorem 1.1 for C
a large constant. Consider a random restriction ρ sampled from a distribution in Dp(w/2).
Then, the probability that a fixed term of f ` has more than w/2 live variables under ρ is
at most 2w · pw/2. Therefore, by a union bound, the probability that f `ρ has width more

than w/2 is at most h(w)2wpw/2 < δs/4/2 for a sufficiently small constant c. Similarly, the
probability that fuρ has width more than w/2 is at most δs/4/2.

18



Note that as f ` ≤ f ≤ fu, f `ρ ≤ fρ ≤ fuρ . We now need to show that f `ρ, f
u
ρ are close to

fρ with high probability. Let ρ ≡ ρL,x and consider a fixing of the set of live variables L.
Then as f `, fu are ε2/2-sadwiching approximators for f ,

E
x∈{0,1}[n]\L

[Bias(fρ)] = Bias(f)

≤ Bias(f `) +
ε2

2

= E
x∈{0,1}[n]\L

[Bias(f `ρ)] +
ε2

2
.

Therefore,

E
x∈{0,1}[n]\L

[Bias(fρ)− Bias(f `ρ)] ≤
ε2

2
.

Thus, by Markov’s inequality,

Pr
x∈{0,1}[n]\L

[Bias(fρ)− Bias(f `ρ) ≥ ε] ≤ ε

2
.

Using a similar argument to fu, and a union bound, we get that fρ is ε-sandwiched by
(f `ρ, f

u
ρ ) with probability at leat 1− δs/4 − ε.

We now prove Theorem 5.3.

Proof of Theorem 5.3. Let t be such that w/2t = s (we ignore the minor technicality of t
being non-integral) and for r = 1, . . . , t, let pr = p(w/2r, s) as defined in the above claim.
For i ∈ [t], let Li be chosen independently from a distribution in Dpi(w/2i). Let L = ∩ti=1Li
and for x ∈u {0, 1}n, let ρ = ρL,x. Then, ρ is a random restriction with indicator variables
1{i ∈ L} having bias

q =
t∏
i=1

pi ≥
clogw · δ

∑t
i=1 s2

i/2w

(w3 log(1/ε))2 logw
>

δ

(w log(1/ε))C logw
,

for C a sufficiently large constant.
Define the composition of two restrictions ρ′ ∈ {∗, 0, 1}L and ρ′′ ∈ {∗, 0, 1}L(ρ′) in the

natural way by (ρ′ ◦ ρ′′)i = ρ′′i if i ∈ L(ρ′) and (ρ′ ◦ ρ′′)i = ρ′i otherwise. Then, by definition,
we can view ρ as a composition of independently chosen random restrictions ρt◦ρt−1◦· · ·◦ρ1,
where ρj ≡ ρLj ,xj (with xj ∈u {0, 1}n). Further, for any function g, gρ ≡ (((gρ1)ρ2)···)ρt .

Therefore, by iteratively applying the Claim 5.4 t times with the random restrictions
ρ1, . . . , ρt and a union bound, we get that with probability at least 1 − t(δs/4 + ε), there
exists a lower approximating DNF f ` : {0, 1}L → {0, 1} of width at most w/2t+1 such that
f ` ≤ fρ and Bias(fρ)−Bias(f `) < tε. Similarly, by iteratively applying the claim to the upper
approximators given by the claim, we get that with probability at least 1− 2t(δs/4 + ε), fρ
has (tε)-sandwiching approximators that are width-s DNFs.
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Finally, the number of bits needed to sample L is

r(n, s, ε, δ) =
t∑

v=1

O
(w

2v
· log(1/p(w/2v, s)) + log n

)
= O ((log n)(logw)) +

t∑
v=1

w

2v

(
s2r

2w
O (log(1/δ)) +O (log(w log(1/ε)))

)
= O ((logw) · (log n+ s log(1/δ)) + w log (w log(1/ε))) .

The theorem now follows from applying the above argument to δ′ = δ/2t, ε′ = ε/t and
noting that this only changes the constant terms in the final bounds.

6 Open Problems

Better DNF Sparsification. A natural open question is to show optimal bounds for DNF
sparsification. We believe this question is interesting of its own right, even without the
the sandwiching requirement. Formally, let m(w, ε) be the smallest integer such that every
width-w DNF formula can be ε-approximated by a width-w DNF with m terms. Theorem 1.1
shows that m(w, ε) ≤ (w log(1/ε)O(w). Rocco Servedio [Ser11] observed that the Majority
function on 2w variables (which is a width-w DNF) shows that m(w, ε) ≥ 4w−o(w) for any
constant ε. We are unaware of a better lower bound, and it is conceivable that the right
bound is exponential in w. We pose this as a conjecture:

Conjecture 6.1. (Weaker Version) There exists a function c(ε) such that

m(w, ε) ≤ O(c(ε)w).

(Stronger Version) There exists a constant c such that

m(w, ε) ≤ O(log(1/ε)cw).

The weaker version, if true, will imply that log(n) width DNFs can be ε-approxmiated
by nOε(1) size DNFs for any constant ε. Currently Theorem 1.1 gives the weaker bound of

m(log(n), ε) ≤ nO(log log(n)+log log(1/ε)).

The stronger version, if true, will strengthen Freidgut’s theorem in the context of DNFs.
Conjecture 6.1 is similar in spirit to Mansour’s conjecture which also asserts that DNF

formulas admit concise representations, but in the Fourier domain. It also implies reductions
between the formulations of his conjecture for small width DNFs and small-size DNFs. We
discuss Mansour’s conjecture and its relation to ours further in Section 6.1
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Sparsification using the Greedy Algorithm. A natural approach to sparsifying a DNF
formula f is to view it as a set-covering problem, where we wish to cover f−1(1) ⊆ {0, 1}n by
width w terms. One could use the greedy algorithm in the hope that it constructs a sparse
cover. It woule be interesting to analyze its performance. In this direction, Jan Vondrak
has pointed out that one can use the analysis of greedy set cover to argue that if there is a
lower sandwiching DNF formula of size m`(w, ε) which is ε-close to f , then greedy returns a
2ε approximation of size m`(w, ε) ln(1/ε) [Von12].

Deterministic DNF counting. The question of finding a deterministic polynomial time al-
gorithm for approximate DNF counting remains open. One approach towards this goal would
be to construct pseudorandom generators for DNFs formulas with seed-length O(log(n) +
log(m) + log(1/ε)). Such constructions are currently not known even for read-once DNFs.
A recent result by the Trevisan, Vadhan and the authors gets a seed-length of Õ(log(n) +
log(1/ε)) in the read-once case [GMR+12].

6.1 Mansour’s Conjecture.

We say that f : {0, 1}n → {0, 1} has a t-sparse ε-approximation if there exists p : {0, 1}n → R
with at most t non-zero Fourier coefficients such that

Pr
x∈{0,1}n

[
(f(x)− p(x))2

]
≤ ε.

Conjecture 6.2. (Mansour’s Conjecture for size) [Man94]
(Weaker version) There exists a function c(ε) such that every DNF of size m has an
mc(ε)-sparse ε-approximation.
(Stronger version) Every DNF of size m has an mO(log(1/ε))-sparse ε-approximation.

Mansour originally stated the stronger version of the conjecture, the weaker version
appears in [O’D12]. The following analogue of Mansour’s conjecture for small width suggests
itself. To our knowledge, this conjecture has not appeared explicitly in the literature.

Conjecture 6.3. (Mansour’s conjecture for width)
(Weaker version) There exists a function c(ε) such that every DNF of width w has an
2c(ε)w-sparse ε-approximation.
(Stronger version) Every DNF of width w has an 2O(w log(1/ε))-sparse ε-approximation.

The best known bounds for both size and width are due to Mansour, who shows that
every DNF of width w has an wO(w log(1/ε))-sparse ε-approximation and then derives a bound
for size using w = O(log(m/ε)) [Man95].

We feel that this width analogue of Mansour’s Conjecture is natural; indeed most results
on DNFs proceed by first tackling the width-w case, and then translating it to DNFs of size
m using w ≤ log(m/ε) [H̊as86,LMN93,Man95]. This substitution also shows that

• The weaker version of Mansour’s Conjecture for width implies the weaker version of
Mansour’s Conjecture for size.
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• The stronger version of Mansour’s Conjecture for width implies the stronger version of
Conjecture for size, as long as ε ≥ 1/poly(m).

Conjecture 6.1 implies the reverse equivalence.

Lemma 6.4. • Aussme the stronger version of Conjecture 6.1. Then the stronger ver-
sion of Mansour’s Conjecture for size implies that every width w DNF formula has a
2O(w log(1/ε) log log(1/ε))-sparse ε-approximation.

• Assume the weaker version of Conjecture 6.1. Then the weaker version of Mansour’s
Conjecture for size implies the weaker version of Mansour’s Conjecture for width.

Note that if we replace Conjecture 6.1 with Theorem 1.1, this does not improve on the
bound from [Man95]. So in this context, the improved dependence on w in Conjecture 6.1
is crucial.
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A Proofs from Section 2

We first show that Lemma 2.3 is equivalent to Lemma A.2 below from [Ros10].

Definition A.1 ( [Ros10]). Let F be a family of sets over a universe U and let Y = ∩T∈FS.
Call F a γ-sunflower if for a random set W ⊆ U , with each element of U present in W
independently with probability 1/2,

Pr[∃T ∈ F , (T \ Y ) ∩W = ∅] ≥ 1− γ.
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Lemma A.2 ( [Ros10]). Let F be a family of sets over a universe U each of size at most
w. If |F| > w! · (2.47 log(1/γ))w, then F contains a γ-sunflower.

Proof of Lemma 2.3. As f is unate, without loss of generality suppose that f is monotone.
Let U = [n] and F = {Ti : 1 ≤ i ≤ m}. By the above lemma, there exists a γ-sunflower
F ′ = {Ti1 , . . . , Tis} for

γ = µ(m/w!)1/w where µ =
1

21/2.47
.

We claim that the lemma holds for the terms in F ′ and Y = ∩sj=1Tij . Let x ∈u {0, 1}n
and let W = {i : xi = 0}. Then, each element of U is present in W independently with
probability 1/2. Therefore, as F ′ is a γ-sunflower

Pr
x

[∨cj=1(Tij \ Y ) = 1] = Pr
W

[∃T ∈ F ′, (T \ Y ) ∩W = ∅ ] ≥ 1− γ.

We next show Fact 2.8.

Proof of Fact 2.8. From the definition of γ( ) from Equation 2.2, it is easy to check that
γ(j/2w) ≥ j1/w/10w. We shall also use the following inequality that follows from partial
integration: for any θ ≥ k ≥ 0,∫ ∞

θ

xke−xdx =
k∑
i=0

(
k

i

)
· (i!) ·

(
θk−ie−θ

)
≤ (k + 1)θk · e−θ. (A.1)

Therefore, for θ = W 1/w/10w,

∞∑
j=W+1

e−γ(j/2
w) ≤

∞∑
j=W+1

e−(j1/w/10w)

≤
∫ ∞
W

e−(x1/w/10w) dx

= 10w2 · (10w)w−1 ·
∫ ∞
θ

yw−1 · e−ydy (substituting y ≡ x1/w/10w)

≤ 10w2 · (10w)w−1 · w · θw−1e−θ (by Equation A.1)

≤ 10w3 ·W · exp(−10w2 log(1/ε))

= exp
(
log(10w3) + w log 2 + 3w logw + w log(50 log(1/ε))− 10w2 log(1/ε)

)
< exp(− log(1/ε)) = ε

where the last inequality can be checked numerically for w ≥ 1 and ε ≤ 1/4.
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B Proofs from Section 4

In this section, we prove the two Lemmas from [LV96] that are used in our analysis. We
restate them here for the reader’s convenience.

Lemma B.1. (Lemma 4.2 Restated) We have

∀h ∈ H, Bias(fh) ≤ Bias(f),

E
h∈H

[Bias(fh)] ≥ Bias(fh)− ε.

Proof. As fh is obtained by dropping terms in f , we have fh(x) ≤ f(x) ∀x ∈ {0, 1}n, so
Bias(fh) ≤ Bias(f). This also implies that

Bias(fh) =
1

2n

 ∑
x∈f−1(1)

fh(x)

 . (B.1)

Taking expectation over h, we have

Pr
h∈H

[Bias(fh)] =
1

2n

 ∑
x∈f−1(1)

Pr
h∈H

[fh(x)]

 . (B.2)

Fix an x ∈ f−1(1) and a term Ti of f that it satisfies. If Ti is included in fh, which
happens unless Ti is bad for h, then fh(x) = 1. By Lemma 4.1 and a union bound,

Pr
h∈H

[Ti is bad for h] ≤ t · 2−k ≤ ε

w
· w
k
≤ ε.

Hence we have

Pr
h∈H

[fh(x)] ≥ 1− ε.

Plugging this into Equation (B.2) gives

Pr
h∈H

[Bias(fh)] ≥
1

2n

 ∑
x∈f−1(1)

(1− ε)

 = (1− ε) |f
−1(1)|
2n

= (1− ε)Bias(f).

Lemma B.2. (Lemma 4.3 restated) We have

|ph − Bias(fh)| ≤ ε.
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Proof. Let D0 be the uniform distribution over {0, 1}n. For j ∈ [t], let Dj be the distribution
obtained from Dj−1 by replacing the uniform distirbution on variables in bucket Bj with an
independent copy of output of the generator G. Thus Dt is the output distribution of Gh.

We claim that for j ∈ [t],∣∣∣∣ Pr
x∈Dj−1

[fh(x) = 1]− Pr
x∈Dj

[fh(x) = 1]

∣∣∣∣ ≤ δ. (B.3)

Since Dj−1 and Dj differ only on the distribution over bucket Bj, we first sample assignments
for the other buckets. The resulting formula on the variables in Bj is a DNF with width at
most w′. Hence it is δ-fooled by G, which gives Equation (B.3).

We now have

|Bias(fh)− ph| =
∣∣∣∣ Prx∈D0

[fh(x)]− Pr
x∈Dt

[fh(x)]

∣∣∣∣
≤

t∑
j=1

∣∣∣∣ Pr
x∈Dj−1

[fh(x)]− Pr
x∈Dj

[fh(x)]

∣∣∣∣
≤ tδ

≤ ε.
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