
DNF SPARSIFICATION AND A

FASTER DETERMINISTIC

COUNTING ALGORITHM

Parikshit Gopalan, Raghu Meka,
and Omer Reingold

Abstract. Given a DNF formula f on n variables, the two natural
size measures are the number of terms or size s(f), and the maximum
width of a term w(f). It is folklore that small DNF formulas can be
made narrow: if a formula has m terms, it can be ε-approximated by
a formula with width log(m/ε). We prove a converse, showing that
narrow formulas can be sparsified. More precisely, any width w DNF
irrespective of its size can be ε-approximated by a width w DNF with
at most (w log(1/ε))O(w) terms.
We combine our sparsification result with the work of Luby & Velickovic
(1991, 1996) to give a faster deterministic algorithm for approximately
counting the number of satisfying solutions to a DNF. Given a formula
on n variables with poly(n) terms, we give a deterministic nÕ(log log(n))

time algorithm that computes an additive ε approximation to the frac-
tion of satisfying assignments of f for ε = 1/poly(log n). The previous
best result due to Luby and Velickovic from nearly two decades ago had
a run-time of nexp(O(

√
log logn)) (Luby & Velickovic 1991, 1996).

Keywords. Complexity

Subject classification. not much

1. Introduction

A natural way to represent a Boolean function f : {0, 1}n → {0, 1}
is to write it as a CNF or DNF formula. The class of functions that
admit compact representations of this form (aka polynomial size
CNF and DNF formulae) are central to Boolean function analysis,
computational complexity and machine learning.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 60 (2012)

2 Gopalan, Meka & Reingold

Given a DNF formula f on n variables, the two natural size
measures are the number of terms or size s(f), and the maximum
width of a term w(f). The analogous measures for a CNF, are the
number of clauses and clause width. It is folklore that every DNF
formula f with m terms can be ε-approximated by another DNF
g where s(g) ≤ m and w(g) ≤ log(m/ε), regardless of w(f). The
formula g is a sparsification of f obtained by simply discarding all
terms of width larger than log(m/ε). In other words, small DNF
formulas can be made narrow. An analogous statement can be
derived for CNFs.

In this work, we show the reverse connection: narrow formulae
can be made small. Indeed, we prove the existence of a strong form
of approximation known as sandwiching approximations which are
important in pseudorandomness. In this work we only consider
approximators which are also Boolean functions.

Definition 1.1. Let f : {0, 1}n → {0, 1}. We say that functions
fu, f` : {0, 1}n → {0, 1} are ε-sandwiching approximators for f if
f`(x) ≤ f(x) ≤ fu(x) for every x ∈ {0, 1}n, and

Pr
x∈{0,1}n

[f`(x) 6= f(x)] = Pr
x∈{0,1}n

[(f`(x) = 0) ∧ (f(x) = 1)] ≤ ε,

Pr
x∈{0,1}n

[fu(x) 6= f(x)] = Pr
x∈{0,1}n

[(fu(x) = 1) ∧ (f(x) = 0)] ≤ ε.

Our main result is the existence of ε-sandwiching approximators
for arbitrary width w DNFs using small width w DNFs where the
number of clauses depends only on w and ε.

Theorem 1.2. For every width-w DNF formula f and every ε > 0,
there exist DNF formulae f`, fu each of width w and size at most
(w log(1/ε))O(w) which are ε-sandwiching approxmiators for f .

Our result is proved by a sparsification procedure for DNF
formulae which uses the notion of quasi-sunflowers due to Ross-
man (2010). The best previously known result along these lines
was due to Trevisan (2004), who built on previous work by Aj-
tai & Wigderson (1985). Trevisan shows that every width w DNF
has ε-sandwiching approximators that are decision trees of depth
d = O(w2w log(1/ε)).

DNF Sparsification 3

A k-junta is a function which depends only on k variables.
Given f, g : {0, 1}n → {0, 1}, we say that g ε-approximates f
if

Pr
x∈{0,1}n

[f(x) 6= g(x)] ≤ ε.

A corollary of our result is the following junta theorem for DNFs.

Corollary 1.3. Every width-w DNF formula is ε-approximated
by a (w log(1/ε))O(w)-junta.

A similar but incomparable statement can be derived from
Friedgut’s junta theorem (Friedgut 1998). Friedgut’s theorem states
that any Boolean function with average sensitivity s is ε-close to
a 2O(s/ε)-junta. It is folklore that width w DNFs have average
sensitivity at most 2w (O’Donnell 2012a, Chapter 4, Proposition
7). Amano (2011) shows that this can be improved to a sharp
bound of w . So by Friedgut’s theorem any width w DNF is
ε-close to a 2O(w/ε)-junta. Friedgut’s result gives better depen-
dence on w, whereas we achieve much better dependence on ε.
Friedgut’s approximator is not a priori a small-width DNF, and
one does not get sandwiching approximations. Trevisan’s result
implies that any width w DNF is ε-approximated by a k-junta for
k = exp(O(w2w log(1/ε))) (Trevisan 2004).

Theorem 1.2 has interesting consequences for other parameter
settings. One example is the following:

Corollary 1.4. Every width-O(log n) DNF formula on n vari-
ables is n−O(1) close to a DNF of widthO(log n) and size nO(log log(n)).

In Section 6, we conjecture that a better bound should be pos-
sible in Theorem 1.2, which is exponential in w. If true, this con-
jecture will give better bounds for both Corollary 1.3 and Corol-
lary 1.4.

1.1. DNF Counting and Pseudorandom Generators. The
problem of estimating the number of satisfying solutions to CNF
and DNF formulae is closely tied to the problem of designing pseu-
dorandom generators for such formulae with small seed-length.

4 Gopalan, Meka & Reingold

These problems have been studied extensively (Ajtai & Wigder-
son 1985; Bazzi 2009; De et al. 2010; Karp & Luby 1983; Luby
& Velickovic 1991, 1996; Luby et al. 1993; Nisan 1991; Nisan &
Wigderson 1994; Razborov 2009; Trevisan 2004).

For a function f : {0, 1}n → {0, 1}, let

Sat(f) = Pr
x∈{0,1}n

[f(x) = 1].

Given a formula f from a class F of functions, the goal of a count-
ing algorithm for the class F is to compute Sat(f). We refer to
the counting problems for CNFs and DNFs as #CNF and #DNF
respectively. The problem of computing Sat(f) exactly is #P-hard
(Valiant 1979), hence we look to approximate Sat(f).

An algorithm gives an ε-additive approximation for Sat(f) if
its output is in the range [Sat(f)− ε, Sat(f) + ε]. It is easy to see
that additive approximations for CNFs and DNFs are equivalent.
There is a trivial solution based on random sampling, but finding
a deterministic polynomial time algorithm has proved challenging.

Computing multiplicative approximations to Sat(f) is harder,
and here the complexities of #CNF and #DNF are very different.
An algorithm is said to be a c-approximation algorithm if its output
lies in the range [Sat(f), cSat(f)]. It is easy to see that obtaining
a multliplicative approximation for #CNF is NP-hard. Karp and
Luby gave the first multiplicative approximation for #DNF, their
algorithm is randomized (Karp & Luby 1983). There is a reduction
between additive and multiplicative approximations for #DNF: for
DNF formulae with m terms, the problem of computing a (1 +
ε)-multiplicative approximation can be reduced deterministically
to the problem of computing an (ε/m)-additive approximation to
#DNF. This reduction is stated explicitly in Luby & Velickovic
(1996), where it is attributed to Karp & Luby (1983); Karp et al.
(1989)

Derandomizing the Karp-Luby algorithm is an important prob-
lem in derandomization that has received a lot of attention starting
form the work of Ajtai and Wigderson (Ajtai & Wigderson 1985;
Linial & Nisan 1990; Luby & Velickovic 1991, 1996; Luby et al.
1993; Trevisan 2004). The best previous result is due to Luby &
Velickovic (1991, 1996) from nearly two decades ago: they gave a

DNF Sparsification 5

deterministic nexp(O(
√
log logn)) time algorithm that can compute an

ε-additive approximation for any fixed constant ε.

A natural approach to this problem is to design pseudoran-
dom generators (PRGs) with small seeds that can ε fool depth two
circuits. This problem and its generalization to constant depth cir-
cuits are central problems in pseudorandomness (Ajtai & Wigder-
son 1985; Bazzi 2009; Braverman 2010; De et al. 2010; Luby &
Velickovic 1996; Luby et al. 1993; Nisan 1991; Nisan & Wigderson
1994; Razborov 2009; Trevisan 2004).

Definition 1.5. A generator G : {0, 1}r → {0, 1}n δ-fools a class
F of functions if ∣∣∣∣ Pr

y∈{0,1}r
[f(G(y))]− Sat(f)

∣∣∣∣ ≤ δ

for all f ∈ F . The generator is said to be explicit ifG is computable
in time polynomial in 2r and n.

A generator with seed-length r that ε-fools DNFs withm clauses
gives an ε-additive approximation for Sat(f) in poly(m,n, 2r) time
by enumerating over all seeds. Such an algorithm only requires
black-box access to f . The reduction form Karp & Luby (1983);
Karp et al. (1989) implies that an optimal pseudorandom generator
for DNFs with seedlength O(log(mn/ε)) will give a deterministic
multiplicative approximation algorithm for #DNF. However, the
best known generator currently due to De et al. (2010) requires
seed length O((log(mn/ε))2). The Luby-Velickovic algorithm is
not a black-box algorithm, but PRGs for small-width DNFs are an
important ingredient.

Better PRGs for small-width DNFs. We use our sparsification
lemma to give a better PRG for the class of width w DNF formulae
on n variables, which we denote by DNF(w, n). 1

1The Õ() notation is used to hide terms that are logarithmic in the argu-
ments.

6 Gopalan, Meka & Reingold

Theorem 1.6. For all δ, there exists an explicit generator G :
{0, 1}r → {0, 1}n that δ-fools DNF(w, n) and has seed-length

r = Õ

(
w2 + w log

(
1

δ

)
+ log log(n)

)
.

In comparison, Luby & Velickovic (1996) give a PRG with seed-
length O(2w + log log n) for fooling width w DNFs. Note that for
w = O(log log n) and δ constant, the seed-length of the our gen-
erator is Õ((log log n)2), whereas Luby and Velickovic need seed-
length O(logO(1) n). For w = log log(n) and δ ≥ 1/poly(n), our
seed-length is still Õ(log n).

The improved generator for small-width DNFs is obtained in
two steps:

◦ Following Bazzi (2009); Benjamini et al. (2007), we use The-
orem 1.2 to reduce fooling width w DNFs with an arbitrary
number of terms to fooling width w DNFs with size 2Õ(w).
The sandwiching property of our approximators is crucial for
this reduction, since it implies the closeness of f to f` and
fu not just under the uniform distribution, but also under
distributions that fool f` and fu.

◦ We apply recent results by De et al. on fooling DNF formu-
las using ε-biased spaces (De et al. 2010). We observe that

for width-w formulas of size 2Õ(w), and sufficiently large er-
ror, their result only requires k-wise ε-bias for k = Õ(w2).
This notion was introduced in the seminal work of Naor &
Naor (1993), who showed how to explicitly sample from such
distributions using seed length O(k + log(1/ε) + log log n).
This gives seed-length o(log n) for sufficiently small width
and large ε.

A Faster Deterministic Algorithm for #DNF. We present a
faster deterministic algorithm for #DNF, improving on the result
of Luby & Velickovic (1991, 1996). This is the first progress on
this well-studied problem in nearly two decades.

DNF Sparsification 7

Theorem 1.7. There is a deterministic algorithm which when
given a DNF formula on n variables of size m as input, returns
an O(ε)-additive approximation to Sat(f) in time(mn

ε

)Õ(log log(n)+log log(m)+log(1/ε))

For m ≤ poly(n) and ε ≥ 1/poly(log n), the running time is

O(nÕ(log log(n))).

The Luby-Velickovic counting algorithm can be viewed as a
(non black-box) reduction from the #DNF problem for formulas of
size poly(n) to fooling DNFs of small width. We use their reduction
to reduce to the problem of fooling DNFs of width O(log log(n))
and then apply Theorem 1.6. The fact that this gives a very short
seed-length allows a simpler analysis that does not require careful
balancing of parameters. In addition, we can allow for smaller
values of ε.

A Derandomized Switching Lemma. H̊astad’s celebrated swi-
tching lemma (H̊astad 1986) is a powerful tool in proving lower
bounds for small-depth circuits. It also has applications in com-
putational learning (Linial et al. 1993; Mansour 1995) and PRG
constructions (Ajtai & Wigderson 1985; Gopalan et al. 2012). As
an additional application of our sparsification result, we give a par-
tial derandomization of the switching lemma. The parameters we
obtain are close to that of the previous best results due to Ajtai &
Wigderson (1985) and perhaps more importantly, our argument is
conceptually simpler, involving iterative applications of our spar-
sification result and a naive union bound. We defer the details to
Section 5.

2. DNF Sparsification

We will consider DNF formulas that are specified as f = ∨mi=1Ti
where the representation is minimal in the following sense:

◦ Each Ti is non-constant. Hence each term is non-empty (else
we replace it by 1), and does not contain a variable and

8 Gopalan, Meka & Reingold

its negation (else we replace it by 0). This guarantees that
Prx[Ti = 1] ≤ 1/2.

◦ Each that Ti is not implied by some other Tj; if this is so, we
can simply drop Ti from the definition of f . This means that
when viewed as a set of literals, Tj 6⊂ Ti. A consequence is
that Ti ∩ Tj (Tj.

If some stage of our sparsification produces a representation
which is not minimal, we can convert it to a minimal represntation
without increasing the number of terms.

We call a DNF f unate if it does not contain a variable and
its negation. We call a DNF formula f read-once if every variable
occurs in (at most) one term. Note that every read-once formula
is unate, but the converse is not true.

2.1. Sparsification using Sunflowers. We will first show the
following weaker version of Theorem 1.2 with a bound of (w2w ln(m/ε))w,
and with the additional assumption that f is unate. The proof will
illustrate the key ideas behind our sparsification procedure.

Theorem 2.1. For every unate DNF formula f with width w and
size m and every ε > 0, there exist DNF formulae f`, fu each
with width w and size at most (w2w log(m/ε))O(w) which are ε-
sandwiching approxmiators for f .

The starting point of our sparsification result is the Erdős-Rado
Sunflower Lemma (Erdős & Rado 1960).

Definition 2.2. Let k ≥ 3. A collection of subsets S1, . . . , Sk ⊆
[n] is a sunflower with core Y if Y (Si for all i and Si ∩ Sj = Y
for all i 6= j. The sets Si \ Y are called the petals.

The set systems that we consider will arise from the terms in
some minimal representation of a monotone DNF. This will ensure
that the petals are always non-empty, although the core might be
empty.

The celebrated Erdős-Rado Sunflower Lemma guarantees that
every sufficiently large set system of bounded size sets contains
large sunflowers.

DNF Sparsification 9

Lemma 2.3. (Sunflower Lemma, (Erdős & Rado 1960)) Let F =
{S1, . . . , Sm} be a collection of subsets of [n], each of cardinality
at most w. If m > w!(k − 1)w, then F has a sunflower of size k.

The lemma and its variants have found several applications in
complexity theory, we refer the reader to Jukna (2001, Chapter 7)
for more details. We will use it to prove Theorem 2.1.

Proof of Theorem 2.1. Fix a unate, width w DNF f = T1 ∨
T2 ∨ · · · ∨Tm and for simplicity suppose that f is monotone. Since
f is monotone, we can think of each term Ti as a set of variables
of size at most w. Set k = 2w ln(m/ε). Provided

m ≥
(
w2w ln

(m
ε

))w
≥ w!(k − 1)w(2.4)

the Sunflower Lemma guarantees the existance of a collection of
terms Ti1 , . . . , Tik with a core Y = ∩kj=1Tij and disjoint petals Tij \
Y . Hence we can write

∨kj=1Tij = Y ∧
(
∨kj=1(Tij \ Y)

)
= Y ∧ g where g = ∨ki=1(Tij \ Y).

Note that g is a read-once DNF of width w and size k = 2w ln(m/ε),
so it is almost surely satisfied by a random assignment:

Pr
x

[g(x) = 0] =
k∏
i=1

Pr
x

[Tij \ Y = 0] ≤
(

1− 1

2w

)k
≤ ε

m
.

The first inequality holds because each Tij \Y is a term with width
at most w, and the second by our choice of k.

Thus a natural way to get an upper sandwiching approxima-
tion is to replace g(x) by the constant 1, which is equivalent to
replacing ∨kj=1Tij with Y . Let f ′ : {0, 1}n → {0, 1} be the DNF
formula obtained by this replacement. It is clear that f(x) ≤ f ′(x).
Further,

Pr
x

[f(x) = 0 ∧ f ′(x) = 1] ≤ Pr
x

[g(x) = 0] ≤ ε

m
.

Finally, we have s(f ′) ≤ s(f)− (k − 1).

10 Gopalan, Meka & Reingold

We can now iteratively apply the above argument as long as the
number of terms is larger than the bound in Equation (2.4). In each
iteration we reduce s(f) by k − 1. Thus, we repeat the process at
most m/(k − 1) times, obtaining an upper approximating formula
fu where

f(x) ≤ fu(x) ∀x ∈ {0, 1}n,

Pr
x

[f(x) 6= fu(x)] ≤ m

k − 1
· ε
m
≤ ε,

s(fu) ≤
(
w2w ln

(m
ε

))w
.

We next describe the construction of the lower approximating
formula f`. We start with the sunflower Ti1 , · · · , Tik with core Y .
Now consider the formula f ′′ obtained from f by dropping one
of the terms, say Ti1 . Then, f ′′(x) ≤ f(x). Further, the two of
them differ only if f ′′(x) = 0 and f(x) = 1, which happens only if
Ti1 = 1 whereas Tij = 0 for j ∈ {2, . . . , k}. Hence we can bound
this probability by

Pr
x

[f ′′(x) 6= f(x)] ≤ Pr
x

[(Ti1 = 1) ∧ ((∨kj=2Tij) = 0)]

= Pr
x

[Ti1 = 1] · Pr
x

[(∨kj=2Tij) = 0|Ti1 = 1]

≤ 1

2
Pr
x

[(∨kj=2Tij \ Y) = 0]

≤ 1

2

(
1− 1

2w

)k−1
≤ ε

m

where the second inequality holds since by the sunflower property,
conditioning on Ti1 = 1 fixes the core Y = 1, but does not affect
the other petals. Note that s(f ′′) ≤ s(f)− 1. We now iterate this
step no more than m times to obtain a formula f` where

f`(x) ≤ f(x) ∀x ∈ {0, 1}n,

Pr
x

[f`(x) 6= f(x)] ≤ m · ε
m

= ε,

s(fu) ≤
(
w2w ln

(m
ε

))w
.

�

DNF Sparsification 11

Theorem 2.1 is weaker than Theorem 1.2 in the assumption of
unateness, the dependence on m and the dependence on w. We
briefly sketch how one can handle the first two issues.

1. Unateness. One can remove this assumption by using Lemma 2.11
which guarantees that any DNF formula contains a large sub-
formula which is unate. The resulting statement already suf-
fices for Corollary 1.4, since any width log(n) DNF can have
at most nO(log(n)) many clauses.

2. Dependence on m. The size of the approximators depends
logarithmically on m. One can avoid this by observing that
when the formula size is large, the error resulting from each
step of the sparsification is tiny. One can use this argument
to get a size bound of (2w ln(1/ε))O(w) which is independent
of m.

3. Dependence on w. The final bound is exponential in w2

rather than w. This comes from the (k − 1)w term in the
Sunflower Lemma, which we apply for k = 2w. The question
of whether the w! term in the Sunflower Lemma is necessary
is a well-known open problem in combinatorics. But there is
a lower bound of (k− 1)w (Jukna 2001). So even if the lower
bound were to be right answer, it does not (directly) imply
a better bound for Theorem 2.1.

2.2. Sparsification using Quasi-Sunflowers. The main prop-
erty of the sunflower system we used in Theorem 2.1 is that the
formula g on the petals is highly biased towards 1. As shown by
Rossman (2010), one can guarantee the existence of such “quasi-
sunflower” systems satisfying this weaker property, even when the
number of terms is much smaller than in the usual sunflower lemma.
We adapt our argument to use quasi-sunflowers instead of sunflow-
ers, to obtain Theorem 1.2.

We shall use the notion of quasi-sunflower due to Rossman
(2010).

12 Gopalan, Meka & Reingold

Definition 2.5. (Quasi-Sunflowers, (Rossman 2010)) A unate DNF
formula h = ∨ki=1Ti where k ≥ 2 is a γ-quasi-sunflower with core
Y = ∩ki=1Ti, and petals {Ti \ Y }ki=1 if

Pr
x

[∨ki=1(Ti \ Y) = 1] ≥ 1− e−γ.

Quasi-sunflowers extend the notion of a sunflower in the sense
that even though the “petals” (Tij \Y) are not necessarily disjoint,
the probability that none of them is satisfied is small. We disallow
k = 1, since otherwise every term is trivially a quasi-sunflower.
Since we insist that no term of a DNF is contained in another, the
petals are non-empty. Hence each petal is satisfied with probability
at most 1/2, so every γ-sunflower has k = Ω(γ) petals.

Lemma 2.6. (Quasi-Sunflower Lemma, (Rossman 2010)) Any unate
width w DNF formula withm terms contains a γ(m)-quasi-sunflower
where

γ(m) :=
1

5

(m
w!

)1/w
.(2.7)

Rossman states the result in the language of set systems, which
we have rephrased in the language of DNFs. We show the equiva-
lence of the two in the appendix.

The following lemma will be used to analyze a single step of
our sparsification.

Lemma 2.8. Let g = ∨mi=1Ti be a unate DNF. Then

Pr
x

[(T1 = 1) ∧ ((∨ki=2Ti) = 0)] ≤ Pr
x

[(∨ki=1Ti) = 0].

Proof. Note that the claim is equivalent to saying

Pr
x

[(T1 = 1)|((∨ki=2Ti) = 0)] ≤ Pr
x

[(T1 = 0)|((∨ki=2Ti) = 0)].

Without loss of generality suppose that g is monotone. Since every
term in g is also monotone, Kleitman’s lemma (Alon & Spencer
2011, Chapter 6) implies that

Pr
x

[(T1 = 1) ∧ ((∨ki=2Ti) = 0)] ≤ Pr
x

[T1 = 1] · Pr
x

[(∨ki=2Ti) = 0]

DNF Sparsification 13

Hence diving both sides by Prx[(∨ki=2Ti) = 0], we get

Pr
x

[(T1 = 1)|((∨ki=2Ti) = 0)] ≤ Pr
x

[T1 = 1] ≤ 1

2

where the last inequality follows because T1 is non-empty. But this
implies that

Pr
x

[(T1 = 0)|((∨ki=2Ti) = 0)] ≥ 1

2
≥ Pr

x
[(T1 = 1)|((∨ki=2Ti) = 0)]

which proves the claim. �

The only property of T1 that we use is that Prx[T1 = 1] ≤
Prx[T1 = 0]. Indeed, we can drop any set of terms {Ti}i∈S which
satisfies Prx[∨i∈STi = 1] ≤ Prx[∨i∈STi = 0].

The following is our key technical lemma. It applies to unate
formulae and allows us to reduce the size of formula by 1.

Lemma 2.9. For every unate width-w DNF formula g of size m,
there exist width-w DNF formulae g`, gu each of size at most m− 1
that are e−γ(m) sandwiching approximators for g.

Proof. Let g = ∨mi=1Ti. Lemma 2.6 guarantees the existence
of a γ(m)-quasi-sunflower h = ∨ki=1Tij where γ(m) is given by
Equation (2.7). Letting p(x) = ∨ki=1(Tij \Y) be the formula on the

petals, we have Prx[p(x) = 0] ≤ e−γ(m). We can write

h(x) = ∨kj=1Tij = Y ∧
(
∨kj=1(Tij \ Y)

)
= Y ∧ p(x)

We get an upper sandwiching DNF formula gu : {0, 1}n → {0, 1}
from g(x) by replacing p(x) by the constant 1, which is equivalent
to replacing h(x) with the core Y . It is clear that

g(x) ≤ gu(x), s(gu) ≤ s(g)− (k − 1) ≤ s(g)− 1.

Further,

Pr
x

[g(x) 6= gu(x)] = Pr
x

[(g(x) = 0) ∧ (gu(x) = 1)]

≤ Pr
x

[p(x) = 0]

≤ e−γ(m).

14 Gopalan, Meka & Reingold

We now construct the lower sandwiching approximation. Let
g` be the formula obtained from g by dropping the term Ti1 . Then,
it is clear that

g`(x) ≤ g(x), s(g`) ≤ s(g)− 1.

Further,

Pr
x

[g(x) 6= g`(x)] = Pr
x

[g(x) = 1 ∧ g`(x) = 0]

≤ Pr
x

[((Ti1 \ Y) = 1) ∧ (∨kj=2(Tij \ Y) = 0)]

≤ Pr
x

[p(x) = 0] (By Lemma 2.8)

≤ e−γ(m).

�

We will prove Theorem Theorem 1.2 for unate DNFs by re-
peated applications of this Lemma. To handle the general (non-
unate) case, we use the following simple lemmas to reduce the
problem of constructing sandwiching approximations to the unate
case.

Lemma 2.10. Let f, g, h : {0, 1}n → {0, 1} be such that f = g∨h.
Let g`, gu be ε-sandwiching approximators for g. Then g` ∨ h and
gu ∨ h are ε-sandwiching approximators for f .

Proof. It is easy to see that for every x ∈ {0, 1}n,

g`(x) ∨ h(x) ≤ g(x) ∨ h(x) ≤ gu(x) ∨ h(x).

We bound the approximation error for g` ∨ h, the proof for gu ∨ h
is similar.

Pr
x

[(g`(x) ∨ h(x)) 6= (g(x) ∨ h(x))] =

Pr
x

[(g`(x) ∨ h(x) = 0) ∧ (g(x) ∨ h(x) = 1)] =

Pr
x

[(g`(x) = 0) ∧ (g(x) = 1) ∧ (h(x) = 0)] ≤

Pr
x

[(g`(x) = 0) ∧ (g(x) = 1)] ≤ ε.

�

DNF Sparsification 15

Lemma 2.11. For every width w DNF f = ∨mi=1Ti of size m, there
exists S ⊆ [m] where |S| ≥ m/2w such that the formula g =
∨j∈STij is unate.

Proof. Pick a random set of literals S as follows: for each of
the variables xi add one of xi or x̄i to S uniformly at random. Let
gS be the sub-formula of f formed of terms containing only literals
from S. Then, gS is always unate.

Each term has at least a 2−w chance of being in gS. By linearity
of expectation

E
S
[s(gS)] ≥ m

2w
.

�

We will use the following asymptotic bound whose proof is a
calculation and is deferred to the appendix.

Fact 2.12. For γ : R+ → R+ defined by Equation (2.7), W =
(2w)3w(50 log(1/ε))w, and ε ≤ 1/4,

m∑
j=W+1

e−γ(j/2
w) ≤ ε.

We can now prove Theorem 1.2:

Proof. Let f = ∨mi=1Ti. By applying Lemma 2.11, we can
write f = g ∨ h where g is unate and has m′ ≥ m/2w terms.
By Lemma 2.9, there exist sandwiching approximators g`, gu each
of width w and size at most m′ − 1, whose error is bounded by

e−γ(m
′) ≤ e−γ(m/2

w).

By Lemma 2.10, f 1
` = g`∨h and f 1

u = gu∨h are e−γ(m
′) sandwiching

approximations for f . Further

s(f 1
`) = s(g`) + s(h) ≤ s(g)− 1 + s(h) ≤ s(f)− 1

and similarly s(f 1
u) ≤ s(f)− 1.

16 Gopalan, Meka & Reingold

We iterate this construction separately for the upper and lower
approximator till the size of the formulae drops below W . This
gives the sequence

f(x) ≤ f 1
u(x) · · · ≤ fkuu (x) := fu(x)

f(x) ≥ f 1
` (x) · · · ≥ fk`` (x) := f`(x)

where s(f`), s(fu) ≤ W . We can bound the error of these approxi-
mators by

(2.13)
m∑

j=W+1

e−γ(j/2
w) ≤ ε.

where the inequality is from Fact Fact 2.12. This completes the
proof of Theorem 1.2. �

3. Fooling Small-Width DNFs

We next use our sparsification result to construct a pseudorandom
generator for small-width DNFs, obtaining an exponential improve-
ment in terms of the width over the generator of Luby & Velickovic
(1996). We restate Theorem 1.6 with the exact asymptotics for r.

Theorem 3.1. For all δ, there exists an explicit generator G :
{0, 1}r → {0, 1}n that δ-fools all width w DNFs and has seed-
length

r = O

(
w2 log2(w log(1/δ)) + w log(w) log

(
1

δ

)
+ log log(n)

)
We prove the theorem as follows: we first use our sparsification

result to reduce the case of fooling width w DNFs with an arbitrary
number of terms to that of fooling width w DNFs with 2Õ(w) terms
and then apply the recent results due to De et al. (2010) showing
that small-bias spaces fool DNFs with few terms.

Definition 3.2 (k-wise ε-biased spaces).A distribution D over
{0, 1}n is said to be (k, ε)-biased space if for every non-empty sub-
set I ⊆ [n] of size at most k,∣∣∣∣ Prx←D

[⊕i∈Ixi = 1]− 1

2

∣∣∣∣ ≤ ε.

DNF Sparsification 17

Naor & Naor (1993) constructed explicit (k, ε)-biased spaces that
require only O(k + log(1/ε) + log log n) bits to sample from.

Next, we need the following result of De et al. (2010) showing
that (k, ε)-biased spaces fool DNFs for suitable choices of k and ε.

Theorem 3.3. (De et al. 2010, Theorem 4.1) For every δ > 0,
every DNF with width w and size m is δ-fooled by (k, ε)-biased
distributions for

k = O
(
w log

(m
δ

))
,

log

(
1

ε

)
= O

(
w log(w) log

(m
δ

))
.

De et al. prove the above statement only for the case of k = n,
and they use the bound w ≤ log(m/δ). Their proof proceeds by
constructing small `1-norm sandwiching approximators. The above
statement is obtained by repeating their proof keeping w and m
separate, and bounding both the degree and the `1 norm of the
resulting approximators. It is easy to see from their proof that
the approximators have degree k ≤ O(w log(m/δ)) and `1-norm
bounded by (m/δ)O(w log(w)).

We use the fact that to fool a class of functions, it suffices to fool
sandwiching approximators (Bazzi 2009; Benjamini et al. 2007).

Fact 3.4. Let F ,G be classes of functions such that every f ∈ F
has ε-sandwiching approximators in G. Let G : {0, 1}r → {0, 1}n
be a pseudorandom generator that δ-fools G. Then G (ε+ δ)-fools
F .

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. Recall that DNF(w, n) denotes the
class of all width w DNF s on n variables. Let G ⊂ DNF(w, n) de-
note the subset of all formulae with size at mostm = (w log(1/δ))cw

for some sufficiently large constant c. By Theorem 1.2, every
f ∈ DNF(w, n) has δ-sandwiching approximators in G.

18 Gopalan, Meka & Reingold

Next, we apply Theorem 3.3 with m = (w log(1/δ))cw. Note
that

log
(m
δ

)
= O

(
w log(w log(1/δ)) + log

(
1

δ

))
.

So we conclude that (k, ε)-biased distributions δ-fool G where

k = O

(
w2 log(w log(1/δ))) + w log

(
1

δ

))
log

(
1

ε

)
= O

(
w2(logw) log(w log(1/δ)) + w(logw) log

(
1

δ

))
.

Note that we can sample from such a distribution using a seed of
length

r = O

(
k + log

(
1

ε

)
+ log log(n)

)
= O

(
w2 log2(w log(1/δ)) + w log(w) log

(
1

δ

)
+ log log(n)

)
Finally, by Fact 3.4, such distributions 2δ fool the class DNF(w, n).

�

4. Deterministic Counting for DNFs

We now use the PRG for small-width DNFs from the previous sec-
tion in the Luby-Velickovic counting algorithm (Luby & Velickovic
1996). The better seed-length means that we do not need to bal-
ance various parameters as carefully, and can redo their arguments
with simpler and better settings of parameters.

The input to our algorithm is a DNF formula f = ∨mj=1Tj on n
variables with size m and width w, and the output is an ε-additive
approximation to Sat(f). We set the following parameters

k := log
(w
ε

)
, t :=

w

k
, w′ = 6k, δ =

ε

t

Let H = {h : [n]→ [t]} be a family of k-wise independent hash
functions. Fix a hash function h ∈ H and let Bj = {i : h(i) = j}.
We say the term Ti bad for h if

max
j∈[t]
|Bj ∩ Ti| > w′

DNF Sparsification 19

where we view Ti as a set of variables. Let fh be the formula
obtained from f by dropping all terms that are bad for h.

Let G : {0, 1}r → {0, 1}n be the generator from Theorem 1.6
that fools DNF(w′, n) with error at most δ. Define a new generator
Gh : ({0, 1}r)t → {0, 1}n as follows:

(4.1) Gh(z1, . . . , zt) = x, where for j ∈ [t], x|Bj = G(zj).

Thus Gh applies an independent copy of G to each bucket defined
by the hash function h.

We now state the counting algorithm:

Algorithm DNFCount
For each h ∈ H,

Drop all bad terms for h from f to obtain fh.
By enumeration over all z ∈ {0, 1}rt, compute

ph = Pr
z∈{0,1}rt

[fh(Gh(z)) = 1].(4.2)

Return pH = maxh∈H ph.

We need the following lemma about k-wise independent hash
functions.

Lemma 4.3. Let H : [n] → [t] be a k-wise independent family of
hash functions. Then, for every set S ⊆ [n] of size |S| ≤ kt, and
every j ∈ [t],

Pr
h∈uH

[
|h−1(j) ∩ S| ≥ 6k

]
≤ 2−k.

Proof. Fix j ∈ [t]. Let S = {1, . . . , kt} without loss of gen-
erality. Let {Xi}kti=1 be indicator random variables that are 1 if
h(i) = j and 0 otherwise. Then

E
h∈H

 ∑
I⊆S,|I|=k

∏
i∈I

Xi

 ≤ (kt
k

)
· 1

tk
≤ ek.

20 Gopalan, Meka & Reingold

Applying Markov’s inequality,

Pr
h∈uH

[
|h−1(j) ∩ S| ≥ 6k

]
≤ ek(

6k
k

) ≤ 2−k.

�

Our analysis requires two Lemmas from Luby & Velickovic
(1996). Since their terminology and notation differs from ours,
we provide proofs of both these Lemmas in Appendix B.

The first Lemma relates the bias of fh with that of f .

Lemma 4.4. (Luby & Velickovic 1996, Lemma 11) We have

∀h ∈ H, Sat(fh) ≤ Sat(f),

E
h∈H

[Sat(fh)] ≥ Sat(f)− ε.

The next lemma showing that Gh fools the formula fh is essen-
tially Luby & Velickovic (1996, Lemma 7). Recall that by Equation
(4.2), ph is the bias of fh under distribution generated by Gh.

Lemma 4.5. (Luby & Velickovic 1996, Lemma 7) We have |ph −
Sat(fh)| ≤ ε.

With these Lemmas in hand, we now analyze the algorithm.

Theorem 4.6. Algorithm DNFCount when given a DNF on n vari-
ables with width w and size m as input, returns an O(ε)-additive
approximation to Sat(f) in time

O(nO(log(w/ε))(log n)O(w)2Õ(w log(1/ε))m).

Proof. The correctness of the algorithm is easy to argue. For
every h ∈ H,

ph ≤ Sat(fh) + ε (By Lemma 4.5)

≤ Sat(f) + ε (By Lemma 4.4)

Further by Lemma 4.4, there exists h ∈ H such that

Sat(fh) ≥ Sat(f)− ε,

DNF Sparsification 21

hence by Lemma 4.5,

ph ≥ Sat(fh)− ε ≥ Sat(f)− 2ε.

Thus pH is a 2ε-additive approximation Sat(f).
We now bound the running time. Computing fh for any h ∈ H

and evaluating it on Gh(z) for z ∈ {0, 1}rt can be done in time
O(mn). Thus the running time is dominated by |H|2rt. By stan-
dard constructions of k-wise independent hash functions,

|H| ≤ nO(k).

Next we bound the seed-length r. Recall that

k = log
(w
ε

)
, δ =

ε

t
=
kε

w

Hence log

(
1

δ

)
= log

(w
εk

)
= k − log(k).

Further, w′ = 6k. Hence, by Theorem 3.1,

r = O

(
w′2 log2(w′ log(1/δ)) + w′ log(w′) log

(
1

δ

)
+ log log(n)

)
= O(k2 log2(k) + log log(n))

rt = O
(w
k

(k2 log2(k) + log log(n))
)

= O(wk log2 k + w log log(n)).

So we get

|H|2rt ≤ exp(O(k log(n) + wk log2 k + w log log(n))).

Overall the runtime is bounded by

O(mn)|H|2rt =

exp
(
O(log(w/ε) log(n) + w log(w/ε)(log log(w/ε))2+

w log log(n) + log(m))

= nO(log(w/ε))(log n)O(w)2Õ(w log(1/ε))m.

�

22 Gopalan, Meka & Reingold

Theorem 1.7 is obtained from Theorem 4.6 by setting parame-
ters appropriately.

Proof of Theorem 1.7. Given a DNF formula with size m,
we can ignore all terms of width larger than log(m/ε) while only
changing the bias by ε. Plugging in w = log(m/ε), we can bound
the running time by

(mn
ε

)Õ(log log(n)+log log(m)+log(1/ε))

For m = poly(n), ε = 1/poly(log n), this gives nÕ(log log(n)). �

5. A Derandomized Switching Lemma

H̊astad’s celebrated Switching Lemma (H̊astad 1986) is a powerful
tool in proving lower bounds for small-depth circuits. It also has
applications in computational learning (Linial et al. 1993; Mansour
1995) and PRG constructions (Ajtai & Wigderson 1985; Gopalan
et al. 2012). This lemma builds on earlier work due to Ajtai (1983),
Furst et al. (1984) and Yao (1985).

To state the Switching lemma, we need to set up some notation.
We start with some notation. Given L ⊆ [n] and x ∈ {0, 1}[n]\L
define a restriction ρ := ρL,x ∈ {∗, 0, 1}n by ρi = ∗ if i ∈ L and
ρi = xi otherwise. We call the set L ≡ L(ρ) as the set of “live”
variables. For f : {0, 1}n → {0, 1}, and ρ ∈ {∗, 0, 1}n, define
fρ : {0, 1}L(ρ) → {0, 1} by fρ(y) = f(x), where xi = yi for i ∈ L(ρ)
and xi = ρi otherwise.

Given a distribution D on 2[n], let D (abusing notation, the
meaning will be clear from context) denote the distribution on
ρ ∈ {∗, 0, 1}n by setting ρ = ρL,x where L← D and x ∈u {0, 1}[n]\L.
Call a distributionD as above p-regular if for each i ∈ [n], PrL←D[i ∈
L] = p. Let Dp(n) (we omit n if clear from context) denote
the p-regular distribution on subsets L of [n] where each element
i ∈ [n] is present in L independently with probability p. For
f : {0, 1}n → {0, 1}, let DT(f) denote the minimum depth of a
decision tree computing f .

DNF Sparsification 23

Theorem 5.1 (Switching Lemma, H̊astad 1986). Let f : {0, 1}n →
{0, 1} be a DNF of width w and let ρ← Dp(n). Then,

Pr[DT(fρ) ≥ k] < (5pw)k.

There has been work on finding a derandomized version of the
switching lemma, motivated by better PRG constructions . Such
a lemma would choose the set of live variables in a pseudorandom
way, as in Ajtai & Wigderson (1985). One could even ask for a
stronger derandomization where the assignments to the non-live
variables are also chosen pseudorandomly, this is done in Gopalan
et al. (2012). We limit ourselves to the former case here.

Derandomized switching lemmas were first studied in the semi-
nal work of Ajtai & Wigderson (1985), with the aim of constructing
better PRGs for constant depth circuits.

Theorem 5.2. (Ajtai & Wigderson 1985) For all γ ∈ (0, 1], p <
1/nγ, there is a p-regular distribution D on 2[n] with L← D sam-
plable using Oγ(log n) random bits, and k = Oγ(1) such that for
ρ← D, and any polynomial size DNF f ,

Pr[fρ is not a k-junta] ≤ 1/poly(n).

A very recent result along these lines is due to the authors
together with Trevisan and Vadhan, which gives a near-optimal
derandomization in the special case of read-once DNFs Gopalan
et al. (2012). They use this to give near PRGs for read-once DNFs
with seed-length Õ(log n).

We remark that if instead of finding a small set of restrictions
that work for all formulas f , we are given the formula f as input,
Agrawal et al. (2001) give a polynomial-time algorithm to find a
restriction that simplifies the formula as well as the bounds given
by the switching lemma Theorem 5.1.

5.1. Our Result. We give a different argument that essentially
recovers the result of Ajtai and Wigderson and further gives a
trade-off between the survival probability p, the complexity of the
restricted function and the failure probability of the restriction.
Our argument is through repeated applications of Theorem 1.2
and it seems to us to be simpler than those of H̊astad (1986) and
Ajtai & Wigderson (1985).

24 Gopalan, Meka & Reingold

Theorem 5.3. There exists a constant C such that for any w, r, δ >
0 and all p such that

p ≤ δ

(w log(1/ε))C logw
,

there is a p-regular distribution D on 2[n] that can be sampled
efficiently using R random bits where

R(n, r, ε, δ) = O ((logw) · (log n+ r log((logw)/δ)) +

w log(w log(1/ε))) ,

the indicator events 1{i ∈ L} are p-biased and the following holds:
for any width w DNF f : {0, 1}n → {0, 1}, and ρ← D,

Pr[fρhas ε-sandwiching approximations in DNF(r, n)] ≥ 1− ε− δr/4

In particular, by setting δ = 1/nγ, r = Θ(1/γ), ε = 1/poly(n),
w = O(log n), we almost recover the derandomized switching lemma
of Ajtai and Wigderson, with the main difference being that we
need O((log n)(log log n)) bits to sample from D and we only get
fρ has sandwiching approximations by width Oγ(1) DNFs.

Our derandomization is based on the intuition that the switch-
ing lemma is easy to show when the number of terms in the original
DNF f is small. For instance, let f = ∨2wj=1Tj be a width w DNF.
Note that for 0 < p < 1, and ρ← Dp, the probability that a single
term Ti survives the restriction fρ (is not set to be a constant) is
at most

w∑
i=1

(
w

i

)
pi
(

(1− p)
2

)w−i
≤
(

1 + p

2

)w
.

In particular if p ≤ 1/w, the above probability is at most e/2w.
Thus, by linearity of expectation, the expected number of terms
that survive the restriction is at most O(1). Hence, by Markov’s
inequality, the restricted DNF fρ has very few surviving terms with
high probability. Further, as we are only using Markov’s inequality,
the above argument would work even if the restriction ρ is sampled
from a distribution where the choices for different variables are only
k-wise independent for k = O(w).

DNF Sparsification 25

We use Theorem 1.2 to reduce the case of arbitrary DNFs of
small-width to that of DNFs with a small number of terms and
then use an argument similar to the above. Unfortunately, the
bound in Theorem 1.2 is not sufficiently strong, so we need to
use somewhat stronger restrictions where the survival probability
is p = w−r for r ≥ 1. Such a restriction can be viewed as a
sequence of r rounds of random restrictions, keeping variables alive
with probability 1/w in each round. We argue that in each round,
the width of the formula decreases by 1/2 with high probability
and then iteratively apply the argument to the new width w/2
formulas. After O(logw) rounds, the width reduces to a constant.
This corresponds to a random restriction where the probability
of being alive is exp(−Ω(log2w)). Moreover, this argument works
even when the random restrictions only have limited independence,
yielding Theorem 5.3.

For k ≤ n, let Dp(k) denote the class of p-regular distributions
on 2[n] such that for L← D ∈ Dp(k), Pr[I ⊆ L] ≤ 2p|I| for all I ⊆
[n], |I| ≤ k. There exist explicit distributions D ∈ Dp(k) that can
be sampled using O(k log(1/p) + log n)-random bits. For instance,
one can use pk-almost k-wise independent p-biased variables from
(Naor & Naor 1993).

Claim 5.4. There exists a constant c < 1 such that the following
holds for all δ, ε > 0, 0 < r ≤ w and

p ≤ p(w, r) :=
cδr/2w

(w3 log(1/ε))2

For any width w DNF f : {0, 1}n → {0, 1} and ρ ← D ∈ Dp(w),
with probability at least 1 − δr/4 − ε there exist width w/2 DNFs
f `ρ, f

u
ρ : {0, 1}Lρ → {0, 1} that are ε-sandwiching approximators for

fρ.

Proof of Claim 5.4. Let f `, fu be width w DNFs with at
most h(w) = w3w(C log(1/ε))w terms that are ε2/2-sandwiching
approximators for f as guaranteed by Theorem 1.2 for C a large
constant. Consider a random restriction ρ sampled from a dis-
tribution in Dp(w/2). Then, the probability that a fixed term of
f ` has more than w/2 live variables under ρ is at most 2w · pw/2.

26 Gopalan, Meka & Reingold

Therefore, by a union bound, the probability that f `ρ has width

more than w/2 is at most h(w)2wpw/2 < δr/4/2 for a sufficiently
small constant c. Similarly, the probability that fuρ has width more

than w/2 is at most δr/4/2.
Note that as f ` ≤ f ≤ fu, f `ρ ≤ fρ ≤ fuρ . We now need to show

that f `ρ, f
u
ρ are close to fρ with high probability. Let ρ ≡ ρL,x and

consider a fixing of the set of live variables L. Then as f `, fu are
ε2/2-sadwiching approximators for f ,

E
x∈{0,1}[n]\L

[Sat(fρ)] = Sat(f)

≤ Sat(f `) +
ε2

2

= E
x∈{0,1}[n]\L

[Sat(f `ρ)] +
ε2

2
.

Therefore,

E
x∈{0,1}[n]\L

[Sat(fρ)− Sat(f `ρ)] ≤
ε2

2
.

Thus, by Markov’s inequality,

Pr
x∈{0,1}[n]\L

[Sat(fρ)− Sat(f `ρ) ≥ ε] ≤ ε

2
.

Using a similar argument to fu, and a union bound, we get that fρ
is ε-sandwiched by (f `ρ, f

u
ρ) with probability at least 1− δr/4− ε. �

We now prove Theorem 5.3.

Proof of Theorem 5.3. Let t be such that w/2t = r (we ig-
nore the minor technicality of t being non-integral) and for i =
1, . . . , t, let pi = p(w/2i, r) as defined in the above claim. For
i ∈ [t], let Li be chosen independently from a distribution in
Dpi(w/2i). Let L = ∩ti=1Li and for x ∈u {0, 1}n, let ρ = ρL,x.
Then, ρ is a q-regular random restriction with

q =
t∏
i=1

pi ≥
clogw · δ

∑t
i=1 r2

i/2w

(w3 log(1/ε))2 logw
>

δ

(w log(1/ε))C logw
,

DNF Sparsification 27

for C a sufficiently large constant.

Define the composition of two restrictions ρ′ ∈ {∗, 0, 1}L and
ρ′′ ∈ {∗, 0, 1}L(ρ′) in the natural way by (ρ′ ◦ ρ′′)i = ρ′′i if i ∈ L(ρ′)
and (ρ′ ◦ ρ′′)i = ρ′i otherwise. Then, by definition, we can view
ρ as a composition of independently chosen random restrictions
ρt ◦ ρt−1 ◦ · · · ◦ ρ1, where ρj ≡ ρLj ,xj (with xj ∈u {0, 1}n). Further,
for any function g, gρ ≡ (((gρ1)ρ2)···)ρt .

Therefore, by iteratively applying the Claim 5.4 t times with the
random restrictions ρ1, . . . , ρt and a union bound, we get that with
probability at least 1−t(δr/4+ε), there exists a lower approximating
DNF f ` : {0, 1}L → {0, 1} of width at most w/2t+1 such that f ` ≤
fρ and Sat(fρ)−Sat(f `) < tε. Similarly, by iteratively applying the
claim to the upper approximators given by the claim, we get that
with probability at least 1 − 2t(δr/4 + ε), fρ has (tε)-sandwiching
approximators that are width-r DNFs.

Finally, the number of bits needed to sample L is

R(n, r, ε, δ) =
t∑

v=1

O
(w

2v
· log(1/p(w/2v, r)) + log n

)
= O ((log n)(logw)) +

t∑
v=1

w

2v

(
r2v

2w
O (log(1/δ)) +O (log(w log(1/ε)))

)
= O ((logw) · (log n+ r log(1/δ)) + w log (w log(1/ε))) .

The theorem now follows from applying the above argument to
δ′ = δ/2t, ε′ = ε/t and noting that t ≤ logw. �

6. Open Problems

A natural open question is to show optimal bounds for DNF spar-
sification. We believe this question is interesting of its own right,
even without the sandwiching requirement. Formally, let m(w, ε)
be the smallest integer such that every width-w DNF formula can
be ε-approximated by a width-w DNF with m terms. Theorem 1.2
shows that m(w, ε) ≤ O(w log(1/ε)O(w)). It is conceivable that the
right bound is exponential in w. We pose this as a conjecture:

28 Gopalan, Meka & Reingold

Conjecture 6.1. (Weaker Version) There exists a function
c(ε) such that

m(w, ε) ≤ O(c(ε)w).

(Stronger Version) There exists a constant c such that

m(w, ε) ≤ O(log(1/ε)cw).

The weaker version, if true, will imply that log(n) width DNFs
can be ε-approxmiated by nOε(1) size DNFs for any constant ε.
Currently Theorem 1.2 gives the weaker bound of

m(log(n), ε) ≤ nO(log log(n) log log(1/ε)).

The stronger version, if true, will strengthen Freidgut’s theorem
in the context of DNFs (see the discussion folowing Corollary 1.3).

Mansour’s Conjecture. Conjecture 6.1 is similar in spirit to
Mansour’s conjecture which also asserts that DNF formulas admit
concise representations, but in the Fourier domain. It also implies
reductions between the conjecture for small width DNFs and small-
size DNFs.

We say that f : {0, 1}n → {0, 1} has a t-sparse ε-approximation
if there exists p : {0, 1}n → R with at most t non-zero Fourier
coefficients such that

Pr
x∈{0,1}n

[
(f(x)− p(x))2

]
≤ ε.

Conjecture 6.2. (Mansour’s Conjecture for size) (Mansour 1994)
(Weaker version) There exists a function c(ε) such that every
DNF of size m has an mc(ε)-sparse ε-approximation.
(Stronger version) Every DNF of size m has an mO(log(1/ε))-sparse
ε-approximation.

Mansour originally stated the stronger version of the conjecture,
the weaker version appears in (O’Donnell 2012b). The following
analogue of Mansour’s conjecture for small width suggests itself.
To our knowledge, this conjecture has not appeared explicitly in
the literature.

DNF Sparsification 29

Conjecture 6.3. (Mansour’s conjecture for width)

(Weaker version) There exists a function c(ε) such that every
DNF of width w has an 2c(ε)w-sparse ε-approximation.

(Stronger version) Every DNF of width w has an 2O(w log(1/ε))-
sparse ε-approximation.

The best known bounds for both size and width are due to Man-
sour, who shows that every DNF of width w has an wO(w log(1/ε))-
sparse ε-approximation and then derives a bound for size using
w = O(log(m/ε)) (Mansour 1995).

We feel that this width analogue of Mansour’s Conjecture is
natural; indeed most results on DNFs proceed by first tackling the
width-w case, and then translating it to DNFs of size m using
w ≤ log(m/ε) (H̊astad 1986; Linial et al. 1993; Mansour 1995).
This substitution also shows that

◦ The weaker version of Mansour’s Conjecture for width im-
plies the weaker version of Mansour’s Conjecture for size.

◦ The stronger version of Mansour’s Conjecture for width im-
plies the stronger version of Conjecture for size, as long as
ε ≥ 1/poly(m).

Conjecture 6.1 implies the reverse equivalence.

Lemma 6.4. ◦ Aussme the stronger version of Conjecture 6.1.
Then the stronger version of Mansour’s Conjecture for size
implies that every width w DNF formula has a 2O(w log(1/ε) log log(1/ε))-
sparse ε-approximation.

◦ Assume the weaker version of Conjecture 6.1. Then the
weaker version of Mansour’s Conjecture for size implies the
weaker version of Mansour’s Conjecture for width.

Note that if we replace Conjecture 6.1 with Theorem 1.2, this
does not improve on the bound from Mansour (1995). So in this
context, the improved dependence on w in Conjecture 6.1 is crucial.

30 Gopalan, Meka & Reingold

Sparsification using the Greedy Algorithm. A natural ap-
proach to sparsifying a DNF formula f is to view it as a set-covering
problem, where we wish to cover f−1(1) ⊆ {0, 1}n by width w
terms. One could use the greedy algorithm in the hope that it
constructs a sparse cover. It woule be interesting to analyze its
performance. In this direction, Jan Vondrak has pointed out that
one can use the analysis of greedy set cover to argue that if there
is a lower sandwiching DNF formula of size m`(w, ε) which is ε-
close to f , then greedy returns a 2ε approximation of size at most
m`(w, ε) ln(1/ε) (Vondrak 2012).

Deterministic DNF counting. The question of finding a deter-
ministic polynomial time algorithm for approximate DNF count-
ing remains open. One approach towards this goal would be to
construct pseudorandom generators for DNFs formulas with seed-
length O(log(n) + log(m) + log(1/ε)). Such constructions are cur-
rently not known even for read-once DNFs. A recent result by the
Trevisan, Vadhan and the authors gets a seed-length of Õ(log(n)+
log(1/ε)) in the read-once case (Gopalan et al. 2012).

Acknowledgements

We thank Oded Goldreich, Adam Klivans, Ryan O’Donnell, Rocco
Servedio, Avi Wigderson and David Zuckerman for valuable com-
ments and discussions. We thank Rocco Servedio for drawing our
attention to Friedgut’s theorem in this context.

References

Manindra Agrawal, Eric Allender, Russell Impagliazzo, To-
niann Pitassi & Steven Rudich (2001). Reducing the complexity of
reductions. Computational Complexity 10(2), 117–138.

Miklos Ajtai (1983). Σ2
1-formula on finite structures. Ann. Pure.

Appl. Logic 24, 1–48.

Miklós Ajtai & Avi Wigderson (1985). Deterministic Simulation of
Probabilistic Constant Depth Circuits (Preliminary Version). In FOCS,
11–19.

DNF Sparsification 31

N. Alon & J.H. Spencer (2011). The Probabilistic Method. Wiley
Series in Discrete Mathematics and Optimization. John Wiley & Sons.
ISBN 9781118210444.

Kazuyuki Amano (2011). Tight Bounds on the Average Sensitivity
of k-CNF. Theory of Computing 7(1), 45–48.

Louay M. J. Bazzi (2009). Polylogarithmic Independence Can Fool
DNF Formulas. SIAM J. Comput. 38(6), 2220–2272.

I. Benjamini, O. Gurel-Gurevich & R. Peled (2007). On K-
wise Independent Distributions and Boolean Functions. Available at
http://www.wisdom.weizmann.ac.il/ origurel/.

Mark Braverman (2010). Polylogarithmic independence fools AC0

circuits. J. ACM 57(5).

Anindya De, Omid Etesami, Luca Trevisan & Madhur Tulsiani
(2010). Improved Pseudorandom Generators for Depth 2 Circuits. In
APPROX-RANDOM, 504–517.

P. Erdős & R. Rado (1960). Intersection Theorems for Systems of
Sets. Journal of the London Mathematical Society s1-35(1), 85–90.

Ehud Friedgut (1998). Boolean Functions With Low Average Sensi-
tivity Depend On Few Coordinates. Combinatorica 18(1), 27–35.

Merrick L. Furst, James B. Saxe & Michael Sipser (1984). Par-
ity, Circuits, and the Polynomial-Time Hierarchy. Mathematical Sys-
tems Theory 17(1), 13–27.

Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Tre-
visan & Salil Vadhan (2012). Better Pseudoranom Generators from
Milder Pseudorandom Restrictions. In FOCS.

Johan Håstad (1986). Almost Optimal Lower Bounds for Small Depth
Circuits. In STOC, 6–20.

S. Jukna (2001). Extremal Combinatorics: With Applications in Com-
puter Science. Texts in Theoretical Computer Science. Springer. ISBN
9783540663133.

Richard M. Karp & Michael Luby (1983). Monte-Carlo Algorithms
for Enumeration and Reliability Problems. In FOCS, 56–64.

32 Gopalan, Meka & Reingold

Richard M. Karp, Michael Luby & Neal Madras (1989). Monte-
Carlo Approximation Algorithms for Enumeration Problems. J. Algo-
rithms 10(3), 429–448.

N. Linial, Y. Mansour & N. Nisan (1993). Constant depth circuits,
Fourier transform and learnability. Journal of the ACM 40(3), 607–620.

N. Linial & N. Nisan (1990). Approximate inclusion-exclusion. Com-
binatorica 10, 349–365.

Michael Luby & Boban Velickovic (1991). On Deterministic Ap-
proximation of DNF. In STOC, 430–438.

Michael Luby & Boban Velickovic (1996). On Deterministic Ap-
proximation of DNF. Algorithmica 16(4/5), 415–433.

Michael Luby, Boban Velickovic & Avi Wigderson (1993). De-
terministic Approximate Counting of Depth-2 Circuits. In ISTCS, 18–
24.

Y. Mansour (1994). Learning Boolean functions via the Fourier trans-
form, 391–424. Kluwer Academic Publishers.

Y. Mansour (1995). An O(nlog logn) learning algorithm for DNF under
the uniform distribution. Journal of Computer and System Sciences 50,
543–550.

Joseph Naor & Moni Naor (1993). Small-Bias Probability Spaces:
Efficient Constructions and Applications. SIAM J. Comput. 22(4), 838–
856.

Noam Nisan (1991). Pseudorandom bits for constant depth circuits.
Combinatorica 11(1), 63–70.

Noam Nisan & Avi Wigderson (1994). Hardness vs Randomness. J.
Comput. Syst. Sci. 49(2), 149–167.

Ryan O’Donnell (2012a). Analysis of Boolean functions.
http://analysisofbooleanfunctions.org.

Ryan O’Donnell (2012b). Open Problems in Analysis of Boolean
Functions. CoRR abs/1204.6447.

DNF Sparsification 33

Alexander A. Razborov (2009). A Simple Proof of Bazzi’s Theorem.
TOCT 1(1).

Benjamin Rossman (2010). The Monotone Complexity of k-clique on
Random Graphs. In FOCS, 193–201.

Luca Trevisan (2004). A Note on Approximate Counting for k-DNF.
In APPROX-RANDOM, 417–426.

L.G. Valiant (1979). The complexity of computing the permanent.
Theoretical Computer Science 8(2), 189 – 201.

Jan Vondrak (2012). Personal communication.

Andrew C. Yao (1985). Separating the Polynomial-Time Hierarchy
by Oracles (Preliminary Version). In FOCS, 1–10.

A. Proofs from Section 2

We first show that Lemma 2.6 is equivalent to Lemma A.2 below
from Rossman (2010).

Definition A.1. (Rossman 2010) Let F be a family of sets over
a universe U and let Y = ∩T∈FS. Call F a δ-sunflower if for a
random set W ⊆ U , with each element of U present in W inde-
pendently with probability 1/2,

Pr[∃T ∈ F , (T \ Y) ∩W = ∅] ≥ 1− δ.

Lemma A.2. (Rossman 2010) Let F be a family of sets over a
universe U each of size at most w. If |F| > w! · (2.47 log(1/δ))w,
then F contains a δ-sunflower.

Proof of Lemma 2.6. As f is unate, without loss of generality
suppose that f is monotone. Let U = [n] and F = {Ti : 1 ≤
i ≤ m}. By the above lemma, there exists a δ-sunflower F ′ =
{Ti1 , . . . , Tis} for

γ = µ(m/w!)1/w where µ =
1

21/2.47
.

34 Gopalan, Meka & Reingold

We claim that the lemma holds for the terms in F ′ and Y =
∩sj=1Tij . Let x ∈u {0, 1}n and let W = {i : xi = 0}. Then, each
element of U is present in W independently with probability 1/2.
Therefore, as F ′ is a δ-sunflower

Pr
x

[∨cj=1(Tij \ Y) = 1] = Pr
W

[∃T ∈ F ′, (T \ Y) ∩W = ∅] ≥ 1− δ.

Thus, F ′ is a ln(1/δ)-quasi-sunflower in the sense of Definition 2.5.
The lemma now follows as ln(1/δ) = (m/w!)1/w · ln(21/2.47) ≥
(m/w!)1/w/5. �

We next show Fact 2.12.

Proof of Fact 2.12. From the definition of γ() from Equa-
tion (2.7), it is easy to check that γ(j/2w) ≥ j1/w/10w. We shall
also use the following inequality that follows from partial integra-
tion: for any θ ≥ k ≥ 0,

(A.3)

∫ ∞
θ

xke−xdx =
k∑
i=0

(
k

i

)
· (i!) ·

(
θk−ie−θ

)
≤ (k + 1)θk · e−θ.

Therefore, for θ = W 1/w/10w,

∞∑
j=W+1

e−γ(j/2
w) ≤

∞∑
j=W+1

e−(j1/w/10w) ≤
∫ ∞
W

e−(x1/w/10w) dx

= 10w2 · (10w)w−1 ·
∫ ∞
θ

yw−1 · e−ydy (substituting y ≡ x1/w/10w)

≤ 10w2 · (10w)w−1 · w · θw−1e−θ (by Equation (A.3))

≤ 10w3 ·W · exp(−10w2 log(1/ε))

= exp
(
log(10w3) + w log 2 + 3w logw + w log(50 log(1/ε))

−10w2 log(1/ε)
)

< exp(− log(1/ε)) = ε,

where the last inequality can be checked numerically for w ≥ 1 and
ε ≤ 1/4. �

DNF Sparsification 35

B. Proofs from Section Section 4

In this section, we prove the two Lemmas from Luby & Velickovic
(1996) that are used in our analysis. We restate them here for the
reader’s convenience.

Lemma B.1. (Lemma 4.4 Restated) We have

∀h ∈ H, Sat(fh) ≤ Sat(f),

E
h∈H

[Sat(fh)] ≥ Sat(fh)− ε.

Proof. As fh is obtained by dropping terms in f , we have
fh(x) ≤ f(x) ∀x ∈ {0, 1}n, so Sat(fh) ≤ Sat(f). This also im-
plies that

Sat(fh) =
1

2n

 ∑
x∈f−1(1)

fh(x)

 .(B.2)

Taking expectation over h, we have

Pr
h∈H

[Sat(fh)] =
1

2n

 ∑
x∈f−1(1)

Pr
h∈H

[fh(x)]

 .(B.3)

Fix an x ∈ f−1(1) and a term Ti of f that it satisfies. If Ti is
included in fh, which happens unless Ti is bad for h, then fh(x) = 1.
By Lemma 4.3 and a union bound,

Pr
h∈H

[Ti is bad for h] ≤ t · 2−k ≤ ε

w
· w
k
≤ ε.

Hence we have

Pr
h∈H

[fh(x)] ≥ 1− ε.

Plugging this into Equation (B.3) gives

Pr
h∈H

[Sat(fh)] ≥
1

2n

 ∑
x∈f−1(1)

(1− ε)

 = (1− ε) |f
−1(1)|
2n

=

(1− ε)Sat(f).

�

36 Gopalan, Meka & Reingold

Lemma B.4. (Lemma 4.5 restated) We have

|ph − Sat(fh)| ≤ ε.

Proof. Let D0 be the uniform distribution over {0, 1}n. For
j ∈ [t], let Dj be the distribution obtained from Dj−1 by replacing
the uniform distribution on variables in bucket Bj with an inde-
pendent copy of output of the generator G. Thus Dt is the output
distribution of Gh.

We claim that for j ∈ [t],∣∣∣∣ Pr
x∈Dj−1

[fh(x) = 1]− Pr
x∈Dj

[fh(x) = 1]

∣∣∣∣ ≤ δ.(B.5)

Since Dj−1 and Dj differ only on the distribution over bucket Bj,
we first sample assignments for the other buckets. The resulting
formula on the variables in Bj is a DNF with width at most w′.
Hence it is δ-fooled by G, which gives Equation (B.5).

We now have

|Sat(fh)− ph| =
∣∣∣∣ Prx∈D0

[fh(x)]− Pr
x∈Dt

[fh(x)]

∣∣∣∣
≤

t∑
j=1

∣∣∣∣ Pr
x∈Dj−1

[fh(x)]− Pr
x∈Dj

[fh(x)]

∣∣∣∣
≤ tδ

≤ ε.

�

Parikshit Gopalan
Microsoft Research Silicon Valley
Mountain View CA 94043, USA
parik@microsoft.com

Raghu Meka
Institute for Advanced Study
Princeton NJ 80054, USA
raghu@ias.edu

Omer Reingold
Microsoft Research Silicon Valley
Mountain View CA 94043, USA
Omer.Reingold@microsoft.com

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

