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Abstract. Let M be a bridgeless matroid on ground set {1, . . . , n} and
fM : {0, 1}n → {0, 1} be the indicator function of its independent sets. A
folklore fact is that fM is evasive, i.e., D(fM) = n where D(f) denotes
the deterministic decision tree complexity of f. Here we prove query
complexity lower bounds for fM in three stronger query models: (a)
D⊕(fM) = Ω(n), where D⊕(f) denotes the parity decision tree com-
plexity of f ; (b) R(fM) = Ω(n/ logn), where R(f) denotes the bounded
error randomized decision tree complexity of f ; and (c) Q(fM) = Ω(

√
n),

where Q(f) denotes the bounded error quantum query complexity of f.

To prove (a) we propose a method to lower bound the sparsity of a
Boolean function by upper bounding its partition size. Our method yields
a new application of a somewhat surprising result of Gopalan et al. [11]
that connects the sparsity to the granularity of the function. As another
application of our method, we confirm the Log-rank Conjecture for XOR
functions [27] for a fairly large class of AC0- XOR functions.

To prove (b) and (c) we relate the ear decomposition of matroids to the
critical inputs of appropriate tribe functions and then use the existing
randomized and quantum lower bounds for these functions.
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1 Introduction

1.1 Decision tree models

The decision tree or query model of computing is perhaps one of the simplest
models of computation. Due to its fundamental nature, it has been extensively
studied over last few decades; yet it remains far from being completely under-
stood.

Fix a Boolean function f : {0, 1}n → {0, 1}. A deterministic decision tree Df

for f takes x = (x1, . . . , xn) as an input and determines the value of f(x1, . . . , xn)
using queries of the form “ is xi = 1? ”. Let C(Df , x) denote the cost of the
computation, that is the number of queries made by Df on input x. The deter-
ministic decision tree complexity of f is defined as D(f) = minDf maxx C(Df , x).
A bounded error randomized decision tree Rf is a probability distribution over
all deterministic decision trees such that for every input, the expected error of the
algorithm is bounded by some fixed constant less than 1/2. The cost C(Rf , x)
is the highest possible number of queries made by Rf on x, and the bounded
error randomized decision tree complexity of f is R(f) = minRf maxx C(Rf , x).
A bounded error quantum decision tree Qf is a sequence of unitary operators,
some of which depends on the input string. Broadly speaking, the cost C(Qf , x)
is the number of unitary operators (quantum queries) which depend on x. The
bounded error quantum query complexity of f is Q(f) = minQf maxx C(Qf , x),
where the minimum is taken over all quantum decision trees computing f . For a
more precise definition we refer the reader to the excellent survey by Buhrman
and de Wolf [8].

A natural theme in the study of decision trees is to understand and exploit the
structure within f in order to prove strong lower bounds on its query complexity.
A classic example is the study of non-trivial monotone graph properties. In the
deterministic case it is known [23] that any such f of n vertex graphs has
complexity Ω(n2), and a famous conjecture [15] asserts that it is evasive, that
is of maximal complexity, D(f) =

(
n
2

)
. In the randomized case the best lower

bound (up to some polylogarithmic factor) is Ω(n4/3), and it is widely believed
that in fact R(f) = Ω(n2). In both models of computation, the structure that
makes the complexity high is monotonicity and symmetry.

In this paper we study the decision tree complexity of another structured
class, called matroidal Boolean functions, which arise from matroids. They form
a subclass of monotone Boolean functions. These are the indicator functions of
the independent sets of matroids. The matroidal Boolean functions inherit the
rich combinatorial structure from matroids. Naturally, one may ask: what effect
does this structure have on the decision tree complexity? It is a folklore fact that
(modulo some degeneracies) such functions are evasive. Our main results in this
paper are query complexity lower bounds for such functions in three stronger
query models, namely: parity decision trees, bounded error randomized decision
trees, and bounded error quantum decision trees. We give here a brief overview
of the relatively less known model of parity decision trees.
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A parity decision tree may query “ is
∑
i∈S xi ≡ 1 (mod 2)? ” for an arbitrary

subset S ⊆ [n]. We call such queries parity queries. For a parity decision tree Pf
for f, let C(Pf , x) denote the number of parity queries made by Pf on input x.
The parity decision tree complexity of f is

D⊕(f) = minPf maxx C(Pf , x).
Note that D⊕(f) ≤ D(f) as “ is xi = 1? ” can be treated as a parity query.

Parity decision trees were introduced by Kushilevitz and Mansour [18] in the
context of learning Boolean functions by estimating their Fourier coefficients.
The sparsity of a Boolean function f , denoted by ||f̂ ||0, is the number of its
non-zero Fourier coefficients. It turns out that the logarithm of the sparsity is
a lower bound on D⊕(f) [18, 24, 20]. Thus having a small depth parity decision
tree implies only small number of Fourier coefficients to estimate.

Parity decision trees came into light recently in an entirely different context,
namely in investigations of the communication complexity of XOR functions. Shi
and Zhang [24] and Montanaro and Osborne [20] have observed that the deter-
ministic communication complexity DC(f⊕) of computing f(x⊕y), when x and
y are distributed between the two parties, is upper bounded by D⊕(f). They
have also both conjectured that for some positive constant c, every Boolean
function f satisfies D⊕(f) = O((log ||f̂ ||0)c). Settling this conjecture in affir-
mative would confirm the famous Log-rank Conjecture in the important special
case of XOR functions. Montanaro and Osborne [20] showed that for a monotone

Boolean function D⊕(f) = O((log ||f̂ ||0)2), and conjectured that actually c = 1.

1.2 Our results and techniques

In this paper [n] := {1, . . . , n}. Let M be a matroid on ground set [n] and fM
be the indicator function of the independent sets of M. We refer the reader
to Section 2 for relevant definitions. We describe now our lower bounds in the
three computational model. We think that the most interesting case is the parity
decision tree model since it brings together quite a few ideas.

Fourier spectrum of matroids is dense

Our main technical result is that the Fourier spectrum of matroidal Boolean
functions is dense.

Theorem 1. If M is a bridgeless matroid on ground set [n] then

log ||f̂M||0 = Ω(n).

An immediate corollary of this result is the lower bound on the parity decision
tree complexity.

Corollary 1. If M is a bridgeless matroid on ground set [n] then

D⊕(fM) = Ω(n).
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Another corollary of the theorem is that Q∗(f(x ⊕ y)), the quantum commu-
nication complexity of f(x ⊕ y) in the exact computation model with shared
entanglement is maximal. Indeed, Buhrman and de Wolf [7] have shown that,
up to a factor of 2, it is bounded from below by the logarithm of the rank of the
communication matrix f(x⊕ y). Since Shi and Zhang have proven [27] that the

rank of the communication matrix is exactly ||f̂ ||0, the corollary indeed follows
from Theorem 1.

Corollary 2. If M is a bridgeless matroid then Q∗(fM(x⊕ y)) = Ω(n).

To prove Theorem 1 we bring together various concepts and ideas from sev-
eral not obviously related areas. The first part of our proof which relates partition
size to Fourier spectrum is actually valid for any Boolean function. Our main
ingredient is a relation (Proposition 3) stating that a small Euler characteris-
tic implies that the sparsity of the function is high, that is the number of its
non-zero Fourier coefficients is large. To prove this we use a recent result of
Gopalan et. al. [11] (originated in the context of property testing) that crucially
uses the Boolean-ness to connect the sparsity to the granularity - the smallest k
such that all Fourier coefficients are multiple od 1/2k. Our second ingredient is
to show (Lemma 2) that the Euler characteristic can be bounded by the parti-
tion size of the Boolean function. Finally to make this strategy work, we need to
choose an appropriate restriction of the function so that the Euler characteristic
of the restriction is non-zero.

When the rank of the matroid is small, the proof of Theorem 1 is in fact
relatively easy. To conclude the proof when the rank is large we use a powerful
theorem of Björner [4] which bounds the partition size of a matroidal Boolean
function by the number of maximum independent sets.

In fact, the same method can be used to lower bound the sparsity of another
large subclass of (not necessarily monotone) Boolean functions, namely the AC0

functions. The formal statement, analogous to Theorem 1 is the following:

Theorem 2. If f : {0, 1}n → {0, 1} has a circuit of depth d and size m then

log ||f̂ ||0 = Ω(deg(f)/(logm+ d log d)d−1).

We would like to point out that the upper bound on the partition size for the
class of AC0 functions is highly non-trivial result(cf. [13]), whose proof relies
crucially on the Switching Lemma.

Theorems 2 has an interesting corollary that the Log-rank conjecture holds
forAC0 XOR-functions. Indeed, as we have explained already, wheneverD⊕(f) =

O((log ||f̂ ||0)c), the Log-rank conjecture holds for f⊕. Obviously D⊕(f) ≤ D(f),
and its is known [21] that D(f) = deg(f)O(1). Therefore we have

Corollary 3. Let Mf be the communication matrix of f⊕. If f : {0, 1}n →
{0, 1} is in AC0 then

DC(f⊕) ≤ (log rk(Mf ))O(1).



Query complexity of matroids 5

In the light of our theorem on matroids, we raise the following basic and
intriguing question: does every monotone Boolean function have dense Fourier
spectrum? In other words, is it true that for every monotone Boolean function
f on n variables, we have: log ||f̂ ||0 = Ω̃(deg(f))? Here, the Ω̃ notation hides
multiplicative poly-logarithmic factor.

Randomized and quantum query complexity

We obtain a nearly optimal lower bound on the randomized query complexity
of matroids.

Theorem 3. If M is a bridgeless matroid on ground set [n] then

R(fM) = Ω(n/ log n).

It is widely conjectured that for every total Boolean function f , the relation
D(f) = O(Q(f)2) holds (Conjecture 1 in [1]). Barnum and Saks (Theorem 2 in
[1]) confirm this conjecture for AND-OR read-once formulae, and we are able to
extend their result to read-once formulae over matroids.

Theorem 4. If f : {0, 1}n → {0, 1} is a read-once formula over matroids then

Q(f) = Ω(
√
n).

Our simple but crucial observation for proving lower bounds for randomized
and quantum query complexity is that for any matroidal Boolean function f,
one can associate, via the ear decomposition of matroids, a tribe function g such
that f matches with g on all critical inputs. The lower bounds then follow from
the partition bound for tribe functions obtained by Jain and Klauck [14] and the
adversary bound for AND-OR read-once formulae by Barnum and Saks [1]. Our
main contribution here is observing that certain lower bound methods for tribe
functions generalize for the larger class of matroidal Boolean functions.

2 Preliminaries

2.1 Matroids and matroidal Boolean functions

Definition 1 (Matroid). Let E be a finite set. A collection M⊆ 2E is called
a matroid if it satisfies the following properties:
(1) (non-emptiness) ∅ ∈ M;
(2) (hereditary property) if A ∈M and B ⊆ A then B ∈M;
(3) (augmentation property) if A,B ∈ M and |A| > |B| then there exists x ∈
A\B such that x ∪B ∈M.

We call E the ground set of M. The members of M are called independent
sets ofM. If A /∈M then A is called dependent with respect toM. A circuit in
M is a minimal dependent set. For A ⊆ E, the rank of A with respect to M is
defined as follows:

rk(A,M) := max{|B| | B ⊆ A and B ∈M}.

The rank or dimension ofM, denoted by rk(M), is defined to be the rank of E
with respect to M.
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Examples of matroid

(1) Let E = [n] := {1, . . . , n}. For each 0 ≤ r ≤ n one can define Mn,r := {A ⊆
E | |A| ≤ r}. This gives a matroid of dimension r.

(2) Fix a graph G = (V,E). Let M := {A ⊆ E | A is acyclic}. If G has c
connected components then this gives a matroid of dimension n− c.
(3) Let v1, . . . , vn be n vectors in a vector space. LetM := {A ⊆ [n] | the vectors {vi |
i ∈ A} are linearly independent}. In particular, if vi are the column vectors of
some matrix M then this gives a matroid of dimension equal to the column rank
of M.

(4) Fix a graph G = (V,E). Let V be the ground set of M. Define S ⊆ V to be
independent iff there is a matching in G that saturates all the vertices in S. This
gives a matroid with rank equal to twice the cardinality of maximum matching
in the graph.

Boolean function associated to matroid

A matroid M on ground set E can be identified with a Boolean function fM :
{0, 1}|E| → {0, 1} as follows: first identify x ∈ {0, 1}|E| with a subset S(x) :=
{e ∈ E | xe = 1} of E; now let fM(x) := 0 ⇐⇒ S(x) ∈M.

A function f : {0, 1}n → {0, 1} is said to be monotone increasing if:

(∀x, y ∈ {0, 1}n)(x ≤ y =⇒ f(x) ≤ f(y)),

where x ≤ y if for every i ∈ [n] := {1, . . . , n} we have xi ≤ yi. The hereditary
property of M translates to fM being monotone.

We call a Boolean function f matroidal if there exists a matroidM such that
f ≡ fM. Examples: AND, OR, MAJORITY, ∨ki=1 ∧`i=1 xij .

An element e ∈ E is called a bridge inM if e does not belong to any circuit of
M. If e is a bridge inM then the corresponding variable xe of fM is irrelevant,
i.e., the function fM does not depend on the value of xe. Thus, for the purpose
of query complexity, we can delete all the bridges and focus our attention on
bridgeless matroids.

Ear decomposition of bridgeless matroids

Let M be a matroid on ground set E. Let T ⊆ E. The contraction of M by T,
denoted by M/T , is a matroid on the ground set E − T defined as follows:

M/T := {A ⊆ E − T | rk(A ∪ T,M) = |A|+ rk(T,M)}.

Definition 2 (Ear Decomposition [26]). A sequence (C1, . . . , Ck) of circuits
of M is called an ear decomposition of M if:
(1) Li := Ci −

⋃
j<i Cj is non-empty and

(2) Li is a circuit in M/
⋃
j<i Cj .
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For i = 1, . . . , k, the sets Li are called lobes. An ear decomposition is complete
if
⋃k
i=1 Li = E. Every bridgeless matroid admits a complete ear decomposi-

tion [10]. We identify complete ear decompositions with their lobe partition

E =
⋃k
i=1 Li. For our randomized and quantum lower bounds we will crucially

use the following proposition

Proposition 1. Let M be a bridgeless matroid on ground set E and let E =⋃k
i=1 Li be a complete ear decomposition of M. Let e1, . . . , ek ∈ E such that

ei ∈ Li and L′i := Li−{ei}. Then
⋃k
i=1 L

′
i is a maximum independent set of M.

Proof. For r = 1, . . . , k, let Er :=
⋃r
i=1 Li and E′r :=

⋃r
i=1 L

′
i. We prove the

predicate Pr ∧P ′r by induction on r, where Pr : rk(Er,M) =
∑r
i=1(|Li|−1) and

P ′r : rk(E′r,M) =
∑r
i=1(|Li| − 1).

This implies that rk(E,M) = rk(E′k,M) = |E′k|, and therefore we conclude
that E′k must be a maximum independent set of M.

Base Case: Since E1 = L1 = C1, which is a minimal dependent set inM, we
have that P1 and P ′1 holds.

Inductive Hypothesis: Let us assume that Pr−1 and P ′r−1 holds.
Inductive Step: We will prove that Pr and P ′r holds.
First we prove that Pr holds:

It follows immedietely from the definition of contraction that:

rk(A ∪ T,M) = rk(A,M/T ) + rk(T,M). (1)

From Equation 1 we have:

rk(Er,M) = rk(Lr,M/Er−1) + rk(Er−1,M).

Since Lr is a circuit in M/Er−1 we have:

rk(Lr,M/Er−1) = |Lr| − 1

and by inductive hypothesis (Pr−1) we have:

rk(Er−1,M) =

r−1∑
i=1

(|Li| − 1).

Hence Pr holds.
Now we prove that P ′r holds:

From Equation 1 we have:

rk(E′r,M) = rk(L′r,M/E′r−1) + rk(E′r−1,M).

By inductive hypothesis (Pr−1 ∧ P ′r−1) we have:

rk(E′r−1,M) = rk(Er−1,M).
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We will prove that:

claim: rk(L′r,M/E′r−1) = rk(L′r,M/Er−1).

This would imply that rk(E′r,M) = rk(Er,M). Together with Pr we can
then conclude that P ′r holds.

Proof of the claim: Since rank is monotone and E′r ⊆ Er, we have:

rk(L′r ∪ E′r−1,M) ≤ rk(L′r ∪ Er−1,M).

Thus:

rk(L′r,M/E′r−1) ≤ rk(L′r ∪ Er−1,M)− rk(Er−1,M) = rk(L′r,M/Er−1).

On the other hand we have:

rk(L′r,M/E′r−1) ≥ rk(L′r,M/Er−1).

This is because if B is independent in M/T then it is also independent in
M/T ′ for any T ′ ⊆ T.

Thus we have: rk(L′r,M/E′r−1) = rk(L′r,M/Er−1).
2

2.2 Read-once formulae

Let F be a family of Boolean functions. A read-once formula over F is a Boolean
function represented by a rooted tree whose internal nodes are labeled by mem-
bers of F , and whose leaves are labelled by distinct variables. The inputs to each
function are the outputs of its children.

If F = {∧n,∨n : n ∈ N} then we get the (unbounded fan-in) AND-OR read-

once formulae. Given a complete ear decomposition
⋃k
i=1 Li = E of a matroid,

we associate to it the AND-OR read-once formula g =
∨k
i=1

∧
e∈Li xe. Such

functions (OR’s of AND’s) are also called tribe functions.

Definition 3 (Critical Inputs of AND-OR Read-once Formulae). An
input is critical for an AND-OR read-once formula if for every AND gate at
most one child evaluates to 0 and for every OR gate at most one child evaluates
to 1.

2.3 Fourier spectrum of Boolean functions

Every Boolean function f : {0, 1}n → {0, 1} can be uniquely represented by a
real multilinear polynomial: f(x1, . . . , xn) =

∑
S⊆[n] βS

∏
i∈S xi. Moreover, the

coefficients βS are integers. The polynomial degree of f is deg(f) := max{|S| |
βS 6= 0}. The degree over F2 of f is deg⊕(f) := max{|S| | βS 6= 0 mod 2}. The
Euler Characteristic of f is χ(f) :=

∑
x∈{0,1}n(−1)|x|f(x), where |x| denotes the

number of 1’s in x. One can obtain the following expression for β[n] (cf. [2]):

β[n] =
∑
T⊆[n]

(−1)n−|T |f(T ) = (−1)nχ(f). (2)
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Fourier spectrum

Let f± : {−1, 1}n → {−1, 1} be obtained from f as follows: f±(z1, . . . , zn) := 1−
2f( 1−z1

2 , . . . , 1−zn2 ). Let f± : {−1, 1}n → {−1, 1} be represented by the following

polynomial with real coefficients: f±(z1, . . . , zn) =
∑
S⊆[n] f̂(S)

∏
i∈S zi. The

above polynomial is unique and it is called the Fourier expansion of f. The f̂(S)
are called the Fourier coefficients of f. Note that:

f̂([n]) =
(−1)n−1β[n]

2n−1
=
χ(f)

2n−1
. (3)

The sparsity of a Boolean function f is ||f̂ ||0 := |{S | f̂(S) 6= 0}|. The
granularity of a Boolean function is the smallest non-negative integer k such
that each of its Fourier coefficients is an integer multiple of 1/2k.

3 Parity decision tree complexity

In this section we prove Theorem 1. The following lemma which lower bounds
the parity decision tree complexity by the sparsity is our starting point.

Lemma 1 (Shi and Zhang [27], Montanaro and Osborne [20]).

D⊕(f) = Ω(log ||f̂ ||0).

The proof distinguishes two cases, according to the size of the rank of the ma-
troid. In the first case, when the rank is small, the only property of matroidal
Boolean functions we use is monotonicity. In the second case, when the rank is
large,we proceed in two distinct steps as explained in the Introduction. Firstly
we show that if the partition size of the function is small then its sparsity is
high, a fact which is valid for any Boolean function. Secondly, in order to upper
bound the partition size, we use partitionability, a strong topological property
of matroids.

3.1 The small rank case

A Boolean function f is said to be sensitive on ith bit of input x = (x1, . . . , xn)
if f(x1, . . . , xi−1, 1 − xi, xi+1, . . . , xn) 6= f(x). The sensitivity of f on input x,
denoted by s(f, x) is the number of sensitive bits of f on x. The sensitivity of a
Boolean function f, denoted by s(f) is maxx s(f, x).

Proposition 2. If M is a matroid of rank r on ground set [n] then

log ||f̂M||0 ≥ n− r.

Proof. It is easy to see that s(fM) ≥ n−r ifM is a matroid of rank r on ground

set [n]. In [3]) it is shown that for any Boolean function f we have log ||f̂ ||0 ≥
deg⊕(f). In [20] it is proven that for monotone f we also have deg⊕(f) ≥ s(f).
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3.2 The large rank case

Small Euler characteristic implies high sparsity

Theorem 5 (Gopalan et. al., Theorem 12 in [11] ). If the sparsity of a
Boolean function is s then its granularity is at most blog sc − 1.

Proposition 3. If f : {0, 1}n → {0, 1} such that χ(f) 6= 0 then

log ||f̂ ||0 = Ω(n− log |χ(f)|).

Proof. If f̂([n]) 6= 0 then the granularity of f is Ω(log(1/|f̂([n])|)). From Equa-

tion 3 we know that f̂([n]) = χ(f)/2n−1. Together with Theorem 5 this gives
the desired lower bound on the sparsity.

Euler characteristic is upper bounded by partition size

Definition 4 (Sub-cube Partition). A Boolean sub-cube of the Boolean cube
{0, 1}n is an interval [x, y] := {z | x ≤ z ≤ y}, where x, y ∈ {0, 1}n. The sub-
cube partition size of f, denoted by P (f) is the smallest integer such that f−1(1)
can be partitioned into P (f) disjoint Boolean sub-cubes.

Lemma 2. For any Boolean function f, we have |χ(f)| ≤ P (f).

Proof. First note that no x ∈ f−1(0) contributes to χ(f). Let C be a sub-cube in
the partition of f−1(1) into P (f) parts. We can identify C with a partial Boolean
assignment C that assigns 0 or 1 value to a subset SC ⊆ [n] variables. Note that
this partial Boolean assignment certifies that the value of f is 1 on the entire C,
i.e., on any extension of C. If |SC | < n then:

|{x ∈ C | |x| ≡ 0 (mod 2)}| = |{x ∈ C | |x| ≡ 1 (mod 2)}|.

Therefore, the only C’s that contributes to χ(f) have |SC | = n and hence |C| = 1.
In effect, such a C contributes ±1 to χ(f).

Upper bounding the Euler characteristic of matroids

Definition 5 (Partitionable Boolean Functions, cf. [16]). A monotone
decreasing Boolean function f is said to be partitionable if for every input A ∈
f−1(1) with maximal number of 1s, we can associate φ(A) ∈ f−1(1) such that
the [φ(A), A] partition f−1(1).

Theorem 6 (Björner [4]). If M is a matroid then ¬fM is partitionable.

Lemma 3. If matroidM has N maximum independent sets then |χ(fM)| ≤ N.

Proof. From Theorem 6 we know that ¬fM is partitionable. Thus for every
maximum independent set A ofM one can associate an independent set φ(A) ⊆
A such that [φ(A), A] form a partition of M. Since each [φ(A), A] is a Boolean
sub-cube, we get a sub-cube partition of ¬fM with at most N parts. Now the
lemma follows from Lemma 2 and from the fact that |χ(f)| = |χ(¬f)|.
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3.3 Putting things together

In order to use Proposition 3 we need to show that the Euler characteristic of
bridgeless matroids is non-zero.

Proposition 4. If M is a bridgeless matroid then we have χ(fM) 6= 0.

Proof. We prove by induction on the cardinality of the ground set of bridgeless
matroids that |χ(M)| 6= 0. For every matroidM on ground set E and for every
e ∈ E, by definition M− {e} is the matroid whose ground set is E \ {e} and
whose independent sets are those of M not containing e. An element e ∈ E is
called loop if {e} is a circuit in M.

The inductive step distinguishes two cases. If there is a loop e ∈ E then it is
easy to check that |χ(fM)| = |χ(fM−{e})|. If there is a non-loop element e ∈ E
then we denote by Ce the collection of the circuits of M that contain e. Kook
shows that |χ(fM)| satisfies the following recurrence (Theorem 1 in Kook [17]) :

|χ(fM)| =
∑
C∈Ce

|χ(fM/C)|.

Note that the operations contracting a cycle and deleting a loop both preserve
the bridgelessness and reduce the cardinality of the ground set by at least one.

The only base case, under the assumption of bridgelessness, is a matroid on
ground set {e} where {e} is a circuit. It is easy to see that χ 6= 0 in this case.

We can now give the proof of Theorem 1.

Proof. Let r be the rank of M and N be the number of maximum independent
sets of M. If n − r ≥ 2n

3 then the lower bound follows from Proposition 2. If
n− r < 2n

3 then:

|χ(f)| ≤ N ≤
(
n

r

)
=

(
n

n− r

)
≤ 2H(1/3)n,

where |χ(f)| ≤ N follows from Lemma 3, and N ≤
(
n
r

)
follows from the fact

that every maximal independent set of a matroid has the same cardinality. The
last inequality uses the assumption: n−r < 2

3n. The H there denotes the binary
entropy function: H(ε) = −ε log ε − (1 − ε) log(1 − ε). Since H(1/3) < 1, the
theorem follows from Proposition 3 and Proposition 4.

Remark A. Since intersection of two intervals is again an interval, the partition
size of the intersection of two matroid can be upper bounded when the rank of
either of the matroid is small. Hence our proof goes through for the indicator
functions of intersection of two matroids.
Remark B. The tribe function

∨√n
i=1

∧√n
j=1 xij shows that Theorem 1 does not

hold by replacing log ||f̂ ||0 with s(f). We do not know if it holds with deg⊕(f).
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4 Fourier spectrum of AC0 functions is dense

Proof of Theorem 2

The following lemma is a direct consequence of Theorem 1.2 in [13]

Lemma 4. If f : {0, 1}n → {0, 1} can be computed by a circuit of depth d and
size m then

P (f) ≤ 2n−n/(logm+d log d)d−1

.

Now let f be a Boolean function on n variables computed by a circuit of
depth d and size m. Let S ⊆ [n] be a set with maximal cardinality such that

f̂(S) 6= 0. Thus |S| = deg(f). Let fS denote the restriction of f to S by setting

all the variables in [n] − S to say 1. By definition f̂(S) is non-zero. Also note
that fS is computable by a circuit of size m and depth d. By applying Lemma 4

with n = deg(f), we can conclude that P (fS) ≤ 2deg(f)−deg(f)/(logm+d log d)d−1.

Now the theorem follows from Lemma 2, Proposition 3, and from the fact that

||f̂S ||0 ≤ ||f̂ ||0. 2

5 Randomized query complexity

Let M be a bridgeless matroid on ground set [n] with a complete ear decompo-
sition [n] = ∪ri=1Li. First we do some preprocessing. For 0 ≤ t ≤ log n, let

Et :=
⋃

i:2t≤|Li|<2t+1

Li.

Choose an index t0 such that |Et0 | ≥ n/ log n. Let f ′ be a restriction of fM
obtained by fixing the variables outside Et0 as follows: For each Li * Et0 , fix
some ei ∈ Li and set xei = 0, and for e ∈ Li − {ei} set xe = 1. Furthermore for
each Li ⊆ Et0 , fix arbitrarily all but 2t0 variables in Li and set their values to 1.

We re-label the indices so that L1, . . . , Lk ⊆ Et0 and Lk+1, . . . , Lr * Et0 .
This allows us to index the variables of f ′ by xij for i ∈ [k] and j ∈ [`], where
` = 2t0 and xij is the jth among the ` unrestricted variables in Li. Thus f ′ is a
function on k × ` variables where and k × ` ≥ n/(2 log n).

g :=

k∨
i=1

∧̀
j=1

xij .

Lemma 5. If f is a monotone increasing Boolean function on k × ` variables
that matches with g on all the critical inputs then

R(f) = Ω(k × `).
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Proof of Lemma 5

Proof. Jain and Klauck prove the above Lemma for the case k = ` (Theorem 4
in [14]). An adaptation of their proof gives the general case.

Our proof is similar to that of Theorem 4 in [14] except for some minor
changes. We borrow the notation from [14] with some differences that we explain
below.

Jain and Klauck [14] consider the (AND-OR) function
∧√n
i=1

∨√n
j=1 xij whereas

we are interested in the (OR-AND) function g ≡
∨k
i=1

∧`
j=1 xij , where k` = n.

We work with f ≡ ¬g. It is easy to see that R(f) = R(g).

Jain and Klauck’s critical inputs for tribe functions

Jain and Klauck (implicit in proof of Theorem 4 in [14]) define the critical inputs
for such functions as follows:

(a1) Critical inputs of type T1 : For each i choose one j and set xij = 0. Set
the rest of the variables to 1.

(a2) Critical inputs of type T2 : Choose a critical input of type T1 and re-set
an additional variable to 0.

(b) Critical inputs of type T0 : Choose a critical input of type T1. Choose an
ij such that xij = 0 and re-set xij = 1.

Note that if a monotone increasing Boolean function matches with g on T1
and T0 then it must also match with g on T2.

It is easy to see that |T1| = `k, |T0| = k × `k−1, and |T2| = k ×
(
`
2

)
× `k−1.

A solution to the dual

Let optε(f) denote the optimum value of the dual program considered by Jain
and Klauck (proof of Theorem 4 in [14]):

max
∑
x:f(x)=1(1− ε)µx −

∑
x:f(x)=0 εµx + φx,

such that for any partial assignment A :∑
f−1(1)∩A µx −

∑
f−1(0)∩A µx + φx ≤ 2|A|; and

for each x : µx ≥ 0 and φx ≤ 0.

Below we describe a feasible solution to the above linear program.
Let δ := 1

4 − 4ε.

For x ∈ T1 : µx = 2δn

|T1| ; φx = 0.

For x ∈ T0 : µx = 1
4ε ×

2δn

|T0| ; φx = 0.

For x ∈ T2 : µx = 0; φx = − 2
3 ×

2δn

|T2| .

For x /∈ T1 ∪ T2 ∪ T0 : µx = φx = 0.
We need to show that (µ, φ) is a feasible solution for the dual for optε(f).
Let A be an assignment.
We need to show that the total contribution to the dual constraint corre-

sponding to A from the critical inputs that are consistent with A is at most
2|A|
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Case 1: |A| ≥ δn.
Since the contribution from T0 and T2 inputs is negative, it suffices to bound

the contribution from T1 inputs, which is at most 2δn ≤ 2|A|.
Case 2: The assignment A fixes xij = xij′ = 0 for some i and some j 6= j′.
The only critical inputs that are consistent with A will be of type T2, whose

contribution is always negative, hence ≤ 0 ≤ 2|A|.
Case 3: The assignment A, for each i, fixes at most one variable xij = 0.
Let αi and βi denote the number of variables (number of j s) xij that are

fixed to 1 and 0 respectively. We are in the case where βi ∈ {0, 1}.
Let γi be the number of xij that are left free by the assignment A.

Let k′ :=
∑k
i=1 βi and w.l.o.g. assume that the last k′ values βi are 1.

Case 3 (a): k′ ≤ (1− 4ε)k.
The number of inputs in T1 consistent with A, denoted by a1, is exactly∏k−k′

i=1 γi.
The number of inputs in T0 that are consistent with A, denoted by a0, is:

k−k′∑
i=1

∏
j∈[k−k′]:j 6=i

γj =

k−k′∑
i=1

1

γi

 ∏
j∈[k−k′]

γj ≥
k − k′

`

∏
j∈[k−k′]

γj

Thus:

a0 ≥
4εk

`
× a1.

The total contribution is at most:

2δn

`k−1
×
(a1
`
− a0

4εk

)
,

which we can upper bound by 0 ≤ 2|A| using the above lower bound on a0
in terms of a1.

Case 3 (b): k′ ≥ (1− 4ε)k. Again w.l.o.g. the last k′ βi are 1.
The number of inputs in T1 consistent with A, denoted by a1, is exactly∏k−k′

i=1 γi.
The number of inputs in T2 consistent with A, denoted by a2, is at least:k−k′∏

i=1

γi

( k∑
i=k−k′+1

γi

)
.

This is because for i ≤ k−k′ we can fix any of the γi variables to 0 and then
we can choose some k − k′ < i ≤ k and then fix any of the γi variables to 0 to
get a critical input of type 2 T2.

Since we are in the case that |A| ≤ δn and k′ ≥ (1− 4ε)k, the total number
of free variables among the last k′ blocks of size ` is:

k∑
i=k−k′+1

γi ≥ k′`− δn = n · (1− δ − 4ε).
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Thus:

a2 ≥
3

4
× k × `× a1.

The total contribution can be upper bounded by:

2δn

`k−1
×

(
a1
`
− 2

3
· a2

k
(
`
2

))

Using the above lower bound on a2 in terms of a1, we can conclude that the
total contribution is (for some poisitve real number M) at most M × (1/` −
1/(`− 1)), which is at most 0 ≤ 2|A|. 2

From Proposition 1 we have:

Lemma 6. The function f ′ matches with g on all critical inputs.

Theorem 3 is an immediate consequence of Lemma 5 and Lemma 6.

6 Quantum query complexity

Let M be a bridgeless matroid on ground set [n] with a complete ear decompo-
sition [n] = ∪ki=1Li, and let g be the tribe function associated with it.

Lemma 7 (Barnum and Saks, Theorem 2 in [1]). If f is a Boolean function
on n variables that matches with g on all the critical inputs then: Q(f) = Ω(

√
n).

From Proposition 1 we have:

Lemma 8. The function fM matches with g on all critical inputs.

Theorem 7. If M is a bridgeless matroid on ground set [n] then:

Q(fM) = Ω(
√
n).

Theorem 4 is an extension of the above theorem to read-once formulae over the
family of matroidal Boolean function.

Extension of Barnum and Saks’s result to read-once formulae over
matroids

Let F be the family of all matroidal Boolean functions and let f be a read-once
formula over F . Let fM1

, . . . , fMt
be the matroidal Boolean functions used at

the nodes of the tree. We construct an AND-OR read-once formula g by replacing
fMi

by gi, the tribe function associated with a complete ear-decomposition of
Mi.

Using Observation 8 one can prove the following:

Observation 8 The function f matches with g on all critical inputs.
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Proof. Let f be a read-once formula over matroids and g be the associated read-
once formula obtained by replacing fMi by gi. We prove by induction on the
height of the node in the tree that the sub-formula under that node matches
with the corresponding read-once formula on all critical inputs.

The base case holds for nodes of height one because of Observation 8.
The inductive hypothesis is that for any node at height h−1 the sub-formula

under it matches with the corresponding read-once formula on all critical inputs.
Now let f ′ be a matroid function at a node at height h and suppose it has

t children. It follows directly from the definition that an input is critical for the
read-once sub-formula at the node at height h iff it is critical for the read-once
sub-formulae at the children and the outputs of the children give a critical input
to g′.

From the inductive hypothesis we know that for i = 1, . . . , t, the matroidal-
read-once sub-formula under children i matches with the corresponding read-
once formula on all its critical inputs. Moreover, f ′ matches with g′ on all critical
inputs of g′.

Now Theorem 4 easily follows from the above Observation and Theorem 2 in [1].
2

An upper bound

The following theorem follows along the lines of Theorem 11 in Childs and
Kothari

Theorem 9. If M is a matroid of rank r on ground set [n] then

Q(fM) = O(
√
rn).

The “sparse graph detection and extraction” described in Section 4.1 in [9] can
be applied to any sparse Boolean function. In particular, matroid of rank r are
r-sparse as every independent set has at most r elements.

Lemma 9 (cf. Childs and Kothari, Lemma 10 in [9]). If x : [n]→ {0, 1}
be a black-box function such that |{i | x(i) = 1}| ≤ k then quantum query
complexity of constructing {i | x(i) = 1} is O(

√
nk).

Theorem 10 (Approximate quantum counting, Theorem 15 of [6]). Let
x : [n] → {0, 1} be a black-box function with |{i | x(i) = 1}| = K > 0, and
let ε ∈ (0, 1]. There is a quantum algorithm that produces an estimate k̃ of k
satisfying |k − k̃| ≤ εk with probability at least 2/3, using O(

√
nk/ε) queries to

x. If k = 0, the algorithm outputs k̃ = 0 with certainty in O(
√
n) queries.

Proof of Theorem 9

Proof. The proof is identical to the proof of Theorem 11 in [9].
First reject the inputs x such that |x| ≥ 2r using Theorem 10 and then use

Lemmma 9 to construct the entire x. 2
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