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Abstract

We introduce a framework for proving lower bounds on computational problems over dis-
tributions, based on a class of algorithms called statistical algorithms. For such algorithms,
access to the input distribution is limited to obtaining an estimate of the expectation of any
given function on a sample drawn randomly from the input distribution, rather than directly
accessing samples. Most natural algorithms of interest in theory and in practice, e.g., moments-
based methods, local search, standard iterative methods for convex optimization, MCMC and
simulated annealing, are statistical algorithms or have statistical counterparts. Our framework
is inspired by and generalizes the statistical query model in learning theory [34].

Our main application is a nearly optimal lower bound on the complexity of any statistical
algorithm for detecting planted bipartite clique distributions (or planted dense subgraph distri-
butions) when the planted clique has size O(n'/279) for any constant § > 0. Variants of these
problems have been assumed to be hard to prove hardness for other problems and for crypto-
graphic applications. Our lower bounds provide concrete evidence of hardness, thus supporting
these assumptions.



1 Introduction

We study the complexity of problems where the input consists of independent samples from an
unknown distribution. Such problems are at the heart of machine learning and statistics (and their
numerous applications) and also occur in many other contexts such as compressed sensing and
cryptography. Many methods exist to estimate the sample complexity of such problems (e.g. VC
dimension [48] and Rademacher complexity [6]). Proving lower bounds on the computational
complexity of these problems has been much more challenging. The traditional approach to this is
via reductions and finding distributions that can generate instances of some problem conjectured
to be intractable (e.g., assuming NP # RP).

Here we present a different approach, namely showing that a broad class of algorithms, which
we refer to as statistical algorithms, have high complexity, unconditionally. Our definition encom-
passes most algorithmic approaches used in practice and in theory on a wide variety of problems,
including Expectation Maximization (EM) [I7], local search, MCMC optimization [45] 25], simu-
lated annealing [36, [49], first and second order methods for linear/convex optimization, [I8] [7],
k-means, Principal Component Analysis (PCA), Independent Component Analysis (ICA), Naive
Bayes, Neural Networks and many others (see [14] and [I0] for proofs and many other examples).
In fact, we are aware of only one algorithm that does not have a statistical counterpart: Gaussian
elimination for solving linear equations over a field (e.g., mod 2).

Informally, statistical algorithms can access the input distribution only by asking for the value
of any bounded real-valued function on a random sample from the distribution, or the average
value of the function over a specified number of independent random samples. As an example,
suppose we are trying to solve min,ecy Ez~p[f (2, u)] by gradient descent. Then the gradient of the
objective function is (by interchanging the derivative with the integral)

VBl (2, 0)] = BIVu(f (2, u)
and can be estimated from samples; thus the algorithm can proceed without ever examining samples
directly. A more involved example is Linear Programming. One version is the feasibility problem:
find a nonzero w s.t. a-w > 0 for all a in some set A. We can formulate this as

max E[sign(a - w)]
w a

and the distribution over a could be uniform over the set A if it is finite. This can be solved
by a statistical algorithm [I1], I8]. This is also the case for semidefinite programs and for conic
optimization [7]. The key motivation for our definition of statistical algorithms is the empirical
observation that almost all algorithms that work on explicit instances are already statistical in our
sense or have natural statistical counterparts. Thus, proving lower bounds for statistical algorithms
strongly indicates the need for new approaches even for explicit instances. We present the formal
oracle-based definitions of statistical algorithms in Section

The inspiration for our model is the statistical query (SQ) model in learning theory [34] defined
as a restriction of Valiant’s PAC learning model [46]. The primary goal of the restriction was to
simplify the design of noise-tolerant learning algorithms. As was shown by Kearns and others in
subsequent works, almost all classes of functions that can be learned efficiently can also be efficiently
learned in the restricted SQ model. A notable and so far the only exception is the algorithm for
learning parities, based on Gaussian elimination. As was already shown by Kearns [34], parities



require exponential time to learn in the SQ model. Further, Blum et al. [12] proved that the number
of SQs required for weak learning (that is, for obtaining a non-negligible advantage over the random
guessing) of a class of functions C' over a fixed distribution D is characterized by a combinatorial
parameter of C' and D, referred to as SQ-DIM(C, D), the statistical query dimension.

Our notion of statistical algorithms generalizes SQ learning algorithms to any computational
problem over distributions. For any problem over distributions we define a parameter of the problem
that lower bounds the complexity of solving the problem by any statistical algorithm in the same
way as SQ-DIM lower bounds the complexity of learning in the SQ model. Our techniques for
proving lower bounds on statistical algorithms are also based on methods developed for lower-
bounding the complexity of SQ algorithms. However, as we will describe later, they depart from
the known techniques in a number of significant ways that are necessary for our more general
definition and our applications.

We apply our techniques to the problem of detecting planted bipartite cliques/dense subgraphs.
We now define these problems precisely and give some background.

Detecting Planted Cliques. In the planted clique problem, we are given a graph G whose edges
are generated by starting with a random graph G, ; /o, then “planting,” i.e., adding edges to form
a clique on k randomly chosen vertices. Jerrum [30] and Kucera [37] introduced the planted clique
problem as a potentially easier variant of the classical problem of finding the largest clique in a
random graph [33]. A random graph G, /o contains a clique of size 2logn with high probability,
and a simple greedy algorithm can find one of size logn. Finding cliques of size (2 — €)logn is
a hard problem for any € > 0. Planting a larger clique should make it easier to find one. The
problem of finding the smallest k& for which the planted clique can be detected in polynomial time
has attracted significant attention. For k& > cy/nlogn, simply picking vertices of large degrees
suffices [37]. Cliques of size k = (y/n) can be found using spectral methods [2, 38, [15], via SDPs
[20], nuclear norm minimization [3] or combinatorial methods [22, [16].

While there is no known polynomial-time algorithm that can detect cliques of size below the
threshold of Q(y/n), there is a quasipolynomial algorithm for any k > 2logn: enumerate subsets
of size 2logn; for each subset that forms a clique, take all common neighbors of the subset; one of
these will be the planted clique. This is also the fastest known algorithm for any k = O(n'/?9),
where 6 > 0.

Some evidence of the hardness of the problem was shown by Jerrum [30] who proved that
a specific approach using a Markov chain cannot be efficient for £ = o(y/n). More evidence of
hardness is given in [2I], where it is shown that Lovész-Schrijver SDP relaxations, which include
the SDP used in [20], cannot be used to efficiently find cliques of size k = o(y/n). The problem has
been used to generate cryptographic primitives [31], and as a hardness assumption [II, 28 [40].

We focus on the bipartite planted clique problem, where a bipartite £ x k clique is planted in
a random bipartite graph. A densest-subgraph version of the bipartite planted clique problem has
been used as a hard problem for cryptographic applications [4]. All known bounds and algorithms
for the k-clique problem can be easily adapted to the bipartite case. Therefore it is natural to
suspect that new upper bounds on the planted k-clique problem would also yield new upper bounds
for the bipartite case.

The starting point of our investigation for this problem is the property of the bipartite planted
k-clique problem is that it has an equivalent formulation as a problem over distributions defined as
follows.



Problem 1.1. Fiz an integer k, 1 < k <n, and a subset of k indices S C {1,2,...,n}. The input
distribution Dg on vectors x € {0,1}" is defined as follows: with probability 1 — (k/n), x is uniform
over {0,1}"; and with probability k/n the k coordinates of = in S are set to 1, and the rest are
uniform over their support. For an integer t, the distributional planted k-biclique problem with
t samples is the problem of finding the unknown subset S using t samples drawn randomly from
Dg.

One can view samples x1,...,2; as adjacency vectors of a bipartite graph as follows: the
bipartite graph has n vertices on the right (with & marked as members of the clique) and ¢ vertices
on the left. Each of the ¢ samples gives the adjacency vector of the corresponding vertex on the
left. It is not hard to see that for ¢ = n, conditioned on the event of getting exactly k samples
with planted indices, we will get a random bipartite graph with a planted k-biclique (we prove the
equivalence formally in Appendix .

Another interesting approach for planted clique was proposed by Frieze and Kannan [24]. They
gave a reduction from finding a planted clique in a random graph to finding a direction that
maximizes a tensor norm; this was extended to general r in [I3]. Specifically, they show that
maximizing the 7’th moment (or the 2-norm of an r’th order tensor) allows one to recover planted
cliques of size Q(nl/ "). A related approach is to maximize the 3rd or higher moment of the
distribution given by the distributional planted clique problem. For this approach it is natural to
consider the following type of optimization algorithm: start with some unit vector u, then estimate
the gradient at u (via samples), move along that direction and return to the sphere; repeat to
reach an approximate local maximum. Unfortunately, over the unit sphere, the expected r’th
moment function can have (exponentially) many local maxima even for simple distributions. A
more sophisticated approach [32] is through Markov chains or simulated annealing; it attempts to
sample unit vectors from a distribution on the sphere which is heavier on vectors that induce a
higher moment, e.g., u is sampled with density proportional to e/(*) where f(u) is the expected r’th
moment along u. This could be implemented by a Markov chain with a Metropolis filter [39] 27]
ensuring a proportional steady state distribution. If the Markov chain were to mix rapidly, that
would give an efficient approximation algorithm because sampling from the steady state likely gives
a vector of high moment. At each step, all one needs is to be able to estimate f(u), which can be
done by sampling from the input distribution.

As we will see presently, these statistical approaches will have provably high complexity. For
the bipartite planted clique problem, statistical algorithms that can query expectations of arbitrary
functions to within a small tolerance need nf*1°8™) queries to detect planted cliques of size k < ns =9
for any 6 > 0. Even stronger exponential bounds apply for the more general problem of detecting
planted dense subgraphs of the same size. These bounds match the current upper bounds. To
describe these results precisely and discuss exactly what they mean for the complexity of these
problems, we will need to define the notion of statistical algorithms, the complexity measures we
use, and our main tool for proving lower bounds, a notion of statistical dimension of a set of
distributions. We do this in the next section. In Section [3| we prove our general lower bound results
and in Section [5| we estimate the statistical dimension of detecting planted bicliques and dense
subgraphs.



2 Definitions and Overview

Here we formally define statistical algorithms and the key notion of statistical dimension, and then
describe the resulting lower bounds in detail.

2.1 Problems over Distributions

We begin by formally defining the class of problems addressed by our framework.

Definition 2.1 (Search problems over distributions). For a domain X, let D be a set of distribu-
tions over X, let F be a set of solutions and Z : D — 27 be a map from a distribution D € D
to a subset of solutions Z(D) C F that are defined to be valid solutions for D. For t > 0 the
distributional search problem Z over D and F wusing t samples is to find a valid solution f € Z(D)
given access to t random samples from an unknown D € D.

We note that this definition captures decision problems by having F = {0, 1}. With slight abuse
of notation, for a solution f € F, we denote by Z71(f) the set of distributions in D for which f is
a valid solution.

It is important to note that the number of available samples ¢ can have a major influence on the
complexity of the problem. First, for most problems there is a minimum ¢ for which the problem
is information-theoretically solvable. This value is often referred to as the sample complexity of the
problem. But even for ¢t which is larger than the sample complexity of the problem, having more
samples can make the problem easier computationally. For example, in the context of attribute-
efficient learning, there is a problem that is intractable with few samples (under cryptographic
assumptions) but is easy to solve with a larger (but still polynomial) number of samples [43]. Our
distributional planted biclique problem exhibits the same phenomenon.

2.2 Statistical Algorithms

The statistical query learning model of Kearns [34] is a restriction of the PAC model [46]. It
captures algorithms that rely on empirical estimates of statistical properties of random examples
of an unknown function instead of individual random examples (as in the PAC model of learning).

In the same spirit, for general search, decision and optimization problems over a distribution,
we define statistical algorithms as algorithms that do not see samples from the distribution but
instead have access to estimates of the expectation of any bounded function of a sample from the
distribution.

Definition 2.2 (STAT oracle). Let D be the input distribution over the domain X . For a tolerance
parameter T > 0, STAT(T) oracle is the oracle that for any query function h : X — [—1,1], returns
a value

v € [Eg~plh(x)] — 7, Ex~plh(x)] + 7].

The general algorithmic techniques mentioned earlier can all be expressed as algorithms using
STAT oracle instead of samples themselves, in most cases in a straightforward way. We would
also like to note that in the PAC learning model some of the algorithms, such as the Perceptron
algorithm, did not initially appear to fall into the SQ framework but SQ analogues were later found
for all known learning techniques except Gaussian elimination (for specific examples, see [34] and



[11]). We expect the situation to be similar even in the broader context of search problems over
distributions.

The most natural realization of STAT(7) oracle is one that computes h on O(1/7%) random
samples from D and returns their average. Chernoff’s bound would then imply that the estimate is
within the desired tolerance (with constant probability). However, if h(x) is very biased (e.g. equal
to 0 with high probability), it can be estimated with fewer samples. Our primary application
requires a tight bound on the number of samples necessary to solve a problem over distributions.
Therefore we define a stronger version of STAT oracle in which the tolerance is adjusted for the
variance of the query function, that is the oracle returns the expectation to within the same tolerance
(up to constant factors) as one expects to get from ¢ samples. More formally, for a Boolean query
h, VSTAT(t) can return any value v for which the distribution B(¢,v) (sum of ¢ independent
Bernoulli variables with bias v) is statistically close to B(t, E]h]) (see Sec. for more details on
this correspondence).

Definition 2.3 (VSTAT oracle). Let D be the input distribution over the domain X. For a sample
size parameter t > 0, VSTAT(t) oracle is the oracle that for any query function h : X — {0,1},

returns a value v € [p — T,p+ 7], where p = Eyp[h(z)] and 7 = max {17 F (1,5_17)}

Note that VSTAT(¢) always returns the value of the expectation within 1/v/t. Therefore it is
stronger than STAT(1/+/t) but weaker than STAT(1/t). (STAT, unlike VSTAT, allows non-boolean
functions but this is not a significant difference as any [—1, 1]-valued query can be converted to a
logarithmic number of {0, 1}-valued queries).

The STAT and VSTAT oracles we defined can return any value within the given tolerance and
therefore can make adversarial choices. We also aim to prove lower bounds against algorithms that
use a potentially more benign, “unbiased” statistical oracle. The unbiased statistical oracle gives
the algorithm the true value of a boolean query function on a randomly chosen sample. This model
is based on the Honest SQ model in learning by Yang [50] (which itself is based on an earlier model
of Jackson [29]).

Definition 2.4 (1-STAT oracle). Let D be the input distribution over the domain X. The 1-STAT
oracle is the oracle that given any function h : X — {0, 1}, takes an independent random sample x
from D and returns h(z).

Note that the 1-STAT oracle draws a fresh sample upon each time it is called. Without re-
sampling each time, the answers of the 1-STAT oracle could be easily used to recover any sample
bit-by-bit, making it equivalent to having access to random samples. The query complexity of
an algorithm using 1-STAT is defined to be the number of calls it makes to the 1-STAT oracle.
Note that the 1-STAT oracle can be used to simulate VSTAT (with high probability) by taking
the average of O(t) replies of 1-STAT for the same function h. While it might seem that access
to 1-STAT gives an algorithm more power than access to VSTAT we will show that ¢ samples
from 1-STAT can be simulated using access to VSTAT(O(¢)). This will allow us to translate our
lower bounds on algorithms with access to VSTAT to query complexity lower bounds for unbiased
statistical algorithms.

In the following discussion, we refer to algorithms using STAT or VSTAT oracles (instead of
samples) as statistical algorithms. Algorithms using the 1-STAT oracle are henceforth called
unbiased statistical algorithms.



2.3 Statistical Dimension

The main tool in our analysis is an information-theoretic bound on the complexity of statistical
algorithms. Our definitions originate from the statistical query (SQ) dimension in learning theory
[12] used to characterize SQ learning algorithms. Roughly speaking, the SQ dimension corresponds
to the number of nearly uncorrelated labeling functions in a class (see Appendix [B|for the details
of the definition and the relationship to our bounds).

We introduce a natural generalization and strengthening of this approach to search problems
over arbitrary sets of distributions and prove lower bounds on the complexity of statistical algo-
rithms based on the generalized notion. Our definition departs from SQ dimension in three aspects.
(1) Our notion applies to any set of distributions whereas in the learning setting all known dimen-
sions require fixing the distribution over the domain and only allow varying the labeling function.
(2) Instead of relying on a bound on pairwise correlations, our dimension relies on a bound on
average correlations in a large set of distributions. This weaker condition allows us to derive the
tight bounds on the complexity of statistical algorithms for the planted k-biclique problem. (3) We
show that our dimension also gives lower bounds for the stronger VSTAT oracle (without incurring
a quadratic loss in the sample size parameter).

We now define our dimension formally. For two functions f,¢ : X — R and a distribution D
with probability density function D(z), the inner product of f and g over D is defined as

(fr9)p = E [f(z)g(z)].
z~D

The norm of f over D is || f|lp = v/(f, f)p. We remark that, by convention, the integral from the
inner product is taken only over the support of D, i.e. for z € X such that D(x) # 0. Given a
distribution D over X let D(x) denote the probability density function of D relative to some fixed
underlying measure over X (for example uniform distribution for discrete X or Lebesgue measure
over R™). Our bound is based on the inner products between functions of the following form:
(D'(z) — D(x))/D(x) where D' and D are distributions over X. For this to be well-defined, we will
only consider cases where D(z) = 0 implies D'(z) = 0, in which case D'(z)/D(x) is treated as 1.
To see why such functions are relevant to our discussion, note that for every real-valued function
f over X,

E [f(z)] = E [f(z)] = E [D'(z)f(z)/D()]

- E
x~D’ x~D z~D r~D

_<D’—D >
D /)y

This means that the inner product of any function f with (D" — D)/D is equal to the difference of
expectations of f under the two distributions. We also remark that the quantity <% -1, % —1)pis
known as the x?(D’, D) distance and is widely used for hypothesis testing in statistics [41]. A key
notion for our statistical dimension is the average correlation of a set of distributions D’ relative to
a distribution D. We denote it by p(D’, D) and define as follows:

1 D D
Lo, 21 .
D D b

/ -

p(D', D) = ) >
D1,D2€D!

Known lower bounds for SQ learning are based on bounding the pairwise correlations between

functions. Bounds on pairwise correlations when strong enough easily imply bounds on the av-

erage correlation (see Lemma for the proof). Bounding average correlation is more involved

[f ()]




technically but it appears to be necessary for the tight lower bounds that we give. In Section [3.3]

we describe a pairwise-correlation version of our bounds. It is sufficient for some applications and

generalizes the statistical query dimension from learning theory (see Appendix [B|for the details).
We are now ready to define the concept of statistical dimension.

Definition 2.5. For~ > 0, domain X and a search problem Z over a set of solutions F and a class
of distributions D over X, let d be the largest integer such that there exists a reference distribution
D over X and a finite set of distributions Dp C D with the following property: for any solution
[ € F the set Dy = Dp \ Z71(f) is non-empty and for any subset D' C Dy, where |D'| > |Dy|/d,
p(D', D) < 7. We define the statistical dimension with average correlation 5 of Z to be d and
denote it by SDA(Z,7).

The statistical dimension with average correlation 7 of a search problem over distributions gives
a lower bound on the complexity of any (deterministic) statistical algorithm for the problem that
uses queries to VSTAT(1/(37%)).

Theorem 2.6. Let X be a domain and Z be a search problem over a set of solutions F and a class
of distributions D over X. For 5 > 0 let d = SDA(Z,7). Any statistical algorithm requires at least
d calls to VSTAT(1/(37%)) oracle to solve Z.

At a high level our proof works as follows. It is not hard to see that for any D, an algorithm
that solves Z needs to “distinguish” all distributions in Dy from D for some solution f. Here by
“distinguishing” we mean that the algorithm needs to ask a query g such that Ep|[g] cannot be used
as a response of VSTAT(1/(3%)) for D' € Dy. In the key component of the proof we show that if
a query function g to VSTAT(1/(3%)) distinguishes between a distribution D and any distribution
D’ € D', then D' must have average correlation of at least ¥ relative to D. The condition that for
any |D'| > |Dy|/d, p(D', D) < 7 then immediately implies that at least d queries are required to
distinguish any distribution in Dy from D.

In Section we give a refinement of SDA which additionally requires that the set Dy is not
too small (and not just non-empty). This refined notion allows us to extend the lower bound to
randomized statistical algorithms. In Section[3.2)we use the more refined notion of SDA to also show
that (with high probability) one can simulate ¢ samples of 1-STAT using access to VSTAT(O(t)).
This implies that lower bounds on SDA imply lower bounds on the query complexity of any unbiased
statistical algorithm (see Theorem for details).

Finally, in Appendix[B]Jwe show that our bounds generalize and strengthen the known results SQ
learning. In particular, we show that Honest SQ learning is equivalent to SQ learning and generalize
the standard lower bound based on SQ-DIM [12, [51] to randomized SQ learning algorithms.

2.4 Lower Bounds

We will prove lower bounds for the bipartite planted clique under both statistical oracles (VSTAT
and 1-STAT) .

Theorem 2.7. For any constant § > 0, any k < 270 and r > 0, at least n®0°87) queries to

VSTAT(n?/(rk?)) are required to solve the distributional planted bipartite k-clique. In particular,
no polynomial-time statistical algorithm can solve the problem using queries to VSTAT(o(n?/k?))
and any statistical algorithm will require n®*1°8™) queries to VSTAT(n?>~° /k?).



This bound also applies to any randomized algorithm with probability of success being at least
a (positive) constant. Note that this bound is essentially tight. For every vertex in the clique,
the probability that the corresponding bit of a randomly chosen point is set to 1 is 1/2 + k/(2n)
whereas for every vertex not in the clique, this probability is 1/2. Therefore using n queries to
VSTAT (1612 /k?) (i.e., of tolerance k/4n) it is easy to detect the planted bipartite clique. Indeed,
this can be done by using the query functions h : {0,1, }" — {0,1}, h(x) = z;, for each i € [n]. So,
the answers of the VSTAT oracle represent the expected value of the ith bit over the sample.

There is also a statistical algorithm that uses n®1°8™) queries to VSTAT(25n/k) (significantly
higher tolerance) to find the planted set for any k& > logn. In fact, the same algorithm can be used
for the standard planted clique problem that achieves complexity n®1°¢™)  We enumerate over
subsets T' C [n] of logn indices and query VSTAT(25n/k) with the function gr : {0,1}" — {0,1}
defined as 1 if and only if the point has ones in all coordinates in T'. Therefore, if the set T is
included in the true clique then

k k k k41
E[gT]:n-1+<1—n>2_1°g"E[, i ]

D n n

With this expectation, VSTAT(25n/k) has tolerance at most \/k(k +1)/25n? < (k + 1)/5n and
will return at least k/n — (k+1)/(5n) > 3k/(4n). If, on the other hand, at least one element of T
is not from the planted clique, then Ep[gr| < k/(2n)+1/n and VSTAT(25n/k) will return at most
(k+2)/(2n) + (k+2)/(5n) < 3k/(4n). Thus, we will know all log n-sized subsets of the planted
clique and hence the entire clique.

Our bounds have direct implications for the average-case planted bipartite k-clique problem.
An instance of this problem is a random n x n bipartite graph with a k x k bipartite clique planted
randomly. In Appendix [A] we show that the average-case planted k-biclique is equivalent to our
distributional planted k-biclique with n samples. For a statistical algorithm, n samples directly
correspond to having access to VSTAT(O(n)). Our bounds show that this problem can be solved
in polynomial time when k = Q(y/n). At the same time, for k < n!/?=% any statistical algorithm
will require n‘21°8™) queries to VSTAT(n!*9).

We also give a bound for unbiased statistical algorithms.

Theorem 2.8. For any constant § > 0 and any k < n'/279, any unbiased statistical algorithm that

succeeds with probability at least 2/3 requires Q(n?/k?) queries to solve the distributional planted
bipartite k-clique problem.

Each query of an unbiased statistical algorithm requires a new sample from D. Therefore this
bound implies that any algorithm that does not reuse samples will require Q(n2 /k?) samples. To
place this bound in context, we note that it is easy to detect whether a clique of size k has been
planted using O(n?/k?) samples (as before, to detect if a coordinate i is in the clique we can
compute the average of z; on O(n?/k?) samples). Of course, finding all vertices in the clique would
require reusing samples (which statistical algorithms cannot do). Note that n?/k? < n if and only
if k> /n.

These bounds match the state of the art for the average-case planted bipartite k-clique and
planted k-clique problems. One reason why we consider this natural is that some of the algorithms
that solve the problem for k = Q(y/n) are obviously statistical. For example, the key procedure of
the algorithm of Feige and Ron [22] removes a vertex that has the lowest degree (in the current
graph) and repeats until the remaining graph is a clique. The degree is the number of ones in a



column (or row) of the adjacency matrix and can be viewed of as an estimate of the expectation of 1
appearing in the corresponding coordinate of a random sample. Even the more involved algorithms
for the problem, like finding the eigenvector with the largest eigenvalue or solving an SDP, have
statistical analogues.

A closely related problem is the planted densest subgraph problem, where edges in the planted
subset appear with higher probability than in the remaining graph. This is a variant of the densest
k-subgraph problem, which itself is a natural generalization of k-clique that asks to recover the
densest k-vertex subgraph of a given n-vertex graph [19], 35, [8, @]. The conjectured hardness of its
average case variant, the planted densest subgraph problem, has been used in public key encryption
schemes [4] and in analyzing parameters specific to financial markets [5]. Our lower bounds extend
in a straightforward manner to this problem and in addition become exponential as the density
becomes (inverse-polynomially) close to 1/2 (Corollary and the remark following it).

3 Lower Bounds from Statistical Dimension

Here we prove the general lower bounds. In later sections, we will compute the parameters in these
bounds for specific problems of interest.

3.1 Lower Bounds for Statistical Algorithms

We now prove Theorem which is the basis of all our lower bounds. We will prove a stronger
version of this theorem which also applies to randomized algorithms. For this version we need an
additional parameter in the definition of SDA.

Definition 3.1. For 4 > 0, n > 0, domain X and a search problem Z over a set of solutions F
and a class of distributions D over X, let d be the largest integer such that there exists a reference
distribution D over X and o finite set of distributions Dp C D with the following property: for
any solution f € F the set Dy = Dp \ Z7(f) has size at least (1 —n) - |Dp| and for any subset
D' C Dy, where |D'| > |Dy|/d, p(D',D) < 7. We define the statistical dimension with average
correlation 7 and solution set bound n of Z to be d and denote it by SDA(Z,7,n).

Note that for any n < 1, SDA(Z,5) > SDA(Z,7,n) and for 1 > n > 1 — 1/|Dp|, we get
SDA(Z,%) = SDA(Z,7,n), where |Dp| is the set of distributions that maximizes SDA(Z, 7).

Theorem 3.2. Let X be a domain and Z be a search problem over a set of solutions F and a class of
distributions D over X. For 4 >0 andn € (0,1) let d = SDA(Z,%,n). Any randomized statistical

algorithm that solves Z with probability § > n requires at least f:gd calls to VSTAT(1/(37%)).

Theorem [2.6|is obtained from Theorem [3.2| by setting 6 = 1 and using any 1 —1/|Dp| <n < 1.
Further, for any n < 1, SDA(Z,%) > SDA(Z,7,n) and therefore for any n < 1, a bound on
SDA(Z,%,n) can be used in Theorem in place of bound on SDA(Z, 7).

To prove the claim we will need the following simple lemma that bounds the distance between
any p € [0,1] and p’ which is returned by VSTAT(¢) on a query with expectation p in terms of p'.

Lemma 3.3. For an integer t and any p € [0,1], let p' € [0,1] be such that [p' — p| > 7 =

max{%, p(ltp)}. Then [p/ —p| > |/ ™dEel=r',



Proof. First note that our conditions and bounds do not change if we replace both p and p’ with
1—pand 1 —p/, respectively. Therefore it is sufficient to prove the bound when p < 1/2. We know

that |p' —p| > 7 = max{1/t,\/p(1 — p)/t}. If p’ < p < 1/2 then, certainly |p' —p| > /p(1 —p)/t >
\/p'/(3t). Otherwise (when p < p’), we have that 1 —p > 1/2 and

1 /p(1-p)

> - > p(l — >B.
P p_maX{t7 ; }_p( p)_2

Hence p < 2p'/3 and p’ —p > p'/3. We also know that |p — p/| > 7 > 1/t and therefore |p — p'| >

o’ ]

g.
We are now ready to prove Theorem [3.2]

Proof of Theorem [3.3. We prove our lower bound by exhibiting a distribution over inputs (which
are distributions over X) for which every deterministic statistical algorithm that solves Z with
probability ¢ (over the choice of input) requires at least (6 —n) - d/(1 —n) calls to VSTAT(1/(3%)).
The claim of the theorem will then follow by Yao’s minimax principle [52].

Let D be the reference distribution and Dp be a set of distributions for which the value d is
achieved. Let A be a deterministic statistical algorithm that uses g queries to VSTAT(1/(37%)) to
solve Z with probability ¢ over a random choice of a distribution from Dp. Following an approach
from [23], we simulate A by answering any query h : X — {0,1} of A with value Ep[h(z)]. Let
hi,ha, ..., hq be the queries asked by A in this simulation and let f be the output of A.

By the definition of SDA, for Dy = Dp \ Z71(f) it holds that |Dy| > (1 —n)|Dp| and for every
D' C Dy, either p(D’, D) < 7 or |D'| < |Dy|/d. Let the set DT C Dp be the set of distributions on
which A is successful. Let D} = Dy NDT and we denote these distributions by {D1, Do, ..., Dp,}.
We note that D}F = D%\ (Dp \ Dy) and therefore

S|Dp| = |Pp \ Dy|

m = |DF| > |DY| — |Dp \ D¢| > 8|Dp| — |Dp \ Df| =
[DF1 2 [D7| = [P\ Dyl = 8P| = Pp\ Dyl = J5 T Sop

o—n
D> —"1Ds|. (1
| Dyl 1_77| o (1)

To lower bound ¢, we use a generalization of an elegant argument of Szorényi [44]. For every
k < q, let Ag be the set of all distributions D; such that

Elhu(x)] - Elh(@)

i

t t

1 [pir(1—pig) }

> Tk = max{

where we use t to denote 1/(3%) and p; j, to denote Ep, [hi(x)]. To prove the desired bound we first
prove the following two claims:

1. Zkﬁq |Ak‘ > m;
2. for every k, |Ag| < |Dyl/d.

Combining these two implies that ¢ > d - m/|Dy|. By inequality , q> (;_TZ - d giving the desired
lower bound.

In the rest of the proof for conciseness we drop the subscript D from inner products and norms.
To prove the first claim we assume, for the sake of contradiction, that there exists D; & U<, As.

10



Then for every k < q, | Ep|hi(z)|—Ep, [hi(2)]| < 7 5. This implies that the replies of our simulation
Ep[hi(z)] are within 7; , of Ep,[hi(x)]. By the definition of A and VSTAT(t), this implies that f
is a valid solution for Z on D;, contradicting the condition that D; € D;f CDp\ Z7f).

To prove the second claim, suppose that for some k € [d], |A;| > |Dy|/d. Let py, = Eplhi(z)]
and assume that pp < 1/2 (when pr > 1/2 we just replace hy by 1 — hy in the analysis below).
First we note that:

)| = Blta)] = (b = 1) =k =

Blh(2)] - Blh(2)] = B

(3

Let Dj(z) = %((f)) — 1, (where the convention is that D;(z) = 0 if D(x) = 0). We will next show

upper and lower bounds on the following quantity
= <hk, > Di- sign<hk,ﬁz~>> :
DiGAk

By Cauchy-Schwartz we have that

9 2
<I>2:<hk, > Di-sign<hk,f)z~>> < |l || > Di-signihy, Dy)
D;eAy D;eAy
S UER D S (o 25]
Di,DjEAk
< hkl? - p(Ax, D) - | Ay, (2)
As before, we also have that
9 2
‘I)Q = <hk, Z [)z S|gn(hk,f)z>> = Z <hk,f)z)5|gn<hk,f)z>
D;eA; D;eA;
2
> | D bkl | - (3)
DiEAk

To evaluate the last term of this inequality we use the fact that |p; x—pg| > 7, = max{1/t, /pix(1 — pix)/t}

and Lemma to obtain that for every D; € Ay,

min{py, 1 — py} Pk
[Pk — Pik| > \/ 3 5 (4)
By substituting equation into we get that ®2 > Bk . | A%

We note that, hy is a {0, 1}-valued function and therefore ||hx||> = pi. Substituting this into
equation (2)) we get that ®2 < py-p(Ayx, D)-|Ax|?>. By combining these two bounds on ®? we obtain
that p(Ag, D) > 1/(3t) =4 which contradicts the definition of SDA. O

11



We remark that if the statistical algorithm was using the fixed tolerance STAT(7) for 7 = /4

2
then ®2 > <2DieAk \pik — pk\) > 72| Ax|? and the proof could be obtained by directly combining

equations and to get a contradiction. This also allows us to eliminate the factor of 3 in
the bound and the assumption that queries are {0,1} (it suffices that ||h||> < 1). We obtain the
following variant of our main bound.

Theorem 3.4. Let X be a domain and Z be a search problem over a set of solutions F and a
class of distributions D over X. For 5 > 0, let d = SDA(Z,7). Any statistical algorithm requires
at least d calls to STAT(\/7) oracle to solve Z.

3.2 Lower Bounds for Unbiased Statistical Algorithms

Next we address lower bounds on algorithms that use the 1-STAT oracle. We recall that the
1-STAT oracle returns the value of a function on a single randomly chosen point. To estimate the
expectation of a function, an algorithm can simply query this oracle multiple times with the same
function and average the results. A lower bound for this oracle directly translates to a lower bound
on the number of samples that any statistical algorithm must use.

We note that responses of 1-STAT do not have the room for the possibly adversarial deviation
afforded by the tolerance of the STAT and VSTAT oracles. The ability to use these slight deviations
in a coordinated way is used crucially in our lower bounds against VSTAT and in known lower
bounds for SQ learning algorithms. This makes proving lower bounds against unbiased statistical
algorithms harder and indeed lower bounds for Honest SQ learning (which is a special case of
unbiased statistical algorithms) required a substantially more involved argument than lower bounds
for the regular SQ model [51].

Our lower bounds for unbiased statistical algorithms use a different approach. We show a
direct simulation of 1-STAT oracle using VSTAT oracle. This simulation implies that the use of
an unbiased statistical oracle does not give additional power to the algorithm and allows us derive
lower bounds on unbiased statistical algorithms from Theorem |3.2

Theorem 3.5. Let Z be a search problem and let A be a (possibly randomized) unbiased statistical
algorithm that solves Z with probability at least 6 using m samples from 1-STAT. For any 0’ €
(0,1/2], there exists a statistical algorithm A’ that uses at most m queries to VSTAT(m /&%) and
solves Z with probability at least § — ¢'.

Our proof relies on a simple simulation. Given query hy : X — {0,1} from A to 1-STAT, we
make the same query hy to VSTAT(t) for t = m/§"2. Let p) be the response. We flip a coin with
bias p} (that is one that outputs 1 with probability p} and 0 with probability 1—p}) and return it to
the algorithm. We do the same for the remaining m — 1 queries which we denote by hs, hs, ..., hp,.
We then prove that true m samples of 1-STAT and our simulated coin flips are statistically close.
This implies that success probability of the simulated algorithm is not much worse than that of the
unbiased statistical algorithm.

In our proof we will, for simplicity and without loss of generality, assume that VSTAT(¢) always
outputs a value in the interval [1/¢,1—1/t]. We can always replace a value v returned by VSTAT(t)
by v’ which is the closest value to v in the above interval. It is easy to see that if v is a valid answer
of VSTAT(t) then so is v'.

We will need the following lemmas for our proof. The first one bounds the total variation
distance between two distributions in terms of the expected ratio of probability density functions.

12



Lemma 3.6. Let Dy and Dy be two distribution over a domain X of ﬁnitﬁﬂ size such that Dy(z)
is non-vanishing. Denote the total variation distance between D1 and Dy by Apy (D1, Ds). Then

A7y (D1, D2) < \/p/2, where p = EDl[lD);g] - 1.

Proof. The key observation is that the y2-divergence between D; and D» is exactly the expected
ratio minus 1.

o p[5] 1- g [ - g B B ] - (5]

By Jensen’s inequality this implies that

3

plo -1 =\8 (ﬁ;ﬁii—lﬂ ~ V.
Finally,
Ary (D1, Dy) = %!Dl (z)| = ;g Hg;gg—lu <V

O]

The second lemma is that if p is an answer of VSTAT(¢) for a query with h, such that Ep[h] = p,
then the expected ratio of density functions of B(1,p) and B(1,p’) is small.

—p)}.

Lemma 3.7. For an integert andp € [0,1] letp’ € [1/t,1—1/t] such that |[p'—p| < max{,

Then
Pr|B(1 =b 2
p (Lmtp=ny .2
b~B(1,p) Pr[B(1,p') =] t
Proof. If b = 1, the ratio is p/p’ and when b = 0, then it is (1 — p)/(1 — p’). Thus, the expected
ratio is

poA-p?_ |, -p)
=14 =27
pyoo1-p pPl—p)
We can assume without loss of generality that p < 1/2.
Now if p’ > p then p(1 —p) < p < p' < 2p/(1 —p'). Otherwise (when, p’ < p), we know that
p>p >1/tand p—p' < 1/t. Therefore p < 2p’ and p(1—p) < 2p'(1—p’). Further 1-1/t >p' > 1/t
and therefore 2p/(1 — p) > 1/t. This implies that

1 [p(1—p) 1 /2p(1—p) 2p'(1 —p/)
max{t’ t} Smax{t’\/t} = \/t'

By using this bound in the ratio equation we get that

2p' (1—p')
(p—1p)? : 2
1+~ 2/ <14t <142,
p(1—p) p(1—p) t

1This assumption is simply for convenience of notation. It holds in our applications.
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We can now complete the proof of Theorem [3.5

Proof of Theorem [3.5, We simulate A using VSTAT(¢) as described above. We now prove that for
any algorithm the total variation distance between the true answers of 1-STAT and the simulated
distribution is at most §’. Formally, let R denote the set of all outcomes of A’s random bits
and for » € R, let A" denote the execution of A when its random bits are set to r. let 14
denote the distribution over the m bits obtained by the algorithm A when it is run with 1-STAT
oracle. Similarly, let I’y denote the distribution over {0,1}"™ obtained by running the algorithm A
simulated using VSTAT(t) as above. By definition, IT4 = E,eg IL4 and similarly I’y = E,er 1Ty,
This implies that,

ATV(H.Aa HfA) < E [ATV(HAM Hi4r)j| < max ATV(H_AT7 HIAr).
reER reR

The algorithm A" is deterministic and it is therefore sufficient to prove the bound on total variation
distance for deterministic algorithms. For conciseness we assume henceforth that A is deterministic.

For any i € [m] let I 4, denote the probability distribution on the first ¢ samples of A executed
with 1-STAT. For j < i let 27 denote the first j bits of 2. Let Il 4,(2 | 2°~1) denote the probability
that the first ¢ samples of A executed with 1-STAT oracle are equal to z conditioned on the
probability that the first i — 1 samples are equal to z'~!. We define Iy (2) and I’y (2 | 21
analogously. We also denote by h, the query that A asks after getting z as the response to first ¢
samples and let p, = Ep[h.]. Let p, denote the response of VSTAT(t) on h,.

For i € [m] and any z € {0,1}%, I 4,(z | 27!) = Pr[B(1,p,i-1) = 2] and hence I 4,(z) =
O, , (27 HPr[B(1,p,i-1) = z]. Similarly, Iy (2 | Z71) = Pr[B(1,pli_1) = z] and Iy (2) =
Iy (271 Pr[B(1,pl;_1) = z]. This implies that:

o (@] [ PrB.pa) =)
o~y |11 (2) oy, |y (Y Pr[B(1,p, ) = zi]
- B H.Ai—1(zi_l) ) E [Pr[B(lapzil) - b]:|
zIlg, HiAi,l(Zi_l) b~B(1,p,i—1) Pr[B(]-ﬂp/Zifl) :b]

Now by Lemma [3.7] this implies that for any =z of length i € [m],
11 4. 11 4. 2
A2) s0) (1.2,
II A; (y) t
Applying this iteratively we obtain that

I, (2)
(=

By our deﬁnition t =m/&” > 4m. Therefore, 2m/t < 1/2 and hence e?™/t < 14 4m/t. By

Lemma we get that Apy (IT4, 1)) < /(1 +4m/t —1)/2 = /m/t = §'. This implies that the

success probablhty of A using the Slmulated oracle is at least § — 5’

E

ZNH.A,L-

CoyIla,

O]

We now combine Theorems [3.2] and [3.5] to obtain the following lower bound for unbiased sta-
tistical algorithms.
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Theorem 3.8. Let X be a domain and Z be a search problem over a set of solutions F and a
class of distributions D over X. For 4 > 0 and n € (0,1), let d = SDA(Z,7,n). Any (possibly
randomized) unbiased statistical algorithm that solves Z with probability 6 requires at least m calls

to 1-STAT for
m:min{d@—n) (5—n)2} ‘

2(1-n)" 12y
In particular, if n < 1/6 then any algorithm with success probability of at least 2/3 requires at least
min{d/4,1/485} samples from 1-STAT.

Proof. Assuming the existence of an unbiased statistical algorithm using less than m samples we
apply Theorem for & = (0 — n)/2 to simulate the algorithm using VSTAT. The bound on m

ensures that the resulting algorithm uses less than gg:z; queries to VSTAT(%) and has success

probability of at least (6 + 7)/2. By substituting these parameters into Theorem we obtain a
contradiction. ]

To conclude we formally state the trivial reduction in the other direction, namely that VSTAT(¢)
oracle can be simulated using 1-STAT oracle. It has been observed in the context of learning [50]
that, given a boolean query function h one can obtain an estimate of Ep[h] using t = O(log(1/6)/72)
samples which with probability at least 1 — ¢ will be within 7 of Ep[h]. Using the multiplica-
tive Chernoff bound, it is not hard to see that a stronger claim also holds: O(tlog(1/d)) sam-
ples are sufficient to estimate p = Ep[h] within tolerance guaranteed by VSTAT(¢), namely
max{1/t,\/p(1 —p)/t}.

We also allow real-valued query functions in our model but any such query function can be
replaced by [log(1/7)] + 2 boolean queries each or tolerance 7/2. A query ¢ computes bit i of
1+ h(z) € [0,2] so only [log(1/7)] + 2 bits are necessary to get the value of h(z) within 7/2.
Combining these two observations gives us the following theorem.

Theorem 3.9. Let Z be a search problem and let A be a statistical algorithm that solved Z wusing
q queries to VSTAT(t). For any 6 > 0, there exists an unbiased statistical algorithm A’ that uses
at most O(qt - log(t) - log (q/d)) samples and solves Z with probability at least 1 — 6.

3.3 Statistical Dimension Based on Pairwise Correlations

In addition to SDA which is based on average correlation we introduce a simpler notion based on
pairwise correlations. It is sufficient for some of our applications and is easy to relate to SQ-DIM
used in learning (as we do in Appendix .

Definition 3.10. For v, > 0, domain X and a search problem Z over a set of solutions F and
a class of distributions D over X, let m be the mazximum integer such that there exists a reference
distribution D over X and a finite set of distributions Dp C D such that for any solution f € F,
there exists a set of m distributions Dy = {Dx, ..., Dy} € Dp\ Z7(f) with the following property:

D; . D;
7_177_1 < . .
D D D vy fori# j € [m].

We define the statistical dimension with pairwise correlations (v, 3) of Z to be m and denote it
by SD(Z,, B).

{ B fori=j € [m)]
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As a corollary of Theorem [2.6] we obtain the following lower bound in terms of SD.

Corollary 3.11. Let X be a domain and Z be a search problem over a set of solutions F and a
class of distributions D over X. For v, > 0, let m = SD(Z,~, ). For any T > 0, any statistical
algorithm requires at least m(7% —~) /(B8 —~) calls to the STAT(T) oracle to solve Z. In particular,

-2

if for m > 0, SD(Z,y = mT/P’jﬁ = 1) > m then at least m'/?/2 calls of tolerance m~'/3 to the

STAT oracle are required to solve Z.

Proof. Take d = m(72 — v)/(B — 7); we will prove that SDA(Z,72) > d and apply Theorem
Consider a set of distributions D' C Dy = {Ds, Ds,...,Dp} € Dp \ Z7(f), where |D'| >
Do\ Z7H()l/d=m/d=(B~7)/(r* = ):

1 Dy Dy
D'.D)= —— - _1,==_1
p0.D) = Y <D L >D

D1,DoeD’

< |D”2 (‘D/W + (|,D/‘2 - ‘,D/D’Y)
B—

<

<5+ |D/\

<72

Using the same technique we can also directly bound SDA in terms of SD.

Lemma 3.12. Let X be a domain and Z be a search problem over a set of solutions F and a
class of distributions D over X. For v,8 > 0, let m = SD(Z,~,8). Then for every v > ~,

m(y'—7)
SDA(Z,9') > B -

4 Warm-up: MAX-XOR-SAT

In this section, we demonstrate our techniques on a warm-up problem, MAX-XOR-SAT. For this
problem, it is sufficient to use pairwise correlations, rather than average correlations.
The MAX-XOR-SAT problem over a distribution is defined as follows.

Problem 4.1. For ¢ > 0, the e-approximate MAX-XOR-SAT problem is defined as follows.
Given samples from some unknown distribution D over XOR clauses on n variables, find an as-
signment x that mazimizes up to additive € the probability a random clause drawn from D is
satisfied.

In the worst case, it is known that MAX-XOR-SAT is NP-hard to approximate to within
1/2 — § for any constant ¢ [26]. In practice, local search algorithms such as WalkSat [42] are
commonly applied as heuristics for maximum satisfiability problems. We give strong evidence that
the distributional version of MAX-XOR-SAT is hard for algorithms that locally seek to improve
an assignment by flipping variables as to satisfy more clauses, giving some theoretical justification
for the observations of [42]. Moreover, our proof even applies to the case when there exists an
assignment that satisfies all the clauses generated by the target distribution.

The bound we obtain can be viewed as a restatement of the known lower bound for learning

parities using statistical query algorithms (indeed, the problem of learning parities is a special case
of our distributional MAX-XOR-SAT).
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Theorem 4.2. For any § > 0, any statistical algorithm requires at least 72(2" — 1) queries to
STAT(T) to solve (% — 5) -approzimate MAX-XOR-SAT. In particular, at least 2™ queries of tol-
erance 273 are required.

For a vector ¢ € {0, 1}" we define the parity function y.(z) as usual x.(x) = —(—1)“*. Further,
let D, to be the uniform distribution over the set S, = {x | x.(z) = 1}.

Lemma 4.3. For c € {0,1}", ¢ # 0 and the uniform distribution U over {—1,1}", the following
hold:

z~ D, 0 otherwise. z~U 0 otherwise.

life=¢ life=¢
1) E [xe(z)]= { 2) E [xe(@)xe(z)] = {
Proof. To show Part 1) note that if ¢ = ¢ then Ezes,[xc(z)] = 1. If ¢ # ¢ # 0 then it is easy
t0 see that |5, N S| = [S.]/2 = Su]/2 and 50 Baes, [Xer(@)] = Saesng, 1+ Snesis, (<1) = 0.
Part 2) states the well-known fact that the parity functions are uncorrelated relative to the uniform
distribution. ]

These two facts will imply that when D = U (the uniform distribution) and the D;’s consist of
the D.’s, we can set v = 0 and 8 = 1, when considering the statistical dimension of the problems
presented in the following sections.

We are ready to prove a lower bound for the MAX-XOR-SAT problem. Let D be a distribution
over XOR clauses ¢ € {0,1}". We interpret ¢; = 1 as variable ¢ appearing in ¢ and otherwise
not; for simplicity, no variables are negated in the clauses. The problem is to find an assignment
x € {0,1}" that maximizes the expected number of satisfied XOR clauses. We now give the
statistical dimension of this problem, from which Theorem follows.

Theorem 4.4. For the MAX-XOR-SAT problem, let F = {Xz}ze{o1}», let D be the set of all

distributions over clauses ¢ € {0,1}", and for any 6 > 0, let Z be the (% — d)-approximate MAX-
XOR-SAT problem defined over F and D. Then SD(Z,0,1) > 2™ — 1.

Proof. Maximizing the expected number of satisfied clauses is equivalent to maximizing the quantity

% E [Xa(0)]-

This proof is a fairly direct application of Lemma to the definition of statistical dimension.

For the conditions in Definition for each of the 2™ possible assignments to x let D, be the
uniform distribution over the clauses ¢ € {0,1}" such that x.(z) = 1.

Because x.(x) is symmetric in 2 and ¢, the conditions in Definition with 8 = 1 and
v = 0, which follow from Lemma [4.3] are satisfied for the 2" distributions D., with D = U.
Because x.(r) = 1 when assignment x satisfies clause ¢ and —1 otherwise, we need to scale the
approximation term by 1/2 when measuring the fraction of satisfied clauses O

5 Planted Clique

5.1 Statistical dimension of planted clique

We now prove the lower bound claimed in Theorem on the problem of detecting a planted
k-clique in the given distribution on vectors from {0, 1}" as defined above.
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For a subset S C [n], let Dg be the distribution over {0, 1}" with a planted clique on the subset
S. Let {S1,...,S5n} be the set of all (}) subsets of [n] of size k. For i € [m] we use D; to denote
Dg,. The reference distribution in our lower bounds will be the uniform distribution over {0,1}"
and let Dg denote Dg /D — 1. In order to apply our lower bounds based on statistical dimension
with average correlation we now prove that for the planted clique problem average correlations
of large sets must be small. We start with a lemma that bounds the correlation of two planted
clique distributions relative to the reference distribution D as a function of the overlap between the
cliques:

Lemma 5.1. Fori,j € [m],

where A = [S; N S;].

Proof. For the distribution D;, we consider the probability D;(x) of generating the vector x. Then,

Di(z) — ("T_k)%n + (%)27114@ ifVse S;,zs =1
i(@) = (n=k) L otherwise
n /2" :
Now we compute the vector D; = %’ —1:
Di | _ L if Vs € Sj, x5 = 1
D B —% otherwise.

We then bound the inner product:

- R A A L AN > AN k\*
<Di>Dj> —— | — =] *+2 — —— =)+
D AL n n 2n n n n n

A L2

n2

IN

We now give a bound on the average correlation of any Dg with a large number of distinct
clique distributions.

Lemma 5.2. Ford >0 and k < n'/?7% let {Sy,...,Sm} be the set of all (}) subsets of [n] of size
k and {D1,..., Dy} be the corresponding distributions on {0,1}"™. Then for any integer £ < k, set
S of size k and subset A C {S1,..., Sy} where |A] > 4(m — 1)/n?%,

1 Ao T o K?
S;€A

Proof. In this proof we first show that if the total number of sets in A is large then most of sets

in A have a small overlap with S. We then use the bound on the overlap of most sets to obtain a
bound on the average correlation of Dg with distributions for sets in A.
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Formally, we let o = n—i and using Lemma E get the bound < > < 21805, Summing

over S; € A,
S (D) < Y 25
Si€A S;€A

For any set A C {S1,...,S,} of size t this bound is maximized when the sets of A include S, then
all sets that intersect S in k — 1 indices, then all sets that intersect S in k — 2 indices and so on
until the size bound t is exhausted. We can therefore assume without loss of generality that A is
defined in precisely this way.
Let
Th=A{S: | [SNSi| = A}

denote the subset of all k-subsets that intersect with .S in exactly A indices. Let Ag be the smallest
A for which A N T is non-empty. We first observe that for any 1 < j < k — 1,

Tl GG GHDm-2k+j+ 1) (DR =2k) (G + D
Tl ~ (5055 - G—i-DG-5) Bkt 2

By applying this equation inductively we obtain,

TT| _ 2 (m—1)
’T|— 31207 ]!.n2§j

and

22 (m—1) _4(m—1)
Z 75 < Z N - 20 < noi

k>A>j k>\>j

By definition of Ao, [A] < >y 15| < 4(m — 1)/n?%0. In particular, if |A| > 4(m — 1)/n*® then
n?% /4 < n?0 /4 or Ny < £. Now we can conclude that

> (Ds,D Z 2|7y N Ala

S;€A Jj=Xo
k
< [2om,nai+ S 2T
j=Xo+1

IN

(2A°|TA0 NAl+2- 2/\O+1|T)\0+1‘) o
< 222 4o < 2772 4]a.

To derive the last inequality we need to note that for every j > 0, 27|T;| > 2(2/+|T;;1]) we can
therefore telescope the sum. O

Lemma gives a simple way to bound the statistical dimension with average correlation of
the planted bipartite k-clique problem.

Theorem 5.3. For § > 0 and k < n'/27% let Z the planted bipartite k-clique problem. Then for
any ¢ < k, SDA(Z,202k2/n2,1/(})) > n?% /4.
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Proof. Let {S1,...,Sm} be the set of all (}) subsets of [n] of size k and D = {Dy,...,Dn} be
the corresponding distributions on {0,1}". For every solution S € F, Z71(S) = Dg and let

Ds =D\ {Ds}. Note that [Dg| = () — 1 and therefore [Dg| > (1 —1/(}))|D|.
Let D’ be a set of distributions D’ C Dg such that |D’'| > 4(m — 1)/n*?®. Then by Lemma

for every S; € T/,

LS b by < 22 F
D 2, P e

S;eD’

In particular, p(D’, D) < 2”2%. By the definition of SDA, this means that SDA(Z, 2/72k2 /n?, /(1) >
n2% /4, O

Combining Theorems and gives Theorem by taking ¢ = log(r). Theorems and
imply the sample complexity lower bound stated in Theorem by taking ¢ > 4/6.

5.2 Generalized Planted Densest Subgraph

We will now show the lower bound on detecting a planted densest subset, a generalization of the
planted clique problem.

Problem 5.4. Firt 0 <qg<p<1. For1<k<mn,let SC{1,2,...,n} be a set of k vertex indices
and Dg be a distribution over {0,1}" such that when x ~ Dg, with probability 1 — (k/n) the entries
of x are independently chosen according to a q biased Bernoulli variable, and with probability k/n
the k coordinates in S are independently chosen according to a p biased Bernoulli variable, and the
rest are independently chosen according to a q biased Bernoulli variable. The generalized planted
bipartite densest k-subgraph problem is to find the unknown subset S given access to samples

from Dg.

Note that p = 1,¢q = 1/2 is precisely the planted bipartite clique problem. For this generalized
problem, we will take D, the reference distribution, to be that of n independent Bernoulli variables
with bias gq. Before we give our results for this problem, we have to fix some further notation: for
ax € {0,1}", we define ||z|; = >_; (ie the number of 1’s in x); similarly for |Z||; = Y- 1 —z;
(the number of 0’s in x). We will denote the restriction of a set by subscripting so that zg is =
restricted to the subset S C [n].

First, we give a computation of the correlation. This is a generalized version of Lemma [5.1

Lemma 5.5. Fizx 0 < q¢<p<1. Fori,j € [m],
A
S (p—g)* k2
Di,D»> — (1= ) E
< "o (( i) n?

Proof. For any z, we have D(z) = ¢ll*li (1 — ¢)IPl. For D;(z):

where A = [S; N S;].

D,(z) = Pr[z|planted] Pr[planted] + Pr[z|not planted] Pr[not planted|

- (1 _ k) gl (1 — )l
n

= %pH%HlQ —p)HTSiquHZS} 1(1— q)Hﬁ
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D), _k plrslh plElhglesdi - gl g
D(x) n gl (1 — g)l=lly
k (p (EZHN 1—p 1zs:1l, k
“n\q 1—¢q n
Now, for S; where |S; NSj| = A, we want to compute:
IL—p 1—p

S gl — g

z€{0,1}"

1—g¢q

1—g¢q

(2:0), - (2) )" (=) |0 =)™

There are three types of terms in the product in the summand. We deal with all these terms by
repeated applications of the Binomial theorem. The first term illustrates this approach:

Z dha—glth =g+ -g)"=1

z€{0,1}"

The second type of term is given by:

lsilly 71— p\ 7=l
— p 11 1 p vl
T g1 gyl () <1 - )
ze{0,1}n q q
= 5 sl - gl plesl g -yl
ze{0,1}m
= Y pha—p)h S pleh — p)iE
ye{o,1}/5i 2e{0,1}I5il
=1

The third type of term is more complicated — using the above trick, we can restrict x to T' = S; U5,
because the sum take over the remaining x; yields 1.

S gl (1 - g)lh <P> sl (}—P
z€{0,1}" L q — 4
e <P>|x5i”1 G—
x€{0,1}7! L q — 4

Similarly, we can sum x over components associated with .S;/S; and S;/S;. Hence, the sum sim-

21

p) =21,

)IIwSiH[

(
(

b

q

p

q

)HISJ-HI ( 1%;9
sl
)

Q

1—p

1—g¢q

)IISJ'HI




plifies:

5 om0 (22 ) (=)™

= 3 =g [(P)”Sm“ (1P> HW”T

q 1—gq
xG{O,l}’Sinsj‘

-y <p2> I15:0551 ((1 - p)2> IS:nsi ),
N q 1—gq

x€{0,1}|simsj|
A

_ <p2 (1- p)2>
= =4+ ="

q L—gq

k 2 N2 A
_ <> <1 L =9 )

n q(1 —q)

Combining these three calculations yields:

(.5, = (5)

o)

Next, in analogy with Lemma[5.2] we give a bound on average correlation for sufficiently many
distributions.

O

Lemma 5.6. Fiz 0 < ¢ < p <1. Ford >0 and k < n'/?79, let {S1,...,Sn} be the set of all
(%) subsets of [n] of size k and {Dx,...,Dp} be the corresponding distributions on {0,1}". Let

n? > 1+ %. Then for any integer £ < k, set S of size k and subset A C {S1,...,S,} where
|A] > 4(m — 1) /0,

2

o VI
|2|2<D5,Di><2:2<<1+5()1_q;)> —1).

Proof. We proceed as in the proof of Lemma [5.2] The only difference is that we must verify that
the tail terms in the following sum are geometrically decreasing:

> (&)

Jj=Xo+1

In particular, it suffices to show that the succeeding term is at most half of the current term:

p—0*\ .. (p— )2\’
<1+Q(1—Q)> ’T]|22<1+Q(1—Q)> Tyl
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which is equivalent to:
, )2
EX I )
|Tj41] q(1—q)

From the proof of Lemma [5.2] we know that the left hand side is lower bounded, and then we can
apply our hypothesis:

(p—q)?

5l U+ 1)n?
q(1—q)

Tja| — 2

> 1+

To conclude, with the appropriate choice of Ag, we obtain

Ao - (r— >\’
> (Ds, Dy} < Za<<1+q(1_q)> —1> 1T; N Al

S;€A J=Xo

32\ 2o k N2\ ] k
- m“mm<<“*$r}$> _1>+ > mi(1+ ) - X mie

Jj=Xo+1 Q(

-2\ (p—q)2\ " i
< 14— . NA|l+2-|T <1+ ) — T | «
( “1_®) 141 +2: Tyl (14 220 S

_ 32\ Aot
gm\A\((HM) —1>

We can now give a bound on statistical dimension SDA:

Theorem 5.7. Fiz 0 < ¢ < p < 1. For§ > 0 and k < n'/279 let Z be the generalized planted
bipartite densest subgraph problem. Then for any £ < k,

2k? p-0*\"" ) 1 206
SDA <z, = <<1+q(1_q)> L)y ) 2

provided n* > 1+ (p —q)?/q(1 — q).
Proof. The proof is analogous to that of Theorem O
This SDA bound also yields lower bounds for the VSTAT oracle:

Corollary 5.8. Fix 0 < ¢ < p < 1. For any constant § > 0, any k < nl/2=0 ¢ <k, at least n®*®
queries to VSTAT(n*(1+ (p—q)?/q(1 —q)) "1 /k?) are required to solve the distributional planted
bipartite densest k-subgraph with density q provided that n*° > 14 (p — q)%/q(1 — q).

One is often interested in the case when ¢ = 1/2 and p > ¢ (the classical planted densest k-
subgraph problem); we give the following results for this setting. We now observe that our bound
becomes exponential when p approaches 1/2.
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Corollary 5.9. For any constant § > 0, any k < n'/279 ¢ < k and density parameter p = 1/2+a,
at least n*0) queries to VSTAT(n?/(La?k?)) are required to solve the distributional planted bipartite
densest k-subgraph with density p.

For example consider the setting k& = n'/? and a = n~%4. It is not hard to see that for
this setting the problem can be solved on a random bipartite graph with n vertices on both sides
(in exponential time). Our lower bound for this setting implies that at least nn?) queries to
VSTAT (n%/?) will be required.

With appropriate choices of parameter settings, we get the following corollary for 1-STAT.

Corollary 5.10. For constants ¢,§ > 0, density 1/2 < p < 1/2 + 1/n°, and k < /270 any
unbiased statistical algorithm that succeeds with probability at least 2/3, requires Q((n*+2¢)/k?)
queries to find a planted densest subgraph of size k.

Proof. By applying Theorem and choosing ¢ = O(loglog(n)), it suffices to estimate 1/(48%) to
obtain the desired lower bound. We have:

1 n? 1
48y 48k2 (2(p*+(1-p)»)t—1)
n? 1
<
 48k2 (1 +4/n2)t —1
n2+20

<
— 241k?

where the last inequality holds for sufficiently large n.
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Average-case vs Distributional Planted Bipartite Clique

In this section we show the equivalence between the average-case planted biclique problem (where
cliques of size k x k are planted in bipartite graphs of size n x n) and the distributional biclique
problem (with n examples from {0, 1}" where there is a set of k coordinates that contain a plant).
The idea of both the reductions is to obtain examples from one distribution given examples from
the other distribution. This is not immediate due to the fact that in the distributional biclique
problem the plant does necessarily have the same size on the left set of vertices as on the right set.
To remedy this, we will need to essentially search over plants of smaller and smaller sizes on one
side, by replacing possibly planted vertices with common ones.

27



Definition A.1. (Average-case planted bipartite clique (biclique) problem (APBC(n,k))) Given
integers 1 < k < n, consider the following distribution Dayg(n, k) on bipartite graphs on [n] x [n]
vertices. Pick two random sets of k vertices each from left/right respectively, say S1 and So. Plant
a bipartite clique on S1 X Sz and add an edges between each remaining pairs (i,j) with probability
1/2. The problem is to find the Sy x Sy biclique given as input a random bipartite graph G on
[n] % [n] vertices chosen according to Dyyg(n, k).

We recall the definition of the distributional biclique problem from the introduction.

Definition A.2. (Distributional planted biclique problem (DPBC(n,k))) Given integers 1 < k <
n and S C [n] a set of k wvertices, consider the distribution Dg over {0,1}", such that when
x ~ Dg, w.p. 1 — (k/n) the entries of x are chosen uniformly and independently from {0,1} and
with probability k/n the k coordinates in S are set to 1 and the rests are chosen uniformly and
independently from {0,1}. The problem is to find the unknown subset S given inputs from {0,1}"
chosen according to Dg.

Proposition A.3. Suppose that there is an algorithm that solves APBC(n', k') in time T'(n, k')
and outputs the correct answer w.p. p'(n', k). Then there exists an algorithm that solves DPBC(n, k)
in time T(n,k) = O(nT"(n,k/2))) and outputs the correct answer with probability p(n,k) = (1 —
2 F/8)p! (n, k/2).

Proof. We will think of the distribution Dyyg(n, k') on graphs as a distribution on their respective
adjacency matrices from {0,1}"*". Given k and n, and access to n samples from Dg C {0,1}" for
some set S of size k, we will design an algorithm that finds S and which makes O(n) calls to the
algorithm A, ;s that solves instances of APBC(n, k') for some values of £’.

Let M be the n x n binary matrix whose rows are the n samples from Dg. First apply a random
permutation 7 : [n] — [n] to the columns of M to obtain M’ (this will ensure that the planted set
is uniformly distributed among the n coordinates, which is necessary in order to obtain instances
distributed according to Davg(n, k).)

In what follows we will denote by &’ x k a clique with k’ vertices on the left and k vertices on
the right. Note that M’ has a k' x k planted clique for some &’ that is distributed according to a
binomial distribution of n Bernoulli trials with probability of success k/n (i.e. B(n,k/n)).

By a multiplicative Chernoff bound, Pr[k/2 < k' < k] > 1 — 2¢7*/®. From now on we’ll
condition on this event occurring.

Suppose that k/2 < k' < k. We aim at obtaining instances of APBC(n, k") but recall that there
is a plant of size k on the columns. To obtain only k" planted columns (i.e. vertices on the right of
the biclique), we will be replacing sequentially the columns by random columns whose entries are
chosen uniformly from {0, 1}. That is, pick one after the other n uniformly random columns of M’
(without replacement) and replace them by random {0,1}" vectors. Let Mj, M, ..., M/ be the
sequence of matrices obtained this way. Since we started with a plant of size ¥’ x k and we ended
with no plant it must have been that one of the matrices in the sequence had a plant of size k' x k'.
Let N be that matrix. To obtain the &’ x k' plant we run A,, ; on all the matrices M, ¢ € [n], and
in particular since N is a matrix distributed according to Dgyg(n, k'), Ay i will output the &' x &’
plant on S7 x Sy from N w.p. p'(n, k). Note that we would only recover k¥’ < k coordinates in this
way (after applying the inverse permutation 7~! to the set S3), and we need to recover the entire
set S of k indices. To recover the remaining planted indices, one can look at the actual examples
from the matrix M corresponding to rows indexed from S;. Then we can output all the indices

28



i € [n] such that the value of each of these rows at i is 1. Since there was a plant of size k, the set
output must contain .S. For simplicity we can assume that the given samples contain a unique set
of k planted positions.

If k < k' < 2k then we apply a similar argument. Now we can aim at finding plants of size
k x k. This time we need to reduce the size of the plant indexed by rows of M’ (corresponding
to the left vertices of the clique). As before we will sequentially replace random rows with vectors
uniformly chosen in {0,1}", one at a time until we have replaced all of them. Running A, ; on
each of the n instances obtained this way lets one recover the plant S; x So w.p. p/(k,n). If this is
successful the correct set S is m=1(Ss).

We can assume that it is harder to find smaller plants than larger ones, and so T"(n, k')
T'(k/2,n) and p'(n,k") < p/(n,k/2). Therefore the running time of our algorithm is T'(n, k)
O(nT'(n,k/2))), and its success probability is p(n, k) = (1 — 2e=*/8)p/(n, k/2).

I IA

O

Proposition A.4. Suppose that there is an algorithm that solves DPBC(n, k) that runs in time
T(n,k) and outputs the correct answer with probability p(n,k). Then there exists an algorithm
that solves APBC(n/, k") in time T'(n',k') = O(nT(n', k")) and outputs the correct answer w.p.
P ) > (1= 26 5) (p(a! 1) — 2e419)

Proof. Let A,, 1 denote the algorithm for DPBC(n, k) which takes n samples chosen according to
some Dg and outputs the planted set S w.p. p(n,k) (for any S of size k). Since the number of
samples that witness the plant is distributed according to B(n, k/n), as before, by Chernoft’s bound
this number is some k; such that k/2 < k; <2k w.p. 1 — 2¢—k/8_ Therefore the distribution of the
n samples (viewed as n X n binary matrices) has at most 2e~*/8
the plants on ki rows for ki ¢ [—k/2,2k]. Therefore, conditioned on the algorithm seeing samples
M st. k/2 < ki < 2k, Ay, has success probability > p(n, k) — 2e~k/8,

Consider the following algorithm for APBC(n, k') that takes as input an adjacency matrix G
chosen randomly according to Dgyg(n, k'), and so, it contains a k' x k' plant S x Sy that needs to
be found.

Pick k s.t. k'/2 < k < 2k" according to B(n,k/n). From G, which has a plant of size k' x &’
we’d like to obtain samples M with k x k' plants, or ¥’ x k plants.

If ¥'/2 < k <K/, as in the proof of Proposition we can obtain a sample with a plant of size
k x k' by sequentially replacing the n rows by random {0,1}" vectors. As before, after running
A, i on each of these n matrices the k x k" plant S] x Sz will be output. To actually complete the
plant on the left side, it is enough to look at the Sy indices and output all the rows ¢ s.t. all the
entries at i and j € Sy take value 1. This takes nT'(n, k") time complexity.

If ' < k < 2K then k/2 < k' < k and from G we can generate a sample matrix M with a plant
on k' x k just as before but where now we replace the columns by random columns. This takes
nT(n,k) = O(nT(n, k")) time.

Therefore, T'(n, k') = O(nT(n, k")) and p'(n, k') = (1 — 2 */8)(p(n, k) — 2¢7*/8), since we
conditioned on the event that k'/2 < k < 2k'.

mass on matrices M that witness

O]
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B Relationship to Statistical Queries in Learning

We will now use Corollary to demonstrate that our work generalizes the notion of statistical
query dimension and the statistical query lower bounds from learning theory. In an instance of a
PAC learning problem, the learner has access to random examples of an unknown boolean function
/' X' — {—1,1} from a set of boolean functions C (whenever necessary, we use ' to distinguish
variables from the identically named ones in the context of general search problems). A random
example is a pair including a point and its label (z/, ¢(2’)) such that 2’ is drawn randomly from an
unknown distribution D’. For € > 0, the goal of an e-accurate learning algorithm is to find, with
high probability, a boolean hypothesis b’ for which Pr.p/[h/'(2') # f/(2')] < e.

A statistical query (SQ) learning algorithm [34] has access to a statistical query oracle for the
unknown function f’ and distribution D’ in place of random examples. A query to the SQ oracle
is a function ¢ : X’ x {—1,1} — [—1,1] that depends on both the example z’ and its label /.
To such a query the oracle returns a value v which is within 7 of Ep/[¢(2/, ¢(2’)], where 7 is the
tolerance parameter. A SQ algorithm does not depend on the randomness of examples and hence
must always succeed.

Blum et al. [I2] defined the statistical query dimension or SQ-DIM of a set of functions C and
distribution D’ over X' as follows (we present a simplification and strengthening due to Yang [51]).

Definition B.1 ([12]). For a concept class C and distribution D', SQ-DIM(C,D') = d' if d' is
the largest value for which there exist d' functions ci,ca,...,cqy € C such that for every i # 7,
‘(Ci,Cj>D/‘ S ]_/d/

Blum et al. [12] proved that if a class of functions is learnable using only a polynomial number of
statistical queries of inverse polynomial tolerance then its statistical query dimension is polynomial.
Yang [51] strengthened their result and proved the following bound (see [44] for a simpler proof).

Theorem B.2 ([51]). Let C be a class of functions and D' be a distribution over X' and let d' =
SQ-DIM(C,D"). Then any SQ learning algorithm for C over D' that makes q queries of tolerance
1/d""/3 and outputs an e-accurate hypothesis for € < 1/2 —1/(2d'*/3) satisfies that ¢ > d'V/?/2 — 1.

In this result the distribution D’ is fixed and known to the learner (such learning is referred
to as distribution-specific) and it can be used to lower bound the complexity of learning C even in
a weak sense. Specifically, when the learning algorithm is only required to output a hypothesis h’
such that Pr,/.p/[h/ (2") # ¢(2’)] <1/2 + 4/ for some inverse polynomial 7' (or e < 1/2 —+/).

It is not hard to see that we can cast this learning problem as a search problem over distributions,
and by doing so, we will obtain that our statistical dimension implies a lower bound on learning
which is slightly stronger than that of Yang [51].

Let £ = (C,D’,¢€) be an instance of a distribution-specific learning problem of a class of func-
tions C over distribution D’ to accuracy 1 —e. We define the following search problem Z, over
distributions. The domain is all the labeled points or X = X’ x {—1,1}. When the target func-
tion equals ¢ € C the learning algorithm gets samples from the distribution D, over X, where
D (2, c(2")) = D'(2') and D.(2',—c(2’)) = 0. Therefore we define the set of distributions over
which we search to be Dy = {D. | ¢ € C}. Note that STAT oracle for D, with tolerance 7 is equiv-
alent to the statistical query oracle for ¢ over D’ with tolerance 7. We can take the set of solutions
Fr over which a learning algorithm searches optimizes to be the set of all boolean functions over
X' (an efficient learning algorithm can only output circuits of polynomial size but this distinction
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is not important for our information-theoretic bounds). We define Z, to be the problem: given
random samples from D, € D, find a hypothesis f € F, that has accuracy of at least 1 — ¢ on c.
This is equivalent to saying E o~p.[f(z') =0 >1—€.

We claim that SQ-DIM(C, D')-based lower bound given in Theorem is special (and substan-
tially simpler) case of our statistical dimension lower bound for Z, (Cor. [3.11)).

Theorem B.3. Let C be a class of functions and D' be a distribution over X' and let d' =
SQ-DIM(C, D'). Denote by L = (C, D', €) the instance of learning C over D' fore = 1/2—1/(2d'"/3).
Then
1
SD(Ze,y=1/d,8=1)>(d — —5n—— ).
e =1/t.8=1> (¢ = =)

Proof. Let c1,co,...,cy be the almost uncorrelated functions in C implied by the definition of
SQ-DIM(C, D'). We define the reference distribution D as the distribution for which for every
(2',0) € X, D(2',¢) = D'(2’)/2. We note that this ensures that D(2’/,¢) is non-vanishing only
when D’(z') is non-vanishing and hence the function (% — 1) will be well-defined for all ¢ € C.
For every c € C, we have

D.(&'sc(a) D!, —c(a")

—1=2-1=1 d ———-1=0—-1=-1.
D« (")) D =e(@)
Therefore, %x,i’f)) = (- c(2’). This implies that for any ¢;,¢; € C,

(Fr-1 5 -1) = Bltale) ) = Blale) o) = (o).

Hence

1. for any ¢ € C,

B -1, =

2. foramy i £ j <, (S5 -1, T 1) <1d.
These properties imply that d’ functions in C give d’ distributions in D, which are almost uncor-
related (relative to D). This is essentially the condition required to obtain a lower bound of d’ on
SD(Z,,1/d',1). The only issue is that we need to exclude distributions for which any given f € Fp
is a valid solution (that is, f (1 —e€)-approximates c). We claim that it is easy to bound the number
of such distributions for a fixed f(z’). First, note that the condition of 1 — ¢ approximation of f
for ¢ states that E(, ¢)p [f(2') = €] > 1 — ¢ and therefore

E [fa)-0>1-2e=1/d"5.
(2’ ,£)~D,
On the other hand, Ey o~p[f(z') - €] = 0 and therefore E(y ¢)p [f(2) - €] = E@r o)~plf (&) - £] >
1/d'*/3. This implies that if we view f(z') - £ as a query function then expectations of the query
function relative to D. and D differ by at least 7 = 1/d’ /3 In the proof of Theorem we
proved that the set of distributions that satisfies this condition has average correlation of at least
72 relative to D. In Corollary we proved that at most (8 — v)/(7? — ) distributions with
pairwise correlations (v, 3) can have average correlation of at least 72. For our parameters this
gives a bound of __ distributions. Hence for m = d’ — d’%;—l we obtain that for

1
1/d’2/3—1/d’ a'1/3 -1
every f € Fr there exist m distributions D1,..., Dy € {Dey,. .., De, }\ Zc_l(f) such that
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26 -1,

2.foranyi7éj§m,<%(())—1 ()—1> <1/d.

O

Applying Corollary we get the following lower bound, which is twice larger than the
d''/3/2 — 1 bound of Yang [51].

Corollary B.4. Let C be a class of functions and D’ be a distribution over X', let d' = SQ-DIM(C, D")
and let € = 1/2 — 1/(2d"V/3). Then any SQ learning algorithm requires at least d'V/? — 2 queries of
tolerance 1/d'"/3 to e-accurately learn C over D'.

We also note that, unlike previous bounds for SQ algorithms our technique immediately gives
lower bounds against randomized algorithms. To see this we note that in the proof of Theorem

B.3| we have that for every f € Fr, |ZEI( Nl < d,%;_l. This implies a solution set size bound

n= d/1/3 1/d’ = d,1/3 7- Now, using Lemma 3.12f together with Theorem it is easy to obtain
the following corollary.

Corollary B.5. Let C be a class of functions and D’ be a distribution over X', letd' = SQ-DIM(C, D")
and let € = 1/2 — 1/(2d""/3). Then any randomized SQ learning algorithm that succeeds with prob-
ability at least 1/2, requires at least d’1/3/2 — 2 queries of tolerance l/d’l/3 to e-accurately learn C
over D'.

B.1 Honest Statistical Queries

We now turn to the Honest SQ model [29] [50], which inspired our notion of unbiased statistical
algorithms. In the Honest SQ model, the learner has access to an HSQ oracle and can again evaluate
queries which are a function of the data points and their labels. As in our 1-STAT oracle, the queries
are evaluated on an “honest” sample drawn from the target distribution. More precisely, the HSQ
oracle accepts a function (;5 X'x{-1,1} — {—1,1} and a sample size t > 0, draws z},...,x} ~ D’,
and returns the value & Zl 1 9(2', c(2")). The total sample count of an algorithm is the sum of the
sample sizes it passes to HSQ.

We note that using our one-sample-per-query-function oracle 1-STAT one can simulate estima-
tion of queries from larger samples in the straightforward way while obtaining the same sample
complexity. Therefore HSQ is equivalent to our 1-STAT oracle.

We first observe that our direct simulation in Theorem implies that the Honest SQ learning
model is equivalent (up to polynomial factors) to the SQ learning model. We are not aware of this
observation having been made before (although Valiant [47] implicitly uses it to show that evolvable
concept classes are also learnable in the SQ model).

In addition, by adapting Theorem to this setting as we did in Corollary (that is using
Lemma and the bound on the solution set size) we can directly derive sample complexity
bounds on honest statistical query algorithms for learning.

Corollary B.6. Let C be a class of functions, D' be a distribution over X', d' = SQ-DIM(C, D') and
e =1/2—1/(2d""/3). Then any Honest SQ algorithm that, with probability at least 2/3, e-accurately
learns C over D' requires Q(v/d') queries.

This gives a simpler proof for the bound of Yang [51] up to polynomial factors (Yang gets a
bound of Q(d’/logd') using a stronger 1/d"® upper bound on correlations).
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