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Abstract. The problem of finding a nontrivial factor of a polynomial f(x)

over a finite field Fq has many known efficient, but randomized, algorithms.
The deterministic complexity of this problem is a famous open question even

assuming the generalized Riemann hypothesis (GRH). In this work we improve
the state of the art by focusing on prime degree polynomials; let n be the

degree. If (n − 1) has a ‘large’ r-smooth divisor s, then we find a nontrivial

factor of f(x) in deterministic poly(nr, log q) time; assuming GRH and that

s = Ω(
√

n/2r). Thus, for r = O(1) our algorithm is polynomial time. Further,

for r = Ω(log logn) there are infinitely many prime degrees n for which our

algorithm is applicable and better than the best known; assuming GRH.
Our methods build on the algebraic-combinatorial framework of m-schemes

initiated by Ivanyos, Karpinski and Saxena (ISSAC 2009). We show that the
m-scheme on n points, implicitly appearing in our factoring algorithm, has

an exceptional structure; leading us to the improved time complexity. Our

structure theorem proves the existence of small intersection numbers in any
association scheme that has many relations, and roughly equal valencies and

indistinguishing numbers.
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1. Introduction

We consider the classical problem of finding a nontrivial factor of a given polyno-
mial over a finite field. There exist various randomized polynomial time algorithms
for this problem, such as Berlekamp [Ber67], Rabin [Rab80], Cantor & Zassenhaus
[CZ81], von zur Gathen & Shoup [vzGS92], Kaltofen & Shoup [KS98], and Kedlaya
& Umans [KU11], but its deterministic time complexity is a longstanding open
problem. It pertains to the general derandomization question in computational
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complexity theory, i.e. whether any problem solvable in probabilistic polynomial
time can also be solved in deterministic polynomial time.

In this paper, we consider the deterministic time complexity of the problem of
polynomial factoring over finite fields assuming the generalized Riemann hypothesis
(GRH) (Section 3.1). GRH enables us to find primitive r-th nonresidues in a finite
field Fq, which are in turn used to find a root x (if it exists in Fq) of polynomials of
the type xr − a over Fq [AMM77]. Assuming GRH, there are many deterministic
factoring algorithms known but all of them are super-polynomial time except on
special input instances: Rónyai [Rón92] showed that under GRH, any polynomial
f(x) ∈ Z[x] can be factored modulo p deterministically in time polynomial in the
order of the Galois group of f(x), except for finitely many primes p. Rónyai’s result
generalizes previous work by Huang [Hua91], Evdokimov [Evd89], and Adleman,
Manders & Miller [AMM77]. Bach, von zur Gathen & Lenstra [BvzGL01] showed
that polynomials over finite fields of characteristic p can be factored in deterministic
polynomial time if φk(p) is smooth for some integer k, where φk(p) is the k-th
cyclotomic polynomial. This result generalizes previous work by Rónyai [Rón89],
Mignotte & Schnorr [MS88], von zur Gathen [vzG87], Camion [Cam83], and Moenck
[Moe77].

The line of research which interests us was started by Rónyai [Rón88]. He used
GRH to find a nontrivial factor of a polynomial f(x) ∈ Fq[x], where n = deg f
has a small prime factor, in deterministic polynomial time. Rónyai’s framework
relies on the discovery that finding a nontrivial automorphism in certain algebras
(such as A := Fq[x]/f(x) and its tensor powers) yields an efficient decomposition of
these algebras under GRH. Building on Rónyai’s ideas, Evdokimov [Evd94] showed
that an arbitrary degree n polynomial f(x) ∈ Fq[x] can be factored deterministi-
cally in time poly(log q, nlogn) under GRH. This line of approach has since been
investigated, in an attempt to either remove GRH [IKRS12] or improve the time
complexity, leading to several analytic number theory, algebraic-combinatorial con-
jectures and special case solutions [CH00, Gao01, Sah08, IKS09].

Our method in this paper, building on [IKS09], encompasses the known algebraic-
combinatorial (if not analytic number theory) methods and ends up relating the
complexity of polynomial factoring to ‘purely’ combinatorial objects (called schemes
and intersection numbers) that are central to the research area of algebraic com-
binatorics. The methods of [Rón88, Evd94, CH00, Gao01, Sah08] arrange the un-
derlying roots of the polynomial in a combinatorial object that satisfies some of
the defining properties of schemes. This paper contributes to the understanding of
schemes by making progress on a related purely combinatorial conjecture, which is
naturally connected with polynomial factoring.

1.1. Our main result. We study the problem of finding a nontrivial factor of a
polynomial of prime degree. Intuitively, this case should not be any easier. However,
it turns out that our combinatorial framework is quite well behaved over prime
number of roots and gives an improved time complexity. We call a number s ∈ N
r-smooth if each prime factor of s is at most r.

Theorem 1.1 (Factoring). Let f(x) be a polynomial of prime degree n over Fq.
Assume (n − 1) has a r-smooth divisor s, with s ≥

√
n/` + 1 and ` ∈ N>0. Then

we can find a nontrivial factor of f(x) deterministically in time poly(log q, nr+log `)
under GRH.



FACTORING USING SCHEMES 3

Naturally, one asks if there exist infinitely many primes n for which Theorem 1.1
is a significant improvement. A well-known number theory conjecture concerning
primes in arithmetic progressions is connected to this question (Section 5.1). Under
the conjecture that L = 2 is admissible for Linnik’s constant [Lin44], we prove that
there exist infinitely many primes n for which the time complexity in Theorem 1.1
is polynomial. Even simply under GRH the factoring algorithm has an improved
time complexity over the best known ones, for infinitely many n.

Corollary 1.2 (Infinite family). Assuming GRH, there exist infinitely many primes
n such that every polynomial f(x) ∈ Fq[x] of degree n can be factored deterministi-
cally in time poly(log q, nlog logn).

Further if L = 2 is admissible for Linnik’s constant, then there exist infinitely
many primes n such that every polynomial f(x) ∈ Fq[x] of degree n can be factored
deterministically in time poly(log q, n).

The techniques known before our work do not give a result as strong as ours on
this particular infinite family of degrees. The best one could have done before is
poly(log q, nlogn) time, by the general purpose algorithm of Evdokimov [Evd94].

1.2. Idea of m-schemes. The GRH based algorithm for factoring polynomials
over finite fields by Ivanyos, Karpinski and Saxena [IKS09] (called IKS-algorithm
in the following) relies on the use of combinatorial schemes, more specifically m-
schemes. If we denote [n] := {1, ..., n}, then an m-scheme can be described as
a partition of the set [n]

s
, for each 1 ≤ s ≤ m, which satisfies certain natural

properties called compatibility, regularity and invariance (Section 2.1). The notion
of m-scheme is closely related to the concepts of superscheme [Smi94], association
scheme [BI84, Zie05], coherent configuration [Hig70], cellular algebra [WL68] and
Krasner algebra [Kra38]. Curiously, techniques initiated by [WL68] are used in
another outstanding problem - deciding graph isomorphism.

The IKS-algorithm (Section 3.2) associates to a polynomial f(x) ∈ Fq[x] the nat-
ural quotient algebra A := Fq[x]/f(x) and explicitly calculates special subalgebras
of its tensor powers A⊗s (1 ≤ s ≤ m). Through a series of operations on systems of
ideals of these algebras (which can be performed efficiently under GRH), the IKS-
algorithm either finds a zero divisor in A - which is equivalent to factoring f(x) -
or obtains an m-scheme from the combinatorial structure of A⊗s (1 ≤ s ≤ m). In
the latter case, the m-scheme obtained may be interpreted as the ‘reason’ why the
IKS-algorithm could not find a zero divisor in A.

It is not difficult to prove that the IKS-algorithm always finds a zero divisor in
A if we choose m large enough (viz. in the range log n), yielding that the IKS-
algorithm deterministically factors f(x) in time poly(nlogn, log q). Moreover, it is
conjectured that even choosing m as constant, say m = c where c ≥ 4, is enough to
find a zero divisor in A (and hence factor f), which would give the IKS-algorithm a
polynomial running time under GRH. This is the subject of the so-called schemes
conjecture (Section 2.4) on the existence of matchings (Sections 2.3 & 3.3).

We remark that the schemes conjecture is a purely algebraic-combinatorial con-
jecture concerning the structure of certain kinds of m-schemes. We also note that
the schemes conjecture is already proven for an important class of m-schemes,
namely the so-called orbit m-schemes (Theorem 2.7). In this current work, we
prove the schemes conjecture for an interesting class of m-schemes on a prime num-
ber of points, culminating in a somewhat surprising result about the factorization
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of prime degree polynomials. Our proof builds on the strong relationship of m-
schemes and association schemes (Section 2.2), and involves fundamental structure
results about association schemes of prime order by Hanaki & Uno [HU06] and
Muzychuk & Ponomarenko [MP12].

1.3. Idea of association schemes. Underlying Theorem 1.1 is a structural result
about association schemes with bounded valencies and indistinguishing numbers.
Recall [Zie05, MP12] that an association scheme is a pair (X,G) which consists of
a finite set X and a partition G of X ×X such that

(1) G contains the identity relation 1 := {(x, x) |x ∈ X},
(2) if g ∈ G, then g∗ := {(y, x) | (x, y) ∈ g} ∈ G, and
(3) for all f, g, h ∈ G, there exists an intersection number chfg ∈ N such that

for all (α, β) ∈ h, chfg = #{γ ∈ X | (α, γ) ∈ f, (γ, β) ∈ g}.
An element g ∈ G is called a relation (or color) of (X,G). We call |X| the order of
(X,G). For each g ∈ G, we define its valency ng := c1gg∗ , and its indistinguishing

number c(g) :=
∑
v∈G c

g
vv∗ .

Whenever it helps, an association scheme can also be thought of as a colored
directed graph with X as vertices and G as edges. But it is richer in algebraic
structure than a graph and often evokes the feeling “group theory without groups”
[BI84]. Below we formulate our main scheme theory result; it essentially proves
that a large number of relations means the existence of small intersection numbers
(assuming bounded valency and indistinguishing number). It is vaguely related to
the structural results in the literature that concern with the so-called Schurity of
schemes [EP00, EP03, EP09, MP12]. We are concerned ‘merely’ with two small
intersection numbers and hence we are able to work with better parameters.

Theorem 1.3 (Small intersection numbers). Let (X,G) be an association scheme.
Assume there exist c, k, ` ∈ N and 0 < δ1, δ

′
1, δ
′
2 ≤ 1 with 1 < ` < (δ21/δ

′
1) · k such

that for all 1 6= g ∈ G,

δ1 · k ≤ ng ≤ δ′1 · k and c(g) ≤ δ′2 · c.
If |G| ≥ 2(δ′1/δ1)3δ′2 · c

`−1 +2 then there exist nontrivial relations u 6= v, w 6= w′ ∈ G
such that 0 < cwu∗v ≤ cw

′

u∗v < `.

The above theorem establishes the existence of small intersection numbers in
association schemes where both the valencies and indistinguishing numbers of non-
trivial relations are confined to a certain range. Interestingly, we give evidence that
the result is optimal (Section 5.2). An important example of association schemes
of this type are schemes of prime order (Sections 4.1 & 5.2). There the nontriv-
ial relations have equal valency, say k [HU06] and equal indistinguishing numbers
(k − 1) [MP12].

Corollary 1.4 (Prime scheme). Let (X,G) be an association scheme of prime

order n = |X| and valency k. Let ` ∈ N>1. If |G| ≥ 2(k−1)
`−1 + 2 then there exist

nontrivial relations u 6= v, w 6= w′ ∈ G such that 0 < cwu∗v ≤ cw
′

u∗v < `.

Drawing on the connection of association schemes and m-schemes, we deduce
from Corollary 1.4 the existence of matchings in certain m-schemes on a prime
number of points that helps in algebra decomposition (Section 4.2). This is the
prime source of our results in the domain of polynomial factoring.
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1.4. Organization. §2 provides an introduction to the notion of m-schemes and
surveys important results and concepts associated therewith. We put a special em-
phasis on explaining the connection between association schemes and m-schemes
(§2.2). In §3 we describe the IKS-algorithm for factoring polynomials over finite
fields, which builds on the theory of m-schemes. Theorem 3.4 delineates how to fac-
tor polynomials by exploiting m-scheme structure. In §4 we prove our main results:
Theorem 1.1 on the factorization of polynomials of prime degree and Theorem 1.3
on the existence of small intersection numbers in association schemes with bounded
valencies and indistinguishing numbers. In addition, §5 explains how Theorem 1.1
ties in with the density of primes in arithmetic progressions (§5.1) and discusses in
which sense the bounds given in Theorem 1.3 are optimal (§5.2).

2. Preliminaries: m-schemes

In this section we define special partitions of the set [n]
m

that we call m-schemes
on n points. These combinatorial objects were first defined in [IKS09]. They occur
naturally as part of the IKS-algorithm for factoring polynomials over finite fields.
In the following, we give an overview of the basic theory of m-schemes.

2.1. Basic definitions. In this section, we introduce the necessary definitions for
the study of m-schemes. For reference purposes, the terminology used here is the
same as in the paper [IKS09].
s-tuples: Throughout this section, V is an arbitrary set of n distinct elements.

For 1 ≤ s ≤ n, we define the set of essential s-tuples by

V (s) := {(v1, v2, . . . , vs) | v1, v2, . . . , vs are s distinct elements of V }.
Projections: For s > 1, we define s projections πs1, π

s
2, . . . , π

s
s : V (s) −→ V (s−1)

by
πsi : (v1, . . . , vi−1, vi, vi+1, . . . , vs) −→ (v1, . . . , vi−1, vi+1, . . . , vs).

Moreover, for 1 ≤ i1 < . . . < ik ≤ s we define

πsi1,...,ik : V (s) −→ V (s−k), πsi1,...,ik = πs−k+1
i1

◦ . . . ◦ πsik .

Permutations: The symmetric group on s elements Symms acts on V (s) in a
natural way by permuting the coordinates of the s-tuples. More accurately, the
action of τ ∈ Symms on (v1, . . . , vi, . . . , vs) ∈ V (s) is defined as

(v1, . . . , vi, . . . , vs)
τ := (v1τ , . . . , viτ , . . . , vsτ ).

m-Collection: For 1 ≤ m ≤ n, an m-collection on V is a set Π of partitions
P1,P2, . . . ,Pm of V (1), V (2), . . . , V (m) respectively.

Colors: For 1 ≤ s ≤ m, the equivalence relation on V (s) corresponding to the
partition Ps will be denoted by ≡Ps .
Below, we discuss some natural properties of m-collections that are relevant to us.
In the following, let Π = {P1,P2, . . . ,Pm} be an m-collection on V .

P1 (Compatibility): We say that Π is compatible at level 1 < s ≤ m, if
ū, v̄ ∈ P ∈ Ps implies that for every 1 ≤ i ≤ s there exists Q ∈ Ps−1 such that
πsi (ū), πsi (v̄) ∈ Q.

In other words, if two tuples (at level s) have the same color then for every
projection the projected tuples (at level s − 1) have the same color as well. It
follows that for a class P ∈ Ps, the sets πsi (P ) := {πsi (v̄) | v̄ ∈ P}, for all 1 ≤ i ≤ s,
are colors in Ps−1.
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P2 (Regularity): We call Π regular at level 1 < s ≤ m, if ū, v̄ ∈ Q ∈ Ps−1
implies that for every 1 ≤ i ≤ s and for every P ∈ Ps,

#{ū′ ∈ P |πsi (ū′) = ū} = #{v̄′ ∈ P |πsi (v̄′) = v̄}.
Fibres: We call the tuples in P ∩ (πsi )

−1(ū) the πsi -fibres of ū in P . So regularity,
in other words, means that the cardinalities of the fibres above a tuple depend only
on the color of the tuple.

Subdegree: The above two properties motivate the definition of the subdegree

of a color P over a color Q as s(P,Q) := |P |
|Q| , assuming that πsi1,...,ik(P ) = Q for

some 1 ≤ i1 < . . . < ik ≤ s and that Π is regular at all levels 2, . . . , s.
P3 (Invariance): We say that Π is invariant at level 1 < s ≤ m, if for every

P ∈ Ps and τ ∈ Symms, we have:

P τ := {v̄τ | v̄ ∈ P} ∈ Ps.
In other words, the partitions P1, . . . ,Pm are invariant under the action of the
corresponding symmetric group.

P4 (Homogeneity): We say that Π is homogeneous if |P1| = 1.
P5 (Antisymmetry): We say that Π is antisymmetric at level 1 < s ≤ m, if

for every P ∈ Ps and id 6= τ ∈ Symms, we have P τ 6= P .
P6 (Symmetry): We say that Π is symmetric at level 1 < s ≤ m, if for every

P ∈ Ps and τ ∈ Symms, we have P τ = P .
Note that an m-collection is called compatible, regular, invariant, symmetric,

or antisymmetric if it is at every level 1 < s ≤ m, compatible, regular, invariant,
symmetric, or antisymmetric respectively.
m-Scheme: An m-collection is called an m-scheme if it is compatible, regular

and invariant.
We start with an easy non-existence lemma for m-schemes [IKS09, Lemma 1].

Note that the lemma below puts the main content of [Rón88] in a more general
framework.

Lemma 2.1. Let r > 1 be a divisor of n. Then for m ≥ r there does not exist a
homogeneous and antisymmetric m-scheme on n points.

Proof. For m ≥ r, clearly every m-scheme contains an r-scheme (hint: Project the
tuples to the first r places). Hence it suffices to prove the above statement for
m = r. Suppose for the sake of contradiction that there exists a homogeneous
and antisymmetric r-scheme Π = {P1,P2, . . . ,Pr} on V = {v1, v2, . . . , vn}. By
definition, Pr partitions n(n − 1) · · · (n − r + 1) tuples of V (r) into, say, tr colors.
By antisymmetricity, every such color P has r! associated colors, namely {P τ | τ ∈
Symmr}. Moreover, by homogeneity, the size of every color at level r is divisible
by n. Hence, r!n|n(n− 1) · · · (n− r+ 1). But this implies r!|(n− 1) · · · (n− r+ 1),
which contradicts r|n. Therefore, Π cannot exist. �

Below, we describe the relationship between m-schemes and association schemes.

2.2. 3-schemes from association schemes. The notion of m-schemes is closely
related to the concept of association schemes. Association schemes are standard
combinatorial objects for which there exists extensive literature [BN39, BM59,
Del73, BI84, Zie05]. We recall some important identities which involve the va-
lencies of association schemes. Note that the identities given below can all be
found in [Zie05].
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Lemma 2.2. Let (X,G) be an association scheme and let d, e, f ∈ G. The following
holds:

(1) cfde = cf
∗

e∗d∗ ,

(2) cedf · ne = cdef∗ · nd,

(3)
∑
g∈G c

f
ge = ne∗ ,

(4)
∑
g∈G c

g
ef · ng = ne · nf .

We now show that the concepts of 3-scheme and association scheme are essen-
tially equivalent (strictly speaking, former is a refinement of the latter). The follow-
ing lemma states that the first two levels of any 3-scheme constitute an association
scheme (up to containment of the identity relation).

Lemma 2.3. Let Π = {P1,P2,P3} be a homogeneous 3-scheme on the set V =
{v1, v2, . . . , vn}. Then (P1,P2 ∪ {1}) constitutes an association scheme, where 1 =
{(v, v) | v ∈ V } denotes the identity relation.

Proof. We prove that for all Pi, Pj , Pk ∈ P2, there exists an integer ckij such that
for all (α, β) ∈ Pk,

ckij = #{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj}.

The trivial case where at least one of Pi, Pj , Pk is the identity relation is omitted.
By the compatibility and regularity of Π at level 3, there exists a subset S ⊆ P3

such that for all (α, β) ∈ Pk, the set {γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj} can be
partitioned as

∪̇P∈S{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj , (α, γ, β) ∈ P}.

By the compatibility of Π at level 3, this partition can simply be written as

∪̇P∈S {γ ∈ V | (α, γ, β) ∈ P}.

By the regularity of Π at level 3, the size of each set in the above partition is |P ||Pk| ,

which means that

#{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj} =
∑
P∈S

|P |
|Pk|

.

Since the above equation is independent of the choice of (α, β) ∈ Pk, it follows that
(P1,P2 ∪ {1}) is an association scheme. �

The next lemma states that, in turn, every association scheme also naturally
gives rise to a 3-scheme.

Lemma 2.4. Let (P1,P2) be an association scheme on V = {v1, v2, . . . , vn}. Let
≡P2 denote the equivalence relation on V × V corresponding to the partition P2.
Let P3 be the partition of V (3) such that for two triples (u1, u2, u3) and (v1, v2, v3),
we have (u1, u2, u3) ≡P3

(v1, v2, v3) if and only if

(u1, u2) ≡P2 (v1, v2), (u1, u3) ≡P2 (v1, v3), (u2, u3) ≡P2 (v2, v3).

Then {P1,P2 − {1},P3} is a 3-scheme.

Proof. It is an easy exercise to show that {P1,P2−{1},P3} satisfies compatibility,
regularity and invariance. �
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2.3. Generalized matchings. We now define the notion of matchings, certain
special colors of m-schemes that play an important role in the IKS-factoring algo-
rithm described later. This combinatorial object - matching - provides an algebraic
object - ideal automorphism. As before, let V = {v1, v2, . . . , vn} be a set of n
distinct elements and let Π = {P1,P2, . . . ,Pm} be an m-scheme on V .

Matching: A color P ∈ Ps at any level 1 < s ≤ m is called a matching if
there exists 1 ≤ i1 < . . . < ik ≤ s and 1 ≤ j1 < . . . < jk ≤ s with (i1, . . . , ik) 6=
(j1, . . . , jk) such that πsi1,...,ik(P ) = πsj1,...,jk(P ) and

∣∣πsi1,...,ik(P )
∣∣ = |P |.

Note that the paper [IKS09] which originally defined the concept of matchings
had the restriction that k = 1. The above definition is broader and constitutes
a natural generalization of the previous (limited) notion of matchings. The next
theorem gives an important sufficient condition for the existence of matchings in
m-schemes [IKS09, Lemma 8].

Theorem 2.5. Let Π = {P1,P2, . . . ,Pm} be an m-scheme on V = {v1, v2, . . . , vn}.
Assume Π is antisymmetric at level 2. Moreover, assume there exist colors Pt ∈ Pt
and Pt−1 := πti(Pt) ∈ Pt−1 for some 1 < t < m and 1 ≤ i ≤ t such that 1 <

s(Pt, Pt−1) = |Pt|
|Pt−1| ≤ ` and m ≥ t − 1 + log2 `, where ` ∈ N. Then there exists a

matching in {P1,P2, . . . ,Pm}.

Proof. Wlog, let us assume that Pt−1 = πtt(Pt) ∈ Pt−1. We outline an iterative
way of finding a matching in Π. Note that the set

Ut+1 := {v̄ ∈ V (t+1) |πt+1
t (v̄), πt+1

t+1(v̄) ∈ Pt}
is a nonempty union of colors in Pt+1. Let Pt+1 be a color of Pt+1 such that
Pt+1 ⊆ Ut+1. Then by the antisymmetry of Π we have

s(Pt+1, Pt) =
|Pt+1|
|Pt|

<
s(Pt, Pt−1)

2
≤ `

2
.

Evidently, if s(Pt+1, Pt) = 1 then Pt+1 is a matching. Otherwise, if s(Pt+1, Pt) > 1
we proceed to level t + 2 and again strictly halve the subdegree (by the same
argument as above). This procedure finds a matching in at most log2 ` rounds. �

As a corollary to the above theorem, we have that a homogeneous m-scheme on
n points which is antisymmetric at level 2 always has a matching if m ≥ log2 n.

Corollary 2.6. Let Π = {P1,P2, . . . ,Pm} be a homogeneous m-scheme on the set
V = {v1, v2, . . . , vn}. Let Π be antisymmetric at level 2. If m ≥ log2 n then there
exists a matching in {P1,P2, . . . ,Pm}.

2.4. The schemes conjecture. In Corollary 2.6 it was shown that every antisym-
metric m-scheme on n points (for large enough m) contains a matching between
levels 1 and log2 n. Below, we formulate a conjecture which asserts the existence of
a constant c ≥ 4 that could replace the above log2 n-bound.

Schemes conjecture. There exists a constant c ≥ 4 such that every homogeneous,
antisymmetric m-scheme with m ≥ c contains a matching.

In Section 3 we recall [IKS09] that, under GRH, the correctness of the schemes
conjecture implies a deterministic polynomial time algorithm for the factorization of
polynomials over finite fields (Theorem 3.4). The schemes conjecture is especially
motivated by the fact that it is known to be true for an important class of m-
schemes, called orbit schemes. An exact definition of orbit schemes follows. Let
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V = {v1, v2, . . . , vn} be a set of n distinct elements and G ≤ SymmV a permutation
group. Fix 1 ≤ m ≤ n. For 1 ≤ s ≤ m, let Ps be the partition on V (s) such that for
any two s-tuples (u1, u2, . . . , us) and (v1, v2, . . . , vs), we have (u1, u2, . . . , us) ≡Ps
(v1, v2, . . . , vs) if and only if

∃ σ ∈ G : (σ(u1), σ(u2), . . . , σ(us)) = (v1, v2, . . . , vs).

Then {P1,P2, . . . ,Pm} is an m-scheme on V . We call m-schemes which arise in
the above-described manner orbit m-schemes. They suggest that the notion of
m-schemes generalizes that of finite permutation groups.

Theorem 2.7 (Schemes conjecture for orbit m-schemes). For m ≥ 4, every homo-
geneous, antisymmetric orbit m-scheme contains a matching.

Proof. This is shown in [IKS09, Section 4.1]. �

3. Preliminaries: The IKS-algorithm

In this section, we discuss the GRH based IKS-algorithm for factoring polyno-
mials over finite fields [IKS09]. It fundamentally relies on the theory of m-schemes.
It was shown in [IKS09] that the IKS-algorithm has a deterministic polynomial
running-time for factoring polynomials of prime degree n, where (n−1) is a constant-
smooth number. In Section 4, we significantly improve this result to polynomials of
prime degree n, where (n− 1) has a large constant-smooth factor. This relaxation
implies that under a well-known number theory conjecture involving Linnik’s con-
stant, there are infinitely many primes n such that any polynomial f(x) ∈ Fq[x] of
degree n can be factored by the IKS-algorithm in time poly(n, log q).

3.1. Algebraic prerequisites. We now discuss algebraic prerequisites for the de-
scription of the IKS-algorithm. Below, we recapitulate some of the basic concepts
of polynomial factoring over finite fields.

Associated quotient algebra A: In order to solve polynomial factoring over
finite fields, it is enough to factor polynomials f(x) of degree n over Fq that have
n distinct roots α1, . . . , αn in Fq [Ber67, Ber70]. Given a polynomial f(x) ∈ Fq[x],
for any field extension k ⊇ Fq, we have the associated quotient algebra

A := k[x]/(f(x)).

It is isomorphic to the direct product of n fields. In the following, we interpret A
as the algebra of all functions

V := {α1, . . . , αn} −→ k.

The factors of f(x) appear as zero divisors in A: Assume y(x)z(x) =
0 for some nonzero polynomials y(x), z(x) ∈ A. Then f(x) | y(x) · z(x), which
implies gcd(f(x), z(x)) factors f(x) nontrivially. Since the gcd of polynomials can
be computed by the Euclidean algorithm in deterministic polynomial time, factoring
f(x) is, up to polynomial time reductions, equivalent to finding a zero divisor in A.

Ideals of A and roots of f(x): For an ideal I of A, we define the support of
I as

Supp(I) := V \ {v ∈ V | a(v) = 0 for every a ∈ I}.
Via the support, ideal decompositions of A induce partitions on the set V . This is
the subject of the following lemma:
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Lemma 3.1. If I1, . . . , It are pairwise orthogonal ideals of A (i.e. IiIj = 0 for all
i 6= j) such that A = I1 + · · ·+ It, then

V = Supp(I1) t · · · t Supp(It).

Tensor powers of A: For 1 ≤ m ≤ n, we denote by A⊗m the m-th tensor
power of A (as k-modules). We may regard A⊗m as the algebra of all functions
from V m to k. In this interpretation, the rank one tensor element h1 ⊗ · · · ⊗ hm
corresponds to a function that maps (v1, . . . , vm) −→ h1(v1) · · ·hm(vm).

Essential part of tensor powers: We define the essential part A(m) of A⊗m
to be the (unique) ideal of A⊗m consisting of the functions which vanish on all the
m-tuples (v1, . . . , vm) ∈ V m with vi = vj for some i 6= j. One may interpret A(m)

as the algebra of all functions V (m) −→ k.
Ideals of A(m) and roots of f(x): As in the case m = 1, we define the support

of an ideal I of A(m) as

Supp(I) := V (m) \ {v̄ ∈ V (m) | a(v̄) = 0 for every a ∈ I}.
Using this convention, Lemma 3.1 can be generalized as follows:

Lemma 3.2. For s ≤ n, if Is,1, . . . , Is,ts are pairwise orthogonal ideals of A(s) such

that A(s) = Is,1 + · · ·+ Is,ts , then

V (s) = Supp(Is,1) t · · · t Supp(Is,ts).

Connection with GRH: As we already mentioned, the IKS-algorithm relies
on the assumption of the generalized Riemann hypothesis (GRH) [Rie59, Cho65,
BCRW08]. We formally state the hypothesis below. Recall that a Dirichlet charac-
ter, of order k ∈ N>1, is defined as a completely multiplicative arithmetic function
χ : (Z,+) −→ (C, ·) such that χ(n + k) = χ(n) for all n, and χ(n) = 0 whenever
gcd(n, k) > 1. Given a Dirichlet character χ, we define the corresponding Dirichlet
L-function by

L(χ, s) =

∞∑
n=1

χ(n)

ns

for all complex numbers s with real part> 1. By analytic continuation, this function
can be extended to a meromorphic function defined on all of C. The generalized
Riemann hypothesis asserts that, for every Dirichlet character χ, the zeros of L(χ, s)
in the critical strip 0 < Re s < 1 all lie on the critical line Re s = 1/2.

Under the assumption of GRH, Rónyai [Rón92] showed that the knowledge of any
explicit nontrivial automorphism σ ∈ Aut(A) of A immediately gives us a nontrivial
factor of f(x). The latter result is used in the routine of the IKS-algorithm. In
[Rón92], the ability of computing radicals (r-th roots for prime r) in finite fields
is used. This can be done assuming GRH by a result of Huang [Hua84]. Thus,
GRH ‘acts’ in fact through Huang’s result. The motivating case of a prime field
and r = 2 can be easily explained by Ankeny’s theorem [Ank52] on the smallest
primitive root.

3.2. Description of the IKS-algorithm. We will now describe the routine of
the IKS-algorithm. In the following, let f(x) ∈ Fq[x] be a polynomial of degree n
having n distinct roots V = {α1, . . . , αn} in Fq. For some field extension k ⊇ Fq, let
A := k[x]/(f(x)) be the associated quotient algebra. With regards to the algorithm,
we assume A is given by structure constants with respect to some basis b1, . . . , bn.



FACTORING USING SCHEMES 11

It was shown in [IKS09, Lemma 4] that we can efficiently compute the essential
parts A(s) (1 ≤ s ≤ n).

Lemma 3.3. A basis for A(m) = (k[X]/(f(X)))(m) over k ⊇ Fq can be computed
by a deterministic algorithm in time poly(log |k| , nm).

We now proceed to give an overview of the routine of the IKS-algorithm. Namely,
we describe how an m-scheme can be obtained from the ideal decompositions of the
essential parts A(s) (1 ≤ s ≤ n). For referential purposes, let us quickly recapitulate
the algorithmic data:

Input: A polynomial f(x) ∈ Fq[x] of degree n having n distinct roots V =
{α1, . . . , αn} in Fq.

Also 1 < m ≤ n is given, and we can assume that we have the smallest field
extension k ⊇ Fq having s-th nonresidues for all 1 ≤ s ≤ m (computing k will take
poly(log q,mm) time under GRH).

Output: A nontrivial factor of f(x) or a homogeneous, antisymmetric m-scheme
on V = {α1, . . . , αn}. (In the latter case we get the m-scheme only implicitly via a
system of ideals of A(m).)

Description of the algorithm: We define A(1) = A = k[x]/(f(x)) and com-
pute the essential parts A(s) (1 < s ≤ m) of the tensor powers of A (this takes
poly(log q, nm) time by Lemma 3.3).

Automorphisms and ideal decompositions of A(s) (1 < s ≤ m): Observe
that for each τ ∈ Symms, the map defined by

τ : A(s) −→ A(s), (bi1 ⊗ · · · ⊗ bis)τ −→ bi1τ ⊗ · · · ⊗ bisτ
is an algebra automorphism of A(s). By [Rón92], this knowledge of explicit auto-
morphisms of A(s) can be used to efficiently decompose A(s) under GRH: Namely,
one can compute mutually orthogonal ideals Is,1, . . . , Is,ts (ts ≥ 2) of A(s) such that

A(s) = Is,1 + · · ·+ Is,ts .

By Lemma 3.2, the above decomposition of A(s) induces a partition Ps on V (s):

Ps : V (s) = Supp(Is,1) t · · · t Supp(Is,ts).

Together with P1 := {V } this yields an m-collection Π = {P1,P2, . . . ,Pm} on V .
We will now show how to refine the m-collection Π to an m-scheme using alge-

braic operations on the ideals Is,i of A(s). To do that, we first need a tool to relate
lower level ideals Is−1,i to higher level ideals Is,i′ .

Algebra embeddings A(s−1) −→ A(s): For each 1 < s ≤ m we have s natural
algebra embeddings ιs1, . . . , ι

s
s : A⊗(s−1) −→ A⊗s which map bi1 ⊗ · · · ⊗ bis−1

to
bi1 ⊗ · · · ⊗ bij−1

⊗ 1 ⊗ bij ⊗ · · · ⊗ bis−1
respectively (for the s positions of 1). By

restricting ιsj to A(s−1) and multiplying its image by the identity element of A(s),

we obtain s algebra embeddings A(s−1) −→ A(s) denoted also by ιs1, . . . , ι
s
s. In the

following, we interpret ιsj(A(s−1)) as the set of functions V (s) −→ k which do not
depend on the j-th coordinate.

The algorithm is now best described by explaining the five kinds of refinement
procedures which implicitly refine Π. (Remember we cannot see V but only have
access to it via the ideal 〈f〉.)

R1 (Compatibility): If for any 1 < s ≤ m, for any pair of ideals Is−1,i and Is,i′

in the decomposition of A(s−1) and A(s) respectively, and for any j ∈ {1, . . . , s},
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the ideal ιsj(Is−1,i)Is,i′ is neither zero nor Is,i′ , then we can efficiently compute a
subideal of Is,i′ and thus, refine Is,i′ and the m-collection Π.

Note that R1 fails to refine Π only when Π is a compatible collection.

R2 (Regularity): If for any 1 < s ≤ m, for any pair of ideals Is−1,i and Is,i′

in the decomposition of A(s−1) and A(s) respectively, and for any j ∈ {1, . . . , s},
ιsj(Is−1,i)Is,i′ is not a free module over ιsj(Is−1,i), then by trying to find a free basis,
we can efficiently compute a zero divisor in Is−1,i and thus, refine Is−1,i and the
m-collection Π.

Note that R2 fails to refine Π only when Π is a regular collection.

R3 (Invariance): If for some 1 < s ≤ m and some τ ∈ Symms the decom-
position of A(s) is not τ -invariant, then we can find two ideals Is,i and Is,i′ such
that Iτs,i ∩ Is,i′ is neither zero nor Is,i′ ; hence, we can efficiently refine Is,i′ and the
m-collection Π.

Note that R3 fails to refine Π only when Π is an invariant collection.

R4 (Homogeneity): If the algebra A(1) = A is in a known decomposed form,
then we can trivially find a nontrivial factor of f(x) from that decomposition.

Note that R4 fails to refine Π only when Π is a homogeneous collection.

R5 (Antisymmetry): If for some 1 < s ≤ m, for some ideal Is,i and for some
τ ∈ Symms \ {id}, we have Iτs,i = Is,i, then τ is an algebra automorphism of Is,i.
By [Rón92], this means we can find a subideal of Is,i efficiently under GRH and
hence, refine Is,i and the m-collection Π.

Note that R5 fails to refine Π only when Π is an antisymmetric collection.

Summary: The algorithm executes the ideal operations R1-R5 described above
on A(s) (1 ≤ s ≤ m) until either we get a nontrivial factor of f(x) or the underly-
ing m-collection Π becomes a homogeneous, antisymmetric m-scheme on V . It is
routine to verify that the time complexity of the IKS-algorithm is poly(log q, nm).

3.3. From m-schemes to factoring. We saw in the last subsection how to either
find a nontrivial factor of a given f(x) or construct an m-scheme on the n roots of
f(x). In the following, we explain how to deal with the “bad case”, when we get
a homogeneous, antisymmetric m-scheme instead of a nontrivial factor. We will
see how the properties of homogeneous and antisymmetric m-schemes can be used
to obtain a nontrivial factorization of f(x) even in this case. The next theorem is
of crucial importance (it is [IKS09, Theorem 7] extended to our general notion of
matchings).

Theorem 3.4 (Matchings refine). Let f(x) be a polynomial of degree n over Fq
having n distinct roots V = {α1, . . . , αn} in Fq. Assuming GRH, we either find a
nontrivial factor of f(x) or we construct a homogeneous, antisymmetric m-scheme
on V having no matchings, deterministically in time poly(log q, nm).

Proof. We apply the algorithm from Section 3.2, suppose it yields a homogeneous,
antisymmetric m-scheme Π = {P1,P2, . . . ,Pm} on V . For the sake of contradic-
tion, assume that some color P ∈ Ps is a matching. Let 1 ≤ i1 < . . . < ik ≤ s and
1 ≤ j1 < . . . < jk ≤ s with (i1, . . . , ik) 6= (j1, . . . , jk) be such that πsi1,...,ik(P ) =

πsj1,...,jk(P ) and
∣∣πsi1,...,ik(P )

∣∣ = |P |. Then πsi1,...,ik(πsj1,...,jk)−1 is a nontrivial per-
mutation of πsi1,...,ik(P ). For the corresponding orthogonal ideal decompositions of
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A(1), . . . ,A(m), this means that the embeddings

ιsi1,...,ik := ιsi1 ◦ . . . ◦ ι
s−k+1
ik

, ιsj1,...,jk := ιsj1 ◦ . . . ◦ ι
s−k+1
jk

both give isomorphisms Is−k,l′ −→ Is,l, where the ideals Is−k,l′ and Is,l correspond
to πsi1,...,ik(P ) and P , respectively. Hence, the map (ιsi1,...,ik)−1ιsj1,...,jk is a nontrivial
automorphism of Is−k,l′ . By [Rón92], this means we can find a subideal of Is−k,l′

efficiently under GRH and thus, refine the m-scheme Π. �

Combining the above result with Corollary 2.6, we conclude that one can com-
pletely factor f(x) in time poly(log q, nlogn) under GRH. This reproves Evdokimov’s
result [Evd94], which is based on a framework less general than that of m-schemes
described above. Note that any progress towards the schemes conjecture (Section
2.4) will directly result in an improvement of the time complexity of the IKS-
algorithm. A proof of the schemes conjecture, for parameter c, would imply that
the total time taken for the factorization of f(x) would improve to poly(log q, nc).

In the special case that f(x) is a polynomial of prime degree n, where (n − 1)
satisfies certain divisibility conditions, we study the structure of association schemes
of prime order to show that for a ‘small’ m the ‘bad’ case in Theorem 3.4 never
happens. This is discussed in the following section.

4. Factoring prime degree polynomials

In this section we show that the IKS-algorithm has polynomial running time for
the factorization of polynomials f(x) ∈ Fq[x] of prime degree n, where (n− 1) has
a large constant-smooth factor. By this we mean a number s ∈ N of magnitude√
n/` such that s|(n − 1) and all prime factors of s are smaller than r. The

exact relationship beween `, r and the time will appear later. Previously, the IKS-
algorithm was only known to have polynomial running time for the factorization of
polynomials of prime degree n, where (n−1) is constant-smooth [IKS09]. Our new
results imply that under a well-known number theory conjecture involving Linnik’s
constant, there are infinitely many primes n such that any polynomial f(x) ∈ Fq[x]
of degree n can be factored by the IKS-algorithm in time poly(log q, n). As a main
tool, we employ structural results about association schemes of prime order, most
notably [HU06, MP12].

4.1. Schemes with bounded valencies and indistinguishing numbers. We
now prove Theorem 1.3, which concerns the existence of small intersection numbers
in association schemes (with bounded valencies and indistinguishing numbers) as-
suming large number of relations. Note that Theorem 1.3 is the principal scheme
theory result underlying our main theorem about the factorization of prime degree
polynomials (Theorem 1.1). It is a counting (in two ways) argument on the graph
of the scheme. It is elementary assuming the fundamental theorems about schemes,
but it yields a new interesting property for this class of schemes.

Proof of Theorem 1.3. Fix a relation 1 6= u ∈ G and a tuple (α, β) ∈ u. For all
v ∈ G \ {1, u}, define

Sv := {(α′, γ) ∈ X2 | (α′, β) ∈ u; (α, γ) 6= (α′, γ) ∈ v}.
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The set Sv consists of those tuples (α′, γ) ∈ X2 which together with (α, β) form a
non-degenerate quadrilateral of the type seen below.

α

u

��

v

��

b // α′

u

��

v

��
β

w
// γ

We determine the cardinality of Sv. Note that for any relation b ∈ G, there are
exactly cubu choices for α′ ∈ X such that (α, α′) ∈ b and (α′, β) ∈ u. Moreover, after
choosing α′, there are exactly cbvv∗ choices for γ ∈ X such that (α, γ), (α′, γ) ∈ v.
Thus, |Sv| =

∑
b∈G c

u
bu · cbvv∗ . Especially,∑

v∈G\{1,u}

|Sv| =
∑

16=b∈G

cubu ·
∑

v∈G\{1,u}

cbvv∗ ≤
∑

16=b∈G

cubu · δ′2 · c ≤ δ′1 · δ′2 · c · k,

where the last inequality follows from Lemma 2.2 (3).
For the sake of contradiction, assume that for all v ∈ G \ {1, u} we have either

cwu∗v = 0 or cwu∗v ≥ ` for all except at most one relation w ∈ G. We derive a lower
bound on |Sv| in order to obtain the contradiction. For v ∈ G \ {1, u} define

Wv := {w ∈ G | cwu∗v 6= 0}.
Note that for each relation w ∈ Wv there are exactly cuvw∗ choices for γ such that
(β, γ) ∈ w and (α, γ) ∈ v. Moreover, after choosing γ, there are exactly cwu∗v − 1
choices for α′ such that (α′, β) ∈ u and (α′, γ) ∈ v. Thus, |Sv| =

∑
w∈Wv

cuvw∗ ·
(cwu∗v − 1). Now observe that cuvw∗ ≥ cwu∗v · δ1δ′1 for all w ∈ Wv by Lemma 2.2 (1),

(2). Since we assume that cwu∗v ≥ ` for all except at most one relation w ∈ Wv we
conclude

|Sv| ≥
δ1
δ′1
·
∑
w∈Wv

cwu∗v(c
w
u∗v − 1) ≥ δ1

δ′1
·

(
(`− 1) ·

∑
w∈Wv

cwu∗v −
`2

4

)
.

The last inequality is based on the summand-wise inequality: (`−1)cwu∗v − cwu∗v(cwu∗v−
1) ≤ (`2/4). From the equation

∑
w∈Wv

cwu∗v · nw = nu∗ · nv (see Lemma 2.2

(4)) it follows that
∑
w∈Wv

cwu∗v ≥ (δ21/δ
′
1) · k. Moreover, using the assumption

1 < ` < (δ21/δ
′
1) · k, we deduce

|Sv| ≥
δ1
δ′1
· (`− 1) ·

(
δ21
δ′1
· k − `2

4(`− 1)

)
>

δ31
2(δ′1)2

· (`− 1)k.

Especially, we have ∑
v∈G\{1,u}

|Sv| > (|G| − 2) · δ31
2(δ′1)2

· (`− 1)k.

This yields δ′1δ
′
2 ·ck > (|G|−2) · δ31

2(δ′1)
2 ·(`−1)k and hence 2(δ′1/δ1)3δ′2 · c

`−1 +2 > |G|,
a contradiction. �

Let us now consider the special case where (X,G) is an association scheme of
prime order n := |X|. Hanaki-Uno’s theorem [HU06] tells us that in this case,
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there exists k ∈ N such that k = ng for all 1 6= g ∈ G (i.e. all nontrivial valencies
coincide). We will refer to k simply as the valency of (X,G). It was shown in [MP12,
Theorem 3.2] that for prime order association schemes (X,G) of valency k, every
nontrivial relation g ∈ G has indistinguishing number c(g) = (k − 1). Combining
the above considerations with Theorem 1.3, we immediately obtain Corollary 1.4
about prime order association schemes.

4.2. Factoring algorithm for prime degree polynomials. Drawing on the
scheme theory results from the last subsection, we obtain the following lemma
about the existence of matchings in homogeneous antisymmetric m-schemes on a
prime number of points.

Lemma 4.1. Let Π = {P1, . . . ,Pm} be a homogeneous, antisymmetric m-scheme
on V , where n := |V | is a prime number. Let k denote the valency of the association

scheme (P1,P2∪{1}). Assume that m ≥ 2 log2 `+3 and |P2| ≥ 2(k−1)
`−1 +1 for some

` ∈ N>1. Then there exists a matching in Π.

Proof. By Corollary 1.4, there exist nontrivial relations u 6= v, w 6= w′ ∈ P2 such
that 0 < cwu∗v ≤ cw

′

u∗v < `. Hence there exist α, β, γ, γ′ ∈ V such that (α, β) ∈ u,
(α, γ), (α, γ′) ∈ v, (β, γ) ∈ w and (β, γ′) ∈ w′. Clearly, the relation P ∈ P4

containing the tuple (β, α, γ, γ′) satisfies π4
1,3(P ) = π4

1,4(P ) = v. Also, |P |/|v| =

|P |/|u| ≤ cwu∗v ·cw
′

u∗v ≤ `2, thus P has subdegree at most `2 over v. Now if s(P, v) = 1
then P is a matching. On the other hand, if s(P, v) > 1 then we defineQ := π4

4(P ) ∈
P3 and consider the equation s(P, v) = s(P,Q) ·s(Q, v). It implies that at least one
of the subdegrees s(P,Q), s(Q, v) is both at least 2 and at most `2, thus we get a
matching in Π by suitably invoking Theorem 2.5. �

Using the above lemma about the existence of matchings in m-schemes on a
prime number of points, we can now prove our main result, Theorem 1.1.

Proof of Theorem 1.1. Let `′ := (2`+1). It suffices to consider the case that f(x) has
n distinct roots V = {α1, . . . , αn} in Fq. Letm := max{r+1, 2 log2 `

′+3}. We apply
the IKS-algorithm (Section 3) and by Theorem 3.4 either find a nontrivial factor of
f(x) or construct a homogeneous, antisymmetric m-scheme Π = {P1,P2, . . . ,Pm}
on V having no matchings, deterministically in time poly(log q, nm). Suppose for
the sake of contradiction that the latter case occurs.

Clearly, (P1,P2∪{1}) is an association scheme of prime order n, where 1 denotes
the trivial relation. Thus, by Hanaki-Uno’s theorem [HU06] there exists k|(n − 1)
such that |P | = kn for all P ∈ P2. Thus, |P2| = (n− 1)/k. We distinguish between
the following two cases.

Case I: gcd(s, k) = 1. Then |P2| = (n − 1)/k ≥ s ≥
√

2n/(`′ − 1) + 1. Thus,

k <
√
n(`′ − 1)/2 =

√
2n/(`′ − 1) · (`′ − 1)/2 ≤ (s− 1)(`′ − 1)/2, implying |P2| ≥

s > 1 + 2k
`′−1 . Especially, Π contains a matching by Theorem 4.1, contrary to our

assumption.
Case II: gcd(s, k) > 1. The colors in {P2, . . . ,Pr+1} can be used to define

a homogeneous, antisymmetric r-scheme on k points as follows: Pick P0 ∈ P2

and define V ′ := {α ∈ V | (α1, α) ∈ P0}. Furthermore, define an r-collection
Π′ = {P ′1, . . . ,P ′r} on V ′ such that for all 1 ≤ i ≤ r and for each color P ∈ Pi+1,
we put a color P ′ ∈ P ′i such that

P ′ := {v̄ ∈ V ′(i) | (α1, v̄) ∈ P}.
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Then |V ′| = k, and Π′ = {P ′1, . . . ,P ′r} is a homogeneous, antisymmetric r-scheme
on k points. On the other hand, by gcd(s, k) > 1 we know that k has a prime
divisor which is at most r; therefore, Π′ cannot exist by Lemma 2.1. �

We point out in the next section that, under a well-known number theory con-
jecture involving Linnik’s constant, there are infinitely many primes n for which
the time complexity in Theorem 1.1 is polynomial.

5. Number theory considerations

5.1. Primes n of Theorem 1.1. Linnik’s theorem in number theory answers a
natural question about primes in arithmetic progressions. For coprime integers a, s
such that 1 ≤ a ≤ s − 1, let p(a, s) denote the smallest prime in the arithmetic
progression {a+ is}i. Linnik’s theorem states that there exist (effective) constants
c, L > 0 such that

p(a, s) < csL.

There has been much effort directed towards determining the smallest admissible
value for the Linnik constant L. The smallest admissible value currently known is
L = 5, as proven by Xylouris [Xyl11]. It has been conjectured numerous times that
L ≤ 2 [SS58, Kan63, Kan64, HB92] as noted below.

Conjecture 5.1. There exists c > 0 such that for all coprime integers a, s with
1 ≤ a ≤ s−1, the smallest prime p(a, s) in the arithmetic progression {a+is | i ∈ N}
satisfies p(a, s) < cs2.

This conjecture is not known to be true under GRH. The result that comes
closest to it, is [BS96, Theorem 5.3]: p(a, s) < 2(s log s)2.

Let us consider how the primes of the type we described in Theorem 1.1 relate
to p(1, s). This is the subject of Corollary 1.2, which we prove below.

Proof of Corollary 1.2. For the first part, we just assume GRH. Let r ∈ N>1 be a
constant and s ∈ N a (large enough) r-smooth number. By [BS96, Theorem 5.3]

there is a prime n = p(1, s) < 2(s log s)2. Thus, s >
√
n/2/ log s ≥ (

√
n/2/ log n)+

1 =
√
n/(2 log2 n) + 1. Thus, we can generate infinitely many primes n such that

Theorem 1.1 applies for ` := `(n) = 2 log2 n, and proves a time complexity of
poly(log q, nlog logn).

For the second part, we additionally assume Conjecture 5.1. Let r ∈ N>1 be a
constant and s ∈ N a (large enough) r-smooth number. By the conjecture there

is a prime n = p(1, s) < cs2. Thus, s >
√
n/c ≥

√
n/(c+ 1) + 1. Thus, we can

generate infinitely many primes n such that Theorem 1.1 applies for ` := (c + 1),
and proves a time complexity of poly(log q, n). �

5.2. Optimality of Theorem 1.3. Naturally, one asks if it is possible to further
relax the conditions which Theorem 1.1 places on the prime number n (i.e. the
degree of the polynomial we want to factor). In our current framework, this trans-
lates to asking to which extent we can relax the conditions for the existence of small
intersection numbers in schemes of bounded valency and indistinguishing number
(Theorem 1.3). However, the example of the cyclotomic scheme below shows that
the conditions of Theorem 1.3 cannot be relaxed (up to constant factors).
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Recall the definition of a cyclotomic scheme [Del73, GC92]. Let p be a prime
and let e|(p − 1). Let α be a generator of the multiplicative group F∗p of the field
Fp. We denote by 〈αe〉 the subgroup generated by αe. Let P := {Pi | 0 ≤ i ≤ e} be
the partition on Fp × Fp such that P0 := {(x, x) |x ∈ Fp} and

Pi := {(x, y) ∈ Fp × Fp |x− y ∈ αi 〈αe〉}

for i = 1, . . . , e. Then it can be checked that (X,G) = (Fp,P) is an association
scheme. Moreover, the definition of (Fp,P) does not depend on the choice of the
generator α. We call (Fp,P) the cyclotomic scheme in (p, e).

In the following, let (Fp,P) be the cyclotomic scheme in (p, e) as above and let
k := (p− 1)/e. For nontrivial relations Pr, Ps, Pt ∈ P and (x, y) ∈ Pt, we have

ctrs = #{z ∈ Fp | (x− z) ∈ αr 〈αe〉 , (z − y) ∈ αs 〈αe〉}
= #{(y1, y2) ∈ F∗p × F∗p |αrye1 + αsye2 = (x− y)}/e2.

We divide by e2 because that is exactly the number of repetitions of a value (ye1, y
e
2)

as we vary y1, y2 ∈ F∗p.
By the Hasse-Weil bound [Wei71, Voi05], we have

|#{(y1, y2) ∈ Fp × Fp |αrye1 + αsye2 = (x− y)} − (p+ 1)| ≤ e2√p+O(1),

from which it follows that ∣∣∣∣ctrs − (p+ 1)

e2

∣∣∣∣ ≤ √p+O(1).

To make the ‘error’ term small, fix e = k1/3/c � p1/4 for a (large enough) constant
c ∈ N. Now (p + 1)/e2 ≥ 2

√
p and we can estimate that ctrs >

k
2e > (c/2) · k2/3 �

p1/2. Also, |G| > e ≥ k/(ck2/3). Thus, we have an association scheme where both

the number of relations and the intersection numbers are large, i.e. in the range k
1
3

and k
2
3 , respectively. This matches the parameters of Corollary 1.4 exactly.

This proves that our scheme theory result, especially Corollary 1.4, is optimal.
But when |G| is larger than k1/3 the Hasse-Weil bound has too large an error. We
do not know whether now ‘small’ nonzero intersection numbers start showing up.

6. Conclusion

We studied polynomial factoring over finite fields, under GRH, mainly through
algebraic-combinatorial techniques. These are very effective when the polynomial
has a prime degree. We are able to give an infinite family of prime degrees for
which our analysis is much better than the known techniques.

The main open question here is to extend this study to factor all prime degree
polynomials. The key here is to study the underlying m-scheme that the factoring
algorithm gets ‘stuck’ with. Its 3-subscheme is a nice association scheme (it is equiv-
alenced). Since its intersection numbers, and other deeper representation theory
invariants, manifest in the higher levels of the m-scheme, the schemes conjecture
(Section 2.4) might be approachable.

Another question is to slightly improve Corollary 1.4. We do show that it cannot
be improved in generality, but that does not rule out the following improvement:
There exist at least two constant-small intersection numbers when |G| ≈ k/ log k.
This would be enough to give an infinite family of primes n so that Theorem 1.1
has a polynomial time complexity (only assuming GRH).
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Finally, we leave the question of extending Theorem 1.3, so that it becomes
applicable to composite order association schemes, open. Improvements there would
likely translate to factoring polynomials of new composite degrees.
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[Rie59] B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monats-

berichte der Berliner Akademie (1859).
[Rón88] L. Rónyai, Factoring polynomials over finite fields, Journal of Algorithms 9 (1988),

391–400.

[Rón89] , Factoring polynomials modulo special primes, Combinatorica 9 (1989), 199–
206.

[Rón92] , Galois groups and factoring polynomials over finite fields, SIAM Journal on
Discrete Mathematics 5 (1992), no. 3, 345–365.

[Sah08] C. Saha, Factoring polynomials over finite fields using balance test, 25th STACS, 2008,
pp. 609–620.

[Smi94] J. D. H. Smith, Association schemes, superschemes, and relations invariant under

permutation groups, European J. Combin. 15 (1994), no. 3, 285–291.



20 ARORA, IVANYOS, KARPINSKI, AND SAXENA

[SS58] A. Schinzel and W. Sierpinski, Sur certaines hypothèses concernant les nombres pre-
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