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Abstract

Goldreich, Sahai, and Vadhan (CRYPTO 1999) proved that the promise problem for esti-
mating the Shannon entropy of a distribution sampled by a given circuit is NISZK-complete.
We consider the analogous problem for estimating the min-entropy and prove that it is SBP-
complete, even when restricted to 3-local samplers. For logarithmic-space samplers, we observe
that this problem is NP-complete by a result of Lyngsø and Pedersen on hidden Markov models
(JCSS 2002).

1 Introduction

Deterministic randomness extraction is the problem of taking a sample from an imperfect physical
source of randomness (modeled as a probability distribution on bit strings) and applying an efficient
deterministic algorithm to transform it into a uniformly random string, which can be used by a
randomized algorithm (see [Sha11, Vad] for surveys of this topic). For such extraction to be possible,
the source of randomness must satisfy two properties: (i) it must contain a sufficient “amount of
randomness”, and (ii) it must be “structured”, meaning that it has a simple description.

Regarding property (i), the most useful measure of the “amount of randomness” is the min-
entropy, which is the logarithm of the reciprocal of the probability of the most likely outcome.
In other words, if a distribution has high min-entropy then every outcome has small probability.
The number of uniformly random bits produced by the extractor cannot exceed the min-entropy
of the source, and one of the goals in designing extractors is to get as close to the min-entropy
as possible. Regarding property (ii), if the distribution is generated by an efficient process in the
physical world, then it can be modeled as being sampled by an efficient algorithm given uniform
random bits. This sampling algorithm is a simple description of the distribution. Trevisan and
Vadhan [TV00] initiated the study of extracting from efficiently samplable distributions. Assuming
certain complexity-theoretic conjectures, they constructed extractors for time-efficient samplers.1

Kamp et al. [KRVZ11] gave an unconditional construction of extractors for space-efficient samplers
with streaming (one-way) access to their random input bits. De and Watson [DW12] and Viola
[Vio11] gave constructions of extractors for local samplers (where each output bit of the sampler
only depends on a small number of the random input bits), and Viola [Vio11] generalized this to

∗Computer Science Division, University of California, Berkeley. This material is based upon work supported by
the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0946797 and by the National
Science Foundation under Grant No. CCF-1017403.

1We mention that a somewhat related but incomparable problem was studied in [DRV12].
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get extractors for samplers that are constant-depth circuits (of the AC0 type). Viola [Vio12] has
constructed extractors for sequential-access one-tape Turing machine samplers.

All of these extractor constructions need to be given a lower bound on the min-entropy of
the distribution. The output length of the extractor depends on this lower bound. Thus, if we
had a sampling algorithm (assumed to model the physical source), it would be nice to know the
min-entropy so we could plug this parameter into the extractor, and thus extract as much of the
randomness as possible.2 This motivates the following computational problem: Given an efficient
algorithm that outputs a sample from a probability distribution, estimate the min-entropy of the
distribution. The upshot of our results is that this problem is intractable even for the extremely
simple samplers studied in [KRVZ11, DW12, Vio11], and we pinpoint the precise complexity of the
problem.

Goldreich, Sahai, and Vadhan [GSV99] considered the problem of estimating the Shannon en-
tropy of a distribution sampled by a given circuit. They showed that an appropriate formulation of
the problem is complete for the complexity class NISZK (non-interactive statistical zero-knowledge)
and is thus believed to be intractable. For the min-entropy version, we show that the problem is
interreducible with the “approximate lower bound” problem that was famously studied by Gold-
wasser and Sipser [GS86]. The latter formulation of multiplicative approximate counting of NP
witnesses deserves its own complexity class. Indeed, the class has already been named SBP by
[BGM06], and it is perhaps the only natural example of a class sandwiched between MA and AM.
We prove that the min-entropy estimation promise problem is SBP-complete even when restricted
to 3-local samplers (as studied in [DW12, Vio11]).

For logarithmic-space samplers (as studied in [KRVZ11]), it turns out that our min-entropy
estimation promise problem has already been studied (though in a very different context and with
different terminology) by Lyngsø and Pedersen [LP02], who proved that an equivalent problem is
NP-complete. We discuss the relationship between their problem and our problem in Section 1.2.

1.1 Definitions

The min-entropy of a distribution D over a finite set S is H∞(D) = mins∈S log2
(

1/PrD[s]
)

. Let
Ur denote the uniform distribution over {0, 1}r . If A : {0, 1}r → {0, 1}m is an algorithm that takes
r uniformly random bits and outputs m bits, then A(Ur) denotes the output distribution of A. We
write A(U) with the convention that U = Ur for the appropriate value of r. We consider three
classes of sampling algorithms.

• Circuits are the usual boolean circuits.

• d-Local samplers are functions where each of the m output bits depends on at most d of the
r input bits (where d is a constant).

• Logarithmic-space samplers can be defined in several equivalent ways; the following is the most
convenient for us. The sampler is a layered directed graph where each edge goes from one
layer to the immediate next layer. There is a unique start vertex in layer 0. For each vertex
except the ones in the last layer, there is at least one outgoing edge, and the outgoing edges

2We remark that the aforementioned extractor constructions do not assume knowledge of the sampling algorithm
itself, only knowledge of the class of algorithms the sampler comes from. It is not known how to exploit knowledge
of the description of the distribution for extraction purposes, except in trivial cases such as when the distribution is
uniform over an affine subspace of GF (2)n.
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are labeled with a probability distribution. Each vertex except the start vertex is labeled
with a bit. A sample is obtained by taking a random walk (starting at the start vertex) and
outputting the bit labels of the visited vertices.3

Such d-local samplers and logarithmic-space samplers have been studied in other contexts
besides randomness extraction. For example, there are many positive and negative results on
whether d-local samplers can implement pseudorandom generators and one-way functions (we refer
to [DW12] for extensive pointers to the literature). Trevisan et al. [TVZ05] showed how to efficiently
perform near-optimal prefix-free compression of distributions with logarithmic-space samplers.

The min-entropy estimation problem that we study is formulated in terms of promise problems
(see [Gol06] for a survey on promise problems).

Definition 1. For any class A of algorithms, A-Min-Ent-Gap is the following promise problem.

A-Min-Ent-GapYES =
{

(A,h) : A ∈ A and H∞(A(U)) ≤ h
}

A-Min-Ent-GapNO =
{

(A,h) : A ∈ A and H∞(A(U)) > h+ 1
}

Taking A to be circuits, d-local samplers, or logarithmic-space samplers, we get the problems
Circuit-Min-Ent-Gap, d-Local-Min-Ent-Gap, and Logspace-Min-Ent-Gap. The size of
the input (A,h) is the bit length of the description of the algorithm A, plus the bit length of the
integer h. Note that if one of these problems has a polynomial-time algorithm, then the min-
entropy can be estimated within an additive 1 in polynomial time by trying all possible values of
h ∈ {0, 1, . . . ,m} (or using binary search).

Throughout this paper, when we talk about reductions and completeness, we are always referring
to deterministic polynomial-time mapping reductions.

Definition 2. prSBP is the class of promise problems Π = (ΠYES,ΠNO) for which there exist poly-
nomial-time algorithms M,K (where M outputs a bit and K outputs a nonnegative integer) and a
polynomial p such that the following hold for all x ∈ {0, 1}∗.

x ∈ ΠYES =⇒
∣

∣

{

y ∈ {0, 1}p(|x|) : M(x, y) = 1
}∣

∣ ≥ K(x)

x ∈ ΠNO =⇒
∣

∣

{

y ∈ {0, 1}p(|x|) : M(x, y) = 1
}
∣

∣ < K(x)/2

Equivalently, prSBP is the class of all promise problems reducible to the following promise problem
Circuit-Count-Gap.

Circuit-Count-GapYES =
{

(C, k) : C is a circuit that accepts ≥ k inputs
}

Circuit-Count-GapNO =
{

(C, k) : C is a circuit that accepts < k/2 inputs
}

SBP is defined as the class of languages in prSBP.

Böhler, Glaßer, and Meister [BGM06] introduced the class SBP and provided a fairly compre-
hensive study of it from a structural complexity perspective, analyzing its relationship to other
classes (inclusions and relativized separations), its closure properties, and the possibility of it hav-
ing complete languages. We have MA ⊆ SBP ⊆ AM, where MA ⊆ SBP follows by observing that

3The model in [KRVZ11] is the same except the output bits are on the edges rather than on the vertices (Mealy
style rather than Moore style). The two models are equivalent up to a small difference in the size of the graph.
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the standard proof of MA ⊆ PP [Ver92] automatically yields a multiplicative gap, and SBP ⊆ AM
follows immediately from the Goldwasser-Sipser lower bound protocol [GS86]. Both inclusions rel-
ativize. There is an oracle relative to which SBP 6⊆ Σ2P [BGM06] and thus MA 6= SBP (since
MA ⊆ Σ2P relativizes), and there is an oracle relative to which AM 6⊆ PP [Ver92] and thus
SBP 6= AM (since SBP ⊆ PP relativizes). Since AM can be derandomized to NP under complexity
assumptions [KvM02, AK01, MV05, SU06], it is believed that SBP = NP. The factor of 1/2 in
the gap in Definition 2 is arbitrary and can be replaced by 1− 1/q(|x|) for any polynomial q, by a
standard trick.4

Although very few papers explicitly mention the class SBP, the Goldwasser-Sipser protocol for
Circuit-Count-Gap has countless applications in complexity and cryptography, and thus SBP
has been implicitly studied many times. For example, it is shown in [AAB+10, AGHK11] that
EprSBP contains languages of circuit complexity Ω(2n/n).

1.2 Results

Theorem 1. Circuit-Min-Ent-Gap is prSBP-complete.

Theorem 2. 3-Local-Min-Ent-Gap is prSBP-complete.

Theorem 3. Logspace-Min-Ent-Gap is prNP-complete.

We prove Theorem 1 and Theorem 2 in Section 2. In our proof of Theorem 1, we implicitly
use a “closure under nondeterminism” property of SBP, which was not shown in [BGM06]. This
is analogous to how AM (and trivially, MA) is “closed under nondeterminism”. In Section 3 we
explicitly state and prove a more general form of this property of SBP. The general form is not
needed for our theorems about min-entropy, but it demonstrates the robustness of the class SBP
and may be useful for future results about SBP.

Regarding Theorem 2, our proof shows that the completeness holds even when each output bit
of the sampler is the disjunction of exactly three unnegated input bits. Note that the min-entropy
of a 1-local sampler’s distribution is trivial to compute exactly since the distribution is affine. The
complexity of estimating min-entropy for 2-local samplers remains open.

During our proof of Theorem 2, we also show that Monotone-2-Sat-Count-Gap (which is
defined in the natural way) is prSBP-complete. It was previously known (presumably folklore)
that this problem is in prBPP iff NP = RP (roughly speaking, it is “NP-complete modulo random-
ness”). This is implied by our result, which more precisely quantifies the complexity in terms of
deterministic reductions.

For Theorem 3, first note that Logspace-Min-Ent-Gap ∈ prNP since the most probable
output string can be nondeterministically guessed, and then the probability of that string can be
computed exactly by simple dynamic programming. The prNP-hardness follows without difficulty
from a result of Lyngsø and Pedersen on hidden Markov models [LP02]. To cut to the chase, the
only issue is that their result allows the sampler to output strings of different lengths, while our
definition requires it to output fixed-length strings. This issue is straightforward to resolve; we now
elaborate.

4Modify K so its output is raised to the power q, and modify M so its number of accepted strings y is also raised
to the power q (by taking y1, . . . , yq(|x|) ∈ {0, 1}p(|x|) and accepting iff M(x, yi) = 1 for all i).
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A hidden Markov model consists of a (time-invariant) Markov chain with a designated start
state, where each state is either “silent” or has a distribution over symbols from some alphabet.
Running the Markov chain for a certain number of steps yields a random output string whose
length is the number of non-silent states visited. The result of [LP02] shows, by a clever reduction
from Max-Clique, that it is NP-hard to estimate the probability of the most likely output string,
even in the special case where the Markov chain is a DAG with a unique source and sink (which
are the only silent states) and where each non-silent state deterministically outputs a bit. In fact,
the result shows that the gap version of the estimation problem is prNP-hard with a multiplicative
gap of nΩ(1) (where n is the size of the Markov chain), by using the tight lower bounds on the
approximability of Max-Clique (see [H̊as99] and the references within).

The hidden Markov model produced by the reduction in [LP02] may output bit strings of
different lengths on different runs. We fix this and make the model conform to our definition
of logarithmic-space samplers as follows. Letting m denote the length of a longest path in the
DAG, take m copies of the DAG (except the source) and put each copy in a separate layer, which
represents a time step. Retain all the original transitions but make them go between adjacent
layers, and make the sink always transition to itself in the next layer. Now each non-source vertex
outputs two bits: The copies of the sink output 00, and the copies of non-sinks output 1 followed
by their original bit. We can then make each vertex output a single bit at the cost of doubling the
number of layers. Each output string (of length ≤ m) of the original model corresponds injectively
to an output string of length 2m of this new sampler (which inserts 1’s in every other position and
then pads with 00’s). The output distribution is the same, so in particular the highest probability
of an output is the same. Thus it is prNP-hard to estimate the min-entropy with an additive gap
of Ω(log n) (which is stronger than the gap of 1 stated in Theorem 3).

Interestingly, it is also shown in [LP02] that for logarithmic-space samplers, estimating the
statistical distance between two distributions is closely related to estimating the min-entropy of
a distribution. In contrast, for polynomial-size circuits it is known that estimating the statistical
distance is closely related to estimating the Shannon entropy (see [Vad12]).

1.3 Related Work

Goldreich et al. [GSV99] showed that the variant of Circuit-Min-Ent-Gap where Shannon en-
tropy replaces min-entropy and the roles of YES and NO instances are interchanged is prNISZK-
complete. Dvir et al. [DGRV11] gave some upper and lower bounds on the complexity of estimating
various types of entropy for distributions where a sample is obtained by plugging a uniform input
into a sequence of low-degree multivariate polynomials over a finite field.

Other papers that are in a somewhat similar spirit as ours include [MU02, FIKU08, BMV08,
BBM11]. We refer to [DW12] for an overview of past work on locally computable functions.

The study of multiplicative approximate counting of NP witnesses was initiated in [Sto85].
Derandomization of approximate counting was studied in [SU06]. See [DGGJ03] for a more algo-
rithmic perspective on the complexity of approximate counting. Kuperberg [Kup09] showed that
two variants of SBP are actually equal: SBQP (the quantum variant) and A0PP (the variant where
we consider a difference of two #P functions rather than a single #P function). Kabanets et
al. [KRC00] defined and studied a complexity class that captures additive approximate counting in
a more direct way than BPP does.

5



2 Proof of Theorem 1 and Theorem 2

Theorem 1 and Theorem 2 follow from the following four lemmas.

Lemma 1. Circuit-Min-Ent-Gap ∈ prSBP.

Lemma 2. Circuit-Min-Ent-Gap is prSBP-hard.

Lemma 3. d-Sat-Count-Gap reduces to (d+ 1)-Local-Min-Ent-Gap.

Lemma 4. Monotone-2-Sat-Count-Gap is prSBP-hard.

Lemma 2 is implied by Lemma 3 and Lemma 4. However, the proof of Lemma 2 serves as a
warmup for the proof of Lemma 3, and only the former is needed for Theorem 1.

By Lemma 4, Monotone-2-Sat-Count-Gap is prSBP-complete. This problem was previ-
ously known to be prNP-hard, by combining any reduction to Vertex-Cover with a “blow-up”
trick that is usually attributed to [JVV86, Sin93]. To get the prSBP-completeness, we need to use
a particular reduction to Vertex-Cover, satisfying certain properties.

Proof of Lemma 1. We reduce Circuit-Min-Ent-Gap to Circuit-Count-Gap. Given an in-
stance (A,h) of Circuit-Min-Ent-Gap where A : {0, 1}r → {0, 1}m is a circuit and without loss
of generality h ≤ min(r,m), we construct a circuit C : {0, 1}m × ({0, 1}r)m+1 → {0, 1} by

C(x, y1, . . . , ym+1) =

{

1 if A(yi) = x for all i

0 otherwise

and let k = 2(r−h)(m+1). We show the following two things.

(A,h) ∈ Circuit-Min-Ent-GapYES =⇒ (C, k) ∈ Circuit-Count-GapYES

(A,h) ∈ Circuit-Min-Ent-GapNO =⇒ (C, k) ∈ Circuit-Count-GapNO

For the YES case, the assumption H∞(A(Ur)) ≤ h means there exists an x ∈ {0, 1}m such that
PrA(Ur)[x] ≥ 1/2h and thus there are ≥ 2r−h strings y for which A(y) = x. Thus there are

≥ 2(r−h)(m+1) choices of y1, . . . , ym+1 for which A(yi) = x for all i, which implies that C accepts
≥ k inputs. For the NO case, the assumption H∞(A(Ur)) > h + 1 means that for all x ∈ {0, 1}m,
PrA(Ur)[x] < 1/2h+1 and thus there are < 2r−h−1 strings y for which A(y) = x. Thus there are

< 2(r−h−1)(m+1) choices of y1, . . . , ym+1 for which A(yi) = x for all i. By summing over x, this
implies that C accepts < 2m · 2(r−h−1)(m+1) = k/2 inputs.

Proof of Lemma 2. We reduce Circuit-Count-Gap to Circuit-Min-Ent-Gap. Given an in-
stance (C, k) of Circuit-Count-Gap where C : {0, 1}n → {0, 1} is a circuit and without loss of
generality 1 ≤ k ≤ 2n, by the standard amplification trick we may assume that C accepts ≥ k inputs
in the YES case and < k/8 inputs in the NO case. We construct a circuit A : {0, 1}n × {0, 1}2n →
{0, 1}2n by

A(y, z) =

{

12n if C(y) = 1

z otherwise
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and let h be the smallest integer such that 1/2h ≤ k/2n. We show the following two things.

(C, k) ∈ Circuit-Count-GapYES =⇒ (A,h) ∈ Circuit-Min-Ent-GapYES

(C, k) ∈ Circuit-Count-GapNO =⇒ (A,h) ∈ Circuit-Min-Ent-GapNO

For the YES case, the assumption that C accepts ≥ k inputs implies that PrA(U3n)[1
2n] ≥ k/2n ≥

1/2h and thus H∞(A(U3n)) ≤ h. For the NO case, the assumption that C accepts < k/8 inputs
implies that

PrA(U3n)[1
2n] ≤ Pry∼Un

[C(y) = 1]+Prz∼U2n [z = 12n] < (k/8)/2n+1/22n < (k/4)/2n < 1/2h+1

by the minimality of h. Since 12n is the most probable string under A(U3n), this implies that
H∞(A(U3n)) > h+ 1.

Proof of Lemma 3. Given an instance (ϕ, k) of d-Sat-Count-Gap,5 where ϕ is a d-Sat formula
having n variables and m clauses and without loss of generality 1 ≤ k ≤ 2n, by the standard
amplification trick we may assume that ϕ has ≥ k satisfying assignments in the YES case and
< k/8 satisfying assignments in the NO case. Suppose the ith clause of ϕ consists of the literals
ℓi,1 ∨ · · · ∨ ℓi,d. We construct a (d+ 1)-local function A : {0, 1}n × {0, 1}2n → {0, 1}m·2n where the
first input is the variables of ϕ (denoted y) and the bits of the second input are labeled as zj . We
let the i, j bit of the output (for i ∈ {1, . . . ,m}, j ∈ {1, . . . , 2n}) be

A(y, z)i,j = ℓi,1 ∨ · · · ∨ ℓi,d ∨ zj

and let h be the smallest integer such that 1/2h ≤ k/2n. We show the following two things.

(ϕ, k) ∈ d-Sat-Count-GapYES =⇒ (A,h) ∈ (d+ 1)-Local-Min-Ent-GapYES

(ϕ, k) ∈ d-Sat-Count-GapNO =⇒ (A,h) ∈ (d+ 1)-Local-Min-Ent-GapNO

Note that for any fixed assignment y, if the ith clause is satisfied then the i, j output bits are all
1 (with probability 1 over random z), and if the ith clause is not satisfied then the i, j output bits
are uniformly distributed (equal to z). It follows that if y satisfies ϕ then PrA(y,U2n)[1

m·2n] = 1,
and if y does not satisfy ϕ then PrA(y,U2n)[1

m·2n] = 1/22n. In either case, 1m·2n is a most probable
string under A(y, U2n), and thus 1m·2n is a most probable string under A(U3n).

For the YES case, the assumption that ϕ has ≥ k satisfying assignments implies that

PrA(U3n)[1
m·2n] ≥ Pry∼Un

[y satisfies ϕ] ≥ k/2n ≥ 1/2h

and thus H∞(A(U3n)) ≤ h. For the NO case, the assumption that ϕ has < k/8 satisfying assign-
ments implies that

PrA(U3n)[1
m·2n] = 1 · Pry∼Un

[y satisfies ϕ] + (1/22n) · Pry∼Un
[y does not satisfy ϕ]

< (k/8)/2n + 1/22n

< (k/4)/2n

< 1/2h+1

by the minimality of h. Since 1m·2n is a most probable string, this implies that H∞(A(U3n)) >
h+ 1.

5In fact, the proof works for arbitrary d-CSPs over the binary alphabet.
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Proof of Lemma 4. We reduce Circuit-Count-Gap to Monotone-2-Sat-Count-Gap. Given
an instance (C, k) of Circuit-Count-Gap where without loss of generality k ≥ 1, by the standard
amplification trick we may assume that C accepts ≥ k inputs in the YES case and < k/4 inputs in
the NO case. We first apply the standard parsimonious reduction from Circuit-Sat to 3-Sat to
obtain a formula ϕ with the same number of satisfying assignments as C. Next we apply a careful
reduction from 3-Sat to Vertex-Cover: For each clause of ϕ, create seven vertices representing
the satisfying assignments for the three variables in the clause, and put an edge between two vertices
if they conflict (i.e., they assign some variable opposite truth values). Let G denote this graph, and
let ℓ = 6m where m is the number of clauses in ϕ. This particular reduction has the following two
properties: (i) it is parsimonious (i.e., the number of vertex covers of G of size at most ℓ equals the
number of satisfying assignments of ϕ), and (ii) every vertex cover of G has size at least ℓ.

Next we apply the “blow-up” trick. Create a new graph G′ by transforming each vertex of
G into a cloud of 10m vertices and transforming each edge of G into a complete bipartite graph
between its two clouds. We view G′ as a Monotone-2-Sat formula ϕ′ where vertices become
variables and edges become clauses, and we let k′ = k · (210m − 1)m. We show the following two
things.

(C, k) ∈ Circuit-Count-GapYES =⇒ (ϕ′, k′) ∈ Monotone-2-Sat-Count-GapYES

(C, k) ∈ Circuit-Count-GapNO =⇒ (ϕ′, k′) ∈ Monotone-2-Sat-Count-GapNO

Each vertex cover of G, say S of size s, gives rise to (210m − 1)7m−s vertex covers of G′ as
follows: For each cloud representing a vertex in S, include all vertices of the cloud, and for each
cloud representing a vertex not in S, include any subset of the cloud except the entire cloud. These
are indeed vertex covers of G′, and every vertex cover of G′ can be obtained in this way. Hence
the vertex covers of G′ are partitioned according to the vertex cover of G they correspond to. The
total number of vertex covers of G′, and hence the total number of satisfying assignments of ϕ′, is
thus

∑

s

(210m − 1)7m−s · (number of vertex covers of G of size s).

For the YES case, the assumption that C accepts ≥ k inputs implies that G has ≥ k vertex covers
of size at most ℓ (by property (i)), which implies that the number of satisfying assignments of
ϕ′ is ≥ k · (210m − 1)7m−ℓ = k′. For the NO case, the assumption that C accepts < k/4 inputs
implies that G has: 0 vertex covers of size < ℓ (by property (ii)), < k/4 vertex covers of size = ℓ
(by property (i)), and trivially ≤ 27m vertex covers of size > ℓ. Thus the number of satisfying
assignments of ϕ′ is

< (k/4) · (210m − 1)7m−ℓ + 27m · (210m − 1)7m−ℓ−1 = k′/4 + k′ · 27m/k(210m − 1) < k′/2.

3 SBP is Closed Under Nondeterminism

Consider the following nondeterministic generalization of Circuit-Count-Gap: Given (C, k)
where C is a circuit that takes two inputs y and z, does there exist a y for which C accepts
≥ k strings z, or is it the case that for all y, C accepts < k/2 strings z? In showing that
Circuit-Min-Ent-Gap ∈ prSBP, we implicitly showed that the above promise problem is in
prSBP, by the standard trick of amplifying the gap. We now observe that it remains in prSBP
even if we allow the location of the gap to depend on the nondeterministic guess.
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Definition 3. prNSBP is the class of promise problems Π = (ΠYES,ΠNO) for which there exist
polynomial-time algorithms M,K (where M outputs a bit and K outputs a nonnegative integer)
and a polynomial p such that the following hold for all x ∈ {0, 1}∗.

x ∈ ΠYES =⇒ ∃y ∈ {0, 1}p(|x|) :
∣

∣

{

z ∈ {0, 1}p(|x|) : M(x, y, z) = 1
}∣

∣ ≥ K(x, y)

x ∈ ΠNO =⇒ ∀y ∈ {0, 1}p(|x|) :
∣

∣

{

z ∈ {0, 1}p(|x|) : M(x, y, z) = 1
}
∣

∣ < K(x, y)/2

NSBP is defined as the class of languages in prNSBP.

Analogously to Circuit-Count-Gap, it is possible to define a promise problem such that
prNSBP is the class of all promise problems reducible to that problem.

Theorem 4. prNSBP = prSBP and thus NSBP = SBP.

The basic idea is to modify the computation so the number of accepted z’s (for a given y) is
multiplied by an efficiently computable factor, so as to shift the threshold to be close to some value
that does not depend on y (indeed, does not even depend on x). Then as before we can use the
amplification trick so that the gap swamps out the effect of the nondeterministic y. However, there
is a slight wrinkle to iron out: If K(x, y) = 0 then we cannot shift the threshold by multiplying
it by something. But in this case x is automatically a YES instance, so if we happen to observe
K(x, y) = 0 then we can just accept while ignoring z.

Proof. We reduce an arbitrary Π ∈ prNSBP (with associated M,K, p) to Circuit-Count-Gap.
Given x ∈ {0, 1}n, we let p denote p(n) and we assume without loss of generality that 0 ≤ K(x, y) ≤

2p + 1 for all y ∈ {0, 1}p. We construct a circuit C : {0, 1}p ×
(

{0, 1}p × {0, 1}p+3
)2p

→ {0, 1} by

C
(

y, (zi, wi)
2p
i=1

)

=

{

1 if K(x, y) = 0 ∨ ∀i
[

M(x, y, zi) = 1 ∧ wi < ⌈2p+3/K(x, y)⌉
]

0 otherwise

where the wi’s are viewed as binary integers, and we let k = (2p+3)2p. We show the following two
things.

x ∈ ΠYES =⇒ (C, k) ∈ Circuit-Count-GapYES

x ∈ ΠNO =⇒ (C, k) ∈ Circuit-Count-GapNO

For the YES case, consider the good y from Definition 3. If K(x, y) = 0 then C accepts y, (zi, wi)
2p
i=1

for every choice of (zi, wi)
2p
i=1, and thus the total number of accepted inputs is ≥ (22p+3)2p ≥ k.

On the other hand, assume K(x, y) > 0. Since M(x, y, zi) = 1 holds for ≥ K(x, y) choices of zi,
and wi < ⌈2p+3/K(x, y)⌉ holds for ⌈2p+3/K(x, y)⌉ choices of wi, the conjunction of these holds for
≥ K(x, y)·⌈2p+3/K(x, y)⌉ ≥ 2p+3 choices of zi, wi. Hence C accepts y, (zi, wi)

2p
i=1 for ≥ (2p+3)2p = k

choices of (zi, wi)
2p
i=1, and thus the total number of accepted inputs is also ≥ k. For the NO case,

consider an arbitrary y. We must have K(x, y) > 0. Since M(x, y, zi) = 1 holds for < K(x, y)/2
choices of zi, and wi < ⌈2p+3/K(x, y)⌉ holds for ⌈2p+3/K(x, y)⌉ choices of wi, the conjunction of
these holds for < (K(x, y)/2) · ⌈2p+3/K(x, y)⌉ ≤

(

2p+3 +K(x, y)
)

/2 ≤ 2p+3 · (5/8) choices of zi, wi

(using K(x, y) ≤ 2p +1). Hence C accepts y, (zi, wi)
2p
i=1 for <

(

2p+3 · (5/8)
)2p

choices of (zi, wi)
2p
i=1.

Summing over y, the total number of accepted inputs is < 2p ·
(

2p+3 ·(5/8)
)2p

= k ·(25/32)p < k/2.
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4 Open Problems

What is the complexity of estimating the min-entropy of distributions with 2-local samplers?
We have shown that the approximate counting version of Monotone-2-Sat is as hard as

possible, namely SBP-complete. What other natural NP relations are as hard as possible to ap-
proximately count?

What is the complexity of estimating the Shannon entropy of locally samplable distributions? Is
there a deterministic polynomial-time algorithm for estimating the Shannon entropy of logarithmic-
space samplable distributions? Note that there is a trivial randomized polynomial-time algorithm
for the latter problem: Simulate the sampler to get a sample, then compute the probability of
getting that sample, and then take the logarithm of the reciprocal of that probability and average
this value across many independent trials.

How do the classes NISZK and SZK relate to SBP?
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