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Abstract

We present a moderately exponential time algorithm for the satisfia-
bility of Boolean formulas over the full binary basis. For formulas of size
at most cn, our algorithm runs in time 2(1−µc)n for some constant µc > 0.
As a byproduct of the running time analysis of our algorithm, we get
strong average-case hardness of affine extractors for linear-sized formulas
over the full binary basis.

1 Introduction

In this paper, we are concerned with moderately exponential time algorithms
for the Circuit Satisfiability (Circuit SAT) problem. Circuit SAT is, given a
Boolean circuit C with n input variables, to determine whether there exists
a 0/1 assignment to the input variables such that C outputs 1. It is one of
the most fundamental and important NP-complete problems and people have
developed many efficient algorithms in both practical and theoretical sense. It
is easy to see that one can solve the problem in time poly(|C|)2n by brute force
search where |C| denotes the size of C. An obvious question is whether there
exist moderately exponential time algorithms, i.e., algorithms with the worst
case running time of the form poly(|C|)2(1−µ)n for some µ > 0.

It is too difficult to answer the above question in affirmative because of
the generality of Circuit SAT, that is, many combinatorial problems can be
represented as Circuit SAT [4]. Instead of considering Circuit SAT in the most
general form, we may investigate the complexity of Circuit SAT over some
restricted circuit class C. We write such restricted Circuit SAT as C-SAT. The
most well studied restricted circuit class is k-CNF-formulas, which consist of a
conjunction of clauses, where each clause is a disjunction of at most k literals.
k-CNF-SAT is a central problem in the area of exact exponential algorithms and
many efficient algorithms for it have been developed over the past 30 years, see,
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e.g., [14, 20, 21, 22, 25, 28], and an excellent survey [8]. The best running time
upper bound is of the form poly(|C|)2(1−µk)n, where µk > 0 is some constant
only depending on k. Despite the success of exact algorithms for k-CNF-SAT,
there are few works studying the exponential time complexity of Circuit SAT
over the more general circuit class until recently.

Let us quickly review some results on C-SAT for more general C. We are
aware of the works for CNF-formulas (without restriction on length of each
clause) [3, 6, 9, 10, 26, 29] (see also [15]), AC0 circuits [7, 16], ACC0 circuits [32],
and U2-formulas (De Morgan formulas) [27]. Here, AC0 circuits are constant
depth circuits over the basis {and, or, not}, where the fan in of each gate is
unbounded, ACC0 circuits are the same as AC0 circuits except that the basis
also contains arbitrary modulo gates of unbounded fan in, and U2-formulas are
formulas over the basis U2={and, or, not}, where the fan in of {and, or} is two.
For CNF-formulas with m clauses, Calabro et al. [6, 8] have shown that Circuit
SAT can be solved in time |C|2(1−1/ log(m/n))n, for AC0 circuits of size cn and
depth d, Impagliazzo et al. [16] have shown that Circuit SAT can be solved in
time |C|2(1−1/O(log c+d log d)d−1)n, for ACC0 circuits of depth d, Williams [32]

has shown that Circuit SAT can be solved in time |C|2n−Ω(n2−O(d)
), and for

U2-formulas of size cn, Santhanam [27] have shown that Circuit SAT can be
solved in time |C|2(1−1/cO(1))n, for example.

In this paper, we extend the result of Santhanam to the case of B2-formulas
which are formulas over the full binary basis B2 consisting of all two-variable
functions. Our main result is the following:

Theorem 1.1. There is a deterministic algorithm for B2-formula-SAT which
runs in time 2(1−µc)n on formulas of size at most cn. Here µc > 0 is a constant
only depending on c (roughly µc = 2−Θ(c3)).

Santhanam’s result has an application in proving strong average-case hard-
ness of the parity function against linear-sized U2-formulas. From the proof of
Theorem 1.1, we can show an analogous result, strong average-case hardness of
affine extractors against linear-sized B2-formulas (affine extractors are formally
defined in Section 4, see Definition 4.2).

Theorem 1.2. For any constant c > 0, any sequence of B2-formulas of size
at most cn must err in computing affine extractors on at least a 1/2 − 2−Ω(n)

fraction of inputs of length n for each n.

1.1 Background

In this section, we discuss the motivation of designing moderately exponential
time algorithms for C-SAT with more general C.

Encoding practical instances

One of the motivations comes from practical applications. Because of its ex-
pressibility, Circuit SAT can represent many industrial problems such as soft-
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ware and hardware verification and testing, design automation, planning and
automated reasoning in a natural way. This motivates the development of faster
SAT solvers for instances from practice and today we have very sophisticated
SAT solvers which can treat instances of relatively large size. However, most
SAT solvers require their input to be in CNF form although natural encoding of
industrial problems to Circuit SAT often results in instances represented by gen-
eral circuits, e.g., formulas with no depth restriction, circuits with parity gates
etc. To use fast SAT solvers, first we need to transform the original instances
into those in CNF form. After such transformation, the size of instances must
increase and in some case the size blow up can be exponential. For example,
parity functions have linear size representation in formulas over the full binary
basis, but requires quadratic size in de Morgan formulas and exponential size
in CNF form. It is more desirable if one can develop efficient algorithms which
can treat the original encoding of practical instances.

Proof Techniques

The source of running time savings of SAT algorithms for certain circuit classes
such as AC0 and De Morgan formulas is well explained by the proof technique
for circuit lower bounds. That is, AC0 circuits and De Morgan formulas shrink
their sizes well by “random restrictions”. Roughly speaking, random restriction
chooses, say, (1 − ρ)n variables for some ρ > 0 randomly and sets random 0/1
values to the chosen variables, and obtains a simplified circuit/formula over the
remaining ρn variables. It is well known that by appropriately choosing ρ, ran-
dom restriction can collapse AC0 circuits and De Morgan formulas into a con-
stant function with high probability, see, e.g., [1, 11, 12, 34], and [2, 13, 17, 30].
This implies that such circuit classes cannot compute parity functions since
such functions remains non-constant functions after random restriction is ap-
plied. The above lower bounds argument suggest that backtracking algorithms
work well because expected depth of each path in backtracking tree is at most
(1 − ρ)n with high probability. Unfortunately, for our target class, formulas
over the basis {and, or, xor}, random restriction cannot prove interesting lower
bounds. It is easy to see that a formula consisting of only xor gates does not
shrink into a constant unless we set values to all the variables. To achieve sim-
ilar savings as Santhanam’s result for De Morgan formulas, our algorithm and
its analysis require new ideas. We establish a structual result for B2-formulas
of linear size, and use it to solve SAT.

SAT algorithm implies circuit lower bounds

As discussed in the previous paragraph, design and analysis of C-SAT algorithm
is often inspired by the corresponding circuit lower bound technique for C. In-
terestingly, the connection also holds in the reverse order, that is, efficient SAT
algorithms implies circuit lower bounds. One of such examples is the result by
Paturi et al. [24] showing tight lower bounds for depth three AC0 circuits com-
puting parity functions. They use a SAT algorithm enumerating solutions of
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k-CNF formulas to bound the number of gates in depth three AC0 circuits. An-
other example is a recent breakthrough result due to Williams. He proves that
SAT algorithm for the circuit class C with “non-trivial” running time implies
that C does not contain NEXP, the class of languages computable in nondeter-
ministic exponential time [31]. Then he shows non-trivial SAT algorithms for
ACC0 to conclude that ACC0 does not contain NEXP [32]. Thus, developing
SAT algorithms for richer circuit classes is tied to proving lower bounds for
those classes.

Strong average-case hardness

We are often interested in proving strong average-case hardness for some cir-
cuit class C rather than just proving worst-case hardness. Here, strong means
that any circuit in C must fail to compute the given function on at least
1/2 − 2−Ω(n) fraction of inputs. Such a hardness result can be used to con-
struct very efficient pseudorandom generators for C. For example, Nisan and
Wigderson [23] have shown that if there exists a family of functions computable
in E = DTIME(2O(n)) such that any subexponential size circuits must fail on
at least 1/2− 2−Ω(n) fraction of inputs, then P = BPP holds. In general, prov-
ing strong (exponential) circuit lower bounds even in the worst-case is a very
difficult task for relatively weak circuit classes such as AC0. However, if we
can construct C-SAT algorithms which run in time 2n−Ω(n), they often pro-
vide strong average-case lower bounds for C and actually there are such (but)
few results: Calabro et al., Impagliazzo et al. and Lu and Wu [7, 16, 19] and
Santhanam [27], respectively show that the parity function is strongly hard for
linear-sized AC0 circuits and U2 formulas, respectively. Our result adds such
rare hardness results in the case of linear-sized B2-formulas.

Paper organization

In the rest of our paper, we provide detailed algorithms and analysis to support
our results. In section 2, we present some useful properties of B2-formulas, which
plays an important role in designing our satisfiability algorithm. In section 3,
we give a high level idea, formal description and running time analysis of our
algorithm. In section 4, we prove strong average-case hardness results.

2 Preliminaries

Let B2 be the set of all Boolean functions of two variables. A B2-formula
is a rooted binary tree in which each leaf is labeled by a literal from the set
{x1, . . . , xn, x1, . . . , xn} or a constant from {0, 1} and each internal node is la-
beled by a function from B2. Given a B2-formula φ, a subformula of φ is a
B2-formula which is a subtree in φ. By φv, we denote φ’s subformula whose
root node is v. Every B2-formula computes in a natural way a Boolean function
from {0, 1}n to {0, 1}. The size of a B2-formula φ is defined to be the number of
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leaves in it, and it is denoted by L(φ). We denote by var(φ) the set of variables
which appear as literals in φ. The frequency of a variable x in φ is defined to be
the number of leaves labelled by x or x, and it is denoted by freqφ(x). We often
omit the subscipt φ when it is clear from the context. A {∧,∨,⊕}-formula is a
B2-formula in which each internal node is labeled by ∧ (“and”) or ∨ (“or”) or
⊕ (“xor”). It is easy to see that the following holds by using De Morgan’s laws
and the fact that φ1 ⊕ φ2 = φ1 ⊕ φ2.

Fact 2.1. For any B2-formula φ, there exists a {∧,∨,⊕}-formula φ̃ such that φ̃
computes the same function as φ and L(φ̃) ≤ L(φ). Furthermore, we can obtain
φ̃ from φ in polynomial time in L(φ).

In our SAT algorithm for B2-formulas, we assume without loss of generality
that input formulas are always {∧,∨,⊕}-formulas. In what follows, we often
write just formula instead of {∧,∨,⊕}-formula for brevity. For convenience, we
think of constant functions 0 and 1 as formulas.

2.1 Maximal linear nodes

Given a formula φ, we define the notion of linear node in φ inductively as
follows. (i) Every leaf is linear. (ii) An internal node is linear if it is labeled
by ⊕ and its both child nodes are linear. Then, a linear node is maximal if its
parent node is not linear. Let v be a linear node in φ, φv be the subformula
rooted by v and S = {y1, . . . , yk} be the set of all leaves in φv. It is easy to see
that φv computes a linear function y1 ⊕ · · · ⊕ yk. If there exists a variable x
which appears in S more than once (as x or x), φv is said redundant, otherwise
it is said irredundant. By the commutativity of ⊕ and the fact that 0 ⊕ y = y,
1 ⊕ y = y, y ⊕ y = 0 and y ⊕ y = 1 for any literal y, we have:

Fact 2.2. A redundant subformula φv can be replaced by an irredundant formula
φ̃v which computes the same function as φv. Note that L(φ̃v) < L(φv) holds
and we can obtain φ̃v from φv in polynomial time in L(φ).

The usefulness of the notion of maximal linear nodes is shown by the follow-
ing lemma.

Lemma 2.3. Let φ be a formula which contains exactly m maximal linear nodes.
Then, we can check the satisfiability of φ in time 2m · poly(L(φ)).

Proof. Let v1, . . . , vm be maximal linear nodes in φ. By the inductive definition
of maximal linear node, the output of φ is fixed when all the outputs of v1, . . . , vm

are fixed to constants a1, . . . , am ∈ {0, 1}. There are 2m possible ways of fixing
the outputs of v1, . . . , vm. For each possibility, we can check whether there
exists a corresponding assignment to x1, . . . , xn or not, by solving a system of
linear equations φv1 = a1, . . . , φvm = am in polynomial time using Gaussian
elimination.

The above lemma motivates us to reduce the number of maximal linear nodes
in a formula φ. We need some definitions. Let u, v be maximal linear nodes in
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φ. Then u and v is connected by a ⊕-path if every node in the (unique) path
from u to v is labeled by ⊕. Such a pair of nodes u, v is called mergeable by
the following reason. Let s and t be the parent nodes of u and v respectively.
Then we can write φs = φu ⊕ φu′ and φt = φv ⊕ φv′ where φu′ and φv′ are any
formulas. Without loss of generality we can assume t 6= u′, and consider the
following transformation. First replace φs by φ̃s = (φu ⊕φv)⊕φu′ , then replace
φt by φ̃t = φv′ . The resulting formula φ̃ obviously computes the same function
as φ by the commutativity of ⊕ and we reduce the number of maximal linear
nodes by one. Thus we have:

Fact 2.4. Let φ be a formula which contains mergeable pairs of maximal linear
nodes. Then there exists a formula φ̃ which computes the same function as φ
and does not contain mergeable pairs of maximal linear nodes. Furthermore,
L(φ̃) ≤ L(φ) and we can obtain φ̃ from φ in polynomial time in L(φ).

2.2 Restrictions of {∧,∨,⊕}-formulas

For any formula φ, any set of variables {xi1 , . . . , xik
} and any constants a1, . . . , ak ∈

{0, 1}, we denote by φ[xi1 = a1, . . . , xik
= ak] the formula obtained from φ by

assigning to each xij
, xij

the value aj , aj and applying the following procedure
Simplify.

The procedure Simplify reduces the size of a formula applying rules to
eliminate constants and redundant literals and gates. It also reduces the number
of redundant subformulas and mergeable linear nodes in a formula. These are
the same simplification rules used by H̊astad [13] and Santhanam [27] with
additional rules regarding ⊕ gates.

Simplify (φ: formula)
Repeat the following until there is no decrease in size of φ, number of redundant
subformulas and number of mergeable linear nodes.

(a) If 0 ∧ ψ occurs as a subformula, where ψ is any formula, replace this sub-
formula by 0.

(b) If 0 ∨ ψ occurs as a subformula, where ψ is any formula, replace this sub-
formula by ψ.

(c) If 1 ∧ ψ occurs as a subformula, where ψ is any formula, replace this sub-
formula by ψ.

(d) If 1 ∨ ψ occurs as a subformula, where ψ is any formula, replace this sub-
formula by 1.

(e) If y∨ψ occurs as a subformula, where ψ is a formula and y is a literal, then
replace all occurrences of y in ψ by 0 and all occurrence of y by 1.

(f) If y∧ψ occurs as a subformula, where ψ is a formula and y is a literal, then
replace all occurrences of y in ψ by 1 and all occurrence of y by 0.
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(g) If 0 ⊕ ψ occurs as a subformula, where ψ is any formula, replace this sub-
formula by ψ.

(h) If 1 ⊕ ψ occurs as a subformula, where ψ is any formula, replace this sub-
formula by ψ, where ψ denotes a formula which computes the negation of
ψ. (L(ψ) ≤ L(ψ) by Fact 2.1.)

(i) If ψ occurs as a redundant subformula, replace this subformula by an irre-
dundant formula ψ̃ as Fact 2.2.

(j) If φ contains mergeable maximal linear nodes, replace φ by φ̃ without them
as Fact 2.4.

It is easy to see that Simplify runs in time polynomial in the size of φ and the
resulting formula computes the same function as φ. If Simplify(φ) returns φ
itself, φ is said irreducible.

Observation 2.5. Let φ be a formula, x be a variable and a ∈ {0, 1} be a
constant. Then

L(φ[x = a]) ≤ L(φ) − freq(x).

Furthermore, if freq(x) ≥ L(φ)/|var(φ)| + γ for some γ ≥ 0, then

L(φ[x = a]) ≤ L(φ)
(

1 − 1
|var(φ)|

)1+γ|var(φ)|/L(φ)

.

Proof. The first inequality is obvious. The following calculation shows the sec-
ond inequality.

L(φ[x = a]) ≤ L(φ) − L(φ)/|var(φ)| − γ

= L(φ)
(

1 − 1 + γ|var(φ)|/L(φ)
|var(φ)|

)
≤ L(φ)

(
1 − 1

|var(φ)|

)1+γ|var(φ)|/L(φ)

,

where the last inequality is by (1 − bx) ≤ (1 − x)b for 0 < b, x < 1.

Observation 2.6. Let φ be a formula, v be a node of φ where the parent node
of v is labeled by ∧ (∨, respectively), and u be a sibling of v. Assume var(φv) =
{xi1 , . . . , xik

} and there exists a variable x which is in var(φu) but not in var(φv).
Then for any constants a1, . . . , ak ∈ {0, 1} such that φv[xi1 = a1, . . . , xik

=
ak] = 0 (φv[xi1 = a1, . . . , xik

= ak] = 1, respectively),

L(φ[xi1 = a1, . . . , xik
= ak]) ≤ L(φ) −

 ∑
x′∈var(φv)

freq(x′)

 − 1.
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Furthermore, if freq(x′) ≥ L(φ)/|var(φ)| holds for any x′ ∈ var(φv),

L(φ[xi1 = a1, . . . , xik
= ak])

≤ L(φ)


k−2∏
j=0

(
1 − 1

|var(φ)| − j

)
(

1 − 1
|var(φ)| − k + 1

)1+|var(φ)|/L(φ)

.

Proof. If we assign 0/1 values to xi1 , . . . , xik
, obviously

∑
x′∈var(φv) freq(x′) of

leaves become constants. Furthermore, by rule (a) of Simplify (by rule (d)
of Simplify, respectively), v’s parent node becomes constant. That is, we can
remove at least one leaf of φu whose label is x or x. The second inequality
follows from the first one and using Observation 2.5.

Observation 2.7. Let φ be a formula, v be a node of φ where the parent node of
v is labeled by ∧ or ∨, and u be a sibling of v. Assume var(φv) = {xi1 , . . . , xik

}
and var(φv) ⊇ var(φu) and a variable x is in both var(φv) and var(φu). Assume
x = xi1 . Then for any constants a2, . . . , ak ∈ {0, 1},

L(φ[xi2 = a2, . . . , xik
= ak]) ≤ L(φ) −

 ∑
x′∈var(φv)\{xi1}

freq(x′)

 − 1.

Furthermore, if freq(x′) ≥ L(φ)/|var(φ)| holds for any x′ ∈ var(φv) \ {xi1},

L(φ[xi2 = a2, . . . , xik
= ak])

≤ L(φ)


k−3∏
j=0

(
1 − 1

|var(φ)| − j

)
(

1 − 1
|var(φ)| − k + 2

)1+|var(φ)|/L(φ)

.

Proof. If we assign 0/1 values to xi2 , . . . , xik
, obviously

∑
x′∈var(φv)\{xi1}

freq(x′)
of leaves become constants. Furthermore, φv becomes x or x and φu becomes
one of 0, 1, x, x. That is, by rules (a),(b),(c),(d),(e) and (f),we can remove at
least one leaf whose label is x or x. The second inequality follows from the first
one and using Observation 2.5.

2.3 Useful properties of {∧,∨,⊕}-formulas

Our SAT algorithm is a backtracking algorithm which uses four branching rules.
The following lemma plays an important role in defining the branching rules of
our SAT algorithm.

Lemma 2.8. In any n-variable formula φ of size cn, c ≥ 3/4, such that φ
does not contain any pair of mergeable maximal linear nodes, at least one of
followings holds.

Case 1: The number of maximal linear nodes in φ is less than 3n/4.

Case 2: There exists a variable x ∈ var(φ), freq(x) ≥ c + 1/8c.
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Case 3: There exists a maximal linear node v with L(φv) ≤ 8c such that for
any x ∈ var(φv), freq(x) ≥ c and the parent node of v is labelled by ∧ or
∨.

Proof of Lemma 2.8. Assume that neither Case 1 nor Case 2 occurs. We need
the following lemma and fact which are proven later.

Lemma 2.9. Let φ be a formula which contains at least one node labeled by
∧ or ∨ but not any pair of mergeable maximal linear nodes. Then, the number
of maximal linear nodes whose parent nodes are labeled by ∧ or ∨, denoted by
#MLin∧,∨(φ), is greater than the number of maximal linear nodes whose parent
nodes are labeled by {⊕}, denoted by #MLin⊕(φ).

Fact 2.10. (i) The number of maximal linear nodes which have more than 8c
leaves as descendants is at most n/8. (ii) The number of maximal linear nodes
which have a variable x with freq(x) < c is at most n/8.

By Lemma 2.9, #MLin∧,∨(φ) > (3n/4)/2 = 3n/8. By Fact 2.10, there are
at least 3n/8 − n/8 − n/8 = n/8 maximal linear nodes satisfying the condition
of Case 3.

Proof of Lemma 2.9. We will prove by induction on the size of φ.
If L(φ) = 1, then φ does not contain a node labeled by ∧ or ∨. If L(φ) = 2

or 3, it is easy to check that #MLin∧,∨(φ) > #MLin⊕(φ) holds.
Now we will show that #MLin∧,∨(φ) > #MLin⊕(φ) for φ whose size is

` > 3 and which contains at least one node labeled by ∧ or ∨. If the number
of internal nodes which are labeled by ∨ or ∧ is exactly one, it is easy to see
that #MLin∧,∨(φ) > #MLin⊕(φ) holds. Thus, assume otherwise. Consider the
following two cases. (i) There is a maximal linear node of size at least two. (ii)
Every maximal linear node is of size exactly one.

In case (i), pick any maximal linear node of size at least two, say v. Since
L(φv) ≥ 2, φv contains an internal node w whose child nodes are leaves, say s
and t. Let φ̃v be a formula which is identical to φv except that the nodes s, t are
removed from φv and the node w is replaced by s. Then let φ̃ be the formula
obtained from φ by replacing φv by φ̃v. Note that φ̃ contains at least one node
labeled by ∧ or ∨ but does not contain any pairs of mergeable maximal linear
nodes. Since L(φ̃) = ` − 2, it holds that #MLin∧,∨(φ̃) > #MLin⊕(φ̃) by the
induction hypothesis. It is easy to see that #MLin∧,∨(φ) = #MLin∧,∨(φ̃) and
#MLin⊕(φ) = #MLin⊕(φ̃) by the construction of φ̃, we are done.

In case (ii), there exists at least one internal node, say u, whose label is ∨
or ∧ and child nodes are leaves, say p and q. Furthermore, there exists at least
one more internal node whose label is ∨ or ∧. Let v be a parent node of u and
w be a sibling of u.

If v is labeled by ∨ or ∧, consider a formula φ̃ obtained from φ by replacing
u by s. Since L(φ̃) = ` − 1, it holds that #MLin∧,∨(φ̃) > #MLin⊕(φ̃) by the
induction hypothesis. It is easy to see that #MLin∧,∨(φ̃) = #MLin∧,∨(φ) − 1
and #MLin⊕(φ̃) = #MLin⊕(φ), we are done.
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If v is labeled by ⊕, consider a formula φ̃ obtained from φ by replacing φv by
φw. It is easy to see that #MLin∧,∨(φ)− 2 = #MLin∧,∨(φ̃) and #MLin⊕(φ) =
#MLin⊕(φ̃) by the construction of φ̃, we are done.

Proof of Fact 2.10. (i) is obvious by the averaging argument. We will show (ii).
By the averaging argument, there exists a variable x ∈ var(φ) with freq(x) ≥ c.
Since there is no variable x ∈ var(φ) with freq(x) ≥ c + 1/8c by assumption,
we have c ≤ freq(x) < c + 1/8c. Note that if there exists a variable x′ ∈ var(φ)
with freq(x′) < c then freq(x′) < c + 1/8c − 1 because freq(x′) is integer for
any variable x′. By the averaging argument, there are at most n/8c variables in
var(φ) with frequency less than c. The total number of leaves labeled by such
variables is at most c × n/8c ≤ n/8.

These proofs complete the proof of Lemma 2.8.

3 A Satisfiability Algorithm for B2-Formulas

Before describing our B2-formula-SAT algorithm and its running time analysis,
let us give a basic idea behind them.

Let φ be an n-variable formula of size cn. If c is less than 3/4 or the number of
maximal linear nodes in φ is less than 3n/4, then we can check the satisfiability
of φ in time 23n/4. Otherwise, Case 2 or 3 of Lemma 2.8 holds. In such a case,
we can reduce the size of φ non-trivially by fixing some number of variables to
be constants as shown in Observation 2.5, Observation 2.6 and Observation 2.7.
Note that if freq(xij ) ≥ c for any j, then

L(φ[xi1 = a1, . . . , xik
= ak]) ≤ L(φ)


k−1∏
j=0

(
1 − 1

n − j

)
holds by repeatedly using Observation 2.5. This decrease of the size from φ to
φ[xi1 = a1, . . . , xik

= ak] is called trivial. If for some γ > 0,

L(φ[xi1 = a1, . . . , xik
= ak]) ≤ L(φ)


k−1∏
j=0

(
1 − 1

n − j

)
(

1 − 1
n

)γ

holds, then the decrease of the size from φ to φ[xi1 = a1, . . . , xik
= ak] is called

non-trivial. If Observation 2.5 or Observation 2.7 applies to φ, φ[x = a] or
φ[xi2 = a2, . . . , xik

= ak] is non-trivially reduced for any a, a2, . . . , ak ∈ {0, 1}.
However, if Observation 2.6 applies to φ, φ[xi1 = a1, . . . , xik

= ak] is non-trivially
reduced for at least a half fraction of assignments of a1, . . . , ak ∈ {0, 1}, and
φ[xi1 = a1, . . . , xik

= ak] is at least trivially reduced for the remaining assign-
ments of a1, . . . , ak ∈ {0, 1}. To summarize, if we choose certain number of
variables appropriately and assign 0/1 values to them uniformly at random,
then the formula size non-trivially reduces with probability at least 1/2. We
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would like to estimate the expected size of the reduced formula after assigning
values to (1 − α)n variables for some α > 0.

The lemma described below captures the analysis of the above process. It is a
generalization of the Lemma 5 shown in Santhanam’s paper [27]. Let X0, X1, . . .
be independent random variables which take 0/1 values uniformly at random.
Let α ∈ (0, 1) and γ > 0 be real numbers and β, n be positive integers. We
assume n is enough larger than β. Let Yn(α, β, γ) be a random variable defined
as follows:

Yn(α, β, γ) :=


(1−α)n∏

i=0

(
1 − 1

n − i

)


(1−α)n/β∏
i=0

(
1 − 1

n − βi

)γXi

 .

Lemma 3.1. For any positive real numbers δ ∈ (0, 1), γ > 0, there exist positive
real numbers α ∈ (0, 1), ε > 0 and a positive integer N , such that for any integer
n ≥ N ,

Pr[Yn(α, β, γ) ≤ αδ] ≥ 1 − 2−εn

holds.

Proof. In what follows, we ignore integrality issues for simplicity, but the argu-
ment holds with slight modification. First note that

{∏(1−α)n
i=0

(
1 − 1

n−i

)}
≤ α.

Let ζ ∈ (0, 1) be a small positive real number chosen later. Let Ij be a set of
integers defined as

Ij := {(ζn)j, . . . , (ζn)(j + 1) − 1}

for 0 ≤ j ≤ {(1 − α)n/β + 1}/ζ − 1. It easy to see by the Chernoff bound that

Pr

∑
i∈Ij

Xi ≤ ζn/3

 = 2−Ωζ(n)

for any j, 0 ≤ j ≤ {(1 − α)n/β + 1}/ζ − 1. Here Ωζ hides a constant factor
determined by ζ. Thus, we have

Pr

∑
i∈Ij

Xi >
n

3
for any j, 0 ≤ j ≤ (1 − α)n/β + 1

ζ
− 1

 = 1 − 2−Ωζ(n)

by the union bound. We can show the following fact by an elementary calcula-
tion.

Fact 3.2. If
∑

i∈Ij
Xi > ζn/3 for any j, 0 ≤ j ≤ (1−α)n/β+1

ζ − 1, then it holds
that 

(1−α)n/β∏
i=0

(
1 − 1

n − βi

)γXi

 < (α + ζ)γ/3β .

Set ζ = α, 2α = δ3β/γ and choose ε = ε(ζ) appropriately, we have the desired
bound.
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3.1 The Algorithm and Computation Tree

Our satisfiability algorithm for B2-formulas, Evalformula is described in Fig. 1.
Without loss of generality, we assume input formulas are irreducible {∧,∨,⊕}-
formulas. The correctness of Evalformula is guaranteed by Lemma 2.8.

EvalFormula (φ: Formula, n: integer)
01: /* Case 0 */
02: if L(φ) = cn < 3n/4,
03: check the satisfiability of φ by brute force search.
04: if φ is satisfiable, return “yes”, else return “no”.
05: /* Case 1 */
06: else if the number of maximal linear nodes is less than 3n/4,
07: check the satisfiability of φ by Lemma 2.3.
08: if φ is satisfiable, return “yes”, else return “no”.
09: /* Case 2 */
10: else if ∃x ∈ var(φ), freq(x) ≥ c + 1

8c ,
11: EvalFormula(φ[x = 0], n − 1),
12: EvalFormula(φ[x = 1], n − 1).
13: /* Case 3 */
14: else if ∃ maximal linear node v with L(φv) ≤ 8c
: such that ∀x ∈ var(φv), freq(x) ≥ c and
: the parent node of v is labeled by ∧ or ∨,
15: assume var(φv) = {xi1 , . . . , xik

} and u is a sibling of v.
16: /* Case 3a */
17: if ∃ x such that x ∈ var(φu) and x /∈ var(φv),
18: for each constants a1, . . . , ak ∈ {0, 1},
19: EvalFormula(φi[xi1 = a1, . . . , xik

= ak], n − k).
20: /* Case 3b */
21: else if var(φv) ⊇ var(φu),
22: assume xi1 ∈ φu.
23: for each constants a2, . . . , ak ∈ {0, 1},
24: EvalFormula(φi[xi2 = a2, . . . , xik

= ak], n − k + 1).

Figure 1: B2-formula SAT algorithm

We define a notion of “computation tree” corresponding to the execution of
EvalFormula on a formula φ. A computation tree Tφ is a binary tree whose
nodes are labeled by a triplet < ψ, s, C >, where ψ is a formula, s is an integer
and C is an element in {?, 0, 1, 2, 3a, 3a′, 3b, 3b′}. ψ, s and C are called for-
mula label, (amortized-)size label and case label, respectively. We construct Tφ

recursively as follows.

Base step: The root node of Tφ is labeled by < φ,L(φ), ? >.

12



Recursive Step: Let v be a leaf node of Tφ whose depth is d and label is
< ψ, s, ? >.

Case 0: If ψ satisfies the condition of Case 0 in EvalFormula, replace v’s label
by < ψ, 1, 0 >.

Case 1: If ψ satisfies the condition of Case 1 in EvalFormula, replace v’s label
by < ψ, 1, 1 >.

Case 2: If ψ satisfies the condition of Case 2 in EvalFormula, replace v’s label
by < ψ, s, 2 >. Add two nodes vl, vr as v’s children in the following way:
vl is labeled by < ψ[x = 0], L(ψ[x = 0]), ? > and
vr is labeled by < ψ[x = 1], L(ψ[x = 1]), ? >.

Case 3a: If ψ satisfies the condition of Cases 3 and 3a in EvalFormula, replace
v’s label by < ψ,L(ψ), 3a >. Construct a complete binary tree Tk of height
k starting from v as follows.
If a node u is labeled by < ψ′, s, 3a > or < ψ′, s, 3a′ > and at a distance
d′ < k from v, u’s left child is labeled by < ψ′[xid′ = 0], s − L(ψ)

n−d , 3a′ >

and u’s right child is labeled by < ψ′[xid′ = 1], s − L(ψ)
n−d , 3a′ >.

If a node u is labeled by < ψ′, s, 3a > or < ψ′, s, 3a′ > and at a distance
k from v, u’s left child is labeled by < ψ′[xik

= 0], L(ψ′[xik
= 0]), ? > and

u’s right child is labeled by < ψ′[xik
= 1], L(ψ′[xik

= 1]), ? >.

Case 3b: If ψ satisfies the condition of Cases 3 and 3b in EvalFormula, re-
place v’s label by < ψ,L(ψ), 3b >. Construct a complete binary tree Tk−1

of height k − 1 starting from v as follows.
If a node u is labeled by < ψ′, s, 3b > or < ψ′, s, 3b′ > and at a distance
d′ < k−1 from v, u’s left child is labeled by < ψ′[xid′+1

= 0], s − L(ψ)
n−d , 3b′ >

and u’s right child is labeled by < ψ′[xid′+1
= 1], s − L(ψ)

n−d , 3b′ >.
If a node u is labeled by < ψ′, s, 3b > or < ψ′, s, 3b′ > and at a distance
k − 1 from v, u’s left child is labeled by < ψ′[xik

= 0], L(ψ′[xik
= 0]), ? >

and u’s right child is labeled by < ψ′[xik
= 1], L(ψ′[xik

= 1]), ? >.

We will assume that the computation tree is a complete binary tree of depth
n by padding it - if there is a node v at depth less than n whose case label is 0
or 1, we add nodes whose labels are < null, 1, 0 > below v.

The following lemma is crucial in the running time analysis of EvalFormula.
We use the notation L̃(p) to denote the size label of p in Tφ and d(p) to denote
the depth of p in Tφ.

Lemma 3.3. Let p be a node in Tφ with d(p) ≤ n− 8c and Tp(8c) be the set of
p’s descendants which are at distance 8c from p. Then, there is a subset T̂p(8c)
of Tp(8c) with |T̂p(8c)| = |Tp(8c)|/2 such that for any q ∈ T̂p(8c),

L̃(q) ≤ max

1, L̃(p)


8c−1∏
j=0

(
1 − 1

n − d(p) − j

)
(

1 − 1
n − d(p)

)1/8c2

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and for any q ∈ Tp(8c) \ T̂p(8c),

L̃(q) ≤ max

1, L̃(p)


8c−1∏
j=0

(
1 − 1

n − d(p) − j

)
 .

Proof. If the case label of p is 2, 3a or 3b, we obtain the desired bound from
Observations 2.5, 2.6 or 2.7 respectively according to the case label of p. If the
case label of p is 3a’ or 3b’, we can also use Observations 2.6 or 2.7 respectively
because of the definition of amortized-size.

3.2 Running time analysis

Let Tφ(d) denote the set of depth d nodes in Tφ. For p ∈ Tφ, Pp denotes the
path from the root of Tφ to p and Pp(d) denotes the node of Pp with depth d.
We define a function Xi(p) from Tφ((1 − α)n) to {0, 1} as follows:

Xi(p) :=
{

1 if Pp(8c(i + 1)) ∈ T̂Pp(8ci)(8c)
0 otherwise.

Lemma 3.4. Let p be drawn from Tφ((1 − α)n) uniformly at random. Then

Pr[X0(p) = a0, . . . , X(1−α)n/8c(p) = a(1−α)n/8c] = 1/2(1−α)n/8c+1

for any a0, . . . , a(1−α)n/8c ∈ {0, 1}. That is, X0, . . . , X(1−α)n/8c are independent
random variables which take values 0 and 1 uniformly at random.

Proof. It follows from that we define T̂q(8c) as |T̂q(8c)| = |Tq(8c)|/2 in Lemma 3.3.

Lemma 3.5. Let p be a node of Tφ((1 − α)n). Then

L̃(p) ≤ max{1, L(φ)Yn(α, 8c, 1/8c2)(p)}.

where

Yn(α, β, γ)(p) :=


(1−α)n∏

i=0

(
1 − 1

n − i

)


(1−α)n/β∏
i=0

(
1 − 1

n − βi

)γXi(p)
 .

Proof. It follows from Lemma 3.3 and the definition of Xi(p).

Combining Lemma 3.1 and 3.5, we have:

Lemma 3.6. Let p be drawn from Tφ((1 − α)n) uniformly at random. Then

Pr[L̃(p) < 3αn/4] = 1 − 2−Ωα(n)

for α = (3/4)192c3
/2.

14



Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let φ be an n-variable formula and consider a corre-
sponding computation tree Tφ. We upper bound the running time of EvalFro-
mula(φ,n) by the sum of the following four values:
(i) Let N0(d) be the number of nodes whose depth is d and case label is 0.
Define T0 as

T0 :=
(1−α)n∑

d=0

N0(d) · 23(n−d)/4.

(ii) Let N1(d) be the number of nodes whose depth is d and case label is 1.
Define T1 as

T1 :=
(1−α)n∑

d=0

N1(d) · 23(n−d)/4.

(iii) Let N2,3 be the number of nodes whose depth is (1 − α)n and size label is
less than 3αn/4. Define T2,3 as

T2,3 := N2,3 · 23αn/4.

(iv) Let N ′
2,3 be the number of nodes whose depth is (1 − α)n and size label is

at least 3αn/4. Define T ′
2,3 as

T ′
2,3 := N ′

2,3 · 2αn.

It is easy to see that poly(L(φ))(T0 +T1 +T2,3 +T ′
2,3) upper bounds the running

time of EvalFromula(φ,n). N0(d), N1(d) is at most 2d and N2,3 is at most
2(1−α)n. Lemma 3.6 shows that N ′

2,3 ≤ 2(1−α)n × 2−Ω(n). Therefore, T0 + T1 +
T2,3 + T ′

2,3 = 2n−Ω(n).

4 Strong average-case hardness

We will show strong average-case hardness of affine extractors for linear-sized
{∧,∨,⊕}-formulas, as claimed in Theorem 1.2. At first, we give definitions of
affine source and affine extractor.

Definition 4.1. Let F2 be the finite field with 2 elements. Denote by Fn
2 the n

dimensional vector space over F2. A distribution X over Fn
2 is an (n, k)-affine

source if there exist linearly independent vectors a1, · · · , ak ∈ Fn
2 and another

vector b ∈ Fn
2 such that X is sampled by choosing x1, · · · , xk ∈ F uniformly and

independently and computing

X =
k∑

i=1

xiai + b.
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An affine extractor is a deterministic function such that given any affine
source as the input, the output of the function is statistically close to the uniform
distribution.

Definition 4.2. A function fn : Fn
2 → F2 is a deterministic (k, ε)-affine ex-

tractor if for every (n, k)-affine source X,

1/2 − ε ≤ Pr[fn(X) = 0] ≤ 1/2 + ε.

(And 1/2 − ε ≤ Pr[fn(X) = 1] ≤ 1/2 + ε.)

We need the following Theorem due to [5, 18, 33].

Theorem 4.3. For every δ > 0 there exists a polynomial time computable
family of (k, ε)-extractors AEn : Fn

2 → F2 with k = δn and ε = 2−Ωδ(n).

Proof of Theorem 1.2. Let φ be an n-variable formula of size at most cn and
consider the computation tree Tφ constructed by EvalFormula on φ. Here we
treat Tφ as the original one, i.e., we do not add any nodes to make Tφ a complete
binary tree of height n. Let T̃φ be the set of all leaf nodes in Tφ. Each node p

of T̃φ defines a subcube C(p) of {0, 1}n. Note that any node p in T̃φ has case
label 0 or 1.

Fact 4.4. If p has case label 0 and is at depth d, C(p) can be partitioned into the
set of subcubes {C1, . . . , Ck}, k ≤ 23(n−d)/4 such that each Ci has dimension at
least (n−d)−3(n−d)/4 = (n−d)/4 and φ becomes constant on Ci. Furthermore,
if d ≤ (1 − α)n,

Pr
x∈Ci

[φ(x) = AEn(x)] ≤ 1/2 + 1/2Ω(n).

Fact 4.5. If p has case label 1 and is at depth d, C(p) can be partitioned into
the set of affine subspaces {C1, . . . , Ck}, k ≤ 23(n−d)/4 such that each Ci has
dimension at least (n− d)− 3(n− d)/4 = (n− d)/4 and φ becomes constant on
Ci. Furthermore, if d ≤ (1 − α)n,

Pr
x∈Ci

[φ(x) = AEn(x)] ≤ 1/2 + 1/2Ω(n).

In the proof of Theorem 1.1, we can see that

Pr
x∈{0,1}n

x ∈
∪

p∈T̃φ:d(p)>(1−α)n

C(p)

 ≤ 2−Ω(n).
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Therefore,

Pr
x

[φ(x) = AEn(x)] =
∑
p∈T̃φ

Pr
x∈{0,1}n

[x ∈ C(p)] Pr
x∈C(p)

[φ(x) = AEn(x)]

=
∑

p ∈ T̃φ
d(p) ≤ (1 − α)n

Pr
x∈{0,1}n

[x ∈ C(p)] Pr
x∈C(p)

[φ(x) = AEn(x)]

+
∑

p ∈ T̃φ
d(p) > (1 − α)n

Pr
x∈{0,1}n

[x ∈ C(p)] Pr
x∈C(p)

[φ(x) = AEn(x)]

and ∑
p ∈ T̃φ

d(p) ≤ (1 − α)n

Pr
x∈{0,1}n

[x ∈ C(p)] Pr
x∈C(p)

[φ(x) = AEn(x)] ≤ 1/2 + 2−Ω(n)

by Facts 4.4 and 4.5 , and∑
p ∈ T̃φ

d(p) > (1 − α)n

Pr
x∈{0,1}n

[x ∈ C(p)] Pr
x∈C(p)

[φ(x) = AEn(x)] ≤ 2−Ω(n).

This completes the proof.
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