
Limitations of Local Filters of Lipschitz and Monotone Functions∗

Pranjal Awasthi
Carnegie Mellon

pawasthi@cmu.edu

Madhav Jha
Penn State

mxj201@cse.psu.edu

Marco Molinaro
Carnegie Mellon

molinaro@cmu.edu

Sofya Raskhodnikova
Penn State

sofya@cse.psu.edu

Abstract

We study local filters for two properties of functions f : {0, 1}d → R: the Lipschitz property and
monotonicity. A local filter with additive error a is a randomized algorithm that is given black-box
access to a function f and a query point x in the domain of f . Its output is a value F (x), such that (i)
the reconstructed function F (x) satisfies the property (in our case, is Lipschitz or monotone) and (ii)
if the input function f satisfies the property then for every point x in the domain, with high constant
probability the reconstructed value F (x) differs from f(x) by at most a. Local filters were introduced
by Saks and Seshadhri (SICOMP 2010). The relaxed definition we study is due to Bhattacharyya et al.
(RANDOM 2010), except that we further relax it by allowing additive error. Local filters for Lipschitz
and monotone functions have applications to areas such as data privacy.

We show that every local filter for Lipschitz (resp., monotone) functions runs in time exponential in
the dimension d in the worst case. This holds even for filters with significant additive error, as well as
for both previously studied definitions. Prior lower bounds (for local filters with no additive error, i.e.,
with a = 0) applied only to more restrictive notions of filters, e.g., nonadaptive filters that are required
to specify all their lookups in advance, before obtaining values of f on any points. To prove our lower
bounds, we construct families of hard functions, and show that lookups of a local filter on these functions
are captured by a combinatorial object that we call a c-connector. Then we present a lower bound on the
maximum outdegree of a c-connector, and show that it implies the desired bounds on the running time
of local filters. Our lower bounds, in particular, imply the same bound on the running time for a class of
privacy mechanisms.

∗P.A. is supported by NSF grant CCF-1116892. M.J. and S.R. are supported by NSF CAREER grant CCF-0845701 and NSF
grant CCF-0729171. M.M. is supported by NSF grant CMMI-1024554.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 75 (2012)

1 Introduction

In this work, we study local reconstruction of properties of functions. Property-preserving data recon-
struction [ACCL08] is a direction of research in sublinear algorithms that has its roots in property testing
[RS96, GGR98]. Some related notions include locally decodable codes [KT00], program checking [BLR93]
and, more generally, local computation [RTVX11, ARVX12].

To motivate the reconstruction model, consider an algorithm ALG that is computing on a large dataset
and whose correctness is contingent upon the dataset satisfying a certain structural property. For example,
ALG may require that its input array be sorted or that its input function be Lipschitz. In such situations, ALG
could access its input via a filter that ensures that data seen by ALG always satisfies the desired property,
modifying it at few places on the fly, if required. We can represent the input to ALG as a function f , where
f(x) represents the portion of the data that can be accessed on query x. Instead of accessing f(x) directly,
ALG makes a query x to the filter. The filter looks up the value of f on a small number of points and returns
F (x), where F satisfies the desired property and is as close to the original function f as possible. Thus,
ALG is computing with reconstructed data F instead of its original input f .

Saks and Seshadhri [SS10] introduced the stronger notion of a local filter. It has an additional require-
ment that the reconstruction of f(x) and f(y) on two different queries x and y should be done independently.
In particular, the output function F is independent of the order of the queries x made to the filter1.

Local filters have many desirable features: for example, they can be implemented in a distributed setting,
where several processes need to access different parts of the input, and the filter has to ensure that all the
parts together are consistent with some function F that satisfies the desired property. This global consistency
guarantee enables several applications of local filters described in previous work [SS10, BGJ+12, JR11],
including the application to data privacy that we explain below.

The main goal of this paper is to understand limitations of local filters. This is crucial in order to identify
the types of tradeoffs (i.e., output quality vs. lookup complexity) available for a given application. Two
natural candidate properties for this evaluation are the Lipschitz property and monotonicity of functions2 f :
[n]d → R, studied in previous work [ACCL08, SS10, BGJ+12, JR11]: the first is motivated by the privacy
application explained below and the second is a ‘benchmark’ problem in property-preserving reconstruction
and property testing. A function f : [n]d → R is Lipschitz (with respect to the `1 metric on [n]d) if
|f(x) − f(y)| ≤ ‖x − y‖1 for all points x, y in the domain [n]d. Intuitively, changing the argument to the
Lipschitz function by a small amount does not significantly change the value of the function. A function
f : [n]d → R is monotone if f(x) ≤ f(y) for all points x � y in the domain [n]d, where � denotes the
natural partial order on [n]d: for x = (x1, . . . , xd) ∈ [n]d and y = (y1, . . . , yd) ∈ [n]d, we have x � y iff
xi ≤ yi for all coordinates i ∈ [d]. In other words, increasing the coordinates of the argument to a monotone
function does not decrease the value of the function.

The original definition of local filters in [SS10] has a requirement that the filter be distance-respecting,
that is, the reconstructed function F should not differ from the original function f on significantly more
points than necessary. Bhattacharyya et al. [BGJ+12] and Jha and Raskhodnikova [JR11] removed this
requirement and demonstrated that it is not necessary in some applications. Their local filter is simply
required to output F = f if the original function has the property; otherwise, F can be an arbitrary function
satisfying the property. We relax the notion of local filter further by allowing additive error. Our definition
(see Definition 2.1) has an additional parameter a, and the function F can differ from f by a small amount

1The lookups made by a local filter on a query point x are not required to be close to x. The word “local” in the name of the
filter is inherited from the related notion of locally decodable error-correcting codes.

2We use [n] to denote the set {1, 2, . . . , n}.

1

on every point, even if f satisfies the property: namely, we require that for every x in the domain, with high
constant probability |F (x) − f(x)| ≤ a. Local filters considered in [BGJ+12, JR11] are a special case of
our local filters with a = 0. Our goal is to determine (for small a) if there are local filters that make only
poly(n, d) lookups in order to output the reconstructed function F (x) at a given point x.

Privacy Application. We observe that local filters with small additive error can still be used in the privacy
application described in [JR11]. Consider a server which has a private database with information about
individuals, modeled as a point x in {0, 1}d, representing which of d possible types of people are present
in the database. (More generally, x is modeled as a point in [n]d representing a histogram that captures
how many people of each type are present.) A user who does not have direct access to x can ask the
server for some information about this database by specifying a function f for the server to evaluate at
the point x. The server’s goal is to output a value which is close to f(x) but which reveals almost no
information about any single individual. Recently, the latter notion has been made precise via the concept
of differential privacy [DMNS06]. A standard way of obtaining such guarantees is to ask users to submit
only Lipschitz functions3, and have the server output f(x) plus some random noise depending on the desired
privacy guarantee [DMNS06]. However, if a malicious user submits a function which is not Lipschitz, the
differential privacy guarantee is lost. A local filter with the following properties can then be used between
the server and the submitted function f to ensure the desired privacy: (i) the reconstructed function F is
always Lipschitz; (ii) if f is already Lipschitz, then with high probability |F (x)−f(x)| ≤ a for all x, where
a is a given parameter. This way, the server always evaluates a Lipschitz function F and thus has the desired
privacy guarantees. Furthermore, if the user provides a valid Lipschitz function f , the mechanism outputs
a value F (x) in the range f(x) ± a plus a random noise; if a is reasonably small it is then absorbed in the
noise. Thus, bounds on the running time and additive error of the local filter translate directly into bounds
on the running time and accuracy of the corresponding privacy mechanism.

1.1 Previous Results on Local Filters

Despite the fact that local filters have been thoroughly studied, lower bounds for general (not necessarily
distance-respecting) adaptive filters remained a big challenge.

Saks and Seshadhri [SS10] present a distance-respecting local filter for monotonicity of functions f :
[n]d → R with running time (log n + 1)O(d) per query. For monotonicity of functions f : {0, 1}d → R,
no nontrivial (i.e., performing o(2d) lookups per query) filter is known. Saks and Seshadhri also show that
a distance-respecting local filter for monotonicity on the domain {0, 1}d must perform 2Ω(d) lookups per
query. This lower bound crucially uses the fact that the filter is distance respecting, and does not apply to
general local filters (even when no additive error is allowed).

As we explained, in many applications the extra requirement that the filter be distance-respecting is not
necessary. Bhattacharyya et al. [BGJ+12] studied lower bounds for local monotonicity filters which are not
necessarily distance-respecting. However, their super-polynomial lower bounds only hold for nonadaptive
filter. For the domain {0, 1}d, Bhattacharyya et al. show that nonadaptive filters must perform Ω(2αd

d)
lookups per query in the worst case, where α ≥ 0.1620. For adaptive filters, their bound quickly degrades
with the number of lookups performed to incomparable points in the domain (x, y ∈ [n]d are comparable
if x � y or y � x and incomparable otherwise). Specifically, their lower bounds for adaptive filters is

3More generally, if a user wants to evaluate a function f with Lipschitz constant at most `, where ` > 1, then the Lipschitz
function f/` can be submitted to the server. When the noisy answer returned by the server is multiplied by `, the effect is to add
noise proportional to `.

2

Ω(2αd−`

d), where ` is the number of lookups to points incomparable to x made on query x; for arbitrary
adaptive filters, this degrades to Ω(d). Prior to our work, no super-polynomial lower bound for adaptive
local monotonicity filter was known.

For the Lipschitz property, Jha and Raskhodnikova [JR11] obtain a deterministic nonadaptive local filter
that runs in time O((log n + 1)d) per query. They also show that the lower bound from [BGJ+12] for
nonadaptive filters, with the same statement, applies to nonadaptive local filters of the Lipschitz property.

Previous work left open whether it is possible to obtain (adaptive and not necessarily distance-respecting)
local filters monotonicity and Lipschitz properties that make only poly(n, d) lookups per query.

1.2 Our Results and Techniques

We consider local a-filters, which is the relaxation of local filters that allows additive error a, as described
above and formally stated in Definition 2.1. These filters do not need to be distance-respecting and can
be fully adaptive. Our main results, stated in more detail in Section 2, are that even such relaxed filters
need to perform a number of lookups exponential in dimension d in order to reconstruct a Lipschitz (resp.,
monotone) function. (This applies even to functions on the domain {0, 1}d).

Theorem 1.1 (Limitations of Lipschitz filters). Consider the Lipschitz property of functions f : {0, 1}d → R
and any (randomized) local (not necessarily distance-respecting) d

402 -filter for this property. Then there is
a function f and a query x where, with constant probability, this filter makes 2Ω(d) lookups.

The additive error a = d/402 in the theorem above is as large as possible up to a constant factor: the
trivial filter that outputs F (x) = (f(0) + f(1))/2, where 0 and 1 are all-0 and all-1 vectors, respectively,
is a local d2 -filter.4 To see this, note that (i) the reconstructed function F (x) is Lipschitz and (ii) if the input
function f(x) is Lipschitz then |F (x) − f(x)| = 1

2 |f(0) + f(1) − 2f(x)| ≤ 1
2(|f(0) − f(x)| + |f(1) −

f(x)|) ≤ 1
2(‖0− x‖1 + ‖1− x‖1) = d

2 for every x ∈ {0, 1}d.
For monotonicity, we can prove an analogous theorem with no upper bound on a. This is explained

by the fact that monotonicity is determined by the order of the values at different points and not their
magnitudes. To calibrate additive error, we state the next theorem for functions with bounded range, namely,
[0, 2a + 1]. The additive error in the theorem is also tight because for functions with that range, the trivial
filter above that outputs F (x) = (f(0) + f(1))/2 is a local (a+ 1

2)-filter.

Theorem 1.2 (Limitations of monotonicity filters). Consider the monotonicity property of functions f :
{0, 1}d → [0, 2a + 1] and any (randomized) local a-filter for this property. Then there is a function f and
query x where, with constant probability, this filter makes 2Ω(d) lookups.

To introduce the ideas used in the proofs, we focus for now on deterministic filters. To obtain lower
bounds for nonadaptive filters in [BGJ+12, JR11], the authors construct two collections of ‘hard functions’
f (x,y) and f (x,y) (satisfying the Lipschitz property) indexed by x, y ∈ {0, 1}d. They show that if a local
filter works correctly on f (x,y) and f (x,y), as well as on a suitably defined function h(x,y) (violating the
Lipschitz property on (x, y)), the lookups made on queries x and y need to have a structured interaction.
(Note that in this case the lookups are independent of the input function because the filter is nonadaptive.)
More precisely, they construct a graph over {0, 1}d based on these interactions and show that it is a 2-
transitive-closure-spanner (2-TC-spanner) for the hypercube. (TC-spanners were introduced in [BGJ+09];
see Section 3 for definition and comparison with c-connectors that we introduce.) Using the lower bound on

4In order to simplify the presentation, we did not attempt to optimize this constant factor. In particular, the choice of weights
d/3 and 2d/3 in Definition 3.1 might not give the best factor.

3

the size of a 2-TC-spanner for the hypercube from [BGJ+12], it can be shown that any non-adaptive filter
must use exponential lookups on one of the query points.

In the case of adaptive filters one cannot assume that the lookups made on a given query point are
independent of the input function. One simple idea to try to overcome this obstacle is to consider, for each
query x, the union of the lookups made on query x over all possible choice of hard functions. One can then
try to apply the lower bound approach discussed in the previous paragraph. In fact this union of lookups
still has strong interactions that imply a 2-TC-spanner. The problem is that this is clearly overcounting the
number of lookups made by the filter on a single given function on query x. Due to the large number of
‘hard functions’ considered in [BGJ+12, JR11], this overcounting makes the bound coming from the 2-TC-
spanners vacuous for adaptive filters; this is where the factor 2` lost in [BGJ+12] mentioned above comes
from.

In order to remedy this, we build a collection of hard functions which are much ‘smoother’ than those
from [BGJ+12, JR11]. This allows us to use fewer functions. However, it comes at a cost: the interactions
of the lookups caused by these functions are not as structured as before and do not imply a 2-TC-spanner.
We introduce a type of directed graph called c-connector which captures lookup interactions. As discussed
in Section 3, our transformation to c-connectors preserves information on whether x is looked up on query
y or vice versa, while this information is lost in the transformation to 2-TC-spanners in [BGJ+12, JR11]. A
c-connector would be a relaxation of 2-TC-spanners if not for the direction of the edges. A 1-connector for
a set P of pairs x � y is a directed graph with the vertex set {0, 1}d satisfying the following requirement:
for every pair (x, y) ∈ P , there is a common out-neighbor z of x and y, such that z � y and ‖z‖1 ≥ ‖x‖1.
More generally, for a c-connector, the requirements on the common out-neighbor z are that fewer than c
coordinates are 1 in z and 0 in y and that ‖z‖1 > ‖x‖1−c. Notice that the requirements on z only depend on
the weight of x, not x itself, potentially allowing more points x connect to nodes y via the same out-neighbor
z than can be done in a 2-TC-spanner. Nevertheless, we can argue that a c-connector has a large maximum
outdegree, which relates to the lookup complexity. Indeed, one of the key ingredients for our lower bound is
recognizing the limitations of 2-TC-spanners in this context and finding a combinatorial structure with the
right amount of flexibility. Given the importance of TC-spanners (see [Ras10] for a survey), c-connectors
might find use outside of this work.

Organization. Section 2 gives basic definitions and a more detailed statement of our main results. In Sec-
tion 3, we define c-connectors, the graph objects on which our lower bounds are based. In Sections 4 and 5,
we develop a connection between c-connectors and local filters for the Lipschitz property and monotonicity.
In Section 6, we bound the outdegree of c-connectors. The final proof of the theorems above appears in
Section 7 and consists of putting these two parts together.

2 Definitions and Formal Statement of Results

Given a point x ∈ {0, 1}d, we use xi to denote its ith coordinate and |x| to denote its Hamming weight, that
is, |x| =

∑
i xi. We identify each point x ∈ {0, 1}d with the subset of coordinates where it takes value 1,

namely, {i : xi = 1}. This gives meaning to expressions like x ⊆ y, x∩y, x∪y and x\y for x, y ∈ {0, 1}d.
For x ∈ {0, 1}d, the Hamming weight |x| coincides with the cardinality of the set associated with x.

We now provide a formal definition of local a-filters that allow additive error a. It is stated for a general
property P of functions with domain D; in our case, P will be either the Lipschitz property or monotonicity.

Definition 2.1 (Local a-filter). Let P be a property of functions f : D → R for some R ⊆ R. A local a-
filter for P with error probability δ is a randomized algorithm which is given black-box access to a function

4

f : D → R together with a query point x ∈ D. For each random seed σ in the algorithm’s probability
space (Ω,Pr), the filter obtains the value of f on a sequence of points L(σ, f, x) = {y1, y2, . . . , yk},
called lookups, (where the choice of yi depends only on x, σ and f(y1), f(y2), . . . , f(yi−1)) and outputs
a reconstructed value F (σ, f, x) for x solely based on the values of f at L(σ, f, x). The reconstructed
function Fσ,f : D → R given by Fσ,f (x) = F (σ, f, x) must obey two conditions: (i) Fσ,f satisfies property
P for all functions f and all random seeds σ; (ii) if f satisfies property P then for all x ∈ D we have
Prσ(Fσ,f (x) ∈ [f(x)− a, f(x) + a]) ≥ 1− δ.

Notice that requirement (ii) in this definition is weaker than requiring that “if f satisfies property P then
Prσ(∀x ∈ D,Fσ,f (x) ∈ [f(x)− a, f(x) + a]) ≥ 1− δ”; therefore, we manage to obtain lower bounds for
a more general class of filters. As a notational remark, we usually omit the probability space and denote a
local a-filter by (L,F).

Next observation captures structural rigidity of local filters exploited in our lower bounds. It states that
if functions f and g are identical on the lookups performed on query x when the input function is f then the
filter will perform the same lookups on x for both f and g and, consequently, reconstruct the same value.

Observation 2.1. Let (L,F) be a local a-filter. Then the following holds for every random seed σ and query
point x: if f and g are functions such that f |L(σ,f,x) = g|L(σ,f,x), then F (σ, f, x) = F (σ, g, x).

Now we restate Theorems 1.1 and 1.2, giving more details about parameters we obtain.

Theorem 2.1. Fix a non-negative constant δ, consider a sufficiently large integer d (depending on δ) and
let a ∈ [0, d/402]. Let (L,F) be a local a-filter for the Lipschitz property with error probability δ. Then
there exists a function f : {0, 1}d → R and a query x ∈ {0, 1}d such that Prσ(|L(σ, f, x)| ≥ 20.009d) ≥
1/2− 1.1δ.

Theorem 2.2. Fix a non-negative constant δ, consider a sufficiently large integer d (depending on δ) and let
a ≥ 0. Let (L,F) be a local a-filter for monotonicity with error probability δ. Then there exists a function
f : {0, 1}d → [0, 2a+ 1] and a query x ∈ {0, 1}d such that Prσ(|L(σ, f, x)| ≥ 20.009d) ≥ 1/2− 1.1δ.

3 c-Connectors

In this section, we formally introduce the notion of c-connectors. This combinatorial structure can be rep-
resented as a directed graph on the vertex set {0, 1}d, where pairs of nodes need to share an out-neighbor
with some prescribed properties. As we shall see next, c-connectors are related to 2-TC-spanners, although
the full motivation for the exact definition will only become clear in Sections 4 and 5.

Definition 3.1. LetX denote the set of points in {0, 1}d with Hamming weight exactly d/3 and let Y denote
the set of points in {0, 1}d with Hamming weight exactly 2d/3. Also let P denote the set of comparable
pairs (x, y) ∈ X × Y , namely, such that x ≺ y.

Definition 3.2 (c-connector). Fix c ∈ N. Given a subset P ′ of P , a digraph G with the node set {0, 1}d is a
c-connector for P ′ if for every (x, y) ∈ P ′ there exists z ∈ {0, 1}d with the following properties:

• (Connectivity) The arcs (x, z) and (y, z) belong to G.

• (Structure) |z \ y| < c and |z| > d
3 − c.

5

A 2-TC-spanner of the boolean hypercube (with the usual partial order) is a directed graph H on the
node set {0, 1}d with the property that for all x ≺ y there is a point z satisfying x � z � y, such that the
arcs (x, z) and (z, y) belong to H [BGJ+09]. If we reorient the arcs in a 2-TC-spanner of the hypercube,
so that the nodes in Y only have outgoing arcs, we obtain a valid c-connector for every c ≥ 1: this is
because the requirement x � z � y (in the definition of 2-TC-spanner) implies the structure requirement in
a c-connector. Therefore, c-connectors relax 2-TC-spanners in two ways: first it requires that only pairs in
P have a common neighbor with prescribed properties, and second it relaxes the required properties of this
common neighbor. We remark that the direction of the arcs in c-connectors is important here, since in order
to obtain the desired results we lower bound the outdegree. In contrast, in previous work [BGJ+12, JR11]
the information of whether point x was looked up on query y or vice versa was lost in the transformation to
the corresponding 2-TC-spanner and the lower bound on the number of arcs, not the outdegree, was used.
This is one of the changes that gives us stronger lower bounds.

4 Local Filters for the Lipschitz Property imply c-Connectors

In this section we focus on the Lipschitz property. We construct a family of functions such that a local a-filter
that works correctly on functions from the family must preform lookups corresponding to a c-connector. The
idea is to start with a Lipschitz function f0 and then construct other Lipschitz functions f cy which agree with
f0 on most points, but where f cy(y) is much larger than f0(y). We argue that if a purported local a-filter
makes only ‘local’ lookups when reconstructing at queries x and y, then we can create a function that looks
like f cy around y (so that the filter is fooled and returns F (y) in the range f cy(y)±a) and looks like f0 around
x (so that the filter is fooled and returns F (x) in the range f0(x)± a� f cy(y)± a). Thus, for the returned
function, F (x) and F (y) are too far apart, ensuring that it is not Lipschitz.

4.1 Hard functions for Filter

Recall that Y denotes the set of points in {0, 1}d with Hamming weight exactly d/3. In order to construct
these hard functions, for a point y ∈ Y let Ty = {x ∈ {0, 1}d : x ⊆ y, |x| ≥ d/3}. Define the function f0

by f0(z) = max{|z|, d/3} for all z ∈ {0, 1}d. Intuitively, for c ∈ N and y ∈ Y , we define the function f cy
as the smallest Lipschitz function which is at least f0 + cχTy , where χTy denotes the characteristic function
of the set Ty. More specifically, we set f cy(z) = max{|z|+ c− |z \ y|, f0(z)} for all z ∈ {0, 1}d. A graphic
representation of these functions is given in Figure 1.

While it is clear that f0 is Lipschitz, we prove in the appendix that all functions f cy are Lipschitz as well.

Lemma 4.1. For all c ∈ N and y ∈ Y the function f cy is Lipschitz.

For a point y ∈ Y and a constant c ∈ N, let T cy ⊆ {0, 1}d be the set of points z, such that f cy(z) 6= f0(z).
Then T 1

y = Ty and the set T cy gets larger as c increases: specifically, T cy ⊆ T c
′
y for c < c′. The definitions of

f cy and f0 directly give the following observation, which justifies the specific structure used in the definition
of a c-connector.

Observation 4.2. All elements z in the set T cy satisfy |z \ y| < c and |z| > d
3 − c.

4.2 Correct Reconstruction of Hard Functions implies c-Connector

Now we show that if a local a-filter is correct on the constructed function, its lookups correspond to a c-
connector for the interesting pairs P (recall that P is the set of pairs (x, y) ∈ X × Y such that x ≺ y).

6

We start by essentially focusing on deterministic filters or, alternatively, by looking at a ‘good’ seed of a
randomized filter. The analysis for randomized filters is based on the ability to pick a few of these good
seeds and then analyzing the ‘union’ of the behavior of the filter running with these seeds.

Consider a local a-filter (L,F). Given points x ∈ X and y ∈ Y , we say that a random seed σ ∈ Ω is
good for x and y if Fσ,f0(x) ∈ [f0(x)− a, f0(x) + a] and Fσ,fcy (y) ∈ [f cy(y)− a, f cy(y) + a]. Given a seed
σ which is good for x and y, we define the digraph Gxyσ = ({0, 1}d, Axyσ) that captures the lookups made
on queries x and y. Specifically, the set Axyσ consists of all the arcs {(x, z) : z ∈ L(σ, f0, x) ∪ {x}} and
{(y, z) : z ∈ L(σ, f cy , y) ∪ {y}}.

Lemma 4.3 (Local filter implies c-connector). Consider a local a-filter (L,F) for the Lipschitz property
and an integer c > 2a. For all (x, y) ∈ P , if σ ∈ Ω is good for x and y then Gxyσ is a c-connector for (x, y).

Proof. For the sake of contradiction suppose not. Unraveling the definitions and using Observation 4.2 this
means that the sets (L(σ, f0, x)∪{x})∩T cy and (L(σ, f cy , y)∪{y})∩T cy do not intersect. Then letA,B be a
partition of T cy such thatA contains (L(σ, f0, x)∪{x})∩T cy andB contains (L(σ, f cy , y)∪{y})∩T cy . Define
the function f such that f |A = f0|A, f |B = f cy |B , and f |{0,1}d\(A∪B) = f0|{0,1}d\(A∪B) = f cy |{0,1}d\(A∪B)

(the last equation follows from the definition of T cy). To reach a contradiction, we show that the filter does
not reconstruct f correctly.

Notice that f0|L(σ,f0,x) = f |L(σ,f0,x), so Observation 2.1 gives that F (σ, f, x) = F (σ, f0, x). Similarly,
f cy |L(σ,fcy ,y) = f |L(σ,fcy ,y) and hence F (σ, f, y) = F (σ, f cy , y).

Now since σ is good for x and y, we have that F (σ, f, x) = F (σ, f0, x) ≤ f0(x) + a = d
3 + a and

F (σ, f, y) = F (σ, f cy , y) ≥ f cy(y)− a = 2d
3 + c− a. Since c > 2a we get F (σ, f, y)−F (σ, f, x) > d/3 =

‖x − y‖1, and hence the function Fσ,f is not Lipschitz; this contradicts that (L,F) is a local a-filter and
concludes the proof.

Consider two subsets P1,P2 of P . Notice that if G1 is a c-connector for P1 and G2 is a c-connector for
P2 then the graph formed by the union of (the arcs of) G1 and G2 is a c-connector for P1 ∪ P2. We remark
that when we take this union we do not add parallel arcs. This directly gives the following result.

Corollary 4.4. Consider a local a-filter (L,F) for the Lipschitz property and an integer c > 2a. Suppose
that for each (x, y) ∈ P there is a random seed σ(x, y) ∈ Ω which is good for x and y. Then the graph
obtained as the union of the graphs {Gxyσ(x,y)}(x,y)∈P is a c-connector for P . Moreover, this graph has
outdegree at most

max

{
max
x∈X

{∣∣⋃
y

L(σ(x, y), f0, x)
∣∣} ,max

y∈Y

{∣∣⋃
x

L(σ(x, y), f cy , y)
∣∣}}+ 1. (1)

Using this corollary, we show that a local a-filter with small ‘average’ number of lookups implies a
c-connector for P with a small outdegree.

Lemma 4.5. Consider a local a-filter (L,F) for the Lipschitz property with error probability δ and an
integer c > 2a. Consider α > 0 and let

M = max
f,x

Pr
σ

(|L(σ, f, x)| > α) .

If δ+M < 1/2 then there is a c-connector for P with maximum outdegree at most 2dα/ log
(

1
2δ+2M

)
+ 1.

7

Proof. The idea is to construct, via the probabilistic method, a set S̄ ⊆ Ω of good seeds which attains a
small value in (1). Given (x, y) ∈ P define the event Ex,y ⊆ Ω as the set of random seeds σ satisfying the
following: (i) σ is good for x and y; (ii) |L(σ, f0, x)| ≤ α and |L(σ, f cy , y)| ≤ α. Given the guarantee of the
filter and the definition of M , the complement of Ex,y holds with probability at most γ .

= 2δ + 2M .
Now let S be a random set obtained by picking independently and with replacement s .

= 2d/ log2(1/γ)
elements from (Ω,Pr). For a given (x, y) ∈ P , it follows from the previous paragraph that the probability
(over the construction of S) that S does not intersect Ex,y is at most γs. Taking a union bound over all
such pairs, the probability that there is (x, y) ∈ P for which S does not intersect Ex,y is strictly less than
22dγs = 1. Therefore, there exists a realization S̄ of S which intersects all Ex,y’s.

Then for (x, y) ∈ P let σ(x, y) be a point in S̄∩Ex,y. Since each σ(x, y) is good for x and y we can apply
Corollary 4.4 using these seeds. By construction we have that for all x ∈ X the set

⋃
y L(σ(x, y), f0, x)

has size at most |S̄|α and for all y ∈ Y the set
⋃
x L(σ(x, y), f cy , y) has size at most |S̄|α; this concludes

the proof.

5 Local Filters for Monotonicity imply 1-Connectors

In this section, we consider the monotonicity property and show that again the lookups performed by a local
a-filter give rise to a c-connector (in this case, with c = 1).

5.1 Hard Functions for Filter

Again, we start by defining functions f0 and fay , such that if a local filter is correct on these functions, its
lookups correspond to a 1-connector. Recall that for a point y ∈ Y , we define Ty = {x ∈ {0, 1}d : x ⊆
y, |x| ≥ d/3}. Define the function f0 by f0(z) = 2a + 1 if |z| ≥ d/3 and f0(z) = 0 if |z| < d/3. For a
point y ∈ Y , we define the function fay equal to f0 − (2a+ 1)χTy , namely, fay (z) = 2a+ 1 if z ≥ d/3 and
z /∈ Ty and fay (z) = 0 otherwise. A graphic representation of these functions is given in Figure 2. It can be
easily verified that these functions are monotone.

Lemma 5.1. For all y ∈ Y and a ≥ 0, the functions f0 and fay are monotone.

Notice that the functions f0 and fay differ exactly on points in Ty and that Ty is the set of points which
satisfy the structure property in the definition of a 1-connector.

5.2 Correct Reconstruction of Hard Functions implies 1-Connector

Recall that P is the set of comparable pairs (x, y) ∈ X × Y or, equivalently, pairs where x ∈ Ty. Consider
a local a-filter (L,F) for monotone functions. As before, given x ∈ X and y ∈ Y , we say that a random
seed σ ∈ Ω is good for x and y if Fσ,f0(x) ∈ [f0(x)−a, f0(x) +a] and Fσ,fay (y) ∈ [fay (y)−a, fay (y) +a].
Given a seed σ which is good for x and y, we define the digraph Gxyσ = ({0, 1}d, Axyσ) in a way similar
to what we did in the previous section: we add to Axyσ all the arcs {(x, z) : z ∈ L(σ, f0, x) ∪ {x}} and
{(y, z) : z ∈ L(σ, fay , y) ∪ {y}}.

Again the construction of our functions and the digraph Gxyσ together with behavior of local a-filters
captured in Observation 2.1 give the following (proof in the appendix).

Lemma 5.2. Take a ≥ 0 and consider a local a-filter (L,F) for monotonicity. For any (x, y) ∈ P , if σ ∈ Ω
is good for x and y then Gxyσ is a 1-connector for (x, y).

8

Finally, we can utilize the same technique for finding a set of good seeds which achieve small value in
(1) as done in Lemma 4.5 to obtain the desired connection between local a-filters and 1-connectors for P .

Lemma 5.3. Take a ≥ 0 and consider a local a-filter (L,F) for monotone functions with error probability
δ. Consider α > 0 and let

M = max
f,x

Pr
σ

(|L(σ, f, x)| > α) .

If δ+M < 1/2 then there is a 1-connector for P with maximum outdegree at most 2dα/ log
(

1
2δ+2M

)
+ 1.

6 Lower Bound on the Maximum Outdegree of a c-Connector

Recall that P is the set of pairs (x, y) ∈ X × Y such that x and y are comparable. We show a lower
bound on the maximum outdegree of a c-connector for P . We remark that the constants in the bound are not
optimized.

Theorem 6.1. Consider d ≥ 40, 200 and let c be an integer in the range [d/201, d/200]. Then the maximum
outdegree of any c-connector for P is at least 20.01d.

To prove this theorem, let G be a c-connector for P . Let T̃ cy = {z : |z \ y| < c, |z| > d/3 − c} be the
points which satisfy the structure property in Definition 3.2. Then Ty ⊆ T cy ⊆ T̃ cy for all y ∈ Y , and for
x ∈ Ty and z ∈ T̃ cy we have x∪ z ∈ T̃ cy . We say that a pair (x, y) ∈ P is covered by a point z if z ∈ T̃ cy and
the arcs (x, z) and (y, z) belong to G.

Each pair in P needs to be covered by a point. For a fixed x ∈ X , the outdegree of x in G is at least the
number of distinct points which are covering the pairs in P containing x (and similarly for a fixed y ∈ Y).
The difficulty in lower bounding the outdegree of x is that many pairs containing it can be covered by the
same point. The heart of the argument is to show that no point can cover too many such pairs. It relies on
the fact that the sets T̃ cy are ‘localized’. More precisely, consider a point z and let (x, y) be covered by it.
Notice that x ∈ Ty and z ∈ T̃ cy , hence x ∪ z ∈ T̃ cy . If z is not near x, namely, z \ x is large, then we argue
that not too many points y satisfy x ∪ z ∈ T̃ cy , given the localization of T̃ cy . On the other hand, if z is near
x then there are not too many possibilities for x itself. Our bound is derived by putting these observations
together.

In order to make the above argument work we divide the pairs in P into two groups based on the covers
they have. Let α ∈ [1/15, 1/14] be such that αd is an integer, which exists since d is sufficiently large. For
(x, y) ∈ P and z that covers (x, y), if |z \ x| ≤ αd, then we say that z is near x and that z is a nearby cover
of (x, y). Let N denote the set of pairs (x, y) ∈ P which have a nearby cover and let F = P \ N be the
remaining pairs. For a fixed y ∈ Y , define Ny as the pairs in N containing y and for x ∈ X define Fx as
the pairs in F containing x.

Let Z ⊆ {0, 1}d be the set of points which cover at least one pair in P . For a given x ∈ X , we use Zx
to denote the set of points which cover at least one pair in P containing x. We define Zy analogously. That
is, Z is the union of sets Zx and Zy over all x ∈ X and y ∈ Y .

Now we sketch the argument that upper bounds the number of pairs in N and F ; computations are
presented in the appendix. In order to upper bound N we start by arguing that, for a fixed y ∈ Y , a point
cannot be a nearby cover for many pairs (x, y) in Ny. To see this, take z ∈ Zy and let (x, y) ∈ P be such
that z is a nearby cover for it. Then notice that x and z are very similar: |z\x| ≤ αd and |x\z| ≤ αd+c; the
first bound follows from the definition of a nearby cover and the second uses |z| ≥ |x|− c from Observation

9

4.2. From these constraints, it follows that there are at most d2
(d/3+αd

αd

)(2d/3+c
αd+c

)
possibilities for such x’s.

Thus, for all y ∈ Y we have |Ny| ≤ |Zy| · d2
(d/3+αd

αd

)(2d/3+c
αd+c

)
. Adding over all y gives the desired bound.

Lemma 6.2. Letting Θ = d2
(d/3+αd

αd

)(2d/3+c
αd+c

)
, the number of pairs inN is at most |Y | ·Θ ·maxy∈Y {|Zy|}.

To upper bound the size of F we start by showing that, for a fixed x ∈ X , a point cannot be a (non-
nearby) cover for too many pairs in Fx. To see this, take z ∈ Zx and suppose (x, y) ∈ Fx is covered by z.
Notice that x∪ z and y are very similar: |(x∪ z) \ y| ≤ c and |y \ (x∪ z)| ≤ d/3− αd+ c; the first bound
follows from x ⊆ y and Observation 4.2, and the second further uses the fact that |x∪ z| ≥ d/3 +αd (since

z is not a nearby cover). Then it is easy to see that there are at most d2
(2d

3
+c
c

)(2d
3
−αd

d
3
−αd+c

)
such y’s. Thus, for

each x ∈ X we have |Fx| ≤ |Zx| · d2
(2d

3
+c
c

)(2d
3
−αd

d
3
−αd+c

)
and adding over all x gives the desired bound on F .

Lemma 6.3. Letting Φ = d2
(2d

3
+c
c

)(2d
3
−αd

d
3
−αd+c

)
, the number of pairs in F is at most |X| ·Φ ·maxx∈X{|Zx|}.

The maximum outdegree of the c-connector G is bounded from below by

M = max{max
x∈X
{|Zx|},max

y∈Y
{|Zy|}}.

Since N and F partition the set of pairs P , we can add the bounds from Lemmas 6.2 and 6.3 and obtain

M ≥ |P|(
d
d/3

)
(Θ + Φ)

=

(2d/3
d/3

)
Θ + Φ

. (2)

Standard computations (presented in the appendix) can be used to lower bound the right-hand side of this
expression by 20.01d. This concludes the proof of Theorem 6.1.

7 Concluding the Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Without loss of generality assume a = d/402 and δ > 0. Let α = 20.009d and let
M = maxf,x Prσ (|L(σ, f, x)| > α). We claim that M ≥ 1/2− 1.1δ, which then implies the theorem. For
the sake of contradiction, suppose that M < 1/2− 1.1δ. Since then δ + M < 1/2, we can take an integer
c ∈ (d/201, d/200) and employ Lemma 4.5 to get that there is a c-connector forP with maximum outdegree
at most 2d/α log(1

2δ+2M) ≤ 2dα/ log(1
1−0.2δ). Since δ > 0 and d is sufficiently large with respect to δ,

we obtain that this connector has maximum outdegree less than 20.01d. This contradicts Theorem 6.1 and
concludes the proof of Theorem 2.1.

Proof of Theorem 2.2. By definition, a 1-connector is also a c-connector for any c ≥ 1. We proceed as in
the proof of Theorem 2.1, but now with no restriction on a.

8 Conclusion and Future work

In this paper, we relax the requirements on local filters to allow additive error and show that, even with this
relaxation, the number of lookups required is exponential in the dimension, for both the Lipschitz property

10

and monotonicity. One can try to further relax the requirements on local filters in order to overcome our
lower bounds.

One possibility is to allow the local a-filter to output a reconstructed function that does not satisfy the
desired property P with small probability. Such weaker guarantees can still be useful for other definitions of
privacy such as those introduced in [BBG+11] (and perhaps even for (ε, δ)-differential privacy [DKMN06])
instead of “pure” ε-differential privacy mentioned in the introduction.

Another interesting relaxation of local a-filters, specific to the Lipschitz property, is to allow the recon-
structed function F to be b-Lipschitz instead of Lipschitz, that is, to require only |F (x)−F (y)| ≤ b·‖x−y‖1
for all x, y ∈ {0, 1}d. For the privacy application described in the introduction, having a and b of the order
of O(

√
d) is still acceptable. We remark that the techniques presented here yield similar lower bounds for

relaxed notion with b slightly larger than 1, but not for b ≥ 2.

References

[ACCL08] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Property-preserving data
reconstruction. Algorithmica, 51(2):160–182, 2008.

[ARVX12] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation
algorithms. In Yuval Rabani, editor, SODA, pages 1132–1139. SIAM, 2012.

[BBG+11] Raghav Bhaskar, Abhishek Bhowmick, Vipul Goyal, Srivatsan Laxman, and Abhradeep
Thakurta. Noiseless database privacy. In ASIACRYPT, pages 215–232, 2011.

[BGJ+09] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. In SODA, pages 932–941, 2009.

[BGJ+12] Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin Jung, Sofya Raskhodnikova,
and David P. Woodruff. Lower bounds for local monotonicity reconstruction from transitive-
closure spanners. SIAM J. Discrete Math., 26(2):618–646, 2012.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[DKMN06] Cynthia Dwork, Krishnaram Kenthapadi, Frank Mcsherry, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In In EUROCRYPT, pages 486–503. Springer, 2006.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensi-
tivity in private data analysis. In TCC, pages 265–284, 2006.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

[JR11] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz functions with
applications to data privacy. In IEEE FOCS, pages 433–442, 2011. Full version available at
http://eccc.hpi-web.de/report/2011/057/.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In STOC, pages 80–86, 2000.

11

[Ras10] Sofya Raskhodnikova. Transitive-closure spanners: A survey. In Oded Goldreich, editor, Prop-
erty Testing, volume 6390 of Lecture Notes in Computer Science, pages 167–196. Springer,
2010.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[RTVX11] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms. In
ICS, pages 223–238, 2011.

[SS10] Michael E. Saks and C. Seshadhri. Local monotonicity reconstruction. SIAM J. Comput.,
39(7):2897–2926, 2010.

12

Figure 1: Functions used in proof of Lemma 4.3.

f 0

y

f 1
y

d
3

|z|

d
3

|z|

Ty
d
3

d
2

X

Y 2d
3

d
3

d
2

xx
|z|+ 1

f c
y

d
3

|z|

d
3

d
2

X

Y 2d
3

x

T c
y

|z|+ c− |z \ y|
c

cy

A Proofs from Section 4

Proof of Lemma 4.1. Fix c ∈ N and y ∈ Y . Define g(z) = |z|+ c−|z \y|, so that f cy = max{g, f0}. Since
f0 is Lipschitz, and the maximum of two Lipschitz functions is a Lipschitz function, it is suffices to show
that g is Lipschitz. Take z, z′ ∈ {0, 1}d such that ‖z − z′‖1 = 1; it remains to show that |g(z)− g(z′)| ≤ 1.
Notice that either z ⊆ z′ or z′ ⊆ z; without loss of generality assume the former. Since |z| = |z′| − 1 and
0 ≤ |z′ \ y| − |z \ y| ≤ 1, we obtain that |g(z)− g(z′)| ≤

∣∣|z| − |z′|+ |z′ \ y| − |z \ y|∣∣ ≤ 1. This concludes
the proof of the lemma.

B Proofs from Section 5

Proof of Lemma 5.2. For the sake of contradiction suppose not. Unraveling the definitions this means that
the sets (L(σ, f0, x)∪ {x})∩ Ty and (L(σ, fay , y)∪ {y})∩ Ty do not intersect. Then let A,B be a partition
of Ty such that A contains (L(σ, f0, x) ∪ {x}) ∩ Ty and B contains (L(σ, fay , y) ∪ {y}) ∩ Ty. Define the
function f such that f |A = f0|A, f |B = fay |B , and f |{0,1}d\(A∪B) = fay |{0,1}d\(A∪B) = f0|{0,1}d\(A∪B)

(the last equation follows from the fact that fay and f0 only differ over Ty); to reach the desired contradiction,
we show that the filter does not reconstruct f correctly.

Notice that f0|L(σ,f0,x) = f |L(σ,f0,x), so Observation 2.1 gives that F (σ, f, x) = F (σ, f0, x). Similarly,
f0|L(σ,fay ,y) = f |L(σ,fay ,y) and hence F (σ, f, y) = F (σ, fay , y).

Now since σ is good for x and y, we have that F (σ, f, x) = F (σ, f0, x) ≥ f0(x) − a = a + 1 and
F (σ, f, y) = F (σ, fay , y) ≤ fay (y) + a = a. We then get that F (σ, f, x) > F (σ, f, y) and hence the
function Fσ,f is not monotone. This contradicts that (L,F) is a local a-filter and concludes the proof of the
lemma.

13

Figure 2: Functions used in proof of Lemma 5.2 for a = 0. Observe f0(x) = 1 and f1
y (y) = 0.

f 0

y

f 1
y

0

1

0

1

Ty
d
3

d
2

X

Y 2d
3

d
3

d
2

xx

C Proofs for Section 6

D Estimates for Lemmas 6.2 and 6.3

Both estimates come from the following technical claim.

Claim D.1. Given t1, t2 ∈ [d] and a fixed u ∈ {0, 1}d such that |u| ≥ t1, let S(u, t1, t2, η) be the set of
vertices x ∈ {0, 1}d such that |x| = t2 and |u \ x| ≤ η. Moreover, assume t1 (respectively, t2) is at least
2η + 2t2 − d (respectively, η). Then, |S(u, t1, t2)| ≤ d2

(
t2+η
η

)(
d−t1

η+t2−t1

)
.

Proof. First, we show t1 ≤ |u| ≤ η + t2. The lower bound is part of the statement of the claim. For the
upper bound, using |u \ x| ≤ η (respectively, |x| = t2) from the statement of the claim, we get |u| =
|u \ x| + |u ∩ x| ≤ η + |u ∩ x| ≤ η + |x| = η + t2. Next we show |x \ u| ≤ η + t2 − t1. Observe that
|x \ u| = |x∪ u| − |u| = |x|+ |u \ x| − |u|. Using |u \ x| ≤ η, |x| = t2 and |u| ≥ t1 from the statement of
the claim, we get |x \ u| = |x|+ |u \ x| − |u| ≤ t2 + η − t1, as required.

Therefore, for every x ∈ S(u, t1, t2, η), we have points r and a such that x = (u \ r) ∪ a satisfying: (i)
r ⊆ u and |r| ≤ η; (ii) a ∩ u = ∅ and |a| ≤ η + t2 − t1. Since t1 ≤ |u| ≤ η + t2, there are

at most
∑η

i=0

(
t2+η
i

)
≤ d
(
t2+η
η

)
possibilities for r and

at most
∑η+t2−t1

i=0

(
d−t1
i

)
≤ d
(

d−t1
η+t2−t1

)
possibilities for a,

where in the above bounds we used the fact that t1 (respectively, t2) is at least 2η + 2t2 − d (respectively,
η). Multiplying these terms gives the upper bound on |S(u, t1, t2, η)|.

Estimate for Lemma 6.2. Recall that we have a fixed z ∈ {0, 1}d and we want to upper bound the number
of x ∈ X satisfying |z \ x| ≤ αd and |z| ≥ |x| − c by Θ = d2

(d/3+αd
αd

)(2d/3+c
αd+c

)
; this follows directly by

applying Claim D.1 with parameters u = z, t1 = d/3− c, t2 = d/3 and η = αd.

14

Estimate for Lemma 6.3. Recall that now we have a fixed z ∈ {0, 1}d and we want to upper bound the

number of y ∈ Y satisfying |(x∪ z) \ y| ≤ c and |x∪ z| ≥ d
3 +αd by Φ = d2

(2d
3

+c
c

)(2d
3
−αd

d
3
−αd+c

)
; this follows

directly by applying Claim D.1 with parameters u = x ∪ z, t1 = d/3 + αd, t2 = 2d/3 and η = c.

D.1 Bounding Θ + Φ

In this section we show that (2d/3
d/3

)
Θ + Φ

≥ 20.01d.

We start with three simple facts about the binomial coefficient
(
a
b

)
for integers a ≥ b: (i)

(
a+1
b+1

)
= a+1

b+1

(
a
b

)
≥(

a
b

)
; (ii)

(
a
b

)
≤
(
ea
b

)b; (iii) if b = a/2, then
(
a
b

)
≥ 2a

a . We also observe that (1/x)x is increasing in the range
x ∈ (0, 1/4]. Using this, it is already easy to see that by choosing α and c/d small enough we can get Θ

and Φ of the order
(2d/3
d/3

)
O(2−εd) for a small constant ε > 0; we show that the choice of α and c/d in the

statement of the lemma works.
From observation (iii) above we have

(2d/3
d/3

)
≥ 22d/3

d . Using observations (i) and (ii) above and the
bounds on α, c and d, we obtain the upper bound

Θ(2d/3
d/3

) =
d2
(d/3+αd

αd

)(2d/3+c
αd+c

)(2d/3
d/3

) ≤ d32−
2d
3

(d
3 + αd

αd

)(2d
3 + c

αd+ c

)
≤ d32−

2d
3

(
e(d/3 + αd)

αd

)αd(2d
3 + c

αd+ c

)
We have that (

e(d/3 + αd)

αd

)αd
≤
(
e(1 +

1

3α
)

)αd
≤ 20.2d

We also have that(2d
3 + c

αd+ c

)
≤
(

2d/3

αd

)
(2d/3 + c)(2d/3− 1 + c) . . . (2d/3 + 1)

(αd+ c)(αd+ c− 1) . . . (αd+ 1)
≤
(

2d/3

αd

)(
2d/3 + c

αd

)c
≤
(

2e

3α

)αd(2/3 + c/d

α

)c
≤ 20.25d

Hence, we get

Θ(2d/3
d/3

) ≤ d32−
2d
3 20.45d ≤ 2−0.01d

2
. (3)

For Φ, using observation (i) and the fact that the central binomial coefficient is the largest one, we have(2d
3 − αd

d
3 − αd+ c

)
=

(2d
3

d
3 + c

)
(d3 + c)(d3 + c− 1) . . . (d3 + c− αd+ 1)

2d
3 (2d

3 − 1) . . . (2d
3 − αd+ 1)

≤
(2d

3
d
3

)(1
3 + c

d
2
3 − α

)αd
.

Again using the bounds on α, c and d we obtain

Φ(2d/3
d/3

) ≤ d2

(2d
3 + c

c

)(1
3 + c

d
2
3 − α

)αd
≤ 20.043d2−0.058d ≤ 2−0.01d

2
. (4)

Adding the bounds from (3) and (4) concludes the proof of the lemma.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

