Testing Lipschitz Functions on Hypergrid Domains

Pranjal Awasthi*
Carnegie Mellon University
Marco Molinaro ${ }^{\ddagger}$
Carnegie Mellon University

Madhav Jha ${ }^{\dagger}$
Pennsylvania State University
Sofya Raskhodnikova ${ }^{\dagger}$
Pennsylvania State University

Abstract

A function $f\left(x_{1}, \ldots, x_{d}\right)$, where each input is an integer from 1 to n and output is a real number, is Lipschitz if changing one of the inputs by 1 changes the output by at most 1 . In other words, Lipschitz functions are not very sensitive to small changes in the input.

Our main result is an efficient tester for the Lipschitz property of functions $f:[n]^{d} \rightarrow \delta \mathbb{Z}$, where $\delta \in(0,1]$ and $\delta \mathbb{Z}$ is the set of integer multiples of δ. A property tester is given an oracle access to a function f and a proximity parameter ϵ, and it has to distinguish, with high probability, functions that have the property from functions that differ on at least an ϵ fraction of values from every function with the property. The Lipschitz property was first studied by Jha and Raskhodnikova (FOCS' 11) who motivated it by applications to data privacy and program verification. They presented efficient testers for the Lipschitz property of functions on the domains $\{0,1\}^{d}$ and $[n]$. Our tester for functions on the more general domain $[n]^{d}$ runs in time $O\left(d^{1.5} n \log n\right)$ for constant ϵ and δ.

The main tool in the analysis of our tester is a smoothing procedure that makes a function Lipschitz by modifying it at a few points. Its analysis is already nontrivial for the 1-dimensional version, which we call Bubble Smooth, in analogy to Bubble Sort. In one step, Bubble Smooth modifies two values that violate the Lipschitz property, namely, differ by more than 1 , by transferring δ units from the larger to the smaller. We define a transfer graph to keep track of the transfers, and use it to show that the ℓ_{1} distance between f and BubbleSmooth (f) is at most twice the ℓ_{1} distance from f to the nearest Lipschitz function. Bubble Smooth has several other important properties, which allow us to obtain a dimension reduction, i.e., a reduction from testing functions on multidimensional domains to testing functions on the 1 -dimensional domain, that incurs only a small multiplicative overhead in the running time and thus avoids the exponential dependence on the dimension.

1 Introduction

Property testing aims to understand how much information is needed to decide (approximately) whether an object has a property. A property tester [RS96, GGR98] is given oracle access to an object and a proximity parameter $\epsilon \in(0,1)$. If an object has the desired property, the tester accepts it with probability at least $2 / 3$; if the object is ϵ-far from having the desired property then the tester rejects it with probability at least $2 / 3$. Specifically, for properties of functions, ϵ-far means that a given function differs on at least an ϵ fraction of the domain points from any function with the property. Properties of many different types of objects have been studied, including graphs, metrics spaces, images and functions (see,

[^0]e.g., [Ron09, CS10, Gol11, RS11] for recent surveys.) Specifically, for non-boolean functions, sublineartime testers of linearity [BLR93], being a low-degree polynomial [RS96, KR06, JPRZ09], monotonicity [EKK ${ }^{+} 00, \mathrm{GGL}^{+} 00, \mathrm{DGL}^{+} 99$, $\mathrm{BRW}^{2} 5, \mathrm{FLN}^{+} 02$, HK08, ACCL^{2}, BGJ^{+}09], submodularity [VS11] and the Lipschitz property [JR11] have been proposed.

We present efficient testers for the Lipschitz property of functions ${ }^{1} f:[n]^{d} \rightarrow \delta \mathbb{Z}$, where $\delta \in(0,1]$ and $\delta \mathbb{Z}$ is the set of integer multiples of δ. A function f is c-Lipschitz (with respect to the ℓ_{1} metric on the domain) if $|f(x)-f(y)| \leq c \cdot|x-y|_{1}$. Points in the domain $[n]^{d}$ can be thought of as vertices of a d-dimensional hypergrid, where every pair of points at ℓ_{1} distance 1 is connected by an edge. Each edge (x, y) imposes a constraint $|f(x)-f(y)| \leq c$ and a function f is c-Lipschitz iff every edge constraint is satisfied. We say a function is Lipschitz if it is 1-Lipschitz. (Note that rescaling by a factor of $1 / c$ converts a c-Lipschitz function into a Lipschitz function.)

Testing of the Lipschitz property was first studied by Jha and Raskhodnikova [JR11] who motivated it by applications to data privacy and program verification. They presented testers for the Lipschitz property of functions on the domains $\{0,1\}^{d}$ (the hypercube) and $[n]$ (the line) that run in time $O\left(d^{2} /(\delta \epsilon)\right)$ and $O(\log n / \epsilon)$, respectively. Even though the applications in [JR11] are most convincing for functions on general hypergrid domains (in one of their applications, for instance, a point in $[n]^{d}$ represents a histogram of a private database), no nontrivial tester for functions on such general domains was known prior to this work.

1.1 Our Results

We present two efficient testers of the Lipschitz property of functions of the form $f:[n]^{d} \rightarrow \delta \mathbb{Z}$ with running time polynomial in d, n and $(\delta \epsilon)^{-1}$. Our testers are faster for functions whose image has small diameter.

Definition 1.1 (Image diameter). Given a function $f:[n]^{d} \rightarrow \mathbb{R}$, its image diameter is

$$
\operatorname{ImgD}(f)=\max _{x \in[n]^{d}} f(x)-\min _{y \in[n]^{d}} f(y)
$$

Observe that a Lipschitz function on $[n]^{d}$ must have image diameter at most $n d$. However, image diameter can be arbitrarily large for a non-Lipschitz function.

Our testers are nonadaptive, that is, their queries do not depend on answers to previous queries. The first tester has 1 -sided error, that is, it always accepts Lipschitz functions. The second tester is faster (when $\sqrt{d} \gg \log (1 / \epsilon)$ and $\operatorname{Img} D(f)$ is large $)$, but has 2 -sided error, that is, it can err with probability at most $1 / 3$ on both positive and negative instances.

Theorem 1.1 (Lipschitz testers). For ${ }^{2}$ all $\delta, \epsilon \in(0,1]$, the Lipschitz property of functions $f:[n]^{d} \rightarrow \delta \mathbb{Z}$ can be tested nonadaptively with the following time complexity:
(1) in $O\left(\frac{d}{\delta \epsilon} \cdot \min \{\operatorname{ImgD}(f), n d\} \cdot \log \min \{\operatorname{ImgD}(f), n\}\right)$ time with 1 -sided error.
(2) in $O\left(\frac{d}{\delta \epsilon} \cdot \min \{\operatorname{ImgD}(f), n \sqrt{d \log (1 / \epsilon)}\} \cdot \log \min \{\operatorname{ImgD}(f), n\}\right)$ time with 2 -sided error.

If the image diameter, δ and ϵ are constant, then both testers run in $O(d)$ time. This is tight already for the range $\{0,1,2\}$, even for the special case of the hypercube domain [JR11].

[^1]
1.2 Our Techniques

For clarity of presentation, we first state and prove all our theorems for $\delta=1$, i.e., for integer-valued functions. In Section 5, by discretizing (as was done in [JR11]), we extend our results to the range $\delta \mathbb{Z}$.

The main challenge in designing a tester for functions on the hypergrid domains is avoiding an exponential dependence on the dimension d. We achieve this via a dimension reduction, i.e., a reduction from testing functions on the hypergrid $[n]^{d}$ to testing functions on the line $[n]$, that incurs only an $O(d \cdot \min \{\operatorname{ImgD}, n d\})$ multiplicative overhead in the running time. In order to do this, we relate the distance to the Lipschitz property of a function f on the hypergrid to the average distance to the Lipschitz property of restrictions of f to 1 -dimensional (axis-parallel) lines. For $i \in[d]$, let $e^{i} \in[n]^{d}$ be 1 on the i th coordinate and 0 on the remaining coordinates. Then for every dimension $i \in[d]$ and $\alpha \in[n]^{d}$ with $\alpha_{i}=0$, the line g of f along dimension i with position α is the restriction of f defined by $g\left(x_{i}\right)=f\left(\alpha+x_{i} \cdot e^{i}\right)$, where x_{i} ranges over $[n]$. We denote the set of lines of f along dimension i by L_{f}^{i} and the set of all lines, i.e., $\cup_{i \in[d]} L_{f}^{i}$, by L_{f}. We denote the relative distance of a function h to the Lipschitz property by $\epsilon^{L i p}(h)$. The technical core of our dimension reduction is the following theorem that demonstrates that if a function on the hypergrid is far from the Lipschitz property then a random line from L_{f} is, in expectation, also far from it.

Theorem 1.2 (Dimension reduction). For all functions $f:[n]^{d} \rightarrow \mathbb{Z}$, the following holds:

$$
\mathbb{E}_{g \leftarrow L_{f}}\left[\epsilon^{L i p}(g)\right] \geq \frac{\epsilon^{L i p}(f)}{2 \cdot d \cdot \operatorname{ImgD}(f)} .
$$

To obtain this result, we introduce a smoothing procedure that "repairs" a function (i.e., makes it Lipschitz) one dimension at a time, while modifying it at a few points. Such procedures have been previously designed for restoring monotonicity of Boolean functions [GGL+ $00, \mathrm{DGL}^{+} 99$] and for restoring the Lipschitz property of functions on the hypercube domain [JR11]. The key challenge is to find a smoothing procedure that satisfies the following three requirements: (1) It makes all lines along dimension i (i.e., in L_{f}^{i}) Lipschitz. (2) It changes only a small number of function values. (3) It does not make lines in other dimensions less Lipschitz, according to some measure. There are known smoothing operators (e.g., graph Laplacian) that make a function more Lipschitz [Oll09], but to the best of our knowledge there are no appropriate bounds on the number of function values that are changed.

Smoothing Procedure for 1-dimensional Functions. Our first technical contribution is a local smoothing procedure for functions $f:[n] \rightarrow \mathbb{Z}$, which we call BubbleSmooth, in analogy to Bubble Sort. In one basic step, BubbleSmooth modifies two consecutive values (i.e., $f(i)$ and $f(i+1)$ for some $i \in[n-1]$) that violate the Lipschitz property, namely, differ by more than 1 . It decreases the larger and increases the smaller by 1 , i.e., it transfers a unit from the larger to the smaller. See Algorithm 1 for the description of the order in which basic steps are applied. BubbleSmooth is a natural generalization of the averaging operator in [JR11], used to repair an edge of the hypercube, that can also be viewed as several applications of the basic step to the edge.

One challenge in analyzing BubbleSmooth is that when it is applied to all lines in one dimension, it may increase the average distance to the Lipschitz property for the lines in the remaining dimensions. Our second key technical insight is to use the ℓ_{1} distance to the Lipschitz property to measure the performance of our procedure on the line and its effect on other dimensions. The ℓ_{1} distance between functions f and f^{\prime} on the same domain, denoted by $\left|f-f^{\prime}\right|_{1}$, is the sum of $\left|f(x)-f^{\prime}(x)\right|$ over all values x in the domain. The ℓ_{1} distance of a function f to the nearest Lipschitz function over the same domain is denoted by $\ell_{1}^{\text {Lip }}(f)$. Observe that the Hamming distance and the ℓ_{1} distance from a function to a property can differ by at most
$\operatorname{ImgD}(f)$. Later, we leverage the fact that Lipschitz functions have a relatively small image diameter to relate the ℓ_{1} distance to the Hamming distance.

We prove that BubbleSmooth returns a Lipschitz function and that it makes at most twice as many changes in terms of ℓ_{1} distance as necessary to make a function Lipschitz.

Theorem 1.3. Consider a function $f:[n] \rightarrow \mathbb{Z}$ and let f^{\prime} be the function returned by BubbleSmooth (f). Then (1) function f^{\prime} is Lipschitz and (2) $\left|f-f^{\prime}\right|_{1} \leq 2 \cdot \ell_{1}^{\text {Lip }}(f)$.

The proof of the second part of this theorem requires several technical insights. One of the challenges is that BubbleSmooth changes many function values, but then undoes most changes during subsequent steps. We define a transfer graph to keep track of the transfers that move a unit of function value during each basic step. Its vertex set is $[n]$ and an edge (x, y) represents that a unit was transferred from $f(x)$ to $f(y)$. Since two transfers (x, y) and (y, z) are equivalent to a transfer (x, z), we can merge the corresponding edges in the transfer graph, proceeding with such merges until no vertex in it has both incoming and outgoing edges. As a result, we get a transfer graph, where the number of edges, $|E|$, is twice the ℓ_{1} distance from the original to the final function.

To prove that $|E| \leq \ell_{1}^{L i p}(f)$, we show that the transfer graph has a matching with the violation score at least $|E|$. The violation score of an edge (or a pair) (x, y) is the quantity by which $|f(x)-f(y)|$ exceeds the distance between x and y. (Recall that $|f(x)-f(y)| \leq|x-y|$ for all Lipschitz functions f on domain $[n]$.) The violation score of a matching is the sum of the violation scores over all edges in the matching. We observe (in Lemma 2.3) that $\ell_{1}^{L i p}(f)$ is bounded below by a violation score of any matching. The crucial step in obtaining a matching with a large violation score is pinpointing a provable, but strong enough property of the transfer graph that guarantees such a matching. Specifically, we show that the violation score of each edge in the graph is at least the number of edges adjacent to its endpoints at its (suitably defined) moment of creation (Lemma 2.1). For example, this statement is not true if we consider adjacent edges in the final transfer graph. The construction of a matching with a large violation score in the transfer graph is one of the key technical contributions of this paper. It is the focus of Section 2.

Dimension Reduction with respect to ℓ_{1}. Our smoothing procedure for functions on the hypergrids applies BubbleSmooth to repair all lines in dimensions $1,2, \ldots, d$, one dimension at a time. We show that for all $i, j \in[d]$ applying BubbleSmooth in dimension i does not increase the expected $\ell_{1}^{L i p}(f)$ for a random line g in dimension j. The key feature of our smoothing procedure that makes the analysis tractable is that it can be broken down into steps, each consisting of one application of the basic step of BubbleSmooth to the same positions $(k, k+1)$ on all lines in a specific dimension. This allows us to show that one such step does not make other dimensions worse in terms of the ℓ_{1} distance to the Lipschitz property. The cleanest statement of the resulting dimension reduction is with respect to the ℓ_{1} distance.

Theorem 1.4. For all functions $f:[n]^{d} \rightarrow \mathbb{Z}$, we have: $\sum_{g \in L_{f}} \ell_{1}^{L i p}(g) \geq \frac{\ell_{1}^{L i p}(f)}{2}$.
Our Testers and Effective Image Diameter. The main component of our tester repeats the following procedure: Pick a line uniformly at random and run one step of the line tester. (We use the line tester from [JR11].) Our dimension reduction (Theorem 1.2) is crucial in analyzing this component. However, the bound in Theorem 1.2 depends on the image diameter of the function f. In the case of a non-Lipschitz function, it can be arbitrarily large, but for a Lipschitz function on $[n]^{d}$ it is at most the diameter of the space, namely $n d$ (notice this factor in part (1) of Theorem 1.1). In fact, for our application we can also use the observable diameter of the space [Gro99]: since the hypergrid exhibits Gaussian-type concentration of
measure, one obtains that a Lipschitz function maps the vast majority of points to an interval of size $O(n \sqrt{d})$ (notice this factor in part (2) of Theorem 1.1). Our testers use a preliminary step to rule out functions with large image diameter (resulting in 1 -sided error) or with large observable diameter (resulting in 2 -sided error).

1.3 Comparison to Previous and Concurrent Work

Results. Jha and Raskhodnikova [JR11] gave a 1-sided error nonadaptive testers for the Lipschitz property of functions of the form $f:\{0,1\}^{d} \rightarrow \delta \mathbb{Z}$ and $f:[n] \rightarrow \mathbb{R}$ that run in time $O\left(\frac{d}{\delta \epsilon} \cdot \min \{\operatorname{ImgD}(f), d\}\right)$ and $O\left(\frac{\log n}{\epsilon}\right)$, respectively. They also showed that $\Omega(d)$ queries are necessary for testing the Lipschitz property on the domain $\{0,1\}^{d}$, even when the range is $\{0,1,2\}$. No nontrivial tester of the Lipschitz property of functions on the domain $[n]^{d}$ was known prior to this work.

Our first tester from Theorem 1.1 naturally generalizes the testers of [JR11] to functions on the domain $[n]^{d}$. As in [JR11], our tester has at most quadratic dependence on the dimension d. Our second tester from Theorem 1.1 gives an improvement in the running time over the hypercube tester in [JR11] at the expense of allowing 2 -sided error. In this specific case, Theorem 1.1 gives a tester with running time $\tilde{O}\left(d^{1.5} /(\delta \epsilon)\right)$. As already mentioned, we improve the line tester from [JR11], bringing the $\log n$ factor in the running time down to $\log \min \{\operatorname{ImgD}(f), n\}$.

Concurrently with our work, Chakrabarty and Seshadhri [CS12] gave an ingenious analysis of the simple edge test for the Lipschitz property (and monotonicity) of functions $f:\{0,1\}^{d} \rightarrow \mathbb{R}$ that shows that it is enough to run it for $O(d / \epsilon)$ time. Their analysis does not apply to functions on the domain $[n]^{d}$.

Techniques. Relating the distance to the property of a given function with the distance to the property of random restrictions has been successfully used to obtain testers for many properties. Notably, for functions on multi-dimensional domains, it has been done for testing low degree, monotonicity and, for the special case of the hypercube, the Lipschitz property. Two ideas that appeared repeatedly in proofs of this type of statements are self-correction (e.g., in low-degree testing) and repair (e.g., in monotonicity and Lipschitz testing). Specifically, in $\left[\mathrm{GGL}^{+} 00, \mathrm{DGL}^{+} 99, \mathrm{JR} 11\right]$ the function is repaired one dimension at a time. We note that many new ideas are required to generalize the repair procedure in [JR11] to functions on the hypergrid domains. Their repair procedure takes an integer average of values for each edge in a given dimension. So, our main challenge was designing and analyzing a natural generalization of this procedure. The procedure in $\left[\mathrm{GGL}^{+} 00, \mathrm{DGL}^{+} 99\right]$, for repairing monotonicity of Boolean functions on the hypergrid domains sorts the $0-1$ values on each line in a given dimension. There are at least three obstacles that make the design and analysis of our repair procedure significantly harder: (1) Our function values are not limited to 0 s and 1 s . (2) There is no natural unique Lipschitz function to which we should reconstruct (in the case of monotonicity, sorting gives such a function). (3) Unlike in the case of sorting, the Hamming distance does not work as a measure of progress for our operator.

The repair procedure in [DGL $\left.{ }^{+} 99\right]$ for restoring monotonicity of functions on general ranges applies induction on the size of the range, using Boolean range as the base case. Observe that in the case of the Lipschitz property, functions with Boolean ranges are always Lipschitz, so there is nothing to test. In addition, in this case, not only the size of the range, but also the distances between points in the range play a role. Even though for monotonicity, repairing a function with a range of size greater than 2 in one dimension at a time does not work, this is exactly what we do here.

1.4 Organization

In Section 2, we present and analyze BubbleSmooth, our procedure for smoothing 1-dimensional functions, and prove Theorem 1.3. In Section 3, we use BubbleSmooth to construct a smoothing procedure for multidimensional functions that leads to the dimension reduction of Theorems 1.2 and 1.4. Our Lipschitz testers for functions on hypergrids claimed in Theorem 1.1 are presented in Section 4.

Consider a function $f:[n]^{d} \rightarrow \mathbb{Z}$ over d variables $x_{1}, x_{2}, \ldots, x_{d} \in[n]$. A line of f is obtained by fixing the value of all but 1 of the variables in the input. More precisely, for every index $i \in[d]$, prefix $\alpha \in[n]^{i-1}$ and suffix $\beta \in[n]^{d-i}$, the function $f_{i, \alpha, \beta}:[n] \rightarrow \mathbb{Z}$ defined by setting $f_{i, \alpha, \beta}(z)=f(\alpha z \beta)$ for every $z \in[n]$ is a line of f.

We use L_{f} to denote the family of all lines of f and use $L_{f}^{i} \subseteq L_{f}$ to denote all lines of f where the free variable is the i-th one. Finally, given a finite family \mathcal{F} of functions, we use $f \leftarrow \mathcal{F}$ to denote a uniformly random selection from \mathcal{F}.

2 BubbleSmooth and its Analysis

In this section, we describe BubbleSmooth and prove Theorem 1.3 which asserts that BubbleSmooth (f) outputs a Lipschitz function that does not differ too much from f in the ℓ_{1} distance. In Section 2.1, we present BubbleSmooth (Algorithm 1) and show that it outputs a Lipschitz function. Sections 2.2 and 2.3 are devoted to proving part (2) of Theorem 1.3. At the high level, the proof follows the ideas explained in Section 1.2 (right after Theorem 1.3). In Section 2.2, we define our transfer graph (Definition 2.3) and prove its key property (Lemma 2.1). In Section 2.3, we show that the existence of a matching with a large violation score implies that f is far from Lipschitz in the ℓ_{1} distance (Lemma 2.3) and complete the proof of part (2) of Theorem 1.3 by constructing such a matching in the transfer graph.

2.1 Description of BubbleSmooth and Proof of Part (1) of Theorem 1.3

We begin this section by recalling two basic definitions from [JR11].
Definition 2.1 (Violation score). Let f be a function and x, y be points in its domain. The pair (x, y) is violated by f if $|f(x)-f(y)|>|x-y|_{1}$. The violation score of (x, y), denoted by $\operatorname{vs}_{f}(x, y)$, is $\mid f(x)-$ $f(y)\left|-|x-y|_{1}\right.$ if it is violated and 0 otherwise.

Definition 2.2 (Basic operator). Given $f:[n]^{d} \rightarrow \mathbb{Z}$ and $x, y \in[n]^{d}$, where $|x-y|_{1}=1$ and vertex names x and y are chosen so that $f(x) \leq f(y)$, the basic operator $\mathbb{B}_{x, y}$ works as follows: If the pair (x, y) is not violated by f then $\mathbb{B}_{x, y}[f]$ is identical to f. Otherwise, $\mathbb{B}_{x, y}[f](x)=f(x)+1$ and $\mathbb{B}_{x, y}[f](y)=f(y)-1$.

In this section, we view a function $f:[n] \rightarrow \mathbb{Z}$ as an integer-valued sequence $f(1), f(2), \ldots, f(n)$. We denote the subsequence $f(i), f(i+1), \ldots, f(j)$ by $f[i . . j]$. Naturally, a sequence $f[i . . j]$ is Lipschitz if $|f(k)-f(k+1)| \leq 1$ for all $i \leq k \leq j-1$. Algorithm 1 presents a formal description of BubbleSmooth.

We start analyzing the behavior of BubbleSmooth by proving part (1) of Theorem 1.3, which states that BubbleSmooth returns a Lipschitz function.

Proof of part (1) of Theorem 1.3. Consider an integer sequence $f[1 . . n]$ and let $f^{\prime}[1 . . n]$ be the sequence returned by BubbleSmooth (f). We prove that f^{\prime} is Lipschitz by induction on the phase of BubbleSmooth. Initially, $f(n)$ is vacuously Lipschitz. We fix $i \in[n]$, assume $f[i+1 . . n]$ is Lipschitz at the beginning of phase i and show this phase terminates and that $f[i . . n]$ is Lipschitz at the end of the phase.

```
```

Algorithm 1: BubbleSmooth (Input: an integer sequence

```
```

Algorithm 1: BubbleSmooth (Input: an integer sequence
$f[1 \ldots n])$
$f[1 \ldots n])$
$\mathbf{1}$ for $i=n-1$ to 1 do
$\mathbf{1}$ for $i=n-1$ to 1 do
// Start phase i.
// Start phase i.
$2 \quad$ while $|f(i)-f(i+1)|>1$ do $/ /(i, i+1)$ is
$2 \quad$ while $|f(i)-f(i+1)|>1$ do $/ /(i, i+1)$ is
violated by f
violated by f
LinePass (i).
LinePass (i).
return f

```
```

 return \(f\)
    ```
```

Consider an execution of LinePass (i). Assume $f[i+1 . . n]$ is Lipschitz in the beginning of this execution. Let j be the index, such that at the beginning of the execution, $f[i . . j]$ is the longest strictly monotone sequence starting from $f(i)$. Then LinePass (i) modifies two elements: $f(i)$ and $f(j)$. If $f(i)>f(j)$ then $f(i)$ is decreased by 1 and $f(j)$ is increased by 1 , i.e., 1 unit is transferred from i to j. Similarly, if $f(i)<f(j)$ then 1 unit is transferred from j to i. It is easy to see that after this transfer is performed, $f[i+1 . . n]$ is still Lipschitz. Moreover, each iteration of LinePass (i) reduces the violation score of the pair $(i, i+1)$ by at least 1 . Thus, phase i terminates with $f[i . . n]$ being Lipschitz.

2.2 Transfer Graph

In the proof of part (1) of Theorem 1.3, we established that for all $i \in[n]$, each iteration of LinePass (i) transfers one unit to or from i. We record the transfers in the transfer graph $T=([n], E)$, defined next. A transfer from x to y is recorded as a directed edge (x, y). The edges of the transfer graph are ordered (indexed), according to when they were added to the graph. The edge (i, j) (resp., (j, i)) corresponding to the most resent transfer is combined with a previously added edge (j, k) (resp., (k, j)) if such an edge exists. This is done because transfers from x to y and from y to z are equivalent to a transfer from x to z. If a new edge (x, y) is merged with an existing edge (y, z), the combined edge retains the index of the edge (y, z).

Definition 2.3 (Transfer graph). The transfer graph $T=([n], E)$, where the edge set $E=\left(e_{1}, \ldots, e_{t}\right)$ is ordered and edges are not necessarily distinct. The graph is defined by the following procedure. Initially, $E=\emptyset$ and $t=0$. Each new run of LinePass during the execution of BubbleSmooth, transfers a unit from i to j (or resp., from j to i) for some i and j. If j has no outgoing (resp., incoming) edge in T, then increment t by 1 and add the edge $e_{t}=(i, j)$ (resp., $\left.e_{t}=(j, i)\right)$ to E. Otherwise, let e_{s} be an outgoing edge (j, k) (resp., an incoming edge $(k, j))$ with the largest index s. Replace (j, k) with (i, k), i.e., $e_{s} \leftarrow(i, k)$. (Replace (k, j) with (k, i), i.e., $e_{s} \leftarrow(k, i)$.) The final transfer graph is denoted by T^{*}.

As mentioned previously, the order of creation of edges is important to formalize the desired property of the transfer graph, so we need to consider the subgraphs that consist of the first s edges e_{1}, \ldots, e_{s} of E.

Definition 2.4 (Degrees). Consider a transfer graph T at some time during the execution of BubbleSmooth. For all $s \in\{0, \ldots, t\}$ its subgraph graph T_{s} is defined as $\left([n],\left(e_{1}, \ldots, e_{s}\right)\right)$, where $\left(e_{1}, \ldots, e_{t}\right)$ is the ordered edge set of T. (When $s=0$, the edge set of T_{s} is empty.) The degree of a vertex $x \in[n]$ of T_{s} is denoted by $\operatorname{deg}_{s}(x)$; when T_{s} is a subgraph of the final transfer graph, it is denoted by deg $g_{s}^{*}(x)$.

Observe that at no point in time can a vertex in T simultaneously have an incoming and an outgoing edge because such edges would get merged into one edge.

Lemma 2.1 (Key property of transfer graph). Let f be an input function given to BubbleSmooth. Then for each edge $e_{s}=(x, y)$ of the final transfer graph T^{*}, the following holds: $\mathrm{vs}_{f}(x, y) \geq d e g_{s}^{*}(x)+d e g_{s}^{*}(y)-1$.

To prove this lemma, we consider each phase of BubbleSmooth separately and formulate a slightly stronger invariant that holds at every point during that phase.

Definition 2.5. For all $i \in[n-1]$, let Δ_{i} be the degree of i in the transfer graph at the end of phase i.
The following stronger invariant of the transfer graph directly implies Lemma 2.1.
Claim 2.2 (Invariant for phase i). Let f be an input function given to BubbleSmooth. At every point during the execution of BubbleSmooth (f), for each edge $e_{s}=(x, y)$ of the transfer graph T,

$$
f(x)-f(y) \geq \operatorname{deg}_{s}(x)+\operatorname{deg}_{s}(y)-1+|x-y| .
$$

Moreover, for each phase $i \in[n-1]$, after each execution of LinePass (i), for each edge e_{s} incident on vertex i, the following (stronger) condition holds:
if the edge $e_{s}=(i, j)$, i.e., it is outgoing from i, then $f(i)-f(j) \geq \Delta_{i}+\operatorname{deg}_{s}(j)-1+|i-j|$;
if the edge $e_{s}=(j, i)$, i.e., it is incoming into i, then $f(j)-f(i) \geq \Delta_{i}+\operatorname{deg}_{s}(j)-1+|i-j|$.
Observe that all transfers involving i during phase i are in the same direction: if in the beginning of the phase we have $f(i)>f(i+1)$, then all transfers are from i; if we have $f(i)<f(i+1)$ instead, then all transfers are to i. In particular, whenever an edge incident to i is added, it is not modified subsequently during phase i. So for all $s, \operatorname{deg}_{s}(i)$ never exceeds Δ_{i} during phase i and the condition in Claim 2.2 is indeed stronger than that in Lemma 2.1.

Case 1

Case 2

Figure 1: Two cases in the proof of Claim 2.2.

Proof of Claim 2.2. Initially the transfer graph has no edges, so the invariant in Claim 2.2 holds. Observe that for all $i \in[n-2]$, if the invariant holds at the end of phase $i+1$, it also holds in the beginning of the following phase i. This is because the condition on each edge not incident to i in phase $i+1$ is the same or stronger than in phase i (notice that in the beginning of phase i there are no edges incident to i). It remains to prove that if the invariant holds before an iteration of LinePass, it also holds after the iteration.

Consider a phase $i \in[n-1]$ and an execution of $\operatorname{LinePass}(i)$ that transfers a unit from i to j for some $j \in\{i+1, \ldots, n\}$. (The case when a unit is transferred in the other direction is symmetric.) Let f^{-}be the function and T^{-}be the transfer graph right before the considered execution of LinePass. Define $d e g_{s}^{-}$as in Definition 2.4, with respect to the transfer graph T^{-}. Define T^{+}and $d e g_{s}^{+}$analogously for the moment right after the considered execution of LinePass. Let t be the number of edges in T^{-}.

Since the current transfer occurred, the sequence $f^{-}[i+1, j]$ is monotone decreasing, giving $f^{-}(i+1)-$ $f^{-}(j) \geq|i+1-j|$. The number of transfers from i that occurred before the current transfer is $d e g_{t}^{-}(i)$. The number of the remaining transfers, including the current one, in phase i is thus $\Delta_{i}-d e g_{t}^{-}(i)$. Since each
such transfer from i can happen only if the pair $(i, i+1)$ is violated, and moreover it lowers the violation score of the pair $(i, i+1)$ by at least 1 , it follows that $\mathrm{vs}_{f^{-}}(i, i+1) \geq \Delta_{i}-d e g_{t}^{-}(i)$ or, equivalently, $f^{-}(i)-f^{-}(i+1) \geq \Delta_{i}-d e g_{t}^{-}(i)+1$. Therefore,

$$
\begin{equation*}
f^{-}(i)-f^{-}(j)=\left[f^{-}(i)-f^{-}(i+1)\right]+\left[f^{-}(i+1)-f^{-}(j)\right] \geq \Delta_{i}-d e g_{t}^{-}(i)+|i-j| . \tag{1}
\end{equation*}
$$

The effect the current transfer has on the transfer graph T^{-}depends on whether T^{-}contains an outgoing edge from j. We consider the two corresponding cases separately.

Case 1: transfer graph T^{-}contains no outgoing edge from j. Then T^{+}is obtained from T^{-}by adding the edge $e_{t+1}=(i, j)$. (See Figure 1.)

Recall that all transfers involving i made during phase i are in the same direction, either all from i or all to i. So, by the assumption that the current transfer is from i, vertex i can have only outgoing edges in the transfer graph during phase i. That is,

$$
\begin{equation*}
f(i)=f^{-}(i)+d e g_{t}^{-}(i) . \tag{2}
\end{equation*}
$$

By assumption of Case 1, vertex j can have only incoming edges. That is,

$$
\begin{equation*}
f(j)=f^{-}(j)-\operatorname{de} g_{t}^{-}(j) . \tag{3}
\end{equation*}
$$

Applying first (2), (3), and then (1), we get:

$$
\begin{aligned}
f(i)-f(j) & =f^{-}(i)-f^{-}(j)+\operatorname{de} g_{t}^{-}(i)+\operatorname{deg} g_{t}^{-}(j) \\
& \geq \Delta_{i}-\operatorname{deg}_{t}^{-}(i)+|i-j|+\operatorname{deg} g_{t}^{-}(i)+\operatorname{deg}_{t}^{-}(j) \\
& =\Delta_{i}+\operatorname{deg_{t+1}^{+}(j)-1+|i-j|.}
\end{aligned}
$$

The last equality holds because the edge $e_{t+1}=(i, j)$ is added to T after the current transfer, so $d e g_{t+1}^{+}(j)=$ $d e g_{t}^{-}(j)+1$. We proved that the invariant in Claim 2.2 holds for the new edge.

Since all other edges and their ordering are unchanged, $d e g_{s}^{+}(x)=d e g_{s}^{-}(x)$ for all $x \in[n]$ and $s \leq t$. Thus, the invariant of Claim 2.2 holds for all edges of T^{+}.

Case 2: transfer graph T^{-}contains an outgoing edge from j. Let $e_{r}=(j, k)$ be such an edge with the largest index r. Then T^{+}is obtained from T^{-}by replacing the edge (j, k) with the edge (i, k), with this new edge receiving the index r. (See Figure 1.) Notice that k could be larger or smaller than j.

Recall that each vertex in T^{-}can only have one type of incident edges: either incoming or outgoing. In this case, both i and j can only have outgoing edges. Since T^{-}has t edges,

$$
\begin{equation*}
f(i)=f^{-}(i)+d e g_{t}^{-}(i) \text { and } f(j)=f^{-}(j)+d e g_{t}^{-}(j) . \tag{4}
\end{equation*}
$$

By assumption, the invariant in Claim 2.2 holds for the transfer graph T^{-}. Since the edge (j, k) has index r in T^{-}, i.e., $(j, k)=e_{r}$,

$$
f(j)-f(k) \geq d e g_{r}^{-}(j)+d e g_{r}^{-}(k)-1+|j-k| .
$$

Finally, $d e g_{t}^{-}(j)=d e g_{r}^{-}(j)$ because of our choice of r. Putting the equations for this case together, then applying (1) and finally using the triangle inequality, we get:

$$
\begin{aligned}
f(i)-f(k) & =[f(i)-f(j)]+[f(j)-f(k)] \\
& \geq\left[f^{-}(i)+\operatorname{deg}_{t}^{-}(i)-f^{-}(j)-\operatorname{deg}_{t}^{-}(j)\right]+\left[\operatorname{deg}_{r}^{-}(j)+\operatorname{de} g_{r}^{-}(k)-1+|j-k|\right] \\
& \geq \Delta_{i}-\operatorname{deg}_{t}^{-}(i)+|i-j|+\operatorname{de} g_{t}^{-}(i)+\operatorname{deg}_{r}^{-}(k)-1+|j-k| \\
& \geq \Delta_{i}+\operatorname{deg}_{r}^{-}(k)-1+|i-k|=\Delta_{i}+\operatorname{deg}_{t}^{+}(k)-1+|i-k| .
\end{aligned}
$$

Thus, the invariant in Claim 2.2 holds for the newly formed edge.
When the transfer graph is modified to reflect the current transfer, only edges incident to i, j or k are affected by the changes. For all other nodes x and all $s<t$, the corresponding degrees remain the same: $d e g_{s}^{+}(x)=d e g_{s}^{-}(x)$. For the node k and all $s<t$, the degrees are unchanged: $d e g_{s}^{+}(k)=d e g_{s}^{-}(k)$. For the node j and all $s \leq t$, the degrees decrease or remain the same: $d e g_{s}^{+}(j) \leq d e g_{s}^{-}(j)$. Therefore, for all edges in T^{+}not affected by the current merge and not incident to i, the invariant in Claim 2.2 still holds. Finally, the stronger invariant for edges incident to i also holds for T^{+}because it depends on a fixed parameter $\Delta_{i}\left(\right.$ instead of $\left.\operatorname{deg}_{s}^{+}(i)\right)$.

2.3 Matchings of Violated Pairs

Part (2) of Theorem 1.3 states that the ℓ_{1} distance between f and BubbleSmooth (f) is at most $2 \cdot \ell_{1}^{L i p}(f)$. By definition of the transfer graph $T=([n], E)$, the distance $|f-\operatorname{BubbleSmooth}(f)|_{1}=2|E|$. Lemma 2.3 shows that $\ell_{1}^{L i p}(f)$ is bounded below by the violation score of any matching. We complete the proof of Theorem 1.3 by showing that T has a matching with violation score $|E|$.

Definition 2.6 (Violation score of a set of pairs). Let M be a set of pairs of pairs violated by f. The violation score of the set M, denoted $V S(M)$, is the sum of violation scores of all pairs in M.

Lemma 2.3. Let M be a matching of pairs (x, y) where x and y are in the (discrete) domain of a function f. Then $\ell_{1}^{\text {Lip }}(f) \geq V S(M)$.

Proof. Let f^{*} be a closest Lipschitz function to f (on the same domain as f) with respect to the ℓ_{1} distance, i.e., $\left|f-f^{*}\right|_{1}=\ell_{1}(f$, Lip $)$. Consider a pair $(x, y) \in M$. Since $|f(x)-f(y)|=d(x, y)+\mathrm{vs}_{f}(x, y)$ and $\left|f^{*}(x)-f^{*}(y)\right| \leq d(x, y)$, it follows by the triangle inequality that $\left|f(x)-f^{*}(x)\right|+\left|f(y)-f^{*}(y)\right| \geq$ $\operatorname{vs}_{f}(x, y)$. Since M is a matching, we can add over all of its pairs to obtain

$$
\begin{aligned}
\ell_{1}(f, \text { Lip })=\left|f-f^{*}\right|_{1} & \geq \sum_{(x, y) \in M}\left(\left|f(x)-f^{*}(x)\right|+\left|f(y)-f^{*}(y)\right|\right) \\
& \geq \sum_{(x, y) \in M} \operatorname{vs}_{f}(x, y)=\operatorname{vs}_{f}(M),
\end{aligned}
$$

which concludes the proof.
Now using Lemma 2.1 we exhibit a matching in the final transfer graph which has large violation score, concluding the proof of Theorem 1.3.

Proof of part (2) of Theorem 1.3. Let $T^{*}=([n], E)$ be the final transfer graph corresponding to the execution of BubbleSmooth on f and let $E=\left\{e_{1}, \ldots, e_{t}\right\}$. By definition of the transfer graph, $\left|f-f^{\prime}\right|_{1}=$
$\sum_{i \in[n]} \operatorname{deg}_{t}(i)=2|E|$. By Lemma 2.3, it is enough to show that there is a matching M of pairs violated by f with the violation score $\operatorname{vs}_{f}(M) \geq|E|$.

We claim that T contains such a matching. It can be constructed greedily by repeating the following step, starting with $s=t$: add e_{s} to M and then remove e_{s} and all other edges adjacent to its endpoints from T; set s to be the number of edges remaining in E. In each step, at most $\operatorname{deg}_{s}(x)+\operatorname{deg}_{s}(y)-1$ are removed from T. ("At most" because T can have multiple edges.) By Lemma 2.1, $\mathrm{vs}_{f}(x, y) \geq \operatorname{deg}_{s}(x)+d e g_{s}(y)-1$. So, at each step of the greedy procedure, the violation score of the pair (x, y) added to M is at least the number of edges removed from T. Therefore, $\mathrm{vs}_{f}(M) \geq|E|$.

3 Dimension Reduction: Proof of Theorems 1.2 and 1.4

In this section, we prove Theorems 1.2 and 1.4 that connect the distance of a function to being Lipschitz to the distance of its lines to being Lipschitz. Effectively, these results reduce the task of testing a multidimensional function to the task of testing its lines. Our main contribution in this section is a smoothing procedure that makes a function Lipschitz by modifying it at a few points by repairing one dimension at a time. In Section 3.1, we present the dimension operator that repairs all lines in a specified dimension by applying BubbleSmooth to each of them. The important properties of the dimension operator are summarized in Lemma 3.1 which is the key ingredient in the proofs of Theorems 1.2 and 1.4. Section 3.2 proves auxiliary claims used in the proof of Lemma 3.1. Section 3.3 completes the proofs of Theorems 1.2 and 1.4.

3.1 Dimension operator and its properties

Recall from the discussion in Section 1.2 that we denote the set of lines of f along dimension i by L_{f}^{i} and the set of all lines of f by $L_{f}=L_{f}^{i}$.

Definition 3.1 (Dimension operator A_{i}). Given $f:[n]^{d} \rightarrow \mathbb{Z}$ and dimension $i \in[d]$, the dimension operator A_{i} applies BubbleSmooth to every function $g \in L_{f}^{i}$ and returns the resulting function.

Next lemma summarizes the properties of the dimension operator.
Lemma 3.1 (Properties of the dimension operator A_{i}). For all $i \in[d]$, the dimension operator A_{i} satisfies the following properties for every function $f:[n]^{d} \rightarrow \mathbb{Z}$.

1. (Repairs dimension i.) Every $g \in L_{A_{i}[f]}^{i}$ is Lipschitz.
2. (Does not modify the function too much.) $\left|f-A_{i}[f]\right|_{1} \leq 2 \cdot \sum_{g \in L_{f}^{i}} \ell_{1}^{L i p}(g)$.
3. (Does not spoil other dimensions.) For all $j \neq i$ in $[d]$, it does not increase the expected ℓ_{1} distance of a random line in dimension j to the Lipschitz property, i.e., $\mathbb{E}_{g \leftarrow L_{A_{i}[f]}^{j}}\left[\ell_{1}^{L i p}(g)\right] \leq \mathbb{E}_{g \leftarrow L_{f}^{j}}\left[\ell_{1}^{L i p}(g)\right]$.

Proof. Item 1. Item 1 follows from part (1) of Theorem 1.3.
Item 2. Since the dimension operator A_{i} operates by applying BubbleSmooth to all (disjoint) lines in L_{f}^{i}, we get $\left|f-A_{i}[f]\right|_{1}=\sum_{g \in L_{f}^{i}}|g-\operatorname{BubbleSmooth}[g]|_{1}$. The latter is at most $\sum_{g \in L_{f}^{i}} 2 \cdot \ell_{1}^{L i p}(g)$ by Part (2) of Theorem 1.3, thus proving the item.

Item 3. Fix i and j. First, we give a standard argument $\left[\mathrm{GGL}^{+} 00, \mathrm{DGL}^{+} 99\right.$, JR11] that it is enough to prove this statement for $n \times n$ grids. Namely, every $\alpha \in[n]^{d}$ with $\alpha_{i}=\alpha_{j}=0$ defines a restriction of a function f to an $n \times n$ grid by $h\left(x_{i}, x_{j}\right)=f\left(\alpha+x_{i} \cdot e^{i}+x_{j} \cdot e^{j}\right)$, where x_{i} and x_{j} range over $[n]$.
(Recall that $e^{i} \in[n]^{d}$ is 1 on the i th coordinate and 0 on the remaining coordinates.) If the item holds for all 2-dimensional grids, we can average over all such grids defined by different α to obtain the statement for the d-dimensional function f. Now fix an arbitrary restriction $h:[n]^{2} \rightarrow \mathbb{Z}$ as discussed and think of h as an $n \times n$ matrix with rows (resp., columns) corresponding to lines in dimension i (resp., in dimension j).

The key feature of our dimension operator A_{i} is that it can be broken down into steps, each consisting of one application of the basic step of BubbleSmooth to the same positions $(k, k+1)$ on all lines in dimension i. To see this, observe that we can replace the while loop condition on Line 2 of Algorithm 2 with "repeat t times", where t should be large enough to guarantee that the line segment under consideration is Lipschitz after t iterations of LinePass. (E.g., $t=n \cdot \operatorname{ImgD}(f)$ repetitions suffices.) If this version of BubbleSmooth is run synchronously and in parallel on all lines in dimension i, the the basic step will be applied to the same positions $(k, k+1)$ on all lines.

Since in each parallel update step only two adjacent columns of h are affected, it is sufficient to prove the item for two adjacent columns of h. Accordingly, consider two adjacent columns C_{1} and C_{2} of h. Let M_{1} and M_{2} be Lipschitz columns that are closest in the ℓ_{1} distance to C_{1} and C_{2}, respectively. Thus, $\ell_{1}^{L i p}\left(C_{1}\right)=\left|C_{1}-M_{1}\right|_{1}$ and $\ell_{1}^{L i p}\left(C_{2}\right)=\left|C_{2}-M_{2}\right|_{1}$. Let C_{1}^{\prime} and C_{2}^{\prime} be the columns of the matrix resulting from applying the basic operator to the rows of the matrix $\left(C_{1}, C_{2}\right)$. Similarly, define M_{1}^{\prime} and M_{2}^{\prime} to be the columns of the matrix resulting from applying the basic operator to the rows of (M_{1}, M_{2}). (See also Figure 3.) By Corollary 3.3, M_{1}^{\prime} and M_{2}^{\prime} are Lipschitz. Therefore, $\ell_{1}^{L i p}\left(C_{1}^{\prime}\right) \leq\left|C_{1}^{\prime}-M_{1}^{\prime}\right|_{1}$ and $\ell_{1}^{L i p}\left(C_{2}^{\prime}\right) \leq\left|C_{2}^{\prime}-M_{2}^{\prime}\right|_{1}$. Finally, using the inequality $\left|C_{1}^{\prime}-M_{1}^{\prime}\right|_{1}+\left|C_{2}^{\prime}-M_{2}^{\prime}\right|_{1} \leq\left|C_{1}-M_{1}\right|_{1}+\left|C_{2}-M_{2}\right|_{1}$ proved in Corollary 3.4 below, the proof of Item 3 is completed as follows:

$$
\begin{aligned}
\ell_{1}^{L i p}\left(C_{1}\right)+\ell_{1}^{L i p}\left(C_{2}\right) & =\left|C_{1}-M_{1}\right|_{1}+\left|C_{2}-M_{2}\right|_{1} \\
& \geq\left|C_{1}^{\prime}-M_{1}^{\prime}\right|_{1}+\left|C_{2}^{\prime}-M_{2}^{\prime}\right|_{1} \geq \ell_{1}^{L i p}\left(C_{1}^{\prime}\right)+\ell_{1}^{L i p}\left(C_{2}^{\prime}\right) .
\end{aligned}
$$

3.2 Basic operator on a square

To analyze the behavior of the dimension operator, we need to understand the effect of the basic operator $\mathbb{B}_{k, k+1}$ on a multidimensional function. We remark that our definition of the basic operator coincides with that of [JR11] (see Definition 3.4 of [JR11]) for integer-valued functions defined on domain $\{0,1\}^{2}$. We recall and extend properties of the basic operator from [JR11] when applied to functions defined on $\{0,1\}^{2}$ in Claim 3.2 below.

Claim 3.2 (Properties of basic operator on a square). Consider a function $f:\left\{x_{t}, x_{b}, y_{t}, y_{b}\right\} \rightarrow \mathbb{Z}$ where x_{b} denotes $00, x_{t}=10, y_{b}=01$ and $y_{t}=11$. (See Figure 2.) Let f^{\prime} be the function obtained by applying basic operators $\mathbb{B}_{x_{t}, y_{t}}$ and $\mathbb{B}_{x_{b}, y_{b}}$ along the horizontal edges. Then the following holds for the vertical edges.

1. Violation score of vertical edges did not increase: $v s_{f^{\prime}}\left(x_{t}, x_{b}\right)+v s_{f^{\prime}}\left(y_{t}, y_{b}\right) \leq v s_{f}\left(x_{t}, x_{b}\right)+$ $v s_{f}\left(y_{t}, y_{b}\right)$ [JR11].
2. The absolute difference of values along vertical edges did not increase: $\left|f^{\prime}\left(x_{t}\right)-f^{\prime}\left(x_{b}\right)\right|+\mid f^{\prime}\left(y_{t}\right)-$ $f^{\prime}\left(y_{b}\right)\left|\leq\left|f\left(x_{t}\right)-f\left(x_{b}\right)\right|+\left|f\left(y_{t}\right)-f\left(y_{b}\right)\right|\right.$.

Proof of Claim 3.2, Item 2. If neither horizontal edge is violated then $f^{\prime}=f$ and we are done. So assume w.l.o.g. $\left\{x_{t}, y_{t}\right\}$ is violated such that $f\left(y_{t}\right) \geq f\left(x_{t}\right)+2$. Then $\mathbb{B}_{x_{t}, y_{t}}$ increases $f\left(x_{t}\right)$ by 1 and decreases $f\left(y_{t}\right)$ by 1 leading to Inequality (i): $f^{\prime}\left(y_{t}\right) \geq f\left(x_{t}\right)+1$. If the absolute difference on the value of both

Figure 2: The sum of absolute difference of values of the endpoints of vertical edges does not increase as a result of application of the basic operator along horizontal edges.

vertical edges do not increase, we are also done. So assume w.l.o.g. that the absolute difference of the values of the left vertical edge increases strictly, namely $\left|f^{\prime}\left(x_{b}\right)-f^{\prime}\left(x_{t}\right)\right|=\left|f\left(x_{b}\right)-f\left(x_{t}\right)\right|+\Delta$ for $\Delta \in\{1,2\}$. This implies that $\mathbb{B}_{x_{b}, y_{b}}$ did not increase the value at x_{b} and the following holds: (ii) $f\left(x_{b}\right) \leq$ $f\left(x_{t}\right)$. The former also implies that: (iii) $f^{\prime}\left(y_{b}\right) \leq f^{\prime}\left(x_{b}\right)+1$. The definition of Δ further gives that: (iv) $f^{\prime}\left(x_{b}\right)=f\left(x_{b}\right)-(\Delta-1)$ and (v) $f^{\prime}\left(y_{b}\right)=f\left(y_{b}\right)+(\Delta-1)$. Using inequalities (i), (ii), (iv) and (iii) we get

$$
f^{\prime}\left(y_{t}\right) \geq f\left(x_{t}\right)+1 \geq f\left(x_{b}\right)+1=f^{\prime}\left(x_{b}\right)+\Delta \geq f^{\prime}\left(y_{b}\right)+(\Delta-1)
$$

and hence $f^{\prime}\left(y_{t}\right)-f^{\prime}\left(y_{b}\right) \geq 0$. Using the last inequality, equation (v) and the fact that $f^{\prime}\left(y_{t}\right)=f\left(y_{t}\right)-1$, we get
$\left|f^{\prime}\left(y_{t}\right)-f^{\prime}\left(y_{b}\right)\right|=f^{\prime}\left(y_{t}\right)-f^{\prime}\left(y_{b}\right)=f^{\prime}\left(y_{t}\right)-f\left(y_{b}\right)-(\Delta-1)=f\left(y_{t}\right)-f\left(y_{b}\right)-\Delta \leq\left|f\left(y_{t}\right)-f\left(y_{b}\right)\right|-\Delta$.
Thus, the absolute difference of the values for $\left\{x_{t}, x_{b}\right\}$ increases by Δ, while the same for $\left\{y_{t}, y_{b}\right\}$ decreases by Δ, proving the claim.

Claim 3.2 implies Corollaries 3.3 and 3.4 which were used in the proof of Lemma 3.1.
Corollary 3.3. Let M be a matrix consisting of two Lipschitz columns. If the basic operator is applied to the rows of this matrix then the resulting matrix M^{\prime} still has Lipschitz columns.

Proof. Applying part 1 of Claim 3.2 to each 2×2 grid formed by taking 2 adjacent rows of M (respectively, M^{\prime}), we get the desired statement.

The second corollary is about one-dimensional functions $C_{1}, C_{2}, M_{1}, M_{2}, C_{1}^{\prime}, C_{2}^{\prime}, M_{1}^{\prime}$ and M_{2}^{\prime} used in proof of Lemma 3.1.

Corollary 3.4. $\left|C_{1}-M_{1}\right|_{1}+\left|C_{2}-M_{2}\right|_{1} \geq\left|C_{1}^{\prime}-M_{1}^{\prime}\right|_{1}+\left|C_{2}^{\prime}-M_{2}^{\prime}\right|_{1}$.
Proof. Expanding each term in the statement, we get that it is equivalent to

$$
\begin{equation*}
\sum_{z \in[n]}\left[\left(\left|C_{1}(z)-M_{1}(z)\right|+\left|C_{2}(z)-M_{2}(z)\right|\right)-\left(\left|C_{1}^{\prime}(z)-M_{1}^{\prime}(z)\right|+\left|C_{2}^{\prime}(z)-M_{2}^{\prime}(z)\right|\right)\right] \geq 0 \tag{5}
\end{equation*}
$$

We show that for each term in the sum, the inequality holds separately. Accordingly, fix $z \in[n]$ and let $f:\{0,1\}^{2} \rightarrow \mathbb{Z}$ be the function defined as follows: $f\left(x_{b}\right)=C_{1}(z), f\left(y_{b}\right)=M_{1}(z), f\left(x_{t}\right)=C_{2}(z)$ and $f\left(y_{t}\right)=M_{2}(z)$. Similarly, let $f^{\prime}:\{0,1\}^{2} \rightarrow \mathbb{Z}$ be defined as follows: $f^{\prime}\left(x_{b}\right)=C_{1}^{\prime}(z), f^{\prime}\left(y_{b}\right)=M_{1}^{\prime}(z)$, $f^{\prime}\left(x_{t}\right)=C_{2}^{\prime}(z)$ and $f^{\prime}\left(y_{t}\right)=M_{2}^{\prime}(z)$. Then the inequality for the term in (5) relative to z follows from the second part of Claim 3.2. Hence the corollary follows.

3.3 Proof of Theorems 1.2 and 1.4

To prove Theorems 1.2 and 1.4, we use the following observation that relates $\ell_{1}^{L i p}(f)$ to $\epsilon^{L i p}(f)$.
Observation 3.5. For all $f:[n]^{d} \rightarrow \delta \mathbb{Z}$, the following holds: $\delta \epsilon^{L i p}(f) \cdot n^{d} \leq \ell_{1}^{L i p}(f) \leq \epsilon^{L i p}(f) \cdot n^{d}$. $\operatorname{ImgD}(f)$.

The first inequality follows directly from definitions, while the second follows from the fact that one can make a function f Lipschitz by changing $\epsilon^{L i p}(f)$ fraction of values, each by at most $\operatorname{ImgD}(f)$.

Proof of Theorems 1.2 and 1.4. Let A_{i} be the dimension repair operator of Definition 3.1. For $i \in[d]$, define f_{i} inductively by letting $f_{i}=A_{i}\left[f_{i-1}\right]$ with the base case being $f_{0}=f$. Items 1 and 3 of Lemma 3.1 give that f_{d} is Lipschitz. Specifically, Item 1 implies that the application of the dimension operator A_{i} makes f_{i-1} Lipschitz along the i th dimension while Item 3 ensures that each such application does not introduce violations in the already repaired dimensions. Using properties of A_{i} from Lemma 3.1, the following holds for all $i \in[d]$.

$$
\left|f_{i-1}-f_{i}\right|_{1}=\left|f_{i-1}-A_{i}\left[f_{i-1}\right]\right|_{1} \leq 2 \cdot \sum_{g \in L_{f_{i-1}}^{i}} \ell_{1}^{L i p}(g) \leq 2 \cdot \sum_{g \in L_{f}^{i}} \ell_{1}^{L i p}(g)
$$

Specifically, the two inequalities above follow from Items 2 and 3 of Lemma 3.1, respectively. By the triangle inequality, $\ell_{1}^{L i p}(f) \leq \sum_{i=1}^{d}\left|f_{i-1}-f_{i}\right|_{1}$. This fact together with the above bound on $\left|f_{i-1}-f_{i}\right|_{1}$, leads to the following chain of (in)equalities and proves Theorem 1.4.

$$
\ell_{1}^{L i p}(f) \leq \sum_{i=1}^{d}\left|f_{i-1}-f_{i}\right|_{1} \leq \sum_{i=1}^{d} 2 \cdot \sum_{g \in L_{f}^{i}} \ell_{1}^{L i p}(g)=2 \cdot \sum_{g \in L_{f}} \ell_{1}^{L i p}(g)
$$

For proving Theorem 1.2, we apply Observation 3.5 to both sides of the inequality of Theorem 1.4 leading to the first inequality below.

$$
n^{d} \epsilon^{L i p}(f) \leq 2 \cdot \sum_{g \in L_{f}} \epsilon^{L i p}(g) \cdot \operatorname{ImgD}(g) \cdot n \leq 2 \cdot \operatorname{ImgD}(f) \cdot n \sum_{g \in L_{f}} \epsilon^{L i p}(g)=2 \cdot d \cdot \operatorname{ImgD}(f) \cdot n^{d} \cdot \mathbb{E}_{g \in L_{f}}\left[\epsilon^{L i p}(g)\right] .
$$

The last inequality follows from the fact that $\operatorname{ImgD}(f)$ is a trivial upper bound on $\operatorname{ImgD}(g)$ for every $g \in L_{f}$. Finally, expressing the sum as an expectation (as done in the last equality), we get Theorem 1.2.

4 Algorithms for Testing the Lipschitz Property on Hypergrids

In this section, we present our testers for the Lipschitz property of functions $f:[n]^{d} \rightarrow \mathbb{Z}$. Theorem 1.2 relates the distance of a function f from the Lipschitz property to the (expected) distance of its lines to this property. The resulting bound, however, depends on the image diameter of f. The image diameter is small (at most nd) for Lipschitz functions, but can be arbitrarily large otherwise. The high-level description of our testers is the following: (i) estimate the image diameter of f and reject if it is too large; (ii) repeatedly sample a line g of f at random, run one step of a Lipschitz tester for the line on g and reject if a violated pair is discovered; otherwise, accept. Step (i) ensures that a small sample of lines is enough to succeed with constant probability. The testers differ only in one parameter which quantifies what "too large" means in step (i).

4.1 Estimating the Effective Image Diameter

As mentioned before, a Lipschitz function on $[n]^{d}$ has image diameter at most $n d$, which can serve as a threshold for rejection in Step (i) of the informal procedure above. However (if we are willing to tolerate two-sided error), it is sufficient to use a smaller threshold, equal the effective diameter of the function. For a given $\epsilon \in(0,1]$, define $\operatorname{ImgD}_{\epsilon}(f)$ as the smallest value α such that f is ϵ-close to having image diameter α :

$$
\operatorname{ImgD}_{\epsilon}(f)=\min _{U \subseteq[n] d:|U| \geq(1-\epsilon) n^{d}}\left\{\max _{x \in U} f(x)-\min _{x \in U} f(x)\right\} .
$$

Although the image diameter diameter of a Lipschitz function f can indeed achieve value $n d$, the effective $\operatorname{ImgD}_{\epsilon}(f)$ is upper bounded by the potentially smaller quantity $O(n \sqrt{d \ln (1 / \epsilon)})$. The next lemma makes this precise. It follows directly from McDiarmid's inequality (stated in Appendix A).

Lemma 4.1 (Effective image diameter of Lipschitz functions). For all $\epsilon \in(0,1]$, each Lipschitz function $f:[n]^{d} \rightarrow \mathbb{R}$ is $(\epsilon / 21)$-close to having image diameter at most $n \sqrt{d \ln (42 / \epsilon)}$.

Our testers use estimates of image diameter or effective diameter to reject functions. The next lemma shows that we can get such estimates efficiently. An algorithm satisfying parts (i) and (ii) of the lemma was obtained in [JR11].

Lemma 4.2. There is a randomized algorithm Sample-Diameter that, given a function $f:[n]^{d} \rightarrow \mathbb{R}$ and $\epsilon \in(0,1]$, outputs an estimate $r \in \mathbb{R}$ such that: (i) $\operatorname{ImgD}_{\epsilon}(f) \leq r$ with probability at least $5 / 6$; (ii) $r \leq \operatorname{ImgD}(f)$ (always) and (iii) $r \leq \operatorname{ImgD}_{\epsilon / 21}(f)$ with probability at least $2 / 3$. Moreover, the algorithm runs in time $O(1 / \epsilon)$.

Proof. The required algorithm is the procedure SAMPLE-DIAMETER used in proof of Lemma 3.2 in [JR11]: sample $s=\lceil 6 / \epsilon\rceil$ points $z_{1}, \ldots, z_{s} \in[n]^{d}$ and output $r=\max _{i=1}^{s} f\left(z_{i}\right)-\min _{i=1}^{s} f\left(z_{i}\right)$. It is clear that $r \leq \operatorname{ImgD}(f)$ and the first part of the lemma is proved in Lemma 3.2 of [JR11]; therefore, we prove that with probability at least $2 / 3, r \leq \operatorname{ImgD}_{\epsilon / 21}(f)$.

By the definition of $\operatorname{ImgD}_{\epsilon / 21}(f)$, let $S \subseteq[n]^{d}$ be a set of size at most $\epsilon n^{d} / 21$ such that for every $x, y \in[n]^{d} \backslash S$ we have $|f(x)-f(y)| \leq \operatorname{ImgD}_{\epsilon / 21}(f)$. We have $r \leq \operatorname{ImgD}_{\epsilon / 21}(f)$ whenever all the samples z_{i} 's lie outside S; by the union bound, the probability of this event is at least $1-\left(\frac{6}{\epsilon}+1\right)\left(\frac{\epsilon}{21}\right) \geq 2 / 3$, as required.

4.2 Tester for Hypergrid Domains

Our tester for functions on hypergrids uses a tester for functions on lines from [JR11].
Lemma 4.3 (Full version of [JR11]). Consider a function $g:[n] \rightarrow \mathbb{R}$ and $r \geq \operatorname{ImgD}(g)$. Then there is a 1 -sided error algorithm LINE-TESTER which on input g and r rejects with probability at least $\frac{\epsilon^{L i i p}(g)}{6 \log \min \{r, n\}}$.

To analyze our testers, we also need to estimate the probability that a random line $g \leftarrow L_{f}$ is rejected by $\operatorname{Line-Tester}(g, r)$ with $r \geq \operatorname{ImgD}_{\epsilon / 2}(f)$. Such bound r will be obtained via Lemma 4.2. Since r may be much smaller than $\operatorname{ImgD}(f)$, Lemma 4.3 does not apply directly. Nevertheless, the next lemma shows how to circumvent this difficulty.

Lemma 4.4. Let $f:[n]^{d} \rightarrow \mathbb{Z}$ be ϵ-far from Lipschitz. Consider a real $r \geq \operatorname{ImgD}_{\epsilon / 2}(f)$. For a random line $g \leftarrow L_{f}$, the probability that Line-Tester $(g, \min \{r, n\})$ rejects is at least $\frac{\epsilon}{24 d r \log \min \{r, n\}}$.

Proof. Define the function f^{\prime} by truncating f as follows. Using the definition, consider integers $a<b$ such $|a-b| \leq \operatorname{ImgD} \mathrm{E}_{\epsilon / 2}(f)$ and at most $\epsilon n^{d} / 2$ points $x \in[n]^{d}$ have $f(x) \notin[a, b]$; then define $f^{\prime}(x)=a$ if $f(x)<a, f^{\prime}(x)=f(x)$ if $f(x) \in[a, b]$ and $f^{\prime}(x)=b$ if $f(x)>b$. Clearly $\operatorname{ImgD}\left(f^{\prime}\right) \leq \operatorname{ImgD}_{\epsilon / 2}(f) \leq r$ and, since f and f^{\prime} differ on at most $\epsilon / 2$ points, f^{\prime} is $\epsilon / 2$-far from Lipschitz.

We first analyze how Line-TESTER behaves for f^{\prime}. Let $g^{\prime} \leftarrow L_{f^{\prime}}$ be a random line of f^{\prime}. Since now r is an upper bound on $\operatorname{ImgD}\left(f^{\prime}\right)$, and hence r is also an upper bound on $\operatorname{ImgD}\left(g^{\prime}\right)$, we can use Lemma 4.3 to obtain that Line-Tester $\left(g^{\prime}, r\right)$ rejects with probability at least $\mathbb{E}_{g^{\prime} \leftarrow L_{f^{\prime}}}\left[\epsilon^{\text {Lip }}\left(g^{\prime}\right) / 6 \log \min \{r, n\}\right]$. Now we can use the dimension reduction Theorem 1.2 to lower bound this probability of rejection by

$$
\frac{\epsilon^{L i p}\left(f^{\prime}\right)}{12 d \operatorname{ImgD}\left(f^{\prime}\right) \log \min \{r, n\}} \geq \frac{\epsilon}{24 d r \log \min \{r, n\}} .
$$

We claim the following, which directly implies the desired result: consider a line $g \in L_{f}$ of f and let g^{\prime} be the corresponding line of f^{\prime}; the probability that Line-TESTER (g, r) rejects is at least as large as the probability that $\operatorname{LINE-TESTER}\left(g^{\prime}, r\right)$ rejects. To see this, notice that actually every pair $x, y \in[n]$ that is violated with respect to g^{\prime}, must be also violated with respect to g : Assume without loss of generality that $g^{\prime}(x)<g^{\prime}(y)-|x-y|$. We obtain in particular that $g^{\prime}(x)<\max _{z} f^{\prime}(z) \leq b$. Notice that by construction of f^{\prime}, this also implies that the $g(x) \leq g^{\prime}(x)$, since whenever we decrease a value in the construction of f^{\prime} from f this new value becomes equal to b. Similarly, $g^{\prime}(y)>a$ and hence $g(y) \geq g^{\prime}(y)$. These bonds give that $g(x)<g(y)-|x-y|$ and hence (x, y) is violated with respect to g. Since every pairs violated for g^{\prime} is also violated for g, the fact that Line-Tester only test pairs for violations implies the claim. This also concludes the proof of the lemma.

Algorithm 3 presents our tester for the Lipschitz property on hypergrid domains. One of its inputs is a threshold R for rejection in Step 1. The testers in Theorem 1.1 are obtained by setting R appropriately.

```
Algorithm 3: Tester for Lipschitz property on hypergrid.
    input : function \(f:[n]^{d} \rightarrow \mathbb{Z}, \epsilon \in(0,1]\), and value \(R \in \mathbb{R}\)
    Let \(r \leftarrow \operatorname{Sample-DiAmETER}(f, \epsilon / 2)\). If \(r>R\), reject.
    for \(i=1\) to \(\ell=\frac{48 d \cdot r \log \min \{r, n\}}{\epsilon}\) do
        Select a line \(g\) uniformly from \(L_{f}\) and reject if \(\operatorname{Line-Tester}(g, \min \{r, n\})\) does.
    Accept.
```

Proof of Theorem 1.1. We show that Algorithm 3 when run with $R=n d$ (respectively, $R=n \sqrt{d \ln (84 / \epsilon)}$) is as claimed in Theorem 1.1.

First, we focus on the correctness of the testers. Suppose that the input function f is Lipschitz. Since Lipschitz functions do not have any violated pairs, Algorithm 3 may only reject f in Step 1 . When $R=n d$ this happens with probability 0 , since Lemma 4.2 guarantees that $r \leq \operatorname{ImgD}(f) \leq n d$; Algorithm 3 with $R=n d$ is then a 1 -sided error tester. Now consider the case when $R=n \sqrt{d \ln (84 / \epsilon)}$. By the second part of Lemma 4.2 and Lemma 4.1, with probability at least $2 / 3$ we have $r \leq R$ (notice that SAMPLE-DIAMETER is evoked with parameter $\epsilon / 2)$. Thus, Algorithm 3 with $R=n \sqrt{d \ln (84 / \epsilon)}$ accepts the Lipschitz function f with probability at least $2 / 3$.

Now consider the case when f is ϵ-far from Lipschitz. We show that with probability at least $2 / 3, f$ is rejected in some iteration of Step 3; this part of the analysis is independent of the setting of R. Let E be the event that r is a good estimate, namely that $r \geq \operatorname{Img}_{\epsilon / 2}(f)$; from part 1 of Lemma 4.2, E holds with probability at least $5 / 6$. Then f is rejected with probability at least $\operatorname{Pr}(\operatorname{Step} 3$ rejects and E holds $) \geq$ $\operatorname{Pr}($ Step 3 rejects $\mid E)(5 / 6)$. Conditioned on E (or more precisely conditioning on a realization of r satisfying E), Lemma 4.4 gives that the probability p of rejection on a single execution of Step 3 rejects is at least $\frac{\epsilon}{24 d r \log \min \{r, n\}}$. Therefore, we using the standard approximation $(1-x) \leq e^{-x}$ valid for all x, we obtain that $\operatorname{Pr}($ Step 3 rejects $\mid E)$ is at least $1-(1-p)^{\ell} \geq 4 / 5$; it then follows that the probability of rejection by the procedure is at least $(5 / 6)(4 / 5)=2 / 3$.

Finally, we analyze the running time of the testers. Observe that since all operations performed by the algorithms (computing the maximum and simple comparisons) take time at most linear in the number of queries, the time complexity is the same as query complexity (in the model where each required random number is generated in one step). It remains to analyze the query complexity of Algorithm 3 for both settings of R. First, SAMPLE-DIAMETER in Step 1 makes $O(1 / \epsilon)$ queries. Each iteration of Step 3 makes only 2 queries. Finally, by construction of the estimator, $r \leq \operatorname{ImgD}(f)$ and whenever the for loop is executed we also have $r \leq R$. This gives that the total number of iteration of the for loop is at most ($48 d \min \{\operatorname{ImgD}(f), R\} \log \min \{\operatorname{ImgD}(f), R, n\}) / \epsilon$, so the total number of queries made by Algorithm 3 is upper bounded by

$$
O\left(\frac{d \min \{\operatorname{ImgD}(f), R\} \log \min \{\operatorname{ImgD}(f), R, n\}}{\epsilon}\right) .
$$

Our choices of R give the desired query complexity, concluding the proof of Theorem 1.1.

5 Testers for functions with range $\delta \mathbb{Z}$

In this section, we discuss modifications in the proofs required to obtain the desired testers for functions $f:[n]^{d} \rightarrow \delta \mathbb{Z}$ with $\delta \in(0,1]$.

5.1 Modifications to Section 2

First, the main product of Section 2, namely, Theorem 1.3, holds as stated for the more general functions $f:[n] \rightarrow \delta \mathbb{Z}$ with $\delta \leq 1$. To prove it, we start by changing the definition of the basic operator to modify the values of the function by $\pm \delta$.

Definition 5.1 (Basic operator). Given $f:[n]^{d} \rightarrow \delta \mathbb{Z}$ and $x, y \in[n]^{d}$ where $|x-y|_{1}=1$ and vertex names x and y are chosen so that $f(x) \leq f(y)$, the basic operator $\mathbb{B}_{x, y}$ works as follows: If the pair (x, y) is not violated by f then $\mathbb{B}_{x, y}[f]$ is identical to f. Otherwise, $\mathbb{B}_{x, y}[f](x)=f(x)+\delta$ and $\mathbb{B}_{x, y}[f](y)=f(y)-\delta$.

Now on to procedures LinePass and BubbleSmooth. LinePass now uses the new basic operator defined above, but no other changes are required in these procedures. However, notice that whenever LinePass (i) is applied to a function f, now there is transfer of δ units between i and a node j (recall that when $\delta=1$, one unit is transferred). Moreover, this node j that participates in this transfer is the largest index such that the sequence $f(i), f(i+1), \ldots, f(j)$ is: (i) monotone and (ii) consecutive terms differ by exactly 1 ; again this definition coincides with the one presented in Section 2 when $\delta=1$.

The definition of transfer graph is unchanged, but its key property (Lemma 2.1) is scaled by a factor of δ.

Lemma 5.1 (Key property of transfer graph). Let $f:[n] \rightarrow \delta \mathbb{Z}$ be an input function given to BubbleSmooth. Then for each edge $e_{s}=(x, y)$ of the final transfer graph T^{*}, the following holds: $\mathrm{vs}_{f}(x, y) \geq$ $\delta\left(\operatorname{deg}_{s}^{*}(x)+\operatorname{deg} g_{s}^{*}(y)-1\right)$.

Naturally, Claim 2.2 used to prove Lemma 2.1 is also scaled accordingly; again the proof of Lemma 5.1 follows directly from the claim below.

Claim 5.2 (Invariant for phase i). Let $f:[n] \rightarrow \delta \mathbb{Z}$ be an input function given to BubbleSmooth. At every point during the execution of BubbleSmooth (f), for each edge $e_{s}=(x, y)$ of the transfer graph T,

$$
f(x)-f(y) \geq \delta\left(\operatorname{deg}_{s}(x)+\operatorname{deg}_{s}(y)-1\right)+|x-y| .
$$

Moreover, for each phase $i \in[n-1]$, after each execution of LinePass (i), for each edge e_{s} incident on vertex i, the following (stronger) condition holds:
if the edge $e_{s}=(i, j)$, i.e., it is outgoing from i, then $f(i)-f(j) \geq \delta\left(\Delta_{i}+\operatorname{deg}_{s}(j)-1\right)+|i-j|$;
if the edge $e_{s}=(j, i)$, i.e., it is incoming into i, then $f(j)-f(i) \geq \delta\left(\Delta_{i}+\operatorname{deg}_{s}(j)-1\right)+|i-j|$.
The proof of Claim 2.2 can be used almost directly to prove Claim 5.2, the only modifications required being the following. First, (1) now becomes

$$
f^{-}(i)-f^{-}(j) \geq \delta\left(\Delta_{i}-\operatorname{de} g_{t}^{-}(i)\right)+|i-j|
$$

(because each transfer lowers the violation score of the pair $(i, i+1)$ by at least δ). Since each transfer moves δ units of mass instead of 1 , equations (2) and (3) become respectively $f(i)=f^{-}(i)+\delta d e g_{t}^{-}(i)$ and $f(j)=f^{-}(j)-\delta d e g_{t}^{-}(j)$. For the same reason, equation (4) becomes $f(i)=f^{-}(i)+\delta d e g_{t}^{-}(i)$ and $f(j)=f^{-}(j)+\operatorname{deg}_{t}^{-}(j)$. The rest of the proof can be used exactly as in the case $\delta=1$ to obtain Claim 5.2.

With Lemma 5.1 at hand, we can prove Theorem 1.3 for functions $f:[n] \rightarrow \delta \mathbb{Z}$ just as before. Indeed, the proof of part 1 of the theorem requires no changes. For part 2, we note that if f^{\prime} is the (Lipschitz) function after the application of BubbleSmooth to f, then $\left|f-f^{\prime}\right|_{1}=\delta|E|$, where E is the set of edge in the final transfer graph. Moreover, using the greedy procedure as before, we can obtain a matching in the final transfer graph with violation score at least $\delta|E|$; part 2 of Theorem 1.3 then follows from Lemma 2.3.

5.2 Modifications to Section 3

Technically, the proof of dimension reduction makes use of Claim 3.2. We present the corresponding lemma for the modified definition of the basic operator below and present its proof. This lemma is sufficient to prove Item 3 of Lemma 3.1 for the modified definition of basic operator; the proofs of Items 1 and 2 hold as before.

5.2.1 Modifications to the basic operator on a square

Claim 5.3 (Properties of modified basic operator on a square). Consider a function $f:\left\{x_{t}, x_{b}, y_{t}, y_{b}\right\} \rightarrow$ $\delta \mathbb{Z}$ where vertices are labels of the four vertices of the square $\{0,1\}^{2}$. (See Figure 2.) Let f^{\prime} be the function obtained by applying modified basic operators $\mathbb{B}_{x_{t}, y_{t}}$ and $\mathbb{B}_{x_{b}, y_{b}}$ along the horizontal edges. Then the following holds for the vertical edges.

1. [JR11]: $v s_{f^{\prime}}\left(x_{t}, x_{b}\right)+v s_{f^{\prime}}\left(y_{t}, y_{b}\right) \leq v s_{f}\left(x_{t}, x_{b}\right)+v s_{f}\left(y_{t}, y_{b}\right)$.
2. $\left|f^{\prime}\left(x_{t}\right)-f^{\prime}\left(x_{b}\right)\right|+\left|f^{\prime}\left(y_{t}\right)-f^{\prime}\left(y_{b}\right)\right| \leq\left|f\left(x_{t}\right)-f\left(x_{b}\right)\right|+\left|f\left(y_{t}\right)-f\left(y_{b}\right)\right|$.

Proof. If neither horizontal edge is violated then $f^{\prime}=f$, and we are done. So assume w.l.o.g. $\left\{x_{t}, y_{t}\right\}$ is violated such that $f\left(y_{t}\right) \geq f\left(x_{t}\right)+1+\delta$. Then $\mathbb{B}_{x_{t}, y_{t}}$ increases $f\left(x_{t}\right)$ by δ and decreases $f\left(y_{t}\right)$ by δ leading to Inequality (i): $f^{\prime}\left(y_{t}\right) \geq f\left(x_{t}\right)+1$.

If the absolute difference on the value of both vertical edges do not increase, we are also done. So assume w.l.o.g. that the absolute difference of the values of the left vertical edge increases strictly, namely $\left|f^{\prime}\left(x_{b}\right)-f^{\prime}\left(x_{t}\right)\right|=\left|f\left(x_{b}\right)-f\left(x_{t}\right)\right|+\Delta$ for $\Delta \in\{\delta, 2 \delta\}$. This implies that $\mathbb{B}_{x_{b}, y_{b}}$ did not increase the value at x_{b} and also that the following holds: (ii) $f\left(x_{b}\right) \leq f\left(x_{t}\right)$. The former also implies that: (iii) $f^{\prime}\left(y_{b}\right) \leq f^{\prime}\left(x_{b}\right)+1$. The definition of Δ further gives that: (iv) $f^{\prime}\left(x_{b}\right)=f\left(x_{b}\right)-(\Delta-\delta)$ and (v) $f^{\prime}\left(y_{b}\right)=f\left(y_{b}\right)+(\Delta-\delta)$.

Using inequalities (i), (ii), (iv) and (iii) we get

$$
f^{\prime}\left(y_{t}\right) \geq f\left(x_{t}\right)+1 \geq f\left(x_{b}\right)+1=f^{\prime}\left(x_{b}\right)+(\Delta-\delta)+1 \geq f^{\prime}\left(y_{b}\right)+(\Delta-\delta),
$$

hence $f^{\prime}\left(y_{t}\right) \geq f^{\prime}\left(y_{b}\right)$. Further using equation (v) we get

$$
\left|f^{\prime}\left(y_{t}\right)-f^{\prime}\left(y_{b}\right)\right|=f^{\prime}\left(y_{t}\right)-f^{\prime}\left(y_{b}\right)=f\left(y_{t}\right)-\delta-\left(f\left(y_{b}\right)+(\Delta-\delta)\right) \leq\left|f\left(y_{t}\right)-f\left(y_{b}\right)\right|-\Delta .
$$

Thus, the absolute difference of the values for the edge $\left\{x_{b}, x_{t}\right\}$ increases by Δ while the same for edge $\left\{y_{b}, y_{t}\right\}$ decreases by at least Δ, proving the claim.

5.2.2 Remaining modifications

The proof of Theorem 1.4 for functions $f:[n] \rightarrow \delta \mathbb{Z}$ follows exactly as before. Now Theorem 1.2 looses a factor of $1 / \delta$ in the bound.

Theorem 5.4 (Dimension reduction). For all functions $f:[n]^{d} \rightarrow \delta \mathbb{Z}$, the following holds:

$$
\mathbb{E}_{g \leftarrow L_{f}}\left[\epsilon^{L i p}(g)\right] \geq \frac{\epsilon^{L i p}(f)}{2 \cdot d \cdot \delta \operatorname{ImgD}(f)} .
$$

This follows directly from Theorem 1.4 and Observation 3.5.

5.3 Modifications to Section 4

No modifications are required in the procedure for estimating the image diameter of a function or for LiNETester. However, the guarantee for the later given by Lemma 4.4 worsens by a factor of δ.

Lemma 5.5. Consider a function $f:[n]^{d} \rightarrow \delta \mathbb{Z}$ that is ϵ-far from Lipschitz and consider a real number $r \geq \operatorname{ImgD}_{\epsilon / 2}(f)$. For a random line $g \leftarrow L_{f}$, the probability that $\operatorname{Line-TESTER}(g, \min \{r, n\})$ rejects is at least $\frac{\epsilon \delta}{24 d r \log \min \{r, n\}}$.

The proof of this lemma is exactly as before, only now we construct the truncation f^{\prime} of the original function f by taking $a<b$ in $\delta \mathbb{Z}$ (as opposed to in \mathbb{Z}) such that $|a-b| \leq \operatorname{ImgD}_{\epsilon / 2}(f)$ and at most $\epsilon n^{d} / 2$ points $x \in[n]^{d}$ have $f(x) \notin[a, b]$; then define $f^{\prime}(x)=a$ if $f(x)<a, f^{\prime}(x)=f(x)$ if $f(x) \in[a, b]$ and $f^{\prime}(x)=b$ if $f(x)>b$ as before, and the rest of the proof carries through (now using Theorem 5.4).

The only modification in our final tester, Algorithm 3, is in the number of iterations of the for loop, which is multiplying by $1 / \delta$. The proof of the correctness and running time of this modified algorithm over function $f:[n]^{d} \rightarrow \delta \mathbb{Z}$ follow exactly as before. This concludes the proof of Theorem 1.1 for arbitrary $\delta \in(0,1]$.

References

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to a monotone function. Random Struct. Algorithms, 31(3):371-383, 2007.
[BGJ^{+}09] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P. Woodruff. Transitive-closure spanners. In SODA, pages 932-941, 2009.
[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to numerical problems. J. Comput. Syst. Sci., 47(3):549-595, 1993.
[BRW05] Tugkan Batu, Ronitt Rubinfeld, and Patrick White. Fast approximate PCPs for multidimensional bin-packing problems. Inf. Comput., 196(1):42-56, 2005.
[CS10] Artur Czumaj and Christian Sohler. Sublinear-time algorithms. In Oded Goldreich, editor, Property Testing, volume 6390 of Lecture Notes in Computer Science, pages 41-64. Springer, 2010.
[CS12] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz testing over the hypercube. Electronic Colloquium on Computational Complexity (ECCC), TR12030, 2012.
[DGL $\left.{ }^{+} 99\right]$ Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex Samorodnitsky. Improved testing algorithms for monotonicity. In RANDOM, pages 97-108, 1999.
[EKK $\left.{ }^{+} 00\right]$ F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. J. Comput. Syst. Sci., 60(3):717-751, 2000.
[FLN^{+}02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex Samorodnitsky. Monotonicity testing over general poset domains. In STOC, pages 474-483, 2002.
[GGL $\left.{ }^{+} 00\right]$ Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing monotonicity. Combinatorica, 20(3):301-337, 2000.
[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and approximation. J. ACM, 45(4):653-750, 1998.
[Gol11] Oded Goldreich. Introduction to testing graph properties. In Oded Goldreich, editor, Studies in Complexity and Cryptography, volume 6650 of Lecture Notes in Computer Science, pages 470-506. Springer, 2011.
[Gro99] Mikhail Gromov. Metric Structures for Riemannian and non-Riemannian Spaces. 1999.
[HK08] Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random Struct. Algorithms, 33(1):44-67, 2008.
[JPRZ09] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing low-degree polynomials over prime fields. Random Struct. Algorithms, 35(2):163-193, 2009.
[JR11] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz functions with applications to data privacy. In IEEE FOCS, pages 433-442, 2011. Full version available at http://eccc.hpi-web.de/report/2011/057/.
[KR06] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM J. Comput., 36(3):779-802, 2006.
[McD89] Colin McDiarmid. On the method of bounded differences. In Surveys in Combinatorics. London Math. Soc. Lecture Notes 141, 1989.
[Oll09] Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Analysis, 256(3):810-864, 2009.
[Ron09] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends in Theoretical Computer Science, 5(2):73-205, 2009.
[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with applications to program testing. SIAM J. Comput., 25(2):252-271, 1996.
[RS11] Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. Electronic Colloquium on Computational Complexity (ECCC), 18:13, 2011.
[VS11] J. Vondrak and C. Seshadhri. Is submodularity testable? In Proceedings of the Innovations in Computer Science (ICS), pages 195-210, 2011.

A McDiarmid's Inequality

We state the well-known McDiarmid's inequality [McD89] specialized to the domain $[n]^{d}$.
Theorem A. 1 ([McD89]). For every Lipschitz function $f:[n]^{d} \rightarrow \mathbb{R}$ and uniformly distributed $X \in$ $[n]^{d}$, the following holds (where the expectation is taken over the uniformly distributed X): $\operatorname{Pr}[\| f(X)-$ $\mathbb{E}[f(X)] \mid \geq t] \leq 2 e^{\frac{-2 t^{2}}{d n^{2}}}$.

Figure 3: Illustration of proof of Item 3 of Lemma 3.1.

[^0]: ${ }^{*}$ P.A. is supported by NSF grant CCF-1116892.
 ${ }^{\dagger}$ M.J. and S.R. are supported by NSF CAREER grant CCF-0845701 and NSF grant CCF-0729171.
 ${ }^{\ddagger}$ M.M. is supported by NSF grant CMMI-1024554.

[^1]: ${ }^{1}$ The set $\{1, \ldots, n\}$ is denoted by $[n]$.
 ${ }^{2}$ If $\delta>1$ then f is Lipschitz iff it is 0 -Lipschitz (that is, constant). Testing if a function is constant takes $O(1 / \epsilon)$ time.

