
Succinct Interactive Proofs for Quantified Boolean Formulas

Edward A. Hirsch∗ Dieter van Melkebeek† Alexander Smal∗

November 24, 2013

Abstract

In [4], it was claimed that the amount of communication in an interactive protocol for
QBFormulaSAT can be bounded by a polynomial in the number of variables in the input formula.
However, the proof was flawed. We give two correct proofs of this statement.

1 Setting

Chakraborthy and Santhanam [4] define SuccinctIP as the class of parameterized problems (an
instance of a parameterized problem has the form (x, 1k), where x ∈ {0, 1}∗ and k ∈ N is the
parameter) that have two-sided error polynomial-time interactive protocols with the total number
of bits of communication bounded by a polynomial in k.

QBFormulaSAT consists of true closed quantified Boolean formulas, where a formula can be
any Boolean formula in the basis1 {∨,∧,¬}. The parameter is the number of variables (that is,
quantifiers).

Chakraborty and Santhanam claim the following statement in [4].

Proposition 6. QBFormulaSAT ∈ SuccinctIP.

However, the proof in [4] is flawed. It uses Shen’s [7] protocol for IP = PSPACE, which is a
simplified version of Shamir’s [6] original one. The problem arises in the penultimate steps of the
protocol, which require sending high-degree polynomials for the quantifier-free part of the formula.
These polynomials can contain too many coefficients as their degree is bounded by the size of the
formula and not by a polynomial in the number of variables.

In the next two sections we suggest two different protocols that prove Proposition 6. The first
protocol uses Rudich’s protocol for PSPACE and provides a more general statement, namely that
every language in PSPACE has a protocol in which the communication is bounded by a polynomial
in its space complexity only. The second protocol uses a reduction by Santhanam and Williams
[5] of QBFormulaSAT to QBCNFSAT, and then modifies Shen’s protocol using an arithmetization
somewhat similar to Shamir’s original one. The main thing we have to keep an eye on is the length
of the prover’s messages, that is, the degree of the intermediate polynomials and the number of
steps in the protocol.

∗Steklov Institute of Mathematics at St.Petersburg, Russian Academy of Sciences, 27 Fontanka, 191023
St.Petersburg, Russia. Alexander Smal is partially supported by a grant of the president of RF MK-4108.2012.1.
†Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA. Partially sup-

ported by NSF grants CCF-1017597 and CCF-1319822.
1Actually, the basis does not matter either for the old or for the new proof. It could be any binary basis.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Comment 2 on Report No. 77 (2012)

It is worth noting that if a formula is replaced by a circuit, the resulting problem QBCircuitSAT
demonstrates a kind of completeness property: if there is a SuccinctIP protocol for it, then there is
a SuccinctIP protocol for every problem in alternating polynomial time (AP) with the number of
alternating steps (bits) as a parameter. The protocol in Section 2 is in fact a public-coin interactive
protocol such that not only the communication, but also the space used by the verifier is bounded by
a polynomial in the space complexity of the original machine. Vice versa, every language accepted
by a public-coin protocol has deterministic space complexity polynomial in the communication
complexity and the space complexity of the verifier. It is unlikely that QBCircuitSAT can be
accepted by such a protocol, because that would mean P is contained in polylogarithmic space,
which is unknown and considered unlikely. The situation for general SuccinctIP protocols also
remains open.

2 Protocol for low-space computations

In order to fix the issue with high-degree polynomials, we use a different interactive protocol than
Shamir’s or Shen’s. We start with any PSPACE machine, consider its graph of configurations like in
Savitch’s theorem, and the prover convinces the verifier that there is a path reaching the accepting
configuration. The polynomials in the protocol are multilinear. We follow the exposition of [1], in
which the authors attribute the protocol to Steven Rudich, but we need a small tweak regarding
the access to the input.

Theorem 1. Let M be an s(x)-space2 deterministic Turing machine, and L = {x | M(x) =
1}, where s is a polynomial-time computable3 and polynomially bounded function. There is a
polynomial-time interactive protocol for L that uses at most poly(s(x) + log |x|) bits of commu-
nication, public coins, and poly(s(x) + log |x|) space for the (polynomial-time) verifier. Vice versa,
any language posessing such a protocol can be accepted by a deterministic Turing machine using
space poly(s(x) + log |x|).

Proof. Let s′(x) denote the number of bits needed to describe a configuration of M on input x,
where a configuration contains the current state of the finite control, the contents of the work tapes
accompanied by the work tape head positions, and the input tape head position (fine-tuning of the
representation of this position is due later), but not the contents of the (read-only) input tape. We
may assume that the head position is written in unary by considering the work tape as consisting of
2-bit blocks containing the stored bit and an indicator whether the head is present at that position.
Note that s′(x) = O(s(x) + log |x|).

For two s′(x)-bit strings π and π′, consider the predicate PATHt(π, π
′) stipulating that there is

a path of length 2t from the configuration π to the configuration π′. Wlog. we can assume that the
accepting configuration is unique and that, once the accepting configuration is reached, the machine
stays there forever. The prover starts with attempting to persuade the verifier that PATHt(α, ω) =
1, where t = s′(x), α is the initial configuration (for the particular input x), and ω is the accepting
configuration. In order to do this, they consider the arithmetization Pt(π, π

′) of this predicate (a
finite field-valued polynomial that has the same values as PATHt on {0, 1}s′(x) × {0, 1}s′(x)) that
we will describe later. Then the protocol descends gradually from Ps′(x) to P0, the latter predicate
being computable by the verifier itself.

2Note that s may depend on the input and not just on its length.
3In fact, it suffices that the value of s(x) is known to the verifier.

2

The base arithmetization. First of all let us describe the polynomial for P0. This case needs
additional attention. It deviates from [1], which only concerns the total polynomial space (both
on input and work tapes) and hence cannot be directly applied to sublinear space (in particular,
space bounded by a parameter). We need to separate the work tapes from the input tape. The
polynomial for PATH0 is the sum of terms, one term per head position of the work tapes. Each
term is conditioned on the event that the head is present (conditioning simply means multiplying
by the corresponding bit a2h). The term includes the multilinear “store polynomial”4 expressing
“
∧
j 6=2h+2,2h,2h−1,2h−2(aj = bj)” for the unchanged working memory, multiplied by a polynomial

for the changed position (conditioned on the event that the head is present). In [1] this “change
polynomial” uses O(1) variables; however, once we separate the input tape from the working tape,
the situation changes.

The “change polynomial” depends on the input. We can assume that the machine has oracle
access to the input using a log |x|-bit counter (stored in the bits 1 . . . 2 log |x| of the configuration)
so that its transition function can use the bit xi, where i is the current contents of the counter
(note that the increment/decrement of the counter can be implemented using log |x| time and O(1)
space, so we can rewrite any machine this way). Then the answer to the oracle query is computed
as the “input polynomial” ∑

xiAi, (1)

where Ai is the log-degree polynomial5 stating that the string a1a3 . . . a2 log |x|−1 is the binary
representation of i (note that xi are constants for us now).

Once we can query the input, we can implement the transition function of M by a multilinear
“change polynomial” that has the following O(1) variables: the bits of the current state, the head
position represented by the bits a2h, a2h−2, a2h+2, the currently affected memory location a2h−1.
The input bit (also needed by the transition function) is replaced by the polynomial (1).

The resulting polynomial P0 is at most quadratic6 in each variable.

The other arithmetizations. For m ≥ 0, the polynomial Pm+1 is defined as

Pm+1(π, π
′) =

∑
σ

Pm(π, σ)Pm(σ, π′), (2)

where σ ranges over all possible configurations ofM . Note that this polynomial is an arithmetization
of
∨
σ PATHi(π, σ) ∧ PATHi(σ, π

′), and has degree at most four in each variable.

The protocol. Each round of the protocol reduces the task of checking the value of Pm+1 at a single
point to checking the value of Pm at a single point. A round consists of s′(x) mini-rounds, each
one eliminating the summation over one bit of the configuration σ in (2), and an extra mini-round
to reduce the verification of a product of two values of Pm to a single one. We now detail each of
the mini-rounds.

4Formally,
∏

j 6=2h+2,2h,2h−1,2h−2(ajbj + (1 − aj)(1 − bj)). The write-up [1] has a typo here.
5Formally,

∏log |x|
j=1 ((a2j−1 − ij) + (1 − a2j−1)(1 − ij)).

6Why quadratic and not linear? This is because the counter is a part of the work tape, and the corresponding
variables can appear in both the input polynomial and the other part of the “change polynomial”.

3

Summation mini-rounds. For ` = 1, 2, . . ., the prover sends the coefficients of the polynomial p`
(of degree at most four) in the outermost summation variable σ` such that

p`(σ`) =

 ∑
σ`+1,...

Pm(π, σ)Pm(σ, π′)

∣∣∣∣∣∣
ρ`−1

,

where ρ`−1 is the substitution of the ` − 1 previously instantiated variables built in the previous
mini-rounds. Then the verifier checks that p`(0) + p`(1) = v`−1, where v`−1 is the value claimed in
the previous mini-round (starting with the value v0 = Pm+1(π, π

′)). After that, the verifier picks
(and sends) a random value r` for σ`, adds σ` = r` to ρ`−1 to obtain ρ`, and the parties continue
with the task of verifying that the value of the polynomial that now has one variable less, under
the substitution ρ`, equals p`(r`) (which becomes v`).

Product mini-round. When faced with the task of verifying (Pm(π, σ)Pm(σ, π′))|ρ = v, where ρ
instantiates all bits of the configurations π, π′, and σ, the prover sends the coefficients of the linear
function p(z) = Pm(π + (σ − π)z, σ + (π′ − σ)z), where z is a new variable. The verifier then
checks that p(0)p(1) = v, picks (and sends) a random value r, and the parties proceed to checking
(Pm(π + (σ − π)r, σ + (π′ − σ)r))|ρ′ = p(r), where ρ′ = ρ ∪ {z = r}.

Putting everything together. Provided the underlying field is sufficiently large, the protocol attains
a small probability of error. Note that the degree of the intermediate polynomials cannot be more
than four in each variable, because the base polynomial P0 has degree at most two, and the degree
raises only once, namely when the product Pm(π, σ)Pm(σ, π′) using a new configuration σ is taken.
Thus, the prover always sends at most five coefficients in each mini-round. The number of mini-
rounds is O(s′(x)2).

The inverse inclusion. A protocol of the given type can be converted into a deterministic Turing
machine using poly(s(x) + log |x|) space. Indeed, the prover’s messages and the random choices
can be enumerated in poly(s(x) + log |x|) space, and then the protocol’s outcome can be easily
computed.

Corollary 1. There is a SuccinctIP protocol for QBFormulaSAT.

Proof. There is a Turing machine that solves QBFormulaSAT for formulas F with k quantifiers
using O(k log |F |) space, because logarithmic space suffices for evaluating a formula on a particular
assignment [3].

3 Protocol based on reduction to CNF

QBCNFSAT is the subset of QBFormulaSAT containing only formulas in conjunctive normal form.
Santhanam and Williams [5] prove the following proposition.

Proposition 1 ([5, Corollary 3.2]). There is a polynomial-time reduction from QBFormulaSAT
instances of size s on n variables to QBCNFSAT instances of size O(s4) on n+O(log s) variables.

4

It remains to provide a SuccinctIP protocol for QBCNFSAT. Neither Shamir’s [6] nor Shen’s
[7] protocol would do: in Shen’s protocol the degree of the polynomial for the last quantifiers may
be large because the arithmetization of ∧ and ∨ both increase the degree, and Shamir’s protocol is
designed for “simple QBFs” instead of CNFs, and a straightforward reduction increases the number
of variables by too much.

Instead, we use Shen’s protocol with a different arithmetization that keeps the degree bounded
in the case of CNFs. The arithmetization is close to Shamir’s, but the roles of ∧ and ∨ are
interchanged. We will also need to work in a larger randomly chosen prime field, because our
arithmetization can result in a large positive integer in the case of a false formula.

We include Shen’s protocol for the sake of completeness so that one can easily check the number
of transmitted bits.

Theorem 2. There is a SuccinctIP protocol for QBCNFSAT.

Proof. Let Ψ be the input QBCNF formula:

Ψ = q1x1 q2x2 . . . qnxn ψ(x1, . . . , xn),

where qi ∈ {∀, ∃} and ψ is a CNF with m clauses.
We rewrite ψ as an arithmetic expression: we replace every clause

∨
yi∨
∨
¬zj by

∏
(1−yi)·

∏
zj

and take their sum, resulting in the polynomial P0. Note that if ψ(b1, . . . , bn) holds true for a given
b1 . . . bn ∈ {0, 1}n, then P0(b1, . . . , bn) = 0; if ψ(b1, . . . , bn) is false, then P0(b1, . . . , bn) equals the
(positive) number of unsatisfied clauses. Note also that the polynomial P0 is multilinear.

In order to arithmetize the quantifiers, we use the operators Ax,Ex,Rx (where x is a variable)
that transform polynomials into different polynomials, namely

Ax p(x, ȳ) = p(0, ȳ) + p(1, ȳ),

Ex p(x, ȳ) = p(0, ȳ) · p(1, ȳ),

Rx p(x, ȳ) = (1− x) · p(0, ȳ) + x · p(1, ȳ).

Note that these operators keep the concept “zero = true”, “nonzero = false” for 0/1-variables,
namely, as integers, Ax p(x, ȳ) = 0 is zero iff ∀x ∈ {0, 1} p(x, ȳ) = 0, Ex p(x, ȳ) = 0 is zero iff
∃x ∈ {0, 1} p(x, ȳ) = 0, and Rx does not change the value of the polynomial. We transform Ψ into

Ψ̂ = Q1x1 Rx1 Q2x2 Rx1 Rx2 . . . Qnxn Rx1 . . . Rxn P0(x1, . . . , xn),

where the quantifiers qi are replaced by the corresponding operators Qi. (This Ψ̂ is borrowed from
Shen’s protocol; for our arithmetization it would be enough to have R’s in front of the existential
quantifiers only, because this is the only source of non-linearity.)

It is equivalent to say that Ψ is true, and that Ψ̂ = 0.
There is still a small problem: the value of Ψ̂ and the coefficients of the intermediate polynomials

(which will later appear in the protocol) may be too large to be handled by a polynomial-time
verifier. In order to keep them low, we will work in a finite field modulo a specially chosen prime.
Namely, we will be happy with any reasonably large prime that does not divide Ψ̂. Since Ψ̂ ≤ m2n ,
Ψ̂ has at most 2n logm ≤ n2n prime factors. By the Prime Number Theorem [2, Section 1.8], the
number of primes up to m is asymptotically equivalent to m/ ln(m). It follows that the interval
[2n

2
. . . 22n

2
] contains Θ(22n

2
/n) primes. Selecting a prime at random in this interval avoids the

5

prime factors of Ψ̂ with overwhelming probability. In order to select a prime at random, one can
repeatedly pick a random number in this interval and test it for primality; O(2n3) iterations result
in a prime with probability at least 1− e−n, and in a good prime, with probability close to that.

For the sake of completeness, we describe the protocol below.

Handshake. The verifier selects a prime number as described above and sends it to the prover.
After that, all computations are performed modulo this prime (denote the corresponding field F).

Then the parties proceed to verifying the claim Ψ̂ = 0.

Intermediate steps. At each step of the protocol the parties are faced with the equality (QxiΦ̂)|ρ =
v, where Φ̂ is the part of Ψ̂ appearing to the right of the operator Qxi, ρ is a substitution to all
variables that appear in the operators to the left of the operator Qxi, and v ∈ F.

Let ρ′ = ρ if Q ∈ {A,E}, and ρ′ is obtained by dropping the value, say w, for xi from ρ if
Q = R. Note that Φ̂|ρ′ is an at most quadratic univariate polynomial of the variable xi. In order
to persuade the verifier, the prover sends the three coefficients of this polynomial p(xi).

Then the verifier checks that the corresponding identity holds:
v = p(0) + p(1), if Q = ∀,
v = p(0) · p(1), if Q = ∃,
v = (1− w) · p(0) + w · p(1), if Q = R.

If the test fails, the verifier rejects.
Then the verifier picks a random value r from the field F and sends it to the prover. The

parties then proceed to verifying the identity Φ̂|ρ′′ = p(r) at the next step, where ρ′′ is obtained by
appending xi = r to the substitution ρ′.

The final check. Once there are no more operators left and all variables xi received their final
values ri, the verifier evaluates P0(r1, . . . , rn) (in polynomial time) to compare with the final value
it has. If the values are equal, it accepts, otherwise it rejects.

Corollary 2. There is a SuccinctIP protocol for QBFormulaSAT.

Proof. Combine the reduction in Proposition 1 and the protocol in Theorem 2.

References

[1] D. M. Barrington and A. Maciel, Basic Course on Computational Complexity. Clay Mathematics
Undergraduate Program, IAS/PCMI Summer Session 2000. Lecture 14. Web: http://people.
clarkson.edu/~alexis/PCMI/Notes/lectureB14.ps.gz

[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Oxford University
Press, 2008.

[3] N. A. Lynch, Log space recognition and translation of parenthesis languages. Journal of the ACM
24: 583–590, 1977.

6

[4] C. Chakraborty, R. Santhanam, Instance Compression for the Polynomial Hierarchy and Be-
yond. ECCC TR12-077, 2012.

[5] R. Santhanam, R. Williams, Uniform Circuits, Lower Bounds, and QBF Algorithms, ECCC
TR12-059, 2012.

[6] A. Shamir, IP = PSPACE, Journal of the ACM 39(4):869–877, 1992.

[7] A. Shen, IP = PSPACE: simplified proof, Journal of the ACM 39(4):878–880, 1992.

7

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

