
Instance Compression for the Polynomial Hierarchy and
Beyond

Chiranjit Chakraborty
Rahul Santhanam

School of Informatics, University of Edinburgh, UK

Abstract. We define instance compressibility ([5, 7]) for parametric problems
in PH and PSPACE. We observe that the problem ΣiCIRCUITSAT of deciding
satisfiability of a quantified Boolean circuit with i− 1 alternations of quantifiers
starting with an existential quantifier is complete for parametric problems in
the class Σp

i with respect to W -reductions, and that analogously the problem
QBCSAT (Quantified Boolean Circuit Satisfiability) is complete for parametric
problems in PSPACE with respect to W -reductions. We show the following
results about these problems:

1. If CIRCUITSAT is non-uniformly compressible within NP, thenΣiCIRCUITSAT
is non-uniformly compressible within NP, for any i ≥ 1.

2. If QBCSAT is non-uniformly compressible (or even if satisfiability of quanti-
fied Boolean CNF formulae is non-uniformly compressible), then PSPACE
⊆ NP/poly and PH collapses to the third level.

Next, we define Succinct Interactive Proof (Succinct IP) and by adapting the proof
of IP = PSPACE ([4, 2]), we show that QBFORMULASAT (Quantified Boolean
Formula Satisfiability) is in Succinct IP. On the contrary if QBFORMULASAT
has Succinct PCPs ([12]), Polynomial Hierarchy (PH) collapses.

1 Introduction

An NP problem is said to be instance compressible if there is a polynomial-time reduction
mapping instances of size m and parameter n to instances of size poly(n) (possibly
of a different problem). The notion of instance compressibility for NP problems was
defined by Harnik and Naor ([5]) motivated by applications in cryptography. This
notion is closely related to the notion of polynomial kernelizability in parametrized
complexity ([7, 15, 9]), which is motivated by algorithmic applications. Fortnow and
Santhanam showed ([12], Theorem 3.1) that the compressibility of the satisfiability
problem for Boolean formulae (even non-uniformly) is unlikely, since it would imply
that the Polynomial Hierarchy (PH) collapses. Since then, there’s been a very active
stream of research extending this negative result to other problems in NP ([7, 18] etc.).
Instance compressibility is a useful notion for complexity theory as well - Buhrman and
Hitchcock [6] use it to study the question of whether NP has sub-exponentially-sparse
complete sets.

Given different possibilities of application of this notion, it is a natural question
whether we can extend it to other complexity classes, such as PH and PSPACE. Our
first contribution here is to define such an extension. The key to defining instance

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 77 (2012)

2 Chiranjit Chakraborty Rahul Santhanam

compressibility for NP problems is that there is a notion of “witness” for instances of
NP problems, and in general the witness size can be much smaller than the instance
size. We observe that the characterization of PH and PSPACE using alternating time
Turing machines yields a natural notion of “guess size” - namely the total number of
non-deterministic or co-non-deterministic bits used during the computation. We use this
characterization to extend the definition of compressibility to parametric problems in
PH and PSPACE in a natural way.

Some proposals ([8, 10]) have already been made in the parametrized complexity
setting for defining in general the parametrized complexity analogue of a classical
complexity class. Our definition seems similar in spirit, but all the problems we consider
are in fact fixed-parameter tractable. What we are interested in is whether they are
instance-compressible, or equivalently whether they have polynomial-size kernels.

One of our main motivations is to provide a structural theory of compressibility,
analogous to the theory in the classical setting. Intuitively, instance compressibility
provides a different, more relaxed notion of “solvability” than the traditional notion. So
it is interesting to study what kinds of analogues to classical results hold for the new
notion. The result of Fortnow and Santhanam ([12]) can be thought of as an analogue of
the Karp-Lipton theorem ([14], Theorem 6.1), since non-uniform compressibility is a
weakening of the notion of non-uniform solvability. Other well-known theorems in the
classical setting are that NP has polynomial-size circuits iff all of PH does, as well as
the Karp-Lipton theorem for PSPACE ([14], Theorem 4.1). The main results we prove
here are analogues of these results for instance compressibility.

Our first main result is, if the language CIRCUITSAT is non-uniformly compress-
ible within NP (i.e., the reduction is to an NP problem), then so is the language
ΣiCIRCUITSAT, which is in some sense complete for parametric problems in the
class Σp

i . Note that we need a stronger assumption here compared to that in the Fortnow-
Santhanam result ([12]): they need only to assume that SAT is compressible. This
reflects the fact that the proof is more involved - it relies on the Fortnow-Santhanam
result ([12]) as well as on the techniques used in the classical case. In addition, the
code used by the hypothetical compression for CIRCUITSAT shows up not just in the
resulting compression algorithm for ΣiCIRCUITSAT, but also in the instance generated
- this is why we need to work with circuits, as they can simulate any polynomial-time
computation. This ability to interpret code as data is essential to our proof. We give
more intuition about the proof in Section 3, where the detailed proof can also be found.
We also observe that under the assumption of Σ3CIRCUITSAT being compressible (we
make no assumption about the complexity of the set we are reducing to, nor do we
require the compression to be non-uniform), all of the PH is compressible as well.

Our second main result is that if QBCNFSAT is non-uniformly compressible, the
Polynomial Hierarchy collapses to the third level. The proof of this is easier and an
adaptation of the Fortnow-Santhanam technique ([12]) to PSPACE. Here we consider
an “OR” version of the problem as they do, and derive the collapse of the hierarchy from
the assumption that the OR version is compressible. In the case of NP, showing that
compressing the OR version is at least as easy as compressing SAT is easier as there are
no quantifiers; however, this is not the case for PSPACE and this is where we need to
work a little harder.

Instance Compression for the Polynomial Hierarchy and Beyond 3

Our third result is an analogue of the IP = PSPACE ([4, 2]) result in the parametric
world. We define the class Succinct IP, which consists of parametric problems with
interactive protocols where the total amount of communication is polynomial in the
size of the parameter. We observe that the traditional proof of IP = PSPACE ([4, 2])
can be adapted to show that the problem of determining whether a quantified Boolean
formula is valid, has succinct interactive proofs. This demonstrates a difference between
succinctness in an interactive setting and succinctness in a non-interactive setting - it
is shown in [12] that if SAT has succinct probabilistically checkable proofs, then PH
collapses.

There are many open problems in the compressibility theory for NP, such as, whether
there are any unlikely consequences of SAT being probabilistically compressible, and
whether the problem AND-SAT is deterministically compressible. Our hope is that
extending the theory to larger classes such as PH and PSPACE will give us more “room”
to work with. Besides, if we manage to settle these questions for the larger classes, the
techniques can be translated back to NP.

2 Some Complexity Theory Notions

Definition 1. Parametric problem: A parametric problem is a subset of { 〈 x, 1n 〉
| x ∈ {0, 1}∗, n ∈ N }. The term n is known as the parameter of the problem.

NP problems in parametric form: Now consider some popular NP languages in para-
metric form.
SAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable formula in CNF , and n is the number of variables
in ϕ}.
VC = {〈 G, 1k log(m) 〉 | G has a vertex cover of size at most k, where m = |G|}.
CLIQUE = {〈 G, 1k log(m) 〉 | G has a clique of size at least k, where m = |G|}.
DOMINATINGSET = {〈G, 1k log(m) 〉 |G has a dominating set of size at most k, where
m = |G|}.
OR-SAT = {〈 {ϕi }, 1n 〉 | At least one ϕi is satisfiable, and each ϕi is of bit-length at
most n}.

For the parametric problems above in NP, the parameter can be interpreted as the
witness size for some natural NTM deciding the language. For example in SAT, the
number of variables, which captures the witness of satisfiability problem, is taken as
the parameter. Note that in the definitions of the CLIQUE, VC and DOMINATINGSET
problems, the parameter is k log(m) rather than k as in the typical parametrized setting.
So we can say that any parametric problem is in NP if there exists a polynomial time
computable NTM to solve it.

Definition 2. Compression of parametric problem: Suppose here L is a parametric
problem. L is said to be compressible within a complexity classA if there is a polynomial
p(.), and a polynomial-time computable function f , such that for each x ∈ {0, 1}∗ and
n ∈ N, |f(〈x, 1n〉)| ≤ p(n) and 〈x, 1n〉 ∈ L iff f(〈x, 1n〉) ∈ LA for some parametric
problem LA in the complexity class A.

Definition 3. Non-uniform Compression: A parametric problem L is said to be com-
pressible with advice s(., .) if the compression function is computable in deterministic

4 Chiranjit Chakraborty Rahul Santhanam

polynomial time when given access to an advice string of size s(m, n) which depends
only on m and n but not on the actual instance. Here m is the instance length and n is
the parameter. L is non-uniformly compressible if s is polynomially bounded in m and
n.

In other words, we can say that the machine compressing the parametric problem in the
preceding definition takes advice in case of Non-uniform Compression.

Definition 4. W-Reduction: [5] Given parametric problems L1 and L2 , L1 W -reduces
to L2 (denoted L1 ≤w L2) if there is a polynomial-time computable function f and
polynomials p1 and p2 such that:

1.f (〈 x, 1n1 〉) is of the form 〈 y, 1n2 〉 where n2 ≤ p2(n1).
2.f (〈 x, 1n1 〉) ∈ L2 iff 〈 x, 1n1 〉 ∈ L1.

The semantics of a W -reduction is that if L1 W -reduces to L2 , it is at least as hard
to compress L2 as it is to compress L1 . If L1 ≤w L2 and L2 is compressible, then L1 is
compressible. One can prove that OR-SAT ≤w SAT ([19]).
As we have already mentioned, our primary objective is to extend the idea of compression
to higher classes, namely Polynomial Hierarchy (PH) and PSPACE [16]. In our work,
by a quantified Boolean formula, we mean a Boolean formula in prenex normal form
where the quantifiers are in the beginning as follows, ψ = Q1 x1 Q2 x2 . . . Qn xn φ, for
any Boolean formula φ. Similarly we can consider quantified Boolean circuits. Let us
now consider some standard PH and PSPACE languages but in parametric form.

CIRCUITSAT = {〈 C, 1n 〉 | C is a satisfiable circuit, and n is the number of variables
in C}

ΣiSAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified Boolean formula in CNF with i− 1
alternations where alternately odd position quantifiers are ∃ and even position
quantifiers are ∀, and n = (n1 + n2 + . . . + ni) where ni is the number of the
variables corresponding to ith quantifier}

ΣiCIRCUITSAT = {〈 C, 1n 〉 | C is a satisfiable quantified circuit with i− 1 alterna-
tions where alternately odd position quantifiers are ∃ and even position quantifiers
are ∀, and n = (n1 + n2 + . . . + ni) where ni is the number of the variables
corresponding to ith quantifier}
Similarly we can define ΠiSAT and ΠiCIRCUITSAT in parametric form.

QBCNFSAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified Boolean formula in CNF , and
n is the number of variables}

QBFORMULASAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified Boolean formula (not
necessarily in CNF), and n is the number of variables}
If ϕ is replaced by the circuit C, then similarly we can define QBCSAT.

OR-QBCNFSAT = {〈 {ϕi }, 1n 〉 | Each ϕi is a quantified Boolean formula in CNF
and at least one ϕi is satisfiable, and each ϕi is of bit-length at most n}.

Now we can try to generalize. For any language L we can define, OR-L = {〈 {xi },
1n 〉 | At least one xi ∈ L, and each xi is of bit-length at most n}.

Here we would like to mention that the non-parametric versions of ΣiSAT and
ΣiCIRCUITSAT are complete for the class Σp

i according to Cook-Levin reduction,

Instance Compression for the Polynomial Hierarchy and Beyond 5

and similarly the non-parametric versions of QBCNFSAT, QBFORMULASAT and
QBCSAT are complete for PSPACE.

We can define a parametric problem corresponding to any language L in the class
Σp

i , or more precisely to the i+ 1-ary polynomial-time computable relation R defining
L, as follows.

Definition 5. For any Σp
i language L, we can define a parametric problem in Σp

i , LR

= {〈 x, 1n 〉 | ∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni R (x, u1 , . . . ,
ui) = 1 and n = (n1 + n2 + . . .+ ni) where ni is the parameter corresponding to ith

quantifier}

We can do essentially the same thing for any language L ∈ PSPACE using the charac-
terization of PSPACE as alternating polynomial time ([1], Corollary 3.6) as follows:

Proposition 1. Any language L is in PSPACE if and only if it is decidable by an
Alternating Turing machine in polynomial time.

Now we can define,

Definition 6. For any PSPACE language L, we can define a parametric problem in
PSPACE, LR = {〈 x, 1n 〉 |Q1 u1 ∈ {0, 1}n1 Q2 u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni R
(x, u1 , . . . , ui) = 1 and n = (n1 +n2 + . . .+ni) where all the Q variables denote ∃ or
∀ alternately, depending on whether its suffix is odd or even, i is polynomially bounded
with respect to the size of x and ni is the parameter corresponding to ith quantifier}

So using the general definition of compression of any language in parametric form
given above, we can define the compression for all the PH and PSPACE parametric
problems where the “witness length” or “guess length” is the parameter of the problem.

Proposition 2. ΣiCIRCUITSAT is a complete parametric problem with respect to W -
reduction for the class of parametric problems in Σp

i .

Proof. Firstly we can observe that ΣiCIRCUITSAT is among the parametric problems
in the class Σp

i as there is an Alternating Turing Machine accepting this language with
i− 1 alternations, starting with existential guesses. Let us now consider the language L
∈ Σp

i . Then there exists a polynomial-time computable relation R such that,
x ∈ L⇔ ∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni R (x, u1 , . . . , ui) = 1,
where Qi denotes ∃ or ∀ depending on whether i is odd or even respectively.

Now consider the parametric problem LR corresponding to L where the parameter
is the number of guess bits used by R. We know that any polynomial time computable
relation has uniform polynomial size circuits ([16], Theorem 6.7). Let Cm be the circuit
on inputs of length m - we can generate Cm from 1m in polynomial time. Hence, 〈x,
1n〉 ∈ LR⇔ ∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni Cm (x, u1 , . . . , ui)
= 1, where Qi denotes ∃ or ∀ depending on whether i is odd or even respectively. This
gives a W -reduction from the parametric problem LR to ΣiCIRCUITSAT, since the
length of the parameter is preserved. ut

A similar proposition holds for ΠiCIRCUITSAT as well. We can also show, using
essentially the same proof, a completeness result for PSPACE.

6 Chiranjit Chakraborty Rahul Santhanam

Proposition 3. QBCSAT is a complete parametric problem for the class of parametric
problems in PSPACE with respect to W -reduction.

Proof. Firstly we can observe that QBCSAT is among the parametric problems in the
class PSPACE as there is an Alternating Turing Machine accepting this language with
at most n alternations, where n is the number of variables of the QBCSAT instance. Let
us now consider the language L ∈ PSPACE. Then from Proposition 1 there exists a
polynomial-time computable relation R such that,
x ∈ L⇔ Q1 u1 ∈ {0, 1}n1 Q2 u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni R (x, u1 , . . . , ui)
= 1, where all the Q variables denote ∃ or ∀ alternately, depending on whether its suffix
is odd or even. i is polynomially bounded with respect to the size of x.

Now consider the parametric problem LR corresponding to L where the parameter
is the number of guess bits used by R. We know that any polynomial time computable
relation has uniform polynomial size circuits ([16], Theorem 6.7). Let Cm be the circuit
on inputs of length m - we can generate Cm from 1m in polynomial time. Hence, 〈x,
1n〉 ∈ LR ⇔ Q1 u1 ∈ {0, 1}n1 Q2 u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni Cm (x, u1 , . . .
, ui) = 1, where all the Q variables denote ∃ or ∀ alternately, depending on whether
its suffix is odd or even. This gives a W -reduction from the parametric problem LR to
QBCSAT, since the length of the parameter is preserved. ut

We note that all the parametric problems we have defined so far are in fact fixed-
parameter tractable, simply by using brute force search.

Proposition 4. QBCSAT is solvable in time O(2npoly(m)) by brute force enumera-
tion.

3 Instance Compression for Polynomial Hierarchy

3.1 Instance Compression in second level

In this section, we are going to show that non-uniform compression of CIRCUITSAT
within NP implies the non-uniform compression of Σ2CIRCUITSAT within NP as well.
In the next subsection, essentially by using induction and relating this consequence, we
show how to extend this to the entire Polynomial Hierarchy. We have used the following
result by Fortnow and Santhanam ([12], Theorem 3.1):

Theorem 1. If OR-SAT is compressible, then CONP ⊆ NP/poly, and hence PH
collapses.

The same technique actually shows that, for any parametric problem L for which OR-L
(section 2) is compressible, lies within CoNP/poly.

Theorem 2. If CIRCUITSAT is non-uniformly compressible within NP, thenΣ2CIRCUITSAT
is non-uniformly compressible within NP.

Proof. Let us consider the parametric problem Σ2CIRCUITSAT first. For the sake of
convenience, we often omit the parameter when talking about an instance of this problem.
According to the definition,

C ∈ Σ2CIRCUITSAT ⇔ ∃u ∈ {0, 1}n1∀v ∈ {0, 1}n2C(u, v) = 1 (1)

Instance Compression for the Polynomial Hierarchy and Beyond 7

C /∈ Σ2CIRCUITSAT ⇔ ∀u ∈ {0, 1}n1∃v ∈ {0, 1}n2C(u, v) = 0 (2)

Let m be the length of the description of the circuit C and n = (n1 + n2) to be the
number of variables of C.

Let us now fix a specific u = u1. Now, we can define a new parametric problem L
′

as follows,
〈C, u1, 1n2〉 ∈ L

′
⇔ ∀v ∈ {0, 1}n2C(u1, v) = 1 (3)

〈C, u1, 1n2〉 /∈ L
′
⇔ ∃v ∈ {0, 1}n2C(u1, v) = 0 (4)

It is clear from the above definition that L
′

is a parametric problem in CoNP (of instance
size≤ O(m+n1)) and any instance of L

′
can be polynomial-time reduced to an instance

of CIRCUIT-UNSAT, say C
′

(because CIRCUIT-UNSAT, the parametric problem of all
unsatisfiable circuits, is CoNP-Complete with respect to W -reduction). As shown in
Proposition 2, the size of the witness will be preserved in this reduction.

C ∈ Σ2CIRCUITSAT ⇔ ∃u1〈C, u1〉 ∈ L
′

and 〈C, u1〉 ∈ L
′ ⇔ C

′ ∈ CIRCUIT-
UNSAT. Here the instance length |C| = m and |C ′ | = poly(m). poly(.) is denoting just
an arbitrary polynomial function.

Let g be the polynomial-time reduction used to obtain C
′

from C and u1. Namely,
C

′
= g(C, u1). If CIRCUITSAT is non-uniformly compressible within NP, using the

same reduction we can non-uniformly compress CIRCUIT-UNSAT within CoNP. That
means we can reduce a CIRCUIT-UNSAT instance into another CIRCUIT-UNSAT
instance in polynomial time, as CIRCUIT-UNSAT is CoNP-complete with respect to
W -reduction. Assume this polynomial time compression function be f1 with polynomial
size advice. So we will use f1 to compress CIRCUIT-UNSAT instance C

′
to another

CIRCUIT-UNSAT instance, say C
′′

, of size poly(n2).
Therefore, C

′ ∈ CIRCUIT-UNSAT ⇔ C
′′

= f1(C
′
, w1) = f1(g(C, u1), w1) ∈

CIRCUIT-UNSAT, where |C ′′ | = poly(n2) and the string w1 (of size at most poly(m))
is capturing the notion of polynomial size advice. Here the compression function f1 is
computable in polynomial (in m) time.

Now, if CIRCUITSAT is non-uniformly compressible within NP so is SAT as SAT
is W -reducible to CIRCUITSAT. Now, OR-SAT is also non-uniformly compressible
as OR-SAT W -reduces to SAT. It can be proved from Theorem 1 that if OR-SAT is
non-uniformly compressible then CoNP ⊆ NP/poly, as mentioned in the beginning of
this section.

Now combining the statements in the above paragraph we can say that if CIRCUIT-
SAT is non-uniformly compressible within NP then CoNP ⊆ NP/poly. So we can now
reduce our parametric problem in CoNP (here CIRCUIT-UNSAT) instance C

′′
to a NP-

complete parametric problem instance using polynomial size advice. As CIRCUITSAT
is a NP-complete with respect to W -reduction, we can reduce C

′′
to a CIRCUITSAT

instance, say C
′′′

, using a polynomial time computable function f2 with advice w2. In
the above procedure, the length of the instance definitely will not increase by more than
a polynomial factor. So clearly |C ′′′ | = poly(n2).

So from the above arguments we can say that,
C

′ ∈ CIRCUIT-UNSAT ⇔ C
′′′

= f2(C
′′

, w2) = f2(f1(g(C, u1), w1), w2) ∈
CIRCUITSAT, where |C ′′′ | = poly(n2) and the string w2 (of size at most poly(n2)) is
capturing the notion of polynomial size advice which arises in the proof of Theorem 1.
Here the function f2 is computable in polynomial (in n2) time.

8 Chiranjit Chakraborty Rahul Santhanam

Now we define a new circuit C1 as follows. C1 is a non-deterministic circuit whose
non-deterministic input is divided into two strings: u of length n1 and v of length
poly(n2). Given its non-deterministic input, C1 first computes C

′′′
= f2((f1(g(C, u),

w1), w2). This can be done in polynomial size in m since the functions f2, f1 and g are
all polynomial-time computable andC,w1 andw2 are all fixed strings of size polynomial
in m. It then uses its input v as non-deterministic input to C ′′′ and checks if v satisfies
C ′′′. This can be done in polynomial-size since the computation of a polynomial-size
circuit can be simulated in polynomial time. If so, it outputs 1, else it outputs 0. Now we
have

C ∈ Σ2CIRCUITSAT ⇔ ∃u ∈ {0, 1}n1∃v ∈ {0, 1}n2C1(u, v) = 1 (5)

C /∈ Σ2CIRCUITSAT ⇔ ∀u ∈ {0, 1}n1∀v ∈ {0, 1}n2C1(u, v) = 0 (6)

The key point is that we have reduced our original Σ2CIRCUITSAT question to a
CIRCUITSAT question, without a super-polynomial blow-up in the witness size. This
allows us to apply the compressibility hypothesis again. Also, note that C1 is computable
from C in polynomial size.

After that, using the compressibility assumption for CIRCUITSAT, we can non-
uniformly compress C1 to an instance C2 of size poly(n1 + n2) of a parametric problem
in NP. Our final compression procedure just composes the procedures deriving C1 from
C and C2 from C1, and since each of these can be implemented in polynomial size, our
compression of the original Σ2CIRCUITSAT instance is a valid non-uniform instance
compression. Thus it is shown that if CIRCUITSAT is non-uniformly compressible
within NP, Σ2CIRCUITSAT is also non-uniformly compressible within NP. ut

3.2 Instance Compression for higher levels

Now we are going to extend the idea for higher classes. It is not difficult to see, if
Σ2CIRCUITSAT is non-uniformly compressible within NP, Π2CIRCUITSAT is non-
uniformly compressible within CoNP. We will use this in the following theorem.

Theorem 3. If CIRCUITSAT is non-uniformly compressible within NP, thenΣiCIRCUITSAT
is non-uniformly compressible within NP for all i > 1.

Proof. Suppose C is a ΣiCIRCUITSAT instance. So from the definition we can say that,
C ∈ ΣiCIRCUITSAT⇔ ∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni C (u1 ,
. . . , ui) = 1,
where Qi denotes ∃ or ∀ depending on whether i is odd or even respectively.

Now, suppose CIRCUITSAT is compressible. To prove ΣiCIRCUITSAT is compress-
ible for all i > 1, we have to check the base case at the first place, that is for the case
when i = 2. From the Theorem 1, we can say that if CIRCUITSAT is non-uniformly
compressible within NP, Σ2CIRCUITSAT is also non-uniformly compressible within
NP. So the statement is true for base case.

Now suppose the statement is true for all i ≤ k. We have to prove that the statement
is true for i = k + 1 as well. So, assuming CIRCUITSAT is non-uniformly compressible
within NP implies ΣiCIRCUITSAT is non-uniformly compressible within NP for all

Instance Compression for the Polynomial Hierarchy and Beyond 9

i ≤ k, we have to prove that Σk+1CIRCUITSAT is also non-uniformly compressible
within NP.

Suppose C is a Σk+1CIRCUITSAT instance of size m. So from the definition we
can say that,
C ∈ Σk+1CIRCUITSAT
⇔ ∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qk+1 uk+1 ∈ {0, 1}nk+1 C (u1 , . . . , uk+1) =
1,
where Qk+1 denotes ∃ or ∀ depending on whether (k + 1) is odd or even respectively.

Now, let us fix u1 to u
′
. So now we can define a new parametric problem as follows,

〈C, u′
, 1n2+n3+...+(nk+1)〉 ∈ L′ ⇔∀ u2 ∈ {0, 1}n2 . . . Qk+1 uk+1 ∈ {0, 1}nk+1 C (u

′
,

u2 , . . . , uk+1) = 1,
where Qk+1 denotes ∃ or ∀ depending on whether (k + 1) is odd or even respectively.

So it is clear from the above definition that L
′

is a parametric problem in Πp
k (of

instance size ≤ O(m+ n1)) and any instance of L
′

can be polynomially reduced to an
instance of ΠkCIRCUITSAT (because ΠkCIRCUITSAT is Πp

k -Complete with respect to
W -reduction). As shown in Proposition 2, the size of the witness will be preserved in this
reduction. So this reduction is essentially a W -reduction. Suppose this Πp

k CIRCUITSAT
instance is C

′
.

So from the above arguments,
C ∈ Σk+1CIRCUITSAT
⇔ ∃u′〈C, u

′〉 ∈ L′
and 〈C, u

′〉 ∈ L′

⇔ C
′ ∈ ΠkCIRCUITSAT

Here the instance length |C| =m and |C ′ | = poly(m). poly(.) is denoting just an arbitrary
polynomial function.

Suppose g is the function to obtain C
′

from C, running in polynomial (in m) time.
Namely, C

′
= g(C, u

′
).

From the induction hypothesis we can say, ΣkCIRCUITSAT is non-uniformly com-
pressible within NP. So any ΠkCIRCUITSAT instance, say C

′
is non-uniformly com-

pressible to a CoNP instance as ΠkCIRCUITSAT = CoΣkCIRCUITSAT. After com-
pression suppose the instance is C

′′
which, without loss of generality, can be taken as a

CIRCUIT-UNSAT instance as it is a complete for CoNP with respect to W -reduction.
Here |C ′′ | = poly(n

′
) where n

′
= (n2 + n3 + . . .+ nk+1)

So, C
′ ∈ ΠkCIRCUITSAT⇔ C

′′ ∈ CIRCUIT-UNSAT.
Assume f1 to be the above compression function. So from the above arguments we

can say,
C

′ ∈ ΠkCIRCUITSAT⇔ C
′′

= f1(C
′
, w1) = f1(g(C, u

′
), w1) ∈ CIRCUIT-UNSAT,

where |C ′′ | = poly(n
′
) and the stringw1 (of size at most poly(m)) is capturing the notion

of polynomial size advice. Here the compression function f1 is running in polynomial
(in m) time.

Now, if CIRCUITSAT is non-uniformly compressible within NP so is SAT as SAT
is W -reduced to CIRCUITSAT. Now, OR-SAT is also non-uniformly compressible
as OR-SAT W -reduces to SAT. It can be proved from Theorem 1 that if OR-SAT is
non-uniformly compressible then CoNP ⊆ NP/poly, as mentioned in the beginning of
this section.

10 Chiranjit Chakraborty Rahul Santhanam

Now combining the above statements we can say that if CIRCUITSAT is non-
uniformly compressible within NP then CoNP ⊆ NP/poly. So we can now reduce
our instance of parametric problem in CoNP (here CIRCUIT-UNSAT), C

′′
into an

instance of a parametric problem which is NP-complete, using polynomial size advice.
As CIRCUITSAT is a NP-complete with respect to W -reduction, we can reduce C

′′
to a

CIRCUITSAT instance, say C
′′′

, using a polynomial time computable function f2 with
advice w2. In the above procedure, the length of the instance definitely will not increase
by more than a polynomial factor. So clearly |C ′′′ | = poly(n′).

So from the above arguments we can say that,
C

′ ∈ΠkCIRCUITSAT⇔ C
′′′

= f2(C
′′

, w2) = f2(f1(g(C, u
′
), w1), w2) ∈ CIRCUIT-

SAT, where |C ′′′ | = poly(n
′
) and the string w2 (of size at most poly(n

′
)) is capturing

the notion of polynomial size advice which arises in the proof of Theorem 1. Here the
compression function f2 is running in polynomial (in n

′
) time.

Now we define a new circuit C1 as follows. C1 is a non-deterministic circuit whose
non-deterministic input is divided into two strings: u1 of length n1 and v of length
poly(n

′
). Given its non-deterministic input, C1 first computes C

′′′
= f2((f1(g(C, u1),

w1), w2). This can be done in polynomial size in m since the functions f2, f1 and g are
all polynomial-time computable andC,w1 andw2 are all fixed strings of size polynomial
in m. It then uses its input v as non-deterministic input to C ′′′ and checks if v satisfies
C ′′′. This can be done in polynomial-size since the computation of a polynomial-size
circuit can be simulated in polynomial time. If so, it outputs 1, else it outputs 0.

Now we have,

C ∈ Σk+1CIRCUITSAT ⇔ ∃u1 ∈ {0, 1}n1 ∃v ∈ {0, 1}n
′

C1 (u1, v) = 1 (7)

C /∈ Σk+1CIRCUITSAT ⇔ ∀u1 ∈ {0, 1}n1 ∀v ∈ {0, 1}n
′

C1 (u1, v) = 0 (8)

The key point is that we have reduced our original Σk+1CIRCUITSAT question to a
CIRCUITSAT question, without a super-polynomial blow-up in the witness size. This
allows us to apply the compressibility hypothesis again. Also, note that C1 is computable
from C in polynomial size.

After that, using the compressibility assumption for CIRCUITSAT, we can non-
uniformly compress C1 to an instance C2 of size poly(n1 + n

′
) i.e. poly(n1 + n2 + . . . +

nk+1) of a parametric problem in NP. Our final compression procedure just composes
the procedures deriving C1 from C and C2 from C1, and since each of these can be
implemented in polynomial size, our compression of the original Σk+1CIRCUITSAT
instance is a valid non-uniform instance compression.

So using mathematical induction we can say if CIRCUITSAT is non-uniformly
compressible within NP, ΣiCIRCUITSAT is also non-uniformly compressible within
NP for all i > 1. ut

Corollary 1. If CIRCUITSAT is compressible within NP, ΠiCIRCUITSAT is also
non-uniformly compressible within NP for all i ≥ 1.

As ΠiCIRCUITSAT W -reduces to Σi+1CIRCUITSAT, the above Corollary is trivial.
Theorems 2 and 3 require an assumption on non-uniform compressibility in NP. But we
don’t need this for compressibility of a problem higher in the hierarchy.

Instance Compression for the Polynomial Hierarchy and Beyond 11

Proposition 5. If Σ3CIRCUITSAT is compressible, then ΣiCIRCUITSAT is compress-
ible for any i > 3.

Proof. This proposition follows from the fact that Σ3CIRCUITSAT being compressible
implies that SAT is compressible. So, by the result of Fortnow and Santhanam (Theorem
1), PH collapses to Σp

3 . As a result, every parametric problem in the class Σp
i W -

reduces to Σ3CIRCUITSAT, as Σ3CIRCUITSAT is complete for the class Σp
3 with

respect to W -reduction. Hence, Σ3CIRCUITSAT being compressible, ΣiCIRCUITSAT
is compressible for any i > 3. ut

4 Instance Compression for PSPACE

In this section, we show that QBCNFSAT is unlikely to be compressible, even non-
uniformly - compressibility of QBCNFSAT implies that PSPACE collapses to the third
level of the Polynomial Hierarchy. The strategy we adopt is similar to that in Theorem 1
where it is shown that compressibility of SAT implies NP ⊆ CoNP/poly. To show their
result, they used the OR-SAT problem, which is W -reducible to SAT ([19]). Thus an
incompressibility result for the OR-SAT problem translates directly to a corresponding
result for SAT.

We similarly defined OR-QBCNFSAT problem in Section 2. But it is not that
easy to show that OR-QBCNFSAT W -reduces to QBCNFSAT. There are a couple of
different issues. First the quantifier patterns for the formulae {φi}, i = 1 . . .m might all
be different. This is easily taken care of, because we can assume quantifiers alternate
between existential and universal - this just blows up the number of variables for any
formula by a factor of at most 2. The more critical issue is that nothing as simple as
the OR works for combining formulae. ∃x∀yφ1(x, y) ∨ ∃x∀yφ2(x, y) is not equivalent
to ∃x∀y(φ1(x, y) ∨ φ2(x, y)). We are forced to adopt a different strategy as explained
below. Later we have found similar strategy is used in [19], though it was in the context
of OR-SAT, not OR-QBCNFSAT.

Lemma 1. OR-QBCNFSAT is W-reducible to QBCNFSAT

Proof. Let 〈{φi}, 1n〉 be an OR-QBCNFSAT instance of length m. Assume without
loss of generality that each φi has exactly n variables and that the quantifiers alternate
starting with existential quantification over x1, continuing with quantification over x2, x3

etc. We construct in polynomial time in m an equivalent instance of QBCNFSAT with
at most poly(n) variables and of size poly(m). We first take care of quantifications. The
quantifier patterns for the formulae {φi}, i = 1 . . .m might all be different. But we
can assume quantifiers alternate between existential and universal - this just blows up
the number of variables for any formula by a factor of at most 2. Then we check if the
number of input formulae is greater than 2n or not. If yes, we solve the original instance
by brute force search and output either a trivial true formula or a trivial false formula
depending on the result of the search. If not, then we define a new formula with dlog(m)e
additional variables y1, y2 . . . yk. We identify each number between 1 and m uniquely
with a string in {0, 1}k. Now we define the formula ψi corresponding to φi as follows.
Let the string wi ∈ {0, 1}k correspond to the number i. Then ψi = z1 ∧ z2 . . .∧ zk ∧φi,

12 Chiranjit Chakraborty Rahul Santhanam

where zr = yr if wr = 1 and the complement of yr otherwise. The output formula ψ
starts with existential quantification over the y variables followed by the standard pattern
of quantification over the x variables followed by the formula which is the OR of all
ψi’s, i = 1 . . .m. So ψ will be as follows:
ψ = ∃ y1 ∃ y2 . . . ∃ yk Q1 x1 Q2 x2 . . . Qn xn (ψ1 ∨ ψ2 ∨ . . . ∨ ψm).
Where Qi’s are the quantifications of the xi’s as before. It is not that hard to check that
ψ is valid iff one of the φi’s is. ut

Theorem 4. If QBCNFSAT is compressible, then PSPACE ⊆ NP/poly, and hence
PSPACE = Σp

3 .

Proof. Using Lemma 1, if QBCNFSAT is compressible, OR-QBCNFSAT is also
compressible. From the proof of Theorem 1 we can say for any parametric problem
L for which OR-L (section 2) is compressible, lies in CoNP/poly. Thus, since the
parametric problem QBCNFSAT is PSPACE-complete and PSPACE is closed under
complementation, a compression for OR-QBCNFSAT implies PSPACE is in NP/poly.
Hence by the result of Yap [3], it follows that PH collapses to the third level. Combining
this with the Karp-Lipton theorem for PSPACE ([14], Theorem 4.1), we have that
PSPACE = Σp

3 . ut

5 Succinct IP and PSPACE

IP ([17, 11]) is the class of problems solvable by an interactive proof system. An in-
teractive proof system consists of two machines, a Prover, P , which presents a proof
that a input string is a member of some language, and a V erifier, V , that checks
that the presented proof is correct. Now we are extending this idea of IP to Succinct
IP, where the total number of bits communicated between prover and the verifier is
polynomially bounded in parameter length.

We define V erifier to be a function V that computes its next transmission to the
Prover from the message history sent so far. The function V has three inputs:
(1) Input String, (2) Random input and (3) Partial message history

m1#m2# . . .#mi is used to represent the exchange of messages m1 through mi

between P and V . The Verifier’s output is either the next message mi+1 in the sequence
or accept or reject, designating the conclusion of the interaction. Thus V has the function
from V : Σ∗ × Σ∗ × Σ∗ → Σ∗ ∪ { accept, reject }.
The Prover is a party with unlimited computational ability. We define it to be a function
P with two inputs:
(1) Input String and (2) Partial message history
The Prover’s output is the next message to the Verifier. Formally, P : Σ∗ × Σ∗ → Σ∗.
Next we define the interaction between Prover and the Verifier. For particular input string
w and random string r, we write (V ↔ P)(w, r) = accept if a message sequence m1 to
mk exists for some k whereby

1. for 0 ≤ i < k, where i is an even number, V (w, r, m1#m2# . . .#mi) = mi+1;
2. 0 < i < k, where i is an odd number, P (w, m1#m2# . . .#mi) = mi+1; and
3. the final message mk in the message history is accept.

Instance Compression for the Polynomial Hierarchy and Beyond 13

In the definition of the class Succinct IP, the lengths of the Verifier’s random input
and each of the messages exchanged are p(n) for some polynomial p that depends only
on the Verifier. Here n is the parameter length of input instance. Besides, total bits of
messages exchanged is at most p(n) as well.

Succinct IP: A parametric problem L (⊆ {〈x, 1n〉|x ∈ {0, 1}∗, n ∈ N}) is in Suc-
cinct IP if there exist some polynomial time function V and arbitrary function P ,
with total poly(n) many bits of messages communicated between them and for every
function P̃ and string w,
1. w ∈ L implies Pr[V ↔ P] ≥ 2/3, and
2. w /∈ L implies Pr[V ↔ P̃] ≤ 1/3.

Here poly(n) denotes some polynomial that depends only on the Verifier and n is
the parameter length of input instance w.

We know that QBFORMULASAT is in IP, as IP = PSPACE ([4, 2]). But we can even
prove something more. Not only for QBCNFSAT, we can construct Succinct IP
protocol for QBFORMULASAT as well. To prove that we are basically going to adapt
the formal proof of the part, PSPACE ⊆ IP ([4, 2, 13]).

Proposition 6. QBFORMULASAT ∈ SUCCINCT IP

Proof. The key idea is to take an algebraic view of Boolean formulae by representing
them as polynomials. We are considering the inputs are from some finite field F. We can
see that 0, 1 can be thought of both as truth values and as elements of F. Thus we have
the following correspondence between formulas and polynomials when the variables
take 0/1 values:
x ∧ y↔ X . Y
x̄↔ 1 - X
x ∨ y↔ X*Y = 1 - (1 - X)(1 - Y)
So, if there is a Boolean formula φ(x1, x2, . . . , xn) of length m, we can easily convert
that into a polynomial p of degree at most m following the rules described above.

Let the given formula be,
Ψ = Q1 x1 Q2 x2 Q3 x3 . . . Qn xn φ(x1, . . . , xn),
where the size of Ψ is m. φ is any Boolean formula over n variables.

To arithmetize Ψ we introduce some new terms in quantification and rewrite the
expression in the following manner:
Ψ

′
= Q1 x1 R x1 Q2 x2 R x1 R x2 Q3 x3 R x1 R x2 R x3 . . . Qn xn R x1 R x2 . . .

R xn φ(x1, . . . , xn),
Here R is introduced to enable linearize operation on the polynomial as explained later.
We now rewrite this Ψ

′
as follows : Ψ

′
= S1 x1 S2 x2 S3 x3 . . . Sk xk [φ],

where each Si ∈ { ∃,∀, R }. We are going to define R very soon. We can see that value
of k can be at most O(n2).

For each i ≤ k we define the function fi. We define fk(x1, x2,. . . , xn) to be the
polynomial p [i.e. p(x1, x2, . . . , xn)] obtained by arithmetization of φ. For i < k we
define fi in terms of fi+1:

Si+1 =∀: fi(. . .) = fi+1(. . . , 0).fi+1(. . . , 1);
Si+1 =∃: fi(. . .) = fi+1(. . . , 0)*fi+1(. . . , 1);

14 Chiranjit Chakraborty Rahul Santhanam

Si+1 =R: fi(. . . , a) = (1-a)fi+1(. . . , 0) + afi+1(. . . , 1).
Here we reorder the inputs of the functions in such a way that variable yi+1 is always

the last argument. If S is ∃ or ∀, fi has one fewer input variable than fi+1 does. But if S
is R, both of them have same number of arguments. To avoid complicated subscripts,
we use “. . .” which can be replaced by a1 through aj for appropriate values of j after
the reordering of the inputs.

We can observe that operation R on polynomial doesn’t change their values for
Boolean inputs. So f0() is still the truth value of Ψ . Now we can observe that these Rx
operation produces a result that is linear in x. We added Rx1 Rx2 . . . Rxi after Qixi

in Ψ
′

in order to reduce the degree of each variable to 1 prior to the squaring due to
arithmetization of Qi.

We are now ready to describe the protocol. Here P is denoted to be the prover and V
to be the verifier as we always use.

Phase 0: [P sends f0()]
P → V : P sends f0() to V . V checks that f0() = 1 and rejects if not.

Progressing similarly,

Phase i: [P persuades V that fi−1(r1, . . .) is correct if fi(r1, . . . , r) is correct]
P → V : P sends the coefficients of fi(r1, . . . , z) as a polynomial in z. (Here r1 . . .
denotes a setting of the variables to the previously selected random values r1, r2, . . .)
V uses these coefficients to evaluate fi(r1, . . . , 0) and fi(r1, . . . , 1). Then it checks that
the polynomial degree is at most 2 and that these identities hold:

fi−1(r1, . . .) =
{
fi(r1, . . . , 0).fi(r1, . . . , 1) if Si = ∀
fi(r1, . . . , 0) ∗ fi(r1, . . . , 1) if Si = ∃

and

fi−1(r1, . . . , r) = (1− r)fi(r1, . . . , 0) + rfi(r1, . . . , 1) if Si = R

If either fails, V rejects.
V → P : V picks a random Boolean value r from F and sends it to P . If Si = R, this r
replaces the previous r
Then it goes to phase i+1, where P must persuade V that fi(r1, . . . , r) is correct.

Progressing similarly,

Phase k+1: [V checks directly that fk(r1, . . . , rn) is correct]
V evaluates p(r1,. . .,rn) to compare with the value V has for fk(r1, . . . , rn). If they are
equal, V accepts, otherwise V rejects. That completes the description of the protocol.

Here polynomial p is nothing but the arithmetization of the formula φ, as we have
already seen. It can be shown that the evaluation of this polynomial can be done in
polynomial time.

For the evaluation of the polynomial p for r1, . . . , rn, we will consider φ and apply
the arithmetization for the nodes individually. We will evaluate the nodes from lower
level. Before we evaluate for any node, corresponding inputs are already evaluated
and ready to use. Evaluation for each node will take constant amount of time. So total
evaluation of p for r1, . . . , rn through modified φ will take poly(m) time.

Instance Compression for the Polynomial Hierarchy and Beyond 15

Now we can try to prove that the probability of error is bounded within the limit. If
the prover P always returns the correct polynomial, it will always convince V . If P is
not honest then we are going to prove that V rejects with high probability:

Pr[V rejects] ≥ (1− d/|F|)k (9)

where d is the highest degree of the polynomial sent in each stage. We can see that value
of k can be at most O(n2). As the value of d is 2 in our case, the right hand side of the
above expression is at least (1 - 2k/|F|), which is very close to 1 for sufficiently large
values of |F|. It will be sufficient for us if |F| is bounded by a large enough polynomial
in n.

Now we are going to see how the proof works when the proves is trying to cheat for
“no” instance. In the first round, the prover P should send f0() which must be 1. Then P
is supposed to return the polynomial f1. If it indeed returns f1 then since f1(0) + f1(1)
6= f0() by assumption, V will immediately reject (i.e., with probability 1). So assume
that the prover returns some s(X1), different from f1(X1). Since the degree d non-zero
polynomial s(X1) - f1(X1) has at most d roots, there are at most d values r such that
s(r) = f1(r). Thus when V picks a random r,

Prr[s(r) 6= f1(r)] ≥ (1− d/|F|) (10)

Then the prover is left with an incorrect claim to prove in all the phases. So prover
should lie continuously. If P is lucky, V will not understand the lie. To prove equation
(9), we will use induction here. We assume the induction hypothesis to be true for
k − 1 steps, that is, the prover fails to prove this false claim with probability at least ≥
(1− d/|F|)k−1. Base case is easy to see from equation (10). Thus we have,

Pr[V rejects] ≥ (1− d/|F|).(1− d/|F|)k−1 = (1− d/|F|)k (11)

If P is not lucky, as the verifier is evaluating p() explicitly in the last stage, V will
anyway detect the lie.

Here in the description of the protocol, we can see that the degree of the polyno-
mial at each stage is at most 2. So we need just constant number of coefficients for
encoding such polynomials. coefficients are from the field F which is of size poly(m).
So O(log(poly(m))) i.e. O(poly(n)) size messages are sent in any phase. Even, it will
be sufficient for us if |F| is bounded by a large enough polynomial in n. Number of
such phases are bounded by (k+1) which is O(n2). So we have constructed a Succinct
Interactive proof protocol for QBFORMULASAT. ut

Issue in finding Succinct IP protocol for QBCSAT: In case of QBCSAT, similar
arithmetization technique will give polynomial of degree much larger size, actually
exponential in m. Now, to reduce the error, we have to use Field F of larger size,
basically exponential in m. This will give us each coefficients of the polynomials
exchanged between prover and verifier to be of size log(epoly(m)), i.e. poly(m),
which means the protocol is not succinct.

6 Future Directions

There are various possible directions. Suppose CIRCUITSAT is compressible within a
class C. Here we have considered C to be the class NP and got some interesting results.

16 Chiranjit Chakraborty Rahul Santhanam

For any general class C we know from Theorem 1 that the immediate consequence is the
collapse of PH at third level. But it is still not known how our results for compression at
second level of Polynomial Hierarchy will be affected for compression into an arbitrary
class C. Besides, one could try to work under the weaker assumption that SAT or
OR-SAT or OR-CIRCUITSAT is compressible instead of CIRCUITSAT. We also don’t
know whether there are similar implications for probabilistic compression where we
allow certain amount of error in compression. One could also try to find a Succinct IP
protocol for QBCSAT to show Succinct IP = PSPACE or try to find some negative
implications of such a protocol existing for QBCSAT.

References
1. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, ’Alternation’, Journal of the ACM, Volume

28, Issue 1, pp. 114-133, 1981.
2. A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, 1992.
3. C. K. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical

Computer Science, 26: 287-300, 1983.
4. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof

systems. Journal of the ACM, 39(4):859-868, 1992.
5. D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applications.

In Proceedings if the 47th Annual IEEE Symposium on Foundations of Computer Science,
pages 719-728, 2006.

6. H. Buhrman, J. M. Hitchcock: NP-Hard Sets are Exponentially Dense Unless NP is contained
in coNP/poly. Elect. Colloq. Comput. Complex. (ECCC) 15(022): 2008.

7. H. L. Bodlaender, R. G. Downey, M. R. Fellows, D. Hermelin: On problems without polyno-
mial kernels. J. Comput. Syst. Sci. 75(8): 423-434 2009.

8. J. Flum and M. Grohe. Describing parameterized complexity classes. Information and Com-
putation 187, 291-319 2003.

9. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
10. K.A. Abrahamson, R.G. Downey, and M.R. Fellows. Fixed-parameter tractability and com-

pleteness IV: On completeness for W[P] and PSPACE analogs. Annals of pure and applied
logic, 73:235-276, 1995.

11. L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and a hierarchy of
complexity classes. Journal of Computer and System Sciences, 36: p.254-276. 1988.

12. L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for
NP. Journal of Computer and System Sciences, 77(1):91-106, January 2011. Special issues
celebrating Karp’s Kyoto Prize.

13. M. Sipser. Introduction to the Theory of Computation.Course Technology, 2nd edition, 2005.
14. R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform complexity

classes. Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, pp.
302-309, doi:10.1145/800141.804678, 1980.

15. R. Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
16. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Univer-

sity Press, 2009.
17. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge complexity of interactive proof-

systems. Proceedings of 17th ACM Symposium on the Theory of Computation, Providence,
Rhode Island. 1985, pp. 291-304.

18. S. Kratsch, M. Wahlstrom: Preprocessing of Min Ones Problems: A Dichotomy. ICALP (1)
2010: 653-665.

19. Y. Chen, J. Flum, M. Muller. Lower bounds for kernelizations. CRM Publications, Nov. 2008.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

