
Approximate Graph Isomorphism⋆

V. Arvind1, Johannes Köbler2, Sebastian Kuhnert2, Yadu Vasudev1

1 The Institute of Mathematical Sciences, Chennai, India
{arvind,yadu}@imsc.res.in

2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
{koebler,kuhnert}@informatik.hu-berlin.de

Abstract. We study optimization versions of Graph Isomorphism. Given
two graphs G1, G2, we are interested in finding a bijection π from V (G1)
to V (G2) that maximizes the number of matches (edges mapped to
edges or non-edges mapped to non-edges). We give an nO(logn) time
approximation scheme that for any constant factor α < 1, computes an
α-approximation. We prove this by combining the nO(logn) time additive
error approximation algorithm of Arora et al. [Math. Program., 92, 2002]
with a simple averaging algorithm. We also consider the corresponding
minimization problem (of mismatches) and prove that it is NP-hard to
α-approximate for any constant factor α. Further, we show that it is
also NP-hard to approximate the maximum number of edges mapped to
edges beyond a factor of 0.94.
We also explore these optimization problems for bounded color class
graphs which is a well studied tractable special case of Graph Isomor-
phism. Surprisingly, the bounded color class case turns out to be harder
than the uncolored case in the approximate setting.

1 Introduction

The graph isomorphism problem (GI for short) is a well-studied computational
problem: Formally, given two graphs G1 and G2 on n vertices, decide if there
exists a bijection π : V (G1) → V (G2) such that (u, v) ∈ E1 iff (π(u), π(v)) ∈ E2.
It remains one of the few problems that are unlikely to be NP-complete and for
which no polynomial time algorithm is known.

Though the fastest known graph isomorphism algorithm for general graphs
has running time 2O(

√
n logn) [5], polynomial-time algorithms are known for

many interesting subclasses, e.g. bounded degree graphs [18], bounded genus
graphs [20], and bounded eigenvalue multiplicity graphs [4].

Motivation and Related Work. In this paper we study a natural optimiza-
tion problem corresponding to the graph isomorphism problem where the ob-
jective is to compute a bijection that maximizes the number of edges getting
mapped to edges and non-edges getting mapped to non-edges. The main moti-
vation for this study is to explore if approximate isomorphisms can be computed

⋆ An abbreviated version of this paper appears in the proceedings of MFCS 2012.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 78 (2012)



efficiently, given that the best known algorithm for computing exact isomor-
phisms has running time 2O(

√
n logn). The starting point of our investigation is a

well-known article of Arora, Frieze and Kaplan [2] in which they study approx-
imation algorithms for a quadratic assignment problem based on randomized
rounding. Among the various problems they study, they also observe that ap-
proximate graph isomorphisms between n vertex graphs can be computed up
to additive error εn2 in time nO(logn/ε2). We show that this algorithm can be
modified to obtain a multiplicative error approximation scheme for the problem.
However, when we consider other variants of approximate graph isomorphism,
they turn out to be much harder algorithmically.

To the best of our knowledge, the only previous theoretical study of approx-
imate graph isomorphism is this work of Arora, Frieze and Kaplan [2]. However,
the problem of approximate isomorphism and more general notions of graph
similarity and graph matching has been studied for several years by the pattern
matching community; see e.g. the survey article [7]. That line of research is not
really theoretical. It is based on heuristics that are experimentally studied with-
out rigorous proofs of approximation guarantees. Similarly, the general problem
of graph edit distance [9] also encompasses approximate graph isomorphism.
Both graph matchings and graph edit distance give rise to a variety of natural
computational problems that are well studied.

Optimization versions of graph isomorphism. Let G1 = (V1, E1) and
G2 = (V2, E2) be two input graphs on the same number n of vertices. We consider
the following optimization problems:

– Max-EGI: Given G1, G2, find a bijection π : V1 → V2 that maximizes the
number of matched edges, i.e., me(π) = ‖{(u, v) ∈ E1 | (π(u), π(v)) ∈ E2}‖.

– Max-PGI: Given G1, G2, find a bijection π : V1 → V2 that maximizes matched
vertex pairs, i.e., mp(π) = me(π) + ‖{(u, v) /∈ E1 | (π(u), π(v)) /∈ E2}‖.

– Min-EGI: Given G1, G2, find a bijection π : V1 → V2 that minimizes mis-
matched edges, i.e., me(π) = ‖{(u, v) ∈ E1 | (π(u), π(v)) /∈ E2}‖.

– Min-PGI: Given G1, G2, find a bijection π : V1 → V2 that minimizes mis-
matched pairs, i.e., mp(π) = me(π) + ‖{(u, v) /∈ E1 | (π(u), π(v)) ∈ E2}‖.

As mentioned above, Max-PGI was studied before in [2]. Max-EGI can also be
viewed as an optimization variant of subgraph isomorphism.

Clearly, mp(π) + mp(π) =
(

n
2

)

and me(π) + me(π) = ‖E1‖. Thus solving
one of the maximization problems with additive error is equivalent to solving
the corresponding minimization problem with the same additive error. However,
the minimization problems behave differently for multiplicative factor approxi-
mations, so we study them separately.

Bounded color class graph isomorphism. A natural restriction of GI is to
vertex-colored graphs (G1, G2) where V (G1) = C1 ·∪ C2 ·∪ . . . ·∪ Cm and
V (G2) = C ′

1 ·∪ C ′
2 ·∪ . . . ·∪ C ′

m, and Ci, C
′
i contain the vertices of G1 and G2,

respectively, that are colored i. The problem is to compute a color-preserving

2



isomorphism π between G1 and G2, i.e., an isomorphism π such that for any ver-
tex u, u and π(u) have the same color. The bounded color-class version GIk of GI
consists of instances such that ‖Ci‖ = ‖C ′

i‖ ≤ k for all i. For GIk, randomized [3]
and deterministic [8] polynomial time algorithms are known.

It is, therefore, natural to study the optimization problems defined above in
the setting of vertex-colored graphs where the objective function is optimized
over all color-preserving bijections π : V1 → V2. We denote these problems as
Max-PGIk, Max-EGIk, Min-PGIk and Min-EGIk, where k is a bound on the number
of vertices having the same color.

Overview of the results. We first recall the notion of an α-approximation
algorithm for an optimization problem. We call an algorithm A for a maximiza-
tion problem an α-approximation algorithm, where α < 1, if given an instance I
of the problem with an optimum OPT(I), A outputs a solution with value A(I)
such that A(I) ≥ αOPT(I). Similarly, for a minimization problem, we say B
is a β-approximation algorithm for β > 1, if for any instance I of the prob-
lem with an optimum OPT(I), B outputs a solution with value B(I) such that
B(I) ≤ βOPT(I).

Theorem 1. For any constant α < 1, there is an α-approximation algorithm
for Max-PGI running in time nO(logn/(1−α)4).

We obtain the α-approximation algorithm for Max-PGI by combining the
nO(logn) time additive error algorithm of [2] with a simple averaging algorithm.

Next we consider the Max-EGI problem. Langberg et al. [16] proved that
there is no polynomial-time (1/2+ε)-approximation algorithm for the Maximum
Graph Homomorphism problem for any constant ε > 0 assuming that a certain
refutation problem has average-case hardness (for the definition and details of
this assumption we refer the reader to [16]). We give a factor-preserving reduction
from the Maximum Graph Homomorphism problem to Max-EGI thus obtaining
the following result.

Theorem 2. There is no ( 12 + ε)-approximation algorithm for Max-EGI for any
constant ε > 0 under the same average-case hardness assumption of [16].

We observe that unlike in the case of GIk, where polynomial time algorithms
are known [3,8,19], in the optimization setting, these problems are computa-
tionally harder. We prove the following theorem by giving a factor-preserving
reduction from Max-2Lin-2 (e.g. see [15]) to Max-PGIk and Max-EGIk.

Theorem 3. For any k ≥ 2, Max-PGIk and Max-EGIk are NP-hard to approxi-
mate beyond a factor of 0.94.

Since, assuming the Unique Games Conjecture (UGC for short) of Khot [14],
it is NP-hard to approximate Max-2Lin-2 beyond a factor of 0.878 [15], the same
bound holds under UGC forMax-PGIk andMax-EGIk by the same reduction. Since
Max-PGIk and Max-EGIk are easily seen to be instances of generalized 2CSP, they

3



have constant factor approximation algorithms, for a constant factor depending
on k. In fact, it turns out that Max-EGI2 and Max-PGI2 are tightly classified by
Max-2Lin-2 with almost matching upper and lower bounds (details are given in
Section 2). However, we do not know of similar gap-preserving reductions from
general unique games (with alphabet size more than 2) to Max-PGIk or Max-EGIk
for larger values of k.

The following results show that the complexity of Min-PGI and Min-EGI is
significantly different from Max-PGI and Max-EGI.

Theorem 4. There is no polynomial time approximation algorithm for Min-PGI
with any multiplicative approximation guarantee unless GI ∈ P.

Theorem 5. Min-PGI does not have a PTAS unless P = NP.

Theorem 6. There is no polynomial time approximation algorithm for Min-EGI
with any multiplicative approximation guarantee unless P = NP.

Finally, we turn our attention to the minimization problems Min-PGIk and
Min-EGIk on bounded color-class graphs. We prove that Min-PGIk is as hard as
the minimization version of Max-2Lin-2, known in literature as the Min-Uncut
problem, and that Min-EGI4 is inapproximable for any constant factor unless
P = NP by reducing the Nearest Codeword Problem (NCP) to it.

Outline of the paper. Our results on maximization problems are in Section 2,
while Section 3 contains our results on the corresponding minimization problems.
Section 4 concludes with some open problems.

2 Maximizing the number of matches

We first observe that computing optimal solutions to Max-PGI is NP-hard via a
reduction from Clique.

Lemma 7. Computing optimal solutions to Max-PGI instances is NP-hard.

Proof. Let (G, k) be an instance of the Clique problem. Define the graphs G1 = G
and G2 = Kk ∪ Kn−k, i.e., a k-clique and n − k isolated vertices. Let πopt be
a bijection that achieves the optimum value for this Max-PGI instance. Then G
has a k-clique if and only if mp(πopt) =

(

n
2

)

− ‖EG‖+
(

k
2

)

. ⊓⊔

Next we give a general method for combining an additive error approxima-
tion algorithm for Max-PGI with a simple averaging approximation algorithm to
design an α-approximation algorithm for Max-PGI for any constant α < 1.

Lemma 8. Suppose A is an algorithm such that for any ε > 0, given a Max-PGI
instance in form of two n-vertex graphs G1 = (V1, E1) and G2 = (V2, E2),
computes a bijection π : V1 → V2 such that mp(π) ≥ OPT− εn2 in time T (n, ε).
Then there is an algorithm that computes for each α < 1 an α-approximate
solution for any Max-PGI instance (G1, G2) in time O(T (n, (1− α)2/9) + n3).

4



Proof. Without loss of generality we can assume V1 = V2 = [n]. We denote the
number of edges in Gi by ti and the number of non-edges by ti. Notice that the
optimum for Max-PGI satisfies OPT ≤ t1+ t2. Let π : [n] → [n] be a permutation
chosen uniformly at random. Then, an easy calculation shows that the expected
number s of matched pairs is

s =
t1t2 + t1t2

(

n
2

) =

(

n
2

)

− t2
(

n
2

) t1 +
t2
(

n
2

)

((

n

2

)

− t1

)

= t1 + t2 −
2t1t2
(

n
2

) .

It is not hard to see that one can deterministically compute a permutation σ
such that mp(σ) ≥ s; we defer this detail to the end of the proof. We now show
how this can be combined with the additive error approximation algorithm A for
Max-PGI to obtain an α-approximation algorithm for Max-PGI. This combined
algorithm distinguishes two cases based on the number of edges and non-edges
in G1 and G2, respectively.
Case 1 (min{t1, t2} ≤ (1− α)

(

n
2

)

/2): In this case we compute a permutation σ
with mp(σ) ≥ s. Since

t1t2 = max{t1, t2}min{t1, t2} ≤
(

t1 + t2
)

(1− α)

(

n

2

)

/2,

it follows that

t1 + t2 − 2t1t2/

(

n

2

)

≥ α
(

t1 + t2
)

≥ αOPT.

Case 2 (min{t1, t2} > (1 − α)
(

n
2

)

/2): In this case we use algorithm A with
ε = (1 − α)2/9 to obtain a permutation π with mp(π) ≥ OPT − εn2. Since
t1 + t2 + t̄1 + t2 = 2

(

n
2

)

, either t1 + t2 ≤
(

n
2

)

or t̄1 + t2 <
(

n
2

)

. Without loss of

generality assume t1+ t2 ≤
(

n
2

)

(otherwise we interchange G1 and G2), implying

that either t1 ≤
(

n
2

)

/2 or t2 ≤
(

n
2

)

/2. Further, since the expected value of mp(π)

when π is picked at random is t1 + t2 − 2t1t2/
(

n
2

)

, it follows that for sufficiently
large n,

OPT ≥ t1 − t1t2/

(

n

2

)

+ t2 − t1t2/

(

n

2

)

≥
min{t1, t2}

2
>

1− α

4

(

n

2

)

≥
εn2

1− α
.

Hence, mp(π) ≥ OPT− εn2 ≥ αOPT.
It remains to show how a permutation which achieves at least the expected

number s of matched pairs can be computed deterministically. Suppose that
σ : [i] → [n] is a partial permutation. Let π : [n] → [n] be a random permutation
that extends σ, i.e., π(j) = σ(j) for j ∈ [i]. Let s(σ) denote the expected number
of matched pairs over random permutations π that extend σ. It is easy to see
that we can compute s(σ) in polynomial time. We do this by counting the pairs
in three parts: (a) pairs with both end points in [i], (b) pairs with both end
points in [n] \ [i], and (c) pairs with one end point in [i] and the other in [n] \ [i].
Matched pairs of type (a) depend only on σ and can be counted straightaway.

5



The expected number of matched pairs of type (b) is computed exactly as s above
(since π restricted on [n]\ [i] is random). The expected number of matched pairs

of type (c) is given by
∑

j∈[i]
njnσ(j)+(n−i−nj)(n−i−nσ(j))

n−i , where nj is the number

of neighbors of j in the graph G1 contained in [n] \ [i] and nσ(j) is the number
of neighbors of σ(j) in the graph G2 contained in [n] \ {σ(l) | l ∈ [i]}. The entire
computation of s(σ) takes O(n2) time.

Now, for k ∈ [n] \ {σ(l) | l ∈ [i]}, let σk : [i + 1] → [n] denote the extension
of σ by setting σ(i + 1) = k. Since a random extension π of σ can map i + 1
uniformly to any k ∈ [n] \ {σ(l) | l ∈ [i]} it follows that

s(σ) =
1

n− i

∑

k

s(σk),

where the summation is over all k ∈ [n] \ {σ(l) | l ∈ [i]}.
Furthermore, each s(σk) is efficiently computable, as explained above. Reusing

partial computations, we can find k such that s(σk) ≥ s(σ) in time O(n2).
Continuing thus, when we fix the permutation on all of [n] we obtain a σ
with mp(σ) ≥ s in O(n3) time. ⊓⊔

Note that any polynomial time additive ε-error algorithm for Max-PGI, i.e., an
algorithm running in time npoly(1/ε) with an additive error ≤ εn2, gives a polyno-
mial time α-approximation algorithm forMax-PGI running in time npoly(1/(1−α)).

To complete the proof of Theorem 1, we formulateMax-PGI as an instance of a
quadratic optimization problem called the Quadratic Assignment Problem (QAP
for short) as was done in [2] and use an additive error approximation algorithm
for the Quadratic Assignment Problem due to Arora, Frieze and Kaplan [2].

Given {cijkl}1≤i,j,k,l≤n, the Quadratic Assignment Problem is to find an n×n
permutation matrix x = (xij) that maximizes val(x) =

∑

i,j,k,l cijklxijxkl. An
instance of Max-PGI consisting of graphs G1 = ([n], E1) and G2 = ([n], E2) can
be naturally expressed as a QAP instance by setting

cijkl =

{

1 if (i, k) ∈ E1 and (j, l) ∈ E2 or (i, k) /∈ E1 and (j, l) /∈ E2

0 otherwise.

This ensures that val(x) = mp(πx) for all permutation matrices x with corre-
sponding permutation πx; in particular, the optimum solutions of the Max-PGI
and QAP instances achieve the same value.

There is no polynomial time α-approximation algorithm for QAP for any
α < 1 unless P = NP [2]. Arora, Frieze and Kaplan in [2] give a general quasi-
polynomial time algorithm for QAP with an additive error. Formally, they prove
the following theorem.

Theorem 9 ([2]). There is an algorithm that, given an instance of QAP where
each of the cijkl is bounded in absolute value by a constant c and given an ε, finds
an assignment to xij such that val(x) ≥ val(x∗)−εn2 where x∗ is the assignment

which attains the optimum. The algorithm runs in time nO(c2 logn/ε2).

6



Thus for the Max-PGI problem, using Theorem 9 we can find a permuta-
tion π such that mp(π) ≥ OPT − εn2 in time nO(logn/ε2). Combining this with
Lemma 8, we get an α-approximation algorithm for Max-PGI running in time
nO(logn/(1−α)4) and this completes the proof of Theorem 1.

In contrast to the quasi-polynomial time approximation scheme for Max-PGI,
we now show that Max-EGI is likely to be ( 12 + ε)-hard to approximate. To this
end, define the Maximum Graph Homomorphism problem (MGH) first studied
in [16]. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), MGH asks for a
mapping φ : V1 → V2 such that ‖{(u, v) ∈ E1 | (φ(u), φ(v)) ∈ E2}‖ is maximized.
Langberg et al. [16] proved that MGH is hard to approximate beyond a factor
of 1/2+ε under a certain average case assumption. To prove Theorem 2, we give
a factor-preserving reduction from MGH to Max-EGI.

Lemma 10. There is a polynomial time algorithm that for a given MGH in-
stance I, constructs a Max-EGI instance I ′ with OPT(I) = OPT(I ′).

Proof. Given an MGH instance I = (G1, G2), we construct the Max-EGI instance
I ′ = (G′

1, G
′
2) as follows. The graphs G′

1 and G′
2 both have vertex set V1 × V2.

For each edge (u1, v1) in the graph G1, we put a single edge between the vertices
(u1, w2) and (v1, w2) in E′

1, where w2 is an arbitrary but fixed vertex in V2, and
for each edge (u2, v2) in the graph G2, we put all ‖V1‖

2 edges between V1×{u2}
and V1 × {v2} in E′

2. It suffices to prove the following claim.

Claim. There is a mapping φ : V1 → V2 such that
∥

∥

{

(u, v) ∈ E1 | (φ(u), φ(v)) ∈

E2

}∥

∥ = k if and only if there is a permutation π : V1 × V2 → V1 × V2 such that
‖{(u, v) ∈ E′

1 | (π(u), π(v)) ∈ E′
2}‖ = k.

Given the mapping φ, we construct the permutation π as follows: For each
u1 ∈ V1, π maps the vertex (u1, w2) of G′

1 to the vertex (u1, φ(u1)) in G′
2.

The remaining ‖V1‖ · ‖V2‖ − ‖V1‖ vertices of G′
1 are mapped arbitrarily.

Then each edge (u1, v1) ∈ E1 is satisfied by φ if and only if the corresponding
edge between (u1, w2) and (v1, w2) in E′

1 is satisfied by π. This follows from the
fact that (φ(u1), φ(v1)) ∈ E2 if and only there is an edge between (u1, φ(u1))
and (v1, φ(v1)) in E′

2.
Similarly, given a permutation π between G′

1 and G′
2, we can obtain a

mapping φ : V1 → V2 achieving the same number of matched edges by letting
φ(u1) = v2, where v2 is the second component of the vertex π(u1, w2). ⊓⊔

Unlike in the case ofMax-PGI, we observe that there cannot be constant factor
approximation algorithms for Max-PGIk for all constants. This is in interesting
contrast to the fact that GI for graphs with bounded color-class size is in P. We
now prove the hardness of approximating Max-PGIk and Max-EGIk for any k ≥ 2.

We prove the hardness by exhibiting a factor-preserving reduction from
Max-2Lin-2, which is hard to approximate above a guarantee of 0.94 unless
P = NP [12]. Given a set E ⊆

{

xi + xj = b | i, j ∈ [n], b ∈ {0, 1}
}

of m equa-
tions over F2, the problem Max-2Lin-2 is to find an assignment to the variables
x1, . . . , xn that maximizes the number of equations satisfied.

The following lemma proves the factor-preserving reduction from Max-2Lin-2
to Max-PGIk. The proof for Max-EGIk is similar.

7



Lemma 11. For any k ≥ 2, there is a polynomial time algorithm that for
a given Max-2Lin-2 instance I constructs a Max-PGI2k instance I ′ such that
OPT(I ′) = (2k)2OPT(I).

Proof. Let E ⊆
{

xi + xj = b | i, j ∈ [n], b ∈ {0, 1}
}

be the equations of I. As a
first step, if there is a pair of equations xi+xj = 1 and xi+xj = 0 in E, remove
both these equations and add a new equation yi + yj = 1 on two new variables
yi and yj . Let E

′ be the new set of equations obtained. Notice that OPT(E) =
OPT(E′). We now describe the construction of the instance I ′ of Max-PGI2k.
For each variable xi, put two sets of vertices V 0

i and V 1
i with k vertices each

of color i. Let xl + xm = b be an equation in E′. In the graph G1, add a
complete bipartite graph between V 0

l and V 0
m and another complete bipartite

graph between V 1
l and V 1

m. Similarly, add the complete bipartite graph between
V 0
l and V b

m and between V 1
l and V 1⊕b

m in G2. If there is no equation in E′

connecting the variables xl and xm, add a complete bipartite graph between
the color classes l and m in G1 and the empty graph between l and m in G2.
Similarly, make all color classes cliques in G1 and independent sets in G2. The
idea is that assigning xi 7→ 0 corresponds to mapping V 0

i and V 1
i to themselves,

respectively, while assigning xi 7→ 1 corresponds to mapping V 0
i to V 1

i and vice
versa.

Given an assignment σ : [n] → {0, 1} that satisfies t of the equations in E, let

πσ be the permutation that maps the jth vertex in V b
i to the jth vertex in V

b⊕σ(i)
i .

For each satisfied equation xi + xj = b, this guarantees that all (2k)2 pairs in
(V 0

i ∪ V 1
i )× (V 0

j ∪ V 1
j ) are matched. Thus OPT(I ′) ≥ mp(πσ) = (2k)2t.

To prove the converse, let π : [n] → [n] be a permutation with mp(π) = t.
Define fi as the number of vertices in V 0

i that are mapped to V 1
i by π (it is

also the number of vertices in V 1
i mapped to V 0

i ). If fi ∈ {0, k} for all i, it is
straightforward to reverse the above construction, obtaining an assignment that
satisfies mp(π)/(2k)2 equations.

If there is an i with fi /∈ {0, k}, let mpi,j(π) denote the number of matched
pairs between color classes i and j. Thus mpi,j(π) = 4 [(k − fj)fi + (k − fi)fj ].
Define mpi(π) =

∑

j mpi,j(π), obtaining

mpi(π) =
∑

j

4 [(k − fj)fi + (k − fi)fj ]

= k2
∑

j

4

[(

1−
fj
k

)

fi
k

+

(

1−
fi
k

)

fj
k

]

.

Let mp′i(π) = (1/k2)mpi(π) =
∑

j 4
[

(1− f ′
j)f

′
i + (1− f ′

i)f
′
j

]

where f ′
i = fi/k

and f ′
j = fj/k.

Define πi,b (for b ∈ {0, 1}) as the permutation that maps the jth vertex of V b′

i

to the jth vertex of V b⊕b′

i , and that acts like π on all other color classes. Thus,
mpi(πi,0) = 4

∑

j f
′
j and mpi(πi,1) = 4

∑

j(1− f ′
j).

Since mp′i(π) is a convex combination of mpi(πi,0) and mpi(πi,1), one of the
two must be at least as large as mp′i(π). Replace π by that permutation, and
repeat this process until fi ∈ {0, k} for all i. ⊓⊔

8



This construction still works if we replace mp(π) with me(π), as for all equa-
tions xi + xj = b in E, exactly half of the possible edges between color classes
i and j are present. It follows that there is a factor-preserving reduction from
Max-2Lin-2 to Max-EGI2k.

Lemma 12. For any k ≥ 2, there is a polynomial time algorithm that for
a given Max-2Lin-2 instance I constructs a Max-EGI2k instance I ′ such that
OPT(I ′) = 2k2OPT(I).

Since there is no α-approximation algorithm for Max-2Lin-2 for α > 0.94
unless P = NP [12], Lemmas 11 and 12 complete the proof of Theorem 3 that
there is no α-approximation algorithm for Max-PGIk and Max-EGIk for α > 0.94
unless P = NP.

It is easy to see that for each constant k > 0, both Max-PGIk and Max-EGIk
are subproblems of the generalized Max-2CSP(q), where q depends on k. Thus,
both Max-PGIk and Max-EGIk have constant factor approximation algorithms
by virtue of the semidefinite programming based approximation algorithm for
Max-2CSP(q) [11]. The following lemma shows the reduction of Max-EGI2 to
Max-2CSP(2). The reduction from Max-PGIk and Max-EGIk to Max-2CSP(q) is
similar.

Lemma 13. There is a polynomial time algorithm that for two given vertex-
colored graphs G1 and G2 where each color class has size at most 2, outputs a
Max-2CSP(2) instance F = {f1, . . . , fm} where m = ‖E(G1)‖ and fi : {0, 1}

2 →
{0, 1} such that there is a color-preserving bijection π : V (G1) → V (G2) with
me(π) = k, if and only if there is an assignment which satisfies k constraints
in F .

Proof. For each color class Ci, we assign a variable xi. For an edge e from Ci to Cj

in G1, construct the function fe : {0, 1}
2 → {0, 1} over the variables xi and xj

as follows. Any Boolean assignment to the variables can be looked upon as a
permutation: If xi 7→ 0, then we have the identity permutation on Ci, otherwise
the permutation swaps the vertices of Ci. The value fe on that particular as-
signment is 1 if the permutation that it corresponds to sends the edge e to an
edge in G2. Hence there is an assignment that satisfies k constraints if and only
if there is a permutation π with me(π) = k. ⊓⊔

As the problem of Max-2CSP(2) has an approximation algorithm with a guar-
antee of 0.874 [17], this implies an approximation algorithm for Max-EGI2 with
the same guarantee and since Max-2Lin-2 is hard to approximate beyond 0.878
under UGC [15], we have almost matching upper and lower bounds for Max-EGI2
under UGC.

3 Minimizing the number of mismatches

We first consider the problems Min-PGI and Min-EGI, where the objective is to
minimize the number of mismatched pairs and edges, respectively.

9



Theorem 4. There is no polynomial time approximation algorithm for Min-PGI
with any multiplicative approximation guarantee unless GI ∈ P.

Proof. Assume that there is a polynomial time α-approximation algorithm A
for Min-PGI. If the two input graphs G1 and G2 are isomorphic, then there
is a bijection π : V1 → V2 such that mp(π) = 0, and if G1 and G2 are not
isomorphic, then mp(π) > 0 for all π. Thus, it immediately follows that G1 and
G2 are isomorphic, if and only if A outputs a bijection σ : V (G1) → V (G2) with
mp(σ) = 0 (i.e., an isomorphism). ⊓⊔

In order to show that it is unlikely that Min-PGI has a polynomial time ap-
proximation scheme, we give a gap-preserving reduction from the Vertex-disjoint
Triangle Packing problem (VTP) defined as follows: Given a graph G find the
maximum number of vertex-disjoint triangles that can be packed into G. We
look at the corresponding gap version of the VTP problem.

Gap-VTPα,β : Given a graph G and α > β,
1. Answer YES, if at least αn/3 triangles can be packed into G.
2. Answer NO, if at most βn/3 triangles can be packed into G.

It is known that VTP does not have an algorithm which when given a graph
and parameter α as input, computes a vertex-disjoint triangle packing of size
at least αOPT in time O(npoly(1/(1−α))) unless P = NP [6]. It is also known
that for a fixed value of β < 1, Gap-VTP1,β is NP-hard on graphs of bounded
degree [10,21]. Indeed, Petrank [21] gives a gap-preserving reduction from 3Sat

to 3DimensionalMatching. It is not hard to see that replacing the hyperedges
in the generated instances with triangles results in a gap-preserving reduction
to VTP, as all triangles in the resulting graph correspond to a hyperedge. All
vertices in the generated graph G have degree 4 or 6. Thus there is a β such
that Gap-VTP1,β is NP-hard on such graphs. By attaching the gadget depicted
in Fig. 1 to each vertex of degree 4 in G, we obtain a 6-regular graph G′, which
we again consider as VTP instance. Let n and n′ denote the number of vertices
in G and G′, respectively. If G can be packed with n/3 vertex-disjoint triangles,
then G′ can also be packed fully by vertex-disjoint triangles. If OPT(G) ≤ βn/3,
then OPT(G′) ≤

(

1 − 1−β
13

)

n′/3. Thus there is a β′ such that Gap-VTP1,β′ is
NP-hard on 6-uniform graphs.

Lemma 14. Given a Gap-VTPα,β instance I (a 6-uniform graph on n vertices),
in polynomial time we can find an Min-PGI instance I ′ such that

OPT(I) ≥
αn

3
⇒ OPT(I ′) ≤ 2n(2− α)

OPT(I) ≤
βn

3
⇒ OPT(I ′) ≥

2n

3
(4− β)

This reduction together with the hardness of VTP proves Theorem 5.

Proof. Let the instance I of VTP be a 6-regular graph G on n vertices. We
construct a Min-PGI instance I ′ = (G1, G2) as follows: G1 := G and G2 is a

10



u

u1

u2

v1

v2

v3

v4

w1

w2

w3

w4

w5

w6

Fig. 1. Converting a VTP instance G of degrees 4 and 6 to a 6-uniform VTP instance G′

collection of n/3 vertex-disjoint triangles on the same vertex set as G1, without
any further edges. Suppose OPT(I) ≥ αn/3, then there is a permutation π that
maps at least αn/3 triangles to vertex-disjoint triangles of G1. Hence the number
of edges of G1 that are mapped to non-edges of G2 is at most 3n−αn. Similarly,
the number of edges of G2 that are images of non-edges of G1 is at most (1−α)n.
Therefore, OPT(I ′) ≤ mp(π) ≤ 2n(2− α).

Now suppose OPT(I) ≤ βn/3. Since G1 has at most βn/3 disjoint triangles,
any permutation π maps at least (1 − β)n/3 non-edges of G1 to edges of G2.
Further, since G1 has at least 2n edges more than G2 and since already at least
(1 − β)n/3 of the edges of G2 are images of non-edges of G1, π maps at least
2n+ (1− β)n/3 edges of G1 to non-edges of G2. Thus we have

mp(π) ≥
n

3
(1− β) + 2n+

n

3
(1− β) =

2n

3
(4− β). ⊓⊔

Next we prove Theorem 6.

Theorem 6. There is no polynomial time approximation algorithm for Min-EGI
with any multiplicative approximation guarantee unless P = NP.

Proof. The theorem follows from the following reduction from the Clique prob-
lem. Given an instance (G, k) of Clique, we construct the instance of Min-EGI as
follows. G1 consists of a k-clique and n− k independent vertices, and G2 := G.
(G, k) ∈ Clique if and only if there exists a π such that in the Min-EGI problem
me(π) = 0. Hence any polynomial time approximation algorithm with a multi-
plicative guarantee for Min-EGI gives a polynomial time algorithm for Clique. ⊓⊔

The input for the Min-Uncut problem is a set E ⊆
{

xi + xj = 1 | i, j ∈ [n]
}

of m equations. The objective is to minimize the number of equations that
must be removed from the set E so that there is an assignment to the variables
that satisfy all the equations. This problem is known to be MaxSNP-hard [13],
and assuming the Unique Games Conjecture, hard to approximate within any
constant factor [14]. The following lemma shows that Min-PGIk is as hard as the
Min-Uncut problem.

11



Lemma 15. Let I be an instance of Min-Uncut and let k be a positive integer.
There is a polynomial time algorithm that constructs an instance I ′ of Min-PGI2k
such that OPT(I ′) = (2k)2OPT(I).

The proof of this lemma is similar to the proof of Lemma 11. Given a set
E ⊆

{

xi + xj = 1 | i, j ∈ [n]
}

of equations over F2, we construct an instance I ′

of Min-PGI2k exactly as described in the proof of Lemma 11. If the minimum
number of equations that have to be deleted from E to make the rest satisfiable
is at most t, then there is an assignment such that at most t equations in E are
not satisfied. This implies that there is a permutation π such that the only edges
that are mapped to non-edges and vice-versa are from at most t pairs of color
classes. The same argument as in the proof of Lemma 11 shows that for any
permutation π there is a permutation σ such that mp(σ) ≤ mp(π) and σ has
the following property: For any color class j, σ maps all the vertices in V 0

j to V 1
j

and vice-versa or is the identity mapping on that color class.
Finally we show that Min-EGI4 is hard to approximate.

Theorem 16. For any constant α > 1, there is no α-approximation algorithm
for Min-EGI4 unless P = NP.

An instance of NCP consists of a subspace S of Fn
2 given as a set of basis

vectors B = {s1, . . . , sk} and a vector v ∈ F
n
2 . The objective is to find a vector

u ∈ S which minimizes the hamming weight wt(u + v), i.e., the number of bits
where u and v differ. It is NP-hard to approximate NCP within any constant
factor [1]. The following lemma gives a reduction that transfers this hardness
to Min-EGI4.

Lemma 17. There is a polynomial time algorithm that for a given NCP in-
stance I, constructs a Min-EGI4 instance I ′ with OPT(I ′) = OPT(I).

The idea of the proof is to construct two graphs G1 and G2 such that any
vector from the given subspace S that is equal to v in all but k positions, can
be converted into a color-preserving bijection from V (G1) to V (G2) that maps
all but k edges to edges, and vice versa.

Let the instance I be given by the vector v ∈ F
n
2 and the basis B =

{s1, . . . , sm} of the subspace S, i.e., S =
{
∑m

i=1 αisi | αi ∈ {0, 1}
}

. The com-
putation of a vector u ∈ S can be thought of as n circuits C1, . . . , Cn. Thus Ci
computes the ith bit of u, i.e., Ci(α) =

⊕

j∈[m],sj,i=1 αj , where α = α1 · · ·αm is

the input and sj,i is the i
th bit of sj . We assume that these circuits contain only

parity gates with fanin 2.
We now proceed to construct a graph G from these circuits such that there

is a one-one correspondence between all assignments of values to α and all au-
tomorphisms of G. For each input bit αj , add two vertices αj,0, αj,1 of the same
color. Assigning αj = 0 corresponds to the identity permutation on this color
class, assigning αj = 1 corresponds to exchanging these vertices. We also add
two vertices of the same color for the output of each parity gate. To get the
desired correspondence between assignments and automorphisms, we use the

12



graph gadget of Torán [22]: For a parity gate with inputs x and y which com-
putes z = x⊕ y, the gadget G⊕ connects the vertices x0, x1 corresponding to x,
y0, y1 corresponding to y, and z0, z1 corresponding to z using four additional
intermediate vertices w0,0, w0,1, w1,0, w1,1 that receive the same (new) color. For
b ∈ {0, 1}, the vertex xb is connected to wb,0 and wb,1, while yb is connected
to w0,b and w1,b. The vertex wb1,b2 is connected to zb1⊕b2 for b1, b2 ∈ {0, 1}. The
construction is depicted in Figure 2.

Fig. 2. Gadget G⊕ corresponding to a parity gate z = x⊕ y [22]

The gadget is useful due to the following lemma.

Lemma 18 ([22]). There is a unique automorphism φ for G⊕ which maps xi

to xa⊕i and yi to yb⊕i for a, b, i ∈ {0, 1}. This automorphism φ maps zi to za⊕b⊕i.

Lemma 18 implies that the automorphisms of G exactly correspond to the valid
computations of the circuits C1, . . . , Cn on all possible 2m assignments. We obtain
the two graphs G1 and G2 for the Min-EGI4 instance I ′ from the graph G by
adding marker gadgets to the vertices corresponding to the output bits. Let ui,0

and ui,1 be the vertices corresponding to the output bit of Ci. For each circuit,
we add a new vertex u′

i (with a new color) in G1 as well as in G2. In G1, we
connect u′

i to ui,0 if vi = 0, and to ui,1 otherwise, whereas in G2, we connect u′
i

to ui,0 unconditionally. Now we are ready to prove Lemma 17.

Proof of Lemma 17. Given an instance of NCP specified by a subspace S gen-
erated by the basis vectors B = {s1, . . . , sm} and a vector v ∈ F

n
2 , we construct

graphs G1 and G2 as described above.
Suppose there exists a vector u =

∑m
i=1 αisi such that wt(u+ v) ≤ t. Given

this α, we construct an automorphism πα of G as follows: For each input node
of Ci, apply the automorphism on the vertices corresponding to the value of αi to
it. For each parity gate, Lemma 18 specifies how to extend an automorphism to
the output vertices of the gadget, given a permutation of the input vertices. Con-
tinuing this process for the whole graph we get an automorphism of G that maps
the vertex ui,0 to ui,ui

. We extend this automorphism to a mapping from G1

to G2, fixing the output marker vertices u′
i. The only unmatched edges are those

13



incident to the vertices u′
i with ui 6= vi, so all but at most t edges of G1 are

mapped to edges of G2.
Now suppose that there is a permutation π such that me(π) ≤ t between the

graphs G1 and G2. By construction, each parity gate is used for only one output
bit, so at most t output bits are affected by the mismatched edges. Thus we can
convert this permutation π to a new permutation σ such that me(σ) ≤ me(π)
where the only edge that is mapped to a non-edge is (ui,b, u

′
i). This is because

for each circuit Cj , starting from a permutation of its inputs, we can consistently
extend the permutation till the output gate of Cj . Thus depending on whether
the input vertices were flipped by the permutation or not, we can assign a value
to each αj and hence get a vector u ∈ S such that wt(u+v) ≤ t. This completes
the proof of the lemma and finishes the proof of Theorem 16. ⊓⊔

4 Conclusion

Although GI expressed as an optimization problem was mentioned in [2], as far
as we know this is the first time that the complexity of the other three variants
of this optimization problem has been studied. Considering the upper and lower
complexity bounds that we have proved in this paper, the following questions
seem particularly interesting.

In Theorem 1 we describe an α-approximation algorithm for Max-PGI that
runs in quasi-polynomial time. Does Max-PGI also have a polynomial time ap-
proximation scheme? Theorem 2 shows that it is unlikely that Max-EGI has an
( 12 + ε)-approximation algorithm. Does Max-EGI have a constant factor approx-
imation algorithm? We can use the Quadratic Assignment Problem to get an
additive error algorithm for it which runs in quasi-polynomial time but we do
not know whether this algorithm can be used to get a constant factor approx-
imation algorithm for Max-EGI (as was possible for Max-PGI). In the case of
vertex-colored graphs, even though we can rule out the existence of a PTAS
for Max-PGIk and Max-EGIk, it remains open whether these problems have effi-
cient approximation algorithms providing a good constant factor approximation
guarantee.
Acknowledgement. We thank the anonymous referees for their suggestions to
improve the article.

References

1. Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of
approximate optima in lattices, codes, and systems of linear equations. J. Comput.

Syst. Sci, 54(2):317–331, 1997.
2. Sanjeev Arora, Alan M. Frieze, and Haim Kaplan. A new rounding procedure for

the assignment problem with applications to dense graph arrangement problems.
Math. Program., 92(1):1–36, 2002.

3. László Babai. Monte-Carlo algorithms in graph isomorphism testing. Technical
Report 79-10, Univ. de Montréal, Dép. de mathématiques et de statistique, 1979.

14



4. László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs
with bounded eigenvalue multiplicity. In STOC, pages 310–324, 1982.

5. László Babai and Eugene M. Luks. Canonical labeling of graphs. In STOC, pages
171–183, 1983.

6. Alberto Caprara and Romeo Rizzi. Packing triangles in bounded degree graphs.
Inf. Process. Lett., 84(4):175–180, November 2002.

7. Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years
of graph matching in pattern recognition. IJPRAI, 18(3):265–298, 2004.

8. Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algo-
rithms for permutation groups. In FOCS, pages 36–41, 1980.

9. Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit
distance. Pattern Anal. Appl., 13(1):113–129, 2010.

10. Venkatesan Guruswami and Piotr Indyk. Embeddings and non-approximability of
geometric problems. In SODA, pages 537–538, 2003.

11. Venkatesan Guruswami and Prasad Raghavendra. Constraint satisfaction over a
non-boolean domain: Approximation algorithms and unique-games hardness. In
APPROX-RANDOM, pages 77–90, 2008.

12. Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859,
2001.

13. Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The
approximability of constraint satisfaction problems. SIAM J. Comput., 30(6):1863–
1920, 2000.

14. Subhash Khot. On the power of unique 2-prover 1-round games. In STOC, pages
767–775, 2002.

15. Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal
inapproximability results for max-cut and other 2-variable csps? In FOCS, pages
146–154, 2004.

16. Michael Langberg, Yuval Rabani, and Chaitanya Swamy. Approximation algo-
rithms for graph homomorphism problems. In APPROX-RANDOM, pages 176–
187, 2006.

17. Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the
max 2-sat and max di-cut problems. In IPCO, pages 67–82, 2002.

18. Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. J. Comput. Syst. Sci., 25(1):42–65, 1982.

19. Eugene M. Luks. Parallel algorithms for permutation groups and graph isomor-
phism. In FOCS, pages 292–302, 1986.

20. Gary L. Miller. Isomorphism of k-contractible graphs. a generalization of bounded
valence and bounded genus. Information and Control, 56(1/2):1–20, 1983.

21. Erez Petrank. The hardness of approximation: Gap location. Computational Com-

plexity, 4:133–157, 1994.
22. Jacobo Torán. On the hardness of graph isomorphism. SIAM J. Comput,

33(5):1093–1108, 2004.

15

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


