
Verifying Proofs in Constant Depth∗

Olaf Beyersdorff1 Samir Datta2 Andreas Krebs3

Meena Mahajan4 Gido Scharfenberger-Fabian5

Karteek Sreenivasaiah4 Michael Thomas6

Heribert Vollmer7

1School of Computing, University of Leeds, UK
2Chennai Mathematical Institute, India

3University of Tübingen, Germany
4Institute of Mathematical Sciences, Chennai, India

5Mathematical Institute, University of Potsdam, Germany
6TWT GmbH, Neuhausen a. d. F., Germany

7Institute for Theoretical Computer Science, Leibniz University Hanover, Germany

June 14, 2012

Abstract

In this paper we initiate the study of proof systems where verification
of proofs proceeds by NC0 circuits. We investigate the question which
languages admit proof systems in this very restricted model. Formulated
alternatively, we ask which languages can be enumerated by NC0 func-
tions. Our results show that the answer to this problem is not determined
by the complexity of the language. On the one hand, we construct NC0

proof systems for a variety of languages ranging from regular to NP com-
plete. On the other hand, we show by combinatorial methods that even
easy regular languages such as Exact-OR do not admit NC0 proof systems.
We also show that Majority does not admit NC0 proof systems. Finally,
we present a general construction of NC0 proof systems for regular lan-
guages with strongly connected NFA’s.

1 Introduction

The notion of a proof system for a language L was introduced by Cook and
Reckhow in their seminal paper [13] as a polynomial-time computable function

∗Research supported by a DAAD/DST grant, DFG grant VO 630/6-2, and by a grant from
the John Templeton Foundation. A preliminary version containing some of the results from
this paper appeared in the proceedings of MFCS’11 [8].

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 79 (2012)

f that has as its range exactly all strings of L. In this setting, pre-images of
f are considered as proofs for elements x ∈ L. Finding such a proof might be
difficult, but verifying the validity of a proof can be done efficiently. In the last
decades, proof systems were deeply studied in the field of proof complexity and
a rich body of results is known regarding the complexity of proofs for concrete
proof systems (cf. [22] for a survey).

Recently, there has been great interest in understanding the power of proof
systems that use stronger computational resources to verify proofs. In this
direction, Pudlák [21] studies quantum proof systems, Cook and Kraj́ıček [12]
introduce proof systems that may use a limited amount of non-uniformity (see
also [9,10]), and Hirsch and Itsykson [18,19] consider proof systems that verify
proofs with the help of randomness. In this research, the original Cook-Reckhow
framework is generalized and exciting results are obtained about the strength
and the limitations of theorem proving with respect to these powerful models.

In this work we take the opposite approach and ask for minimal resources
that suffice to verify proofs. Our starting point is the observation that ev-
ery polynomial-time computable proof system in the Cook-Reckhow model is
efficiently simulated (i.e., p-simulated) by a proof system where verification
of proofs proceeds in AC0. This immediately leads to the question whether
even less powerful computational resources are sufficient. Our investigation
focuses on NC0 circuits—Boolean circuits of constant depth over NOT gates
and bounded fan-in AND and OR gates—which constitute one of the weak-
est computational models in computational complexity. In a related approach,
Goldwasser et al. [16] recently studied proof verification by NC0 circuits in the
context of interactive proof systems.

The restrictions imposed by the NC0 model are so severe that a similar
result as the mentioned one for AC0 fails drastically. NC0-computable proof
systems are functions which shrink the input by at most a constant factor.
Thus every language with an NC0 proof system is computable in nonuniform
nondeterministic linear time. We therefore concentrate on the question which
languages admit NC0 proof systems, i.e., which languages can be enumerated
by families of NC0 circuits.

A related line of research studies NC0-computable functions in a crypto-
graphic context [5,6,14,17,20]. One of the main problems in this area is to con-
struct pseudorandom generators which are computed by NC0 circuits [5,6,14,20].
This question asks for NC0-computable functions for which the range is hard
to distinguish from a uniform distribution. In contrast, we are looking here at
the related, but possibly easier problem to understand which sets can appear
at all as the range of NC0-computable functions. We note that Cryan and Mil-
tersen [14] exhibit an NC0-computable function whose range is NP complete.
Thus, there are NP-complete languages that admit an NC0 proof system.

Our results, however, indicate that the answer to the question of the exis-
tence of such a proof system does not correlate with the computational com-
plexity of the target language. In our first contribution, we construct NC0 proof
systems for a variety of natural problems, including regular, NC1-complete, and
P-complete languages. In addition, we exhibit a general construction for NC0

2

proof systems which works for all regular languages that are accepted by a
strongly connected NFA. Our construction directly transforms this NFA into an
NC0 proof system.

Secondly, we demonstrate that there even exist regular languages which do
not admit NC0 proof systems. We also show that the canonical threshold lan-
guage Maj does not admit NC0 proof systems. This implies that lower bound
techniques which are used against restricted circuit classes (cf. [23, 24]) are not
directly applicable to show lower bounds for NC0 proof systems. The proof
techniques we use are combinatorial arguments tailored towards our specific
problems.

This paper is organized as follows. We start in Section 2 by defining the
concept of NC0 proof systems and make some initial observations. In Section 3
we construct NC0 proof systems for several languages of different type. This is
followed by Section 4 where we develop a lower bound technique for the depths
of NC circuit enumerations of several easy languages including Exact-OR and
some threshold functions. In Section 5 we show by an independent technique
that the language Maj does not admit NC0 proof systems. In Section 6 we
generalize some of the ideas for NC0 proof systems from Section 3 to obtain
proof systems for large classes of regular languages. Finally, we conclude in
Section 7 with some discussion and future perspectives.

2 Definitions

A function f : {0, 1}∗ −→ {0, 1} is said to admit an NC0 proof system if there ex-
ists a family of Boolean circuits (see, e.g., [23])

(
Cn

)
n≥1 satisfying the following

conditions:

1. For all n ≥ 1, Cn : {0, 1}m(n) → {0, 1}n, where m : N −→ N.

2. For all n and for all words x ∈ {0, 1}m(n), Cn(x) ∈ f−1(1).

3. For all y ∈ f−1(1) ∩ {0, 1}n, there is a word x ∈ {0, 1}m(n) such that
Cn(x) = y; we say that x is a proof of the word y in the pre-image of 1
under f .

4. For some constants c, d, each Cn has size nc, depth d, and is built using
AND, OR, and NOT gates of bounded (constant) fan-in.

That is, the circuit family has as its range exactly the set f−1(1).
A function f : {0, 1}∗ −→ {0, 1} is said to admit an AC0 proof system if there

exists a family of Boolean circuits f−1(1) as above, with the only difference that
this time the circuits are allowed to use unbounded fan-in AND and OR gates.
(Note that here applies the non-standard size bound: we require the circuit size
to be polynomial in the output length, not input length.)

If the circuit family is uniform, then we say that the proof system is uniform.
Here, a uniform circuit family is a family whose direct connection language, i.e.,
a language describing the structure (nodes, wires, gates types) of the circuits

3

in the family, is decidable. If the direct connection language is decidable in
polynomial time, then the family is said to be P-uniform. If the language is
decidable in logarithmic time, then the family is said to be DLOGTIME-uniform.
(For more formal definitions, we refer the reader to [23].)

We remark that all lower bounds we will present in the sequel of this pa-
per hold even for nonuniform proof systems, while all upper bounds will yield
DLOGTIME-uniform proof systems, unless explicitly stated otherwise.

For a language L ⊆ {0, 1}∗, we say that L admits an NC0 proof system,
or that L is enumerable in NC0, if its characteristic function χL admits such a
proof system. In other words, there is an NC0 circuit family which produces as
output all the strings in L and no other strings. As before, if C(x) = y, then
we view x as a proof that y ∈ L.

Since the circuit must always produce a string in L, we cannot construct
such proof systems if a language has “gaps”; if for some n, L ∩ {0, 1}=n = ∅,
then we cannot define Cn. We therefore allow circuits that are “empty”; Cn is
empty if and only if L ∩ {0, 1}=n = ∅.

We observe that AC0 proof systems do exist for every NP set. In fact, a more
general statement is true.

Proposition 2.1 (Folklore)

1. Every language in NP admits an AC0 proof system.

2. Every recursively enumerable language admits a constant-depth proof sys-
tem.

Proof. (Sketch.) Let L be accepted by the nondeterministic Turing machine M .
The proof of a word x ∈ L is an encoding of an accepting sequence of configu-
rations of M on input x. The correctness of such a sequence of configurations
can be checked locally, essentially in two consecutive configurations only three
letters (around the head position on the tape) can be different. This can be done
in constant depth, and if the run-time of M is polynomial, then the checking
circuit is of size polynomial in the output word. �

As mentioned already in the introduction, Cryan and Miltersen [14] exhibit
an NP-complete language that admits even an NC0 proof system. But it is
quite easy to see that this is not the case for every NP language. Indeed, as a
consequence of the last condition of the definition above, we see that m(n) ≤
2dn ∈ O(n) and the circuits Cn are also of size O(n); each bit of the output
depends on O(1) bits of the input proof. Thus if L has NC0 proof systems, then
strings in L have linear-sized proofs that are locally verifiable. This leads to the
following observation, which will be considerably strengthened in Section 4.

Proposition 2.2 There are non-trivial languages in NP that do not admit any
DLOGTIME-uniform NC0 proof system.

Proof. If a language L has a DLOGTIME-uniform NC0 proof system, then it
can be recognised in NTIME(n): given an input y, guess the linear-sized proof
x, evaluate the circuit C|y|(x), and verify that its output is y. But by the non-
deterministic time hierarchy we know that NP is not contained in NTIME(n).�

4

3 Languages with NC0 proof systems

In this section, we construct NC0 proof systems for a variety of languages.
We start with an NC1-complete language that admits an NC0 proof system.

The word problem for a finite monoid M with identity e is (membership in) the
language: {〈m1,m2, . . . ,mn〉 ∈ M∗ :

∏n
i=1mi = e}. We assume here that for

some constant c depending only on M , each element of M is described by a bit
string of exactly c bits.

Proposition 3.1 The word problem for finite groups admits an NC0 proof sys-
tem.

Proof. We describe the circuit Cn : {0, 1}cn−c → {0, 1}cn. (Since the word prob-
lem contains only words of lengths divisible by c, we produce circuits only for
such lengths.) Given the encoding of a sequence g1, . . . , gn−1, and assuming
that g0 = gn = e, Cn produces the sequence 〈h1, . . . , hn〉 where hi = g−1i−1gi. �

Corollary 3.2 The parity function admits an NC0 proof system.

In proving Proposition 3.1, we used all the three group axioms: associativity,
existence of an identity and existence of inverses. We can relax some of these
and still get an NC0 proof system. For example, the OR operation is associative
and has an identity, but not all elements do have an inverse. Yet we show that
the language LOR = {w = w1 . . . wn ∈ {0, 1}∗ :

∨n
i=1 wi = 1} has an NC0 proof

system.

Proposition 3.3 The language LOR admits an NC0 proof system.

Proof. The circuit Cn : {0, 1}2n−1 → {0, 1}n takes as input bit strings a =
a1 . . . an and b = b1 . . . bn−1, and outputs a sequence w = w1 . . . wn where

(for 1 ≤ i ≤ n) wi =

{
ai if (bi−1 ∨ ai) = bi
1 otherwise.

Here for notational convenience we assume that b0 = 0, bn = 1. Notice that if
all bi’s encode the OR of the prefix a1 . . . ai, then bn = 1 ensures that at least
one wi = ai is 1, otherwise if there is ever a discrepancy between the bi’s and
the prefix OR’s of aj ’s we introduce a 1 in wi. Thus Cn is an onto map from
{0, 1}2n−1 → LOR ∩ {0, 1}n completing the proof. �

We next consider another NC1-complete problem, viz. reachability in bounded
width directed acyclic graphs. This example illustrates a proof system, which,
for the lack of a better description, we refer to as “input altering proofs”.

A layered graph with vertices arranged in layers from 0, 1, . . . , L with exactly
W vertices per layer (numbered from 0, . . . ,W − 1) and edges between vertices
in layer i to i+1 for i ∈ {0, . . . , L−1} is a positive instance of reachability if and
only if there is a directed path from vertex 0 at layer 0 to vertex 0 at layer L. A
description of the graph consists of a layer by layer encoding of the edges as a

5

bit vector. In other words it consists of a string x = x0x1 . . . xL−1 ∈ ({0, 1}W 2

)L

where the xi is indexed by j, k ∈ {0, . . . ,W − 1} and xi[j, k] = 1 if and only if
the j-th vertex on the i-th layer and the k-th vertex on the (i+1)-th layer share

an edge. The language LBWDR consists of those strings x ∈ ({0, 1}W 2

)L which
describe a positive instance of reachability, for some W ∈ O(1). Then we have:

Proposition 3.4 The language LBWDR admits an NC0 proof system.

Proof. The proof consists of a string x ∈ ({0, 1}W 2

)L which describes the graph
and a string v = v1 . . . vL−1 ∈ ({0, 1}V)L−1 representing a path. Here V =
dlogW e is the number of bits required to describe a vertex at a given layer in
binary.

Given x, v we first replace each vi which occurs in v and which represents
a number greater than W − 1 by the bit string consisting of V zeroes. This
requires a circuit of depth O(log(V)) = O(log logW). For the ease of notation
we refer to the modified v as v also.

Next, for each i ∈ {0, . . . , L− 1}, we add the edge represented by (vi, vi+1)
to the graph represented by x by setting xi[vi, vi+1] = 1. This ensures that the
graph contains the path represented by v, i.e. it is a positive instance. Clearly
to address the appropriate bits of xi we need a circuit of depth O(log V) =
O(log logW). Finally, we output this modified x. It is easy to see that all
positive instances will be output by this circuit for some inputs. Since W is a
constant, we will obtain an NC0 proof system. �

The same idea can be used for addition and comparison. Consider the func-
tion f+ : {0, 1}n × {0, 1}n × {0, 1}n+1 → {0, 1} such that f+(a, b, s) = 1 if and
only if A + B = S where a, b are the n-bit binary representations of the num-
bers A,B and s is the (n+ 1)-bit binary representation of S. Also consider the
function f≤ : {0, 1}n × {0, 1}n → {0, 1} where f≤(a, b) = 1 ⇐⇒ A ≤ B, where
again a, b are the n-bit binary representations of numbers A,B.

Proposition 3.5 The function f+ admits an NC0 proof system.

Proof. The circuit Cn : {0, 1}3n → {0, 1}3n maps three strings α = αn−1 . . . α0,
β = βn−1 . . . β0 and γ = γn . . . γ1 (for notational convenience assume that γ0 =
0) to strings a, b, s with the intent that γ will serve as the carry sequence in
the grade-school addition of the two numbers α, β. Also, if we ever discover
a discrepancy between the assumed carry sequence and the two numbers α, β
we correct the error by altering α, β appropriately to yield a, b. So this is an
“input-altering proof”. Formally, for 0 ≤ i ≤ n − 1, if Th3

2(αi, βi, γi) = γi+1

then ai = αi, bi = βi otherwise, set ai, bi arbitrarily under the constraint that
Th3

2(ai, bi, γi) = γi+1. Also set si = ai ⊕ bi ⊕ γi. Set sn = γn. �

Proposition 3.6 The function f≤ admits an NC0 proof system.

Proof. The proof consists of four n-bit strings α, α′, γ, β, with the intent that
γ is the carry sequence for the sum of α, α′ which yields β. Again in the proof
we ensure that if the carry bits γi, γi−1 are compatible with α, α′ summing to

6

β, then copy αi, βi to ai, bi respectively. Otherwise, set ai = 0, bi = 1 (which
ensures that for j > i if aj = bj then a < b). �

We now consider a P-complete language, Grid Circuit Value. An instance
consists of a planar circuit with vertices embedded in a square grid so that the
circuit wires lie only along the grid edges and are directed to go only due east or
due north. All possible wires are present. The gates can be arbitrary functions
of the two inputs and two outputs. All inputs are present on the outer face
of the circuit (i.e. on the southern and western boundaries). It is easy to see
that this problem is contained in P. To see that it is P hard, we reduce the
Circuit Value Problem to it under, say, DLogspace reductions. First make the
circuit planar by using the usual cross-over gadget [15] to remove all crossings.
Now, embed the circuit in the grid by using a method similar to the one used
in [4,11] to obtain the required embedding. Finally we replace all missing wires
by altering the gates to ignore the value from any missing input and output an
arbitrary value, say zero along all missing outputs.

Using the strategy of locally correcting the input if the proof shows an in-
consistency, we can show the following:

Proposition 3.7 The Grid Circuit Value Problem admits an NC0 proof system.

Proof. The proof consists of a string describing the circuit, that is, the truth
tables of (both outputs) of a gate for each gate position and a value for each
of the wires in the circuit. Since each truth table is for a 2-input and 2-output
gate, it is represented by a truth table of 8 bits. Thus for a grid consisting
of n vertices on each side, with m input variables, the input string is (g, v) ∈
{0, 1}8n2×{0, 1}2(n−1)n. The output of the circuit is a pair (g′, x, b) ∈ {0, 1}8n2×
{0, 1}2n−1 × {0, 1} with g′ describing new truth tables obtained by setting one
entry of each truth table to make it consistent with the values in v. x describes
the values (from v) corresponding to inputs and b the value of the output gate.�

Remark 3.8 As mentioned earlier, Cryan and Miltersen [14] (and in fact al-
ready Agrawal et al. [3]) show that an NP-complete language admits an NC0

proof system. The language is just an encoding of 3-SAT: for each n, instances
with n variables are encoded by an M = 23

(
n
3

)
bit string, where each bit indi-

cates whether the corresponding potential clause is present in the instance. A
proof consists of an assignment to the propositional variables and a suggestion
for a 3-CNF, which is modified by the proof system in order to be satisfied by
the given assignment. The clause bit is flipped if (and only if) (1) it is on, and
(2) the clause is not satisfied by the assignment. Since each potential clause
has its reserved “indicator bit”, checking whether the clause is satisfied by the
assignment requires looking at exactly three fixed bits of the assignment. It is
easy to see that this system generates exactly the satisfiable 3-SAT instances.

Next, we describe some generic constructions and closures. They are easy
to see, but we state them explicitly for later use.

7

Lemma 3.9 Let w be any fixed string, and let L be any language. Then L
admits an NC0 system if and only if L · {w} does.

Lemma 3.10 If A,B ⊆ {0, 1}∗ admit NC0 proof systems, then so does A ∪B.

Proof. Let the proof systems for A and B be witnessed by circuit families C ′

and C ′′, with proof lengths m′(n) and m′′(n) respectively. We construct the
circuit family C for A∪B, with proof length m′(n) +m′′(n) + 1, as follows: Cn

consists of a copy of C ′n and a copy of C ′′n , and has an input x for C ′, and input
y for C ′′, and an extra input bit b. It outputs the string (C ′n(x)∧b)∨(C ′′n(y)∧ b̄)
where the combination with b and b̄ is done for each bit position. �

Note that in the above proof, the depth of the circuit for A∪B is two more
than the maximum depth of the circuits for A and B. Since union is associative,
a union of k sets can be expressed as a binary tree of unions of depth dlog ke.
Thus the union of k languages, each with an NC0 proof system of depth d, has
an NC0 proof system of depth d+ 2dlog2 ke. In particular, we get the following
nonuniform upper bounds.

Lemma 3.11 Let L ⊆ {0, 1}∗ have the property that there is a constant k such
that for each n, |L ∩ {0, 1}n| ≤ k. That is, at each length, at most k strings of
that length are in L. Then L admits a nonuniform NC0 proof system.

In certain cases, the complement of a language with an NC0 proof system
also has an NC0 proof system. For example:

Lemma 3.12 Let L ⊆ {0, 1}∗ have the property that there is a constant k such
that for each n, |L∩{0, 1}n| ≥ 2n−k. That is, at each length, at most k strings
of that length are not in L. Then L admits a nonuniform NC0 proof system.

Proof. The circuit C for OR−1(1) outputs all strings except the string of all 0s.
We first generalize this to exclude any fixed string y from the output. This is
done as follows: Let y ∈ {0, 1}n be the string that is to be excluded from the
output of our proof circuit. Take the output bits w1, . . . , wn of C and feed them
to a layer of XOR gates that does a bit-by-bit XOR of w and y. The output of
the XOR layer is our output string. Since C never outputs all 0s, the output
after XOR-ing with y can never be y.

Now we push this further to exclude k strings.
Let L=n = {0, 1}n \ U , where U =

{
u1, u2, . . . , uk

}
and u1, . . . , uk ∈ {0, 1}n

are the strings excluded from L.
The proof is by induction on |U |. The base case of |U | = 1 has already been

shown.
Assume we have a proof circuit for L \ U for all U with |U | < k. Induction

step: |U | = k. Let l be the first position where there is at least one string in U
which has 0 at l and at least one string in U that has a 1 at l. Since |U | > 1,
there exists such an l. Now partition U into U0 and U1 based on whether a
string has a 0 or a 1 at the l’th position. Now by the choice of l, |U0| < k and
|U1| < k. From the induction hypothesis we have a proof circuit C0 for L \ U0

8

and a proof circuit C1 for L \U1. We construct proof circuit C for L that takes
k bits as input and outputs n bits as follows: Let s ∈ L be an arbitrary fixed
string. Define C(bx) where b is a bit as follows:

• C(bx) = C0(x) if b = 0 and C0(x)l = 0;

• C(bx) = C1(x) if b = 1 and C1(x)l = 1;

• C(bx) = s otherwise. �

Proposition 3.13 Every language decidable in nonuniform NC0 has a nonuni-
form NC0 proof system.

Proof. If the circuit C accepts a word w, then let D be the circuit extending
C, which outputs the input if C accepts and otherwise outputs w. Then D
enumerates the words accepted by C. �

4 Lower bounds

We now consider languages which do not admit NC0 proof systems, some of
them even regular. At first we focus on non-constant lower bounds for the
depth required in order to enumerate these languages by circuits with binary
gates. Later on we take the opposite perspective and ask, given a constant depth
bound d, how large a fraction of a language can be enumerated by an NC0 proof
system of depth d. This fraction can turn out to be exponentially small. All
our examples in this section are characterized be some counting feature.

4.1 Lower bounds on depth

We begin with our main concrete example of a non-NC0-enumerable language.

Theorem 4.1 The function Exact-ORn on n bits, that evaluates to 1 if and
only if exactly one of the input bits is 1, does not admit NC0 proof systems.

Proof. Suppose there is such a proof system, namely an NC0-computable func-
tion f : {0, 1}m −→ {0, 1}n. Let Ri ⊆ [m] be the proof bit positions that
have a path to the ith output bit. For each i, there is at least one setting
of the Ri bits that places a 1 in the ith bit of the output (producing the
output string ei). All extensions of this setting must produce ei. Therefore
|f−1(ei)| ≥ 2m−|Ri|. Let c = maxn

i=1 |Ri|; by assumption, c ∈ O(1). Then for
each i ∈ [n], |f−1(ei)| ≥ 2m−c. But the f−1(ei) partition {0, 1}m. Hence

2m =

n∑
i=1

|f−1(ei)| ≥
n∑

i=1

2m−c = n2m−c.

Therefore c ≥ log n, so ∃i ∈ [n] : |Ri| ≥ log n, a contradiction. �

9

Generalising this proof technique, we derive below a criterion which implies
non-constant lower bounds for the depth of an enumerating circuit family.

Theorem 4.2 Let L be a language and `, t : N → N functions. Suppose for
each length n there are t(n) distinct settings to subsets of `(n) bits xi1 , . . . , xi`(n)

such that each of these partial configurations enforces a fixed value to each of
the remaining bits. Then the depth of each circuit family that enumerates L is
at least log log t(n)− log `(n).

Proof. Let f : {0, 1}m(n) −→ {0, 1}n be a depth-d(n)-circuit enumerating the
length n members of L, and let `(n) and t(n) be as in the statement of the
theorem. Denote the resulting words w1, . . . , wt(n).

For each of the wj the following holds: The `(n) crucial bits have paths to
at most `(n)2d(n) bits of the proof. Thus there is a setting to r(n) = `(n)2d(n)

bits of the proof, all extensions of which generate the same output wj . Hence
|f−1(wj)| ≥ 2m(n)−r(n).

Now we just count the number of proofs. As there are m(n) proof bits, the
sum over the |f−1(wj)| and therefore also t(n)2m(n)−r(n) is bounded from above
by 2m(n). This immediately gives the estimate

2r(n) ≥ t(n)

`(n)2d(n) = r(n) ≥ log t(n)

d(n) ≥ log log t(n)− log `(n) �

Using this theorem, we can show that several functions are not enumerable
in constant depth.

Exact Counting. Consider the function Exact-Countnk on n bits: it evaluates
to 1 if and only if exactly k of the input bits are 1. (Exact-ORn is precisely
Exact-Countn1 .) For each length n there are exactly

(
n
k

)
words in Exact-Countnk .

And whenever k bits of a word are set to value 1, then all remaining bits are
bound to take the value 0. So for Exact-Countnk the parameters t(n) and `(n)
defined in the theorem above take the values

(
n
k

)
and k, respectively, which

yields a lower bound of

d(n) = log log

(
n

k

)
− log k ≥ log log

(
nk

kk

)
− log k = log(log n− log k)

on the depth of an enumerating circuit family. For k(n) sub-linear in n this gives
an unbounded function; thus for every sub-linear k(n), Exact-Countnk does not
admit an NC0 proof system. Note that for a constant k, this language is even
regular.

The threshold functions ¬Thn
k+1 and dually Thn

n−k for sub-linear k.
Let Thn

a be the function that evaluates to 1, if and only if at least a of the n
inputs are set to 1. The lower bounds for these languages are derived precisely
by the same argument given above for Exact-Countnk . So they also yield the
same set of parameters.

10

The language 0∗1∗ and iterations. First consider 0∗1∗, whose members
consist of a (possibly empty) block of 0’s followed by a (possibly empty) block
of 1’s. The n + 1 length-n members of 0∗1∗ are in 1-1 correspondence to the
members of Exact-Countn+1

1 via the NC0 mapping w1 . . . wn 7−→ x1 . . . xn+1,
where xi := wi−1 ⊕ wi, with the convention that w0 := 0 and wn+1 := 1. Thus
an NC0 proof system of 0∗1∗ would directly yield one for Exact-Countn+1

1 , which
we have shown to be impossible. The parameters from the theorem are `(n) = 2
(two consecutive bits with different values or simply w1 = 1 or wn = 0) and
t(n) = n+ 1. By the same argument, for sub-linear k, the languages consisting
of either exactly or up to k alternating blocks of 0’s and 1’s do not admit NC0

proof systems.

Majority. The Majority language consists of those words which have at least
as many 1’s as 0’s. Majority also does not admit an NC0 proof system. But this
does not follow from an extension of the techniques described so far, and requires
a completely different and significantly more non-trivial approach. Instead of
presenting it here, we devote the entire next section (Section 5) to this proof.

4.2 List enumerations

Consider a circuit C : {0, 1}m −→ {0, 1}tn. On input x, C can be thought of
as producing a list L(x) of t strings of length n. (An alternative view is that
we allow t circuits, here merged into one, to enumerate words of length n.) We
say that C t-enumerates L or is a t-list proof system for L if

⋃
x L(x) = L. All

along what we have been considering is t = 1.
For instance, every sparse language admits a nonuniform NC0 polynomial-

list proof system, as every word can be generated by a sub-circuit with constant
output. So in particular, the regular languages Exact-Countnk for constant k are
of this kind, though they do not have NC0 proof systems. We observe below
that any sub-language of Exact-Countn1 enumerated by a single circuit is small,
and hence Exact-Countn1 requires Ω(n)-lists. We will use this in Theorem 4.7
to prove a lower bound for the list length of the language of all permutation
matrices.

Lemma 4.3 Let L be a subset of Exact-Countnk that has an NC0 proof system
which is computed by a depth d circuit family. Then for each length n the set

L=n of length n members of L has at most 2k2
d

elements.

Proof. This follows directly from Theorem 4.2, replacing t(n) by |L=n|. �

The Sunflower Lemma of Erdős-Rado gives rise to an alternative proof of a
variant of the last lemma, albeit with a considerably weaker upper bound on the

size of the enumerated fraction, e.g., for k = 1 the upper bound is 2d!22
2d

. Here,
a sunflower is formed out of sets of input bit positions that influence the relevant
subsets of output bits. For completeness, we describe this proof technique below
for k = 1. Unfortunately, even this technique does not yield a lower bound for
Majority.

11

Proposition 4.4 (Erdős-Rado) Let F = {S1, S2, . . . , Sk} be a family of sub-
sets of some universe. If

1. |Si| ≤ ` for all i, and

2. k > (p− 1)l · l!,
then F contains a sunflower with p petals. That is, there is a subfamily F ′ =
{T1, . . . , Tp} with each Ti ∈ F such that for some set T , for any two i 6= j,
Ti ∩ Tj = T . T is called the core of the sunflower.

Lemma 4.5 Let C : {0, 1}m −→ {0, 1}n be a depth d circuit whose outputs

are a subset of Exact-Countn1 . Then C produces at most N = (2d)!22
2d

distinct
outputs.

Proof. We prove this by contradiction. Assume that C enumerates more than
N distinct outputs.

Let Ri denote the bits of the input that reach the ith bit of the output. Each
Ri is of size at most 2d. Set F = {Ri | C can produce a 1 in position i}. By
our assumption, |F| > N .

Set ` = 2d, p = 22
d

+ 1. Then |F| > (p− 1)` · `!, so there is a sunflower with
p petals. Let the indices of the sets forming the petals be I ⊆ [n], |I| = p. Let
R be the core; clearly |R| ≤ 2d. For distinct i, j ∈ I, Ri ∩Rj = R.

Now consider any setting α to the proof bits in R. If there is an extension
that produces a 1 in a position i indexed by I, then all extensions of α must
produce zeroes in positions j ∈ I\{i}. So no core setting can have two extensions
with 1s in two different positions. However, there are (distinct) core settings
that can produce a 1 in each of the petals. Thus

#petals ≤ #number of core settings ≤ 2|R|

that is, 22
d

+ 1 ≤ 22
d

, a contradiction. �

Remark 4.6 A simple modification allows the proof to go through for ¬Thn
2 as

well. That is, a depth-d circuit can produce at most N outputs from Exact-OR,
in addition to possibly the all-zeroes string. (The argument above only uses the
fact that two 1s are disallowed, not that one 1 is required.)

A permutation matrix of order n is an n× n 0-1-matrix in which every row
and every column contains exactly one 1. Lemma 4.3 or Lemma 4.5 give the
following:

Theorem 4.7 If C is a depth d circuit that t-enumerates the set of all permu-
tation matrices of order n, then t grows exponentially with n.

Proof. The circuit C can be thought of as t distinct circuits C1, . . . , Ct with the
same proof. Each row of each matrix output by each Ci belongs to Exact-OR.

By Lemma 4.3, each Ci can construct at most (22
d

)n matrices (it has at most

22
d

choices for each row). But the total number of choices must be at least the

number of permutation matrices. Thus n! ≤ t(22d)n. Hence if d ∈ O(1), t must
be exponentially large. �

12

The same idea also works for proving lower bounds on the list length of enu-
merations of matrices which encode all Hamiltonian cycles in a complete graph
or all paths from 1 to n in Kn.

4.3 Constant influence

Motivated by their investigation into NC0 cryptography [5, 6], Applebaum et
al. [7] investigate cryptography with constant input locality. As a related ques-
tion we ask which languages can be proven by circuits that have the property
that every input bit influences only constantly many output bits.

In the remainder of this section, we look at proof circuits that are NC0 like
before, but with the added restriction that each input bit can only influence
constantly many output bits. We show that Exact-Countnk and Thn

k do not
have proof circuits with this added restriction for suitable values of n and k.

The proof is based on the following observation for any proof circuit for
Exact-Countnk : Let C be a proof circuit for Exact-Countnk . For an output gate
i of C we denote by sup(i) the set of all input gates of C that have a path to
i. For a set S of output gates of C we let sup(S) =

⋃
i∈S sup(i). Now, for any

set of output positions S ⊆ [n], |S| = k and i ∈ [n], i /∈ S, we have sup(S)∩
sup(i) 6= ∅. If this were not true, then we could obtain (k + 1) 1s in the output
by setting the bits in sup(S) to get k 1s corresponding to the positions in S,
and by setting the sup(i) to get a 1 in the ith output position.

The above can be generalized to the following:

Lemma 4.8 The language Exact-Countnk does not have a proof circuit of depth
d with each input bit influencing at most c output bits if n ≥ c2d + k.

Proof. Suppose such a circuit exists, take any output position i ∈ [n]. We know
that | sup(i)| ≤ 2d. Let T be the set of all output bits j for which sup(i) ∩
sup(j) 6= ∅. |T | ≤ c2d. Now if n ≥ c2d + k, then we can find a set S ⊆
[n] of output positions such that |S| = k and S ∩ T = ∅. This implies that
sup(S) ∩ sup(i) = ∅, contradicting the observation made above. �

Corollary 4.9 The language Exact-Countnn/2 does not have a proof system of
constant depth and constant influence.

A similar observation as above holds for threshold functions as well: Let C
be a proof circuit for Thn

k . Then, for any subset of output positions S ⊆ [n],
|S| = n− k and any i /∈ [n], we have sup(S) ∩ sup(i) 6= ∅. If this were not true,
then we can force C to output n− k+ 1 0s by setting the support of S and the
support of i such that we get 0s in all the S positions and position i.

Lemma 4.10 The function Thn
k does not have a proof circuit of depth d with

each input bit influencing at most c output bits if n > k ≥ c2d.

Proof. Suppose such a circuit exists, call it C. Take any output position i ∈ [n].
We know that | sup(i)| ≤ 2d. Let T be the set of all output bits which have
a support bit in sup(i). |T | ≤ c2d. Now since k ≥ c2d, we can find a set of

13

output positions S ⊆ [n] with |S| = n− k such that S ∩ T = ∅. Since T was all
the bits that are influenced by sup(i), we have sup(S) ∩ sup(i) = ∅. The above
observation can be used to conclude that C can be forced to output a string
that has more than n− k 0s. �

The following is an easy corollary; it is, however, subsumed by the much stronger
(and much more difficult to prove) Theorem 5.1 proved in the next section.

Corollary 4.11 Majority does not have a proof circuit family with constant
depth and constant influence.

5 Majority does not admit NC0 proof systems

The language Maj consists of all 0-1-words that contain more 1’s than 0’s. The
language ExMaj consists of all 0-1-words w that contain exactly 1 + b|w|/2c
1’s. Clearly, ExMaj ⊆ Maj. If w is in ExMaj, and if a single bit in w is
flipped from 1 to 0, then the resulting string w′ is not in Maj. We will exploit
this to show that Maj does not admit an NC0 proof system.

Intuitive Idea

Assume that there is an NC0 proof system for Maj. The idea of the proof is that
there are two types of inputs: inputs that influence a linear number of outputs –
call these the high-fanout inputs, and inputs that influence a sublinear number
of outputs – these are the low-fanout inputs. (Note our non-standard use of the
term fanout which refers to the number of output bits an input is connected
to instead of the number of wires leaving the gate.) Since every output is
connected to a constant number of inputs, there can only be a constant number
of high-fanout inputs. So nearly all inputs are of low-fanout.

We will try to find an output xi whose value can be changed by only manip-
ulating the set S of low-fanout inputs connected to xi. Also, since low-fanout
inputs are only connected to a sublinear number of outputs, we can assume that
S is connected to less than n/2 of the outputs. So we can find a word w in Maj
that has a 1 at every position that depends on the input bits of S and assign the
remaining outputs in such a way that we even get a word w in ExMaj. Since
this is a valid word in Maj, the proof system needs to generate it, hence there
is an assignment of the inputs that outputs w.

But now we can modify the input bits in S and toggle xi to the value 0.
Toggling the input bits in S only affects output bits that were assigned to 1,
hence this might flip additional bits from value 1 to value 0. But the word
generated in this way by the proof system has fewer 1’s than w and hence is not
in Maj. It follows there is no NC0 proof system for Maj.

Formalising this idea is a bit more complicated. It turns out that we need
a finer gradation of what we consider high-fanout. We will define a decreasing
function g : N −→ N, and at stage e, we consider an input connected to more
than g(e) output bits as high-fanout. Say that Xe is the set of high-fanout

14

inputs at stage e. If we can find an output xi as above, we will have obtained
a contradiction. But we may not immediately succeed in finding such an xi,
because it may be the case that settings to the high-fanout bits Xe fix each
output xi. We then carefully fix a small set Re of output bits and an assignment
we to these bits in a way such each output outside of Re can be toggled without
changing the input setting to Xe. At this point, we look for a string in ExMaj
agreeing with we, and try to obtain a contradiction by toggling a carefully chosen
output. If we still cannot obtain a contradiction, we move on to the next stage.
Finally, we show that if we complete stage c for some suitably chosen constant
c, then we get a different kind of contradiction: a few high-fanout input bits
completely determine many output bits. A simple counting argument shows
that this cannot happen for Maj.

To make this argument rigorous, we define a certain assertion Πe concerning
stage e. This assertion states that there is a setting we to a set Re of output bits
satisfying 4 properties: (1) Re is small, (2) assignments to Xe compatible with
we do not fix any output bit outside Re, (3) the forbidden set Fe+1, consisting
of output bits sharing a low-fanout input with some bit in Re, is small, and
(4) every non-forbidden-output is connected to at least one input that will enter
the high-fanout set at stage e+ 1. Then the above argument can be rephrased
as: Π0 is true, Πe ⇒ Πe+1, but at least one of Π0, . . . ,Πc−1 is not true. This is
obviously a contradiction.

With this idea in mind, we now state and prove our theorem.

Theorem 5.1 The language Maj of all 0-1-words that contain more 1’s than
0’s does not admit an NC0 proof system.

Proof. Assume that (Cn) is an NC0 family of circuits enumerating Maj. Let
d be the maximal depth of the circuits Cn and let c ≤ 2d be the maximum
number of input bits connected to the same output bit. It is easy to see that
no projection can be a proof system for Maj. Hence c ≥ 2.

Let In and Out denote the sets of input and output bits of Cn, respectively.
For a set A of nodes of the circuit, define the sets

Out(A) := {y ∈ Out | y is connected to some x ∈ A}
In(A) := {x ∈ In | x is connected to some y ∈ A}

For a singleton {x} whose only element is an input/output bit, we simply write
Out(x) or In(x).

Define functions f, g as follows:

f(e) :=

{
1 for e = 0

c5f(e−1)+1 for e > 0

g(e) :=
cn

f(e)

Clearly, f is an increasing function, and g is a decreasing function. Note that f
does not depend on the value of n. All arguments in the proof will work for a

15

choice of n ≥ 4 · f(c). We use g to define the high-fanout set at each stage;

Xe :=

{
x ∈ In

 |Out(x)| > g(e)

}
Note that for each e, Xe−1 ⊆ Xe. Also, since there are at most cn input-output-
connections in circuit Cn, and since each input bit in Xe contributes more than
g(e) input-output connections, we obtain

|Xe| · g(e) < (number of input-output connections in Cn) ≤ cn = f(e) · g(e).

Thus the function f(e) yields an upper bound for the size of Xe.
We now state an assertion concerning the circuit Cn, for a parameter e; call

this assertion Πe.

Assertion (Πe) There exists a set Re ⊆ Out, and a setting we to Re, satisfying
the following properties.

1. |Re| ≤ 2f(e)+1.

2. for each y ∈ Out \Re, for each assignment q : Xe → {0, 1} compatible
with we, and for each value b ∈ {0, 1}, there is a legal configuration of the
circuit extending we ∪ q and setting y to b.

3. Let Fe+1 := Re ∪ Out(In(Re) \Xe+1). (Fe+1 denotes the set of forbidden
outputs.) Then |Fe+1| ≤ n

c3 .

4. ∀y ∈ Out \Fe+1, In(y) ∩ (Xe+1 \Xe) 6= ∅.

We prove the theorem by contradiction. Assuming that (Cn) enumerates
Maj, we will show that for all sufficiently large n, the following statements
hold:

(A). Π0 is true.

(B). Π0,Π1, . . . ,Πc−1 are not simultaneously true.

(C). For all 1 ≤ e < c, Πe−1 =⇒ Πe.

With these statements established in Lemmas 5.2, 5.3, and 5.4 below, we
reach a contradiction, and the proof of the main theorem is complete. �

Proof of the Statements (A)-(C)

Lemma 5.2 (Statement (A)) Π0 is true.

Proof. Note that X0 = ∅. Define R0 = ∅, w0 = ε. Then F1 = ∅. Properties 1,3
are trivial. Property 2 holds because no bit in Maj is fixed; each y can take
values 0 and 1.

It remains to show Property 4. Suppose Property 4 fails; that is, there is an
output bit y with no connections to X1. Then the neighbourhood of y, defined

16

as N(y) = Out(In(y)), has size at most c×g(1) = n/c4 < n/2. So there exists a
string z in ExMaj with only 1s at members of N(y), and hence a configuration
β of the circuit compatible with z. By changing the input settings in β only in
In(y), we can set output y to 0. Since In(y) reached only positions set to 1 in β,
the change strictly decreases the number of 1s in the output. Thus Cn outputs
a string not in Maj, a contradiction. Hence Property 4 must hold. �

Lemma 5.3 (Statement (B)) Π0,Π1, . . . ,Πc−1 are not simultaneously true.

Proof. Assume to the contrary that for each e ∈ {0, 1, . . . , c − 1}, Πe is true.
Define F = ∪ce=1Fe, and let G := Out \F denote the remaining output bits.

Consider any output bit y ∈ G. For each e ∈ [c], y is not in Fe, so by
property 4 in Πe−1, In(y) has a bit in Xe \ Xe−1. Thus In(y) has at least c
bits in Xc. But In(y) has at most c bits overall, so In(y) is in fact completely
contained in Xc.

By property 3 of each Πe, we know that |G| ≥ n−c(n/c3) = n−n/c2 ≥ 3n/4.
As remarked earlier, f(e) is an upper bound on |Xe|, and so |Xc| < f(c). We
saw above that for each y ∈ G, In(y) ⊆ Xc. Thus, in legal configurations of
the circuit, the assignment to G is determined by the assignment to Xc. But
there are less than 2f(c) distinct assignments to Xc, while there are at least(|G|

n
4

)
≥ 2n/4 distinct assignments to G corresponding to strings in Maj. For

sufficiently large n, this is impossible. �

Lemma 5.4 (Statement (C)) For all 1 ≤ e < c, Πe−1 =⇒ Πe.

Proof. To show that Πe holds, we first describe a procedure that extends Re−1
and we−1 to Re and we, and then show that the extension satisfies properties
1 to 4 of Πe. The immediate objective of the extension procedure is to satisfy
property 2 of Πe; control the input bits in Xe \Xe−1 by restricting the output
to a configuration that does not allow the Xe part of the input to fix further
output bits.

Set R = Re−1 and w = we−1. Define the set Q as follows.

Q :=

{
q ∈ {0, 1}Xe

 q is compatible with w

}
.

Perform the Prune procedure described below.
The Prune Procedure: Perform the following step as long as possible.

Find a partial configuration q ∈ Q, a position y in Out \R, and a
value b ∈ {0, 1} such that all configurations of the circuit extending
q set y to b. Add y to R, set y to b in w making w incompatible
with q, and remove from Q all assignments (including q) that are
incompatible with w.

After the Prune procedure terminates, set Re to the resulting R, and we to
the resulting w.

17

The four claims below show that this choice of Re and we satisfies Πe. First,
we state a simple but important observation: After every step in the Prune
procedure, Q satisfies

Q =

{
q ∈ {0, 1}Xe

 q is compatible with w

}
.

In connection with the first property stated in Πe and proven below this implies
that Q is not empty as long as n > 2f(e)+2.

Claim 5.5 (Property 1 of Πe holds) |Re| ≤ 2f(e)+1.

Proof. We start with |Q| = 2|Xe| and R = Re−1. Each time we add a position
to R, we discard at least one element from Q. So |Re| ≤ |Re−1|+ 2|Xe|. Using
the fact that f(e) is an upper bound for |Xe|, the property 1 of Πe−1, and the
definition of f , we get: |Re| ≤ |Re−1|+ 2|Xe| ≤ 2f(e−1)+1 + 2f(e) ≤ 2f(e)+1. �

Claim 5.6 (Property 2 of Πe holds) For each y ∈ Out \Re, for each as-
signment q : Xe → {0, 1} compatible with we, and for each value b ∈ {0, 1},
there is a legal configuration of the circuit extending we ∪ q and setting y to b.

Proof. Recall that, the way the Prune procedure is defined, all settings q :
Xe −→ {0, 1} compatible with we are in Q, and none of them determine the
bit at any position y ∈ Out \Re. Hence for any such y, and any value b, it is
possible to extend q ∪ we and set the bit at position y to b. �

Claim 5.7 (Property 3 of Πe holds) For sufficiently large n, |Fe+1| ≤ n/c3.

Proof. Recall that Fe+1 := Re ∪Out(In(Re) \Xe+1).

n

c3
− |Fe+1| ≥

n

c3
− (|Re|+ c · |Re| · g(e+ 1))

=
n

c3
− |Re|

(
1 + c · nc

f(e+ 1)

)
≥ n

c3
− 2f(e)+1 ·

(
1 +

nc2

f(e+ 1)

)
using Claim 5.5

= n ·
(

1

c3
− c22f(e)+1

f(e+ 1)

)
− 2f(e)+1

= δen− 2f(e)+1

It suffices to show that δe > 0, because then we can choose a sufficiently large n
and ensure that δen exceeds 2f(e)+1. (Note, for e ≤ c, δe and f(e) are constants

18

independent of n.)

δe > 0 ⇐⇒ δec
3f(e+ 1) > 0.

δec
3f(e+ 1) = f(e+ 1)− c52f(e)+1

= c5f(e)+1 − c52f(e)+1

≥ 2f(e)+1c4f(e) − c52f(e)+1 since c ≥ 2

= 2f(e)+1
[
c4f(e) − c5

]
≥ 0 since e ≥ 1 and c ≥ 2, 4f(e) ≥ 5. �

Proof (Alternative proof.). Using Claim 1, the definitions of Xe+1, g and f , and
the facts that c ≥ 2 and 1 ≤ e ≤ c− 1 along with the choice of n ≥ 4f(c) we get

|Fe+1| ≤ |Re|+ |Out(In(Re) \Xe+1)|
≤ 2f(e)+1 + g(e+ 1) · 2f(e)+1 · c

= 2f(e)+1 +
cn

f(e+ 1)
· 2f(e)+1 · c

≤ cf(c−1)+1 +
c2n2f(e)+1

c5f(e)+1

≤ f(c)

c4
+
c2n

c6
· 2f(e)+1

cf(e)+1

≤ n

c4
+
n

c4
=

n

c3
�

Claim 5.8 (Property 4 of Πe holds) For sufficiently large n, ∀y ∈ Out \Fe+1,
In(y) ∩ (Xe+1 \Xe) 6= ∅.

Proof. Suppose the claim does not hold. That is, suppose there exists a y ∈
Out \Fe+1 such that In(y) ∩ (Xe+1 \Xe) = ∅. But note that In(y) ∩ In(Re) ⊆
Xe+1; otherwise y would have been in Fe+1 by definition. Putting these together,
we conclude that In(y)∩In(Re) ⊆ Xe. Generalising the corresponding argument
used in establishing statement (A), we will now show that this is not possible.

Consider the e-neighbourhood of y defined as U := Out(In(y) \Xe). Since
y 6∈ Fe+1, the sets U and Re are disjoint. We have that |U | ≤ n/c4, since by
definition of f , for e > 0, f(e) ≥ c6, and hence |U | ≤ c ·g(e) ≤ c2n/f(e) ≤ n/c4.
Together with Claim 5.5, for sufficiently large n, |Re ∪ U | < n/2. Hence there
exists a string z in ExMaj with only 1s at positions in U , and according to we

at positions in Re. Hence there is a configuration β of the circuit compatible
with z; let this configuration restricted to Xe be α. (Thus β extends α ∪ we.)
We have already established property 2 of Πe. Applying this to y and α with
b = 0, we conclude that there is another configuration γ, also extending α∪we,
such that γ has a 0 at y.

Now change the input settings of β only at positions in In(y) \Xe to match
the settings in γ. This change can affect only the output bits in U . In particular,
it changes output y from 1 to 0. Since U had only 1s in β, the change strictly

19

decreases the number of 1s in the output. Thus Cn outputs a string not in Maj,
a contradiction. �

With Claims 5.5, 5.6, 5.7, 5.8, Lemma 5.4 is established. �

6 Proof systems for regular languages

In this section, we describe some sufficient conditions under which regular lan-
guages have NC0 proof systems. The regular languages we consider may not
necessarily be over a binary alphabet, but we assume that a binary (letter-by-
letter) encoding is output.

Our first sufficient condition abstracts the strategy used to show that OR
has an NC0 proof system. This strategy exploits the fact that there is a DFA
for OR, where every useful state has a path to an “absorbing” final state.

Theorem 6.1 Let L be a regular language accepted by an NFA M = (Q,Σ, δ, F,
q0). Let F ′ ⊆ F denote the set of absorbing final states; that is, F ′ = {f ∈ F |
∀a ∈ Σ, δ(f, a) = f}. Suppose M satisfies the following condition:

For each q ∈ Q, if there is a path from q to some f ∈ F , then there
is a path from q to some f ′ ∈ F ′.

Then L has an NC0 proof system.

Proof. The hypothesis is that from each “useful” state q, we can reach some
absorbing final state via a word of length at most k = |Q| − 1. Pick any such
word arbitrarily, pad it arbitrarily with a suffix so that its length is exactly
k, and denote the resulting word as fin(q) (i.e., fin(q) “finalizes” q). Clearly,
δ(q,fin(q)) ∈ F ′.

The proof consists of the word x broken into blocks of size k, with the remain-
der bits at the beginning. In addition, the proof provides the state of M after
each block on some accepting run. So the total proof is x0, x1, . . . , xN , q1, . . . , qN

where N = bn/kc, each qi ∈ Q, xi ∈ Σk for i ≥ 1, and x0 ∈ Σ<k are the re-
mainder bits.

The word w output by the proof system on such a proof is also broken into
blocks in the same way, and each block is defined as follows:

w0 = x0

w1 =

{
x1 if q2 ∈ δ(q0, x0x1)
fin(δ(q0, x

0)) otherwise.

For 2 ≤ i ≤ N,wi =

{
xi if qi ∈ δ(qi−1, xi)
fin(qi−1) otherwise.

Since |Q| and |Σ| are constant, the transition function δ can be implemented
by a circuit of constant size. And since k is a constant, checking if qi ∈ δ(qi−1, xi)
can be done in NC0. Thus the above can be implemented in NC0. �

20

Observe that the OR and the Exact-OR are both star-free languages but the
complements in the expression for OR are applied to the empty set, whereas
those in Exact-OR are applied to non-empty sets. Based on this, we formulate
and prove the following sufficient condition for a star-free regular language to
have an NC0 proof system.

Definition 6.2 Strict star-free expressions over an alphabet Σ are exactly the
expressions obtained as follows:

1. ε, a for each a ∈ Σ, Σ∗ = ∅̄ are strict star free.

2. If r and s are strict star free, so is (r · s).

3. If r and s are strict star free, so is (r + s).

Theorem 6.3 Let r be a strict star-free expression describing a language L =
L(r). Then L admits an NC0 proof system.

Proof. We first note that in a regular expression, · distributes over +. Hence it is
possible to repeatedly apply this rule of distributivity to arrive at an expression
that is of the form s1 + s2 + · · · + sk, where each si is simply a concatenation
without any +. So we assume that we have a strict star-free regular expression
in this form.

Now, if we can show that each of the expressions si has an NC0 proof system,
then, we can use the fact that NC0 proof systems are closed under finite union
(Lemma 3.10).

The following claim shows that this is indeed true:

Claim 6.4 Let L be a language recognized by a strict star-free expression s that
does not have a +. Then L admits NC0 proof systems.

Proof. The expression s must be of the form w1 ∅̄ w2 ∅̄ . . . wk−1 ∅̄ wk, where
wi ∈ Σ+ for 1 < i < k and w1, wk ∈ Σ∗. Let s = w1 ∅̄ w2 ∅̄ . . . wk−1 ∅̄ wk.
Note that if w1 6= ε, then we can hardwire w1 to be the first |w1| symbols in
the output of our proof circuit. Similarly wk can be hardwired at the end. Now
for the central ∅̄ w2 ∅̄ w3 . . . wk−1 ∅̄ part: Notice that any minimal DFA for
this expression will have a self-absorbing final state to which all states have a
path. Hence Theorem 6.1 implies that we have an NC0 proof system for this
language. Using this NC0 proof system, and hardwiring w1 and wk as prefix
and suffix respectively, we obtain an NC0 proof system for L. �

Theorem 6.1 essentially characterizes functions like OR. On the other hand,
the parity function, that has an NC0 proof system, cannot be recognized by any
DFA or NFA with an absorbing final state. The strategy used in constructing
the proof system for parity exploits the fact that the underlying graph of the
DFA for parity is strongly connected. In the following result, we abstract this
property and prove that strong connectivity in an NFA recogniser is indeed
sufficient for the language to admit an NC0 proof system.

21

Theorem 6.5 Let L be accepted by NFA M = (Q,Σ, δ, F, q0). If the directed
graph underlying M is strongly connected, then L admits an NC0 proof system.

Proof. We use the term “walk” to denote a path that is not necessarily simple,
and “closed walk” to denote a walk that begins and ends at the same vertex.

The idea behind the NC0 proof system we will construct here is as follows:
We take as input a sequence of blocks of symbols x1, x2, . . . , xk, each of length l
and as proof, we take the sequence of states q1, q2, . . . , qk that M reaches after
each of these blocks, on some accepting run. Now we make the circuit verify at
the end of each block whether that part of the proof is valid. If it is valid, then
we output the block as is. Otherwise, if some xi does not take M from qi−1

to qi, then we want to make our circuit output a string of length l that indeed
makes M go from qi−1 to qi. So we make our circuit output a string of symbols
which will first take M from qi−1 to q0, then from q0 to qi. To ensure that this
length is indeed l, we sandwich in between a string of symbols that takes M
on a closed walk from q0 to q0. We now proceed to formally prove that closed
walks of the required length always exist, and that this can be done in NC0.

Define the following set of non-negative integers:

L = { ` | there is a closed walk through q0 of length exactly ` }

Let g be the greatest common divisor of all the numbers in L. Note that though
L is infinite, it has a finite subset L′ whose gcd is g.

Choose a subset S of states as follows:

S = { q ∈ Q | there is a walk from q0 to q whose length is 0 mod g }

Claim 6.6 For every p ∈ Q, ∃`p, rp ∈ {0, 1, . . . , g − 1} such that

1. the length of every path from q0 to p is ≡ `p (mod g);

2. the length of every path from p to q0 is ≡ rp (mod g).

Proof. Let `, `′ be the lengths of two q0-to-p paths, and let r, r′ be the lengths of
two p-to-q0 paths. Then there are closed walks through q0 of length `+r, `+r′,
`′ + r, `′ + r′, and so g must divide all these lengths. So ` = −r (mod g) = −r′
(mod g), and r = −` (mod g) = −`′ (mod g). It follows that ` ≡ `′ (mod g)
and r ≡ r′ (mod g). �

From here onwards, for each p ∈ Q, by `p and rp we mean the numbers as
defined in the above claim.

Claim 6.7 For every p ∈ S, `p = rp = 0.

Proof. By the definition of S, we have `p = 0. Suppose rp 6= 0. Let w be a word
taking M from p to q0. Appending this to any word w′ that takes M from q0
to p gives a closed walk through q0 whose length is 0 + rp 6= 0 (mod g). This
contradicts the fact that g is the gcd of numbers in L. �

22

Claim 6.8 There is a constant c0 such that for every K ≥ c0, there is a closed
walk through q0 of length exactly Kg.

Proof. This follows from Lemma 6.9 below. �

Let K = |Q|. Now set t = bK−1g c and ` = t · g. Then for every p ∈ S, there

is a path from q0 to p of length t′g on word α(p), and a path from p to q0 of
length t′′g on word β(p), where 0 ≤ t′, t′′ ≤ t. (α(p) and β(p) are not necessarily
unique. We can arbitrarily pick any such string.)

If for all accepting states f ∈ F , `f 6≡ n (mod g), then L=n = ∅, and the
circuit Cn is empty.

Otherwise, let r = n (mod g). There is at least one final state f such
that `f ≡ r (mod g). Thus there is at least one string of length t′g + r, with
0 ≤ t′ ≤ t, that takes M from q0 to f .

We now construct a proof circuit C : Σn × Qn −→ Σn. We consider the
inputs of the proof circuit to be divided into blocks. We choose the block size to
be a multiple of g, with the possible exception of the last block. In particular,
we choose block size cg = (2t + c0)g. The last block is of size c′g + r for some
0 ≤ c′ < c.

Let k = bn/cgc. Now the total proof is x1, . . . , xk, xk+1, q1, . . . , qk, qk+1

where each qi ∈ Q, xi ∈ Σcg for i ≤ k, and xk+1 ∈ Σc′g+r for some 0 ≤ c′ < c.
The word w output by the proof system on such a proof is also broken into

blocks in the same way, and each block is obtained as follows:

1. For 1 ≤ i < k, if qi ∈ δ(qi−1, xi), then wi = xi. Otherwise, wi is obtained
by concatenating β(qi−1), a word u such that q0 ∈ δ(q0, u), and α(qi). We
need |u| = (c− t′ − t′′)g, and we know that (c− t′ − t′′) ≥ c0g, and hence
Claim 6.8 guarantees that such a word u exists.

2. If qk+1 ∈ δ(qk−1, xkxk+1) and qk+1 ∈ F , then let wkwk+1 = xkxk+1.

Otherwise, let wkwk+1 have as suffix a string of length t′g+ r in L, where
0 ≤ t′ ≤ t. By the choice of t we know that such a string exists. This
leaves a prefix of length (cg + c′g + r) − (t′g + r) = (c + c′ − t)g with
(c+ c′ − t) ≥ c0g. We insert here a word u such that u takes q0 to q0; by
Claim 6.8, such a word exists. �

Lemma 6.9 (Folklore) Let T be a set of positive integers with gcd g. There is
a constant c0 such that for every K ≥ c0, Kg can be generated as a non-negative
integral combination of the integers in T .

Proof. We prove the statement by induction on |T |. Let T = {m1,m2, . . . ,mt}
be the given set.

Basis: If t = 1, then g = m1 and Kg = Km1, so set c0 to 1.
Inductive Hypothesis: Assume the statement is true for all sets of size t− 1.
Inductive Step: T is a set of size t.
It suffices to prove the statement when g = 1; for larger g, let T ′ be the set

{t/g | t ∈ T}. Then T ′ has gcd 1, and if we can generate all numbers beyond

23

c0 with T ′, then we can generate all Kg for K ≥ c0 with T . So now assume T
has gcd 1.

Let g′ denote the gcd of the subset R consisting of the first t − 1 numbers.
If g′ = 1, then, even without using the last number mt, we are already done
by induction. Otherwise, let m = mt. Then the numbers g′,m are co-prime
(because gcd for T is 1). By induction, there is a constant c′ such that using
only numbers from R, we can generate K ′g′ for any K ′ ≥ c′. Set c = (c′+m)g.
Consider any number n ≥ c.

The numbers 0 < n− (c′+m−1)g, n− (c′+m−2)g, . . . , n− (c′+1)g, n−c′g
all have different residues modulo m.
(If not, suppose for some 0 ≤ i < j ≤ m − 1, n − (c′ + i)g ≡ n − (c′ + j)g
(mod m). Then (j − i)g ≡ 0 (mod m), and so m must divide (j − i)g. Since
0 < j− i < m, m does not divide j− i. But m is co-prime to g. Contradiction.)
So for some 0 ≤ i < m, and for some non-negative integer a, n− (c′+ i)g = am.
That is, n = (c′ + i)g + am. By the induction hypothesis, (c′ + i)g can be
generated using numbers in R ⊆ T . And m ∈ T . So n can be generated from
T . �

Example 6.10 The following shows the construction of the proof circuit as in
the proof of Theorem 6.5 for the regular language L = (19 + 06)∗. Consider the
NFA for L shown in Figure 1. Using the same notation as in Theorem 6.5, we

...

Figure 1: The strongly connected NFA from Example 6.10

have L = {6, 9}. The greatest common divisor of the numbers in L is g = 3.
Then we have S = {q3, q6, q′3}. It is easy to see that in our example, Claim 6.8
goes through for c0 = 2. We choose the block length to be

` =

⌊
|Q| − 1

g

⌋
g + c0g +

⌊
|Q| − 1

g

⌋
g = 12 + 6 + 12 = 30.

This is chosen such that in the case of an input block that claims to take state
p to state p′ and does not have the correct proof, our proof system can output
a set of at most 12 symbols to go from p to q0, and then cycle around q0 using
kg symbols where k > c0 is chosen appropriately and finally output at most
12 symbols to go from q0 to p′. Note that in this way, for each pair of states
p, p′ ∈ S, we can produce a path p q0 q0 p′ of length exactly 30. For
example: Consider the pair q3, q

′
3. There is a path of length 6 from q3 to q0 and

24

a path of length 3 from q0 to q′3. Since we want the total length of the path
from q3 to q′3 to be exactly 30, we sandwich a closed walk of length 21 at q0. It
is easy to see that such a closed walk exists in the NFA shown.

Corollary 6.11 For every p prime, the language MODp={x | |x|1 ≡ 1 mod p }
admits an NC0 proof system.

All the proof systems for regular languages in Section 3 are obtained by
applying one of Theorems 6.1, 6.3, 6.5, in conjunction with a generic closure
property.

7 Conclusion

In this paper we initiated a systematic study of the power of NC0 proof systems.
We obtained a number of upper and lower bounds, some for specific languages,
some more generic. The main open question that arises from our investigation
is a combinatorial characterization of all languages that admit NC0 proof sys-
tems. Our generic results from Section 6 can be seen as a first step towards
such a characterization for regular languages. We believe that further progress
essentially depends on strengthening our lower bound techniques.

Agrawal’s results on constant-depth isomorphisms [1] provide a possible tool
to approach our main question: if we have an NC0 isomorphism between two
languages A and B, and B admits an NC0 proof system, then so does A. The
proofs for A are taken to be the proofs for B, then we simulate the proof system
for B, and to the obtained word in B we apply the inverse of the reduction and
enumerate an element from A.

In fact, our work seems to bear further interesting connections to recent
examinations on isomorphism of complete sets for the class NP. This work was
started in the nineties in a paper by Agrawal et al. [3] where it was shown
that (1) every language complete for NP under AC0 reductions is in fact already
complete under (non-uniform) NC0 reductions (this is called “gap theorem”
in [3]), and (2) that all languages complete for NP under AC0 reductions are
(non-uniformly) AC0 isomorphic (that is, the reduction is an AC0 bijection).
This was later improved to uniform AC0 isomorphisms [1]. It follows from a
result in [2] that this cannot be improved to P-uniform NC0 isomorphisms.
Using our results on proof systems, we obtain a very simple direct proof:

Proposition 7.1 There are sets A and B that are NP complete under NC0

reductions but not NC0 isomorphic.

Proof. Let A be the NP-complete set from [14] that admits an NC0 proof system,
cf. Remark 3.8. A is NP complete under AC0 reductions, hence by the gap
theorem, under NC0 reductions.

Let B be the disjoint union of A and Exact-OR from Section 4. Then B is
complete for NP under NC0 reductions because A reduces to B in NC0.

If now A and B are NC0 isomorphic, then we obtain an NC0 proof system
for B and from this, an NC0 proof system for Exact-OR, a contradiction. �

25

Acknowledgments.

We thank Sebastian Müller (Prague) for interesting and helpful discussions on
the topic of this paper.

References

[1] M. Agrawal. The isomorphism conjecture for constant depth reductions.
Journal of Computer and System Sciences, 77(1):3–13, 2010.

[2] M. Agrawal, E. Allender, R. Impagliazzo, T. Pitassi, and S. Rudich. Re-
ducing the complexity of reductions. Computational Complexity, 10(2):117–
138, 2001.

[3] M. Agrawal, E. Allender, and S. Rudich. Reductions in circuit complex-
ity: An isomorphism theorem and a gap theorem. J. Comput. Syst. Sci.,
57(2):127–143, 1998.

[4] E. Allender, D. A. M. Barrington, T. Chakraborty, S. Datta, and S. Roy.
Planar and grid graph reachability problems. Theory of Computing Sys-
tems, 45(4):675–723, 2009.

[5] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM
J. Comput., 36(4):845–888, 2006.

[6] B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom generators
with linear stretch in NC0. Computational Complexity, 17(1):38–69, 2008.

[7] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography with constant
input locality. J. Cryptology, 22(4):429–469, 2009.

[8] O. Beyersdorff, S. Datta, M. Mahajan, G. Scharfenberger-Fabian,
K. Sreenivasaiah, M. Thomas, and H. Vollmer. Verifying proofs in con-
stant depth. In Proc. 36th Symposium on Mathematical Foundations of
Computer Science, volume 6907 of Lecture Notes in Computer Science,
pages 84–95. Springer-Verlag, Berlin Heidelberg, 2011.

[9] O. Beyersdorff, J. Köbler, and S. Müller. Proof systems that take advice.
Information and Computation, 209(3):320–332, 2011.

[10] O. Beyersdorff and S. Müller. A tight Karp-Lipton collapse result in
bounded arithmetic. ACM Transactions on Computational Logic, 11(4),
2010.

[11] T. Chakraborty and S. Datta. One-input-face MPCVP is hard for L, but in
LogDCFL. In Proc. of 26th FST TCS Conference, LNCS vol. 4337, pages
57–68, 2006.

[12] S. A. Cook and J. Kraj́ıček. Consequences of the provability of NP ⊆
P/poly. The Journal of Symbolic Logic, 72(4):1353–1371, 2007.

26

[13] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional
proof systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

[14] M. Cryan and P. B. Miltersen. On pseudorandom generators in NC0. In
Proc. 26th Symposium on Mathematical Foundations of Computer Science,
pages 272–284, 2001.

[15] L. M. Goldschlager. The monotone and planar circuit value problems are
logspace complete for P. SIGACT News, 9(2):25–29, 1977.

[16] S. Goldwasser, D. Gutfreund, A. Healy, T. Kaufman, and G. N. Rothblum.
Verifying and decoding in constant depth. In Proc. 39th ACM Symposium
on Theory of Computing, pages 440–449, 2007.

[17] J. H̊astad. One-way permutations in NC0. Inf. Process. Lett., 26(3):153–
155, 1987.

[18] E. A. Hirsch. Optimal acceptors and optimal proof systems. In Proc.
7th Conference on Theory and Applications of Models of Computation.
Springer-Verlag, Berlin Heidelberg, 2010.

[19] E. A. Hirsch and D. Itsykson. On optimal heuristic randomized semideci-
sion procedures, with application to proof complexity. In Proc. 27th Sym-
posium on Theoretical Aspects of Computer Science, pages 453–464, 2010.

[20] E. Mossel, A. Shpilka, and L. Trevisan. On ε-biased generators in NC0.
Random Struct. Algorithms, 29(1):56–81, 2006.

[21] P. Pudlák. Quantum deduction rules. Annals of Pure and Applied Logic,
157(1):16–29, 2009.

[22] N. Segerlind. The complexity of propositional proofs. Bulletin of Symbolic
Logic, 13(4):417–481, 2007.

[23] H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach.
Texts in Theoretical Computer Science. Springer Verlag, Berlin Heidelberg,
1999.

[24] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner series
in computer science. B. G. Teubner & John Wiley, Stuttgart, 1987.

27

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

