
Nondeterministic Circuit Lower Bounds

from

Mildly Derandomizing Arthur-Merlin Games

Barış Aydınlıog̃lu ∗ Dieter van Melkebeek †

June 18, 2012

Abstract

In several settings derandomization is known to follow from circuit lower bounds that them-
selves are equivalent to the existence of pseudorandom generators. This leaves open the ques-
tion whether derandomization implies the circuit lower bounds that are known to imply it, i.e.,
whether the ability to derandomize in any way implies the ability to do so in the canonical way
through pseudorandom generators.

For the setting of decision problems, Impagliazzo et al. implicitly showed the following equiv-
alence: Randomized polynomial-time decision procedures can be simulated in NSUBEXP (the
subexponential version of NP) with subpolynomial advice on infinitely many input lengths if and
only if NEXP 6⊆ P/poly. We establish a full analogue in the setting of verification procedures:
Arthur-Merlin games can be simulated in Σ2SUBEXP (the subexponential version of Σ2P) with
subpolynomial advice on infinitely many input lengths if and only if Σ2EXP 6⊆ NP/poly.

A key ingredient in our proofs is improved Karp-Lipton style collapse results for nondetermin-
istic circuits. The following are two instantiations that may be of independent interest: Assum-
ing that Arthur-Merlin games can be derandomized in Σ2P, we show that (i) PSPACE ⊆ NP/poly
implies PSPACE ⊆ Σ2P, and (ii) coNP ⊆ NP/poly implies PH ⊆ PΣ2P.

In proving our result we provide a general framework that also captures earlier conditional
circuit lower bound results similar to ours.

1 Introduction

The power of randomness constitutes a central topic in complexity theory. In the context of
randomized decision procedures the question is whether the class BPP, or its promise version
prBPP, can be computed deterministically without much overhead – in subexponential or maybe
even polynomial time. Similarly, in the context of randomized verification procedures one seeks
for efficient nondeterministic computations of Arthur-Merlin games: the class AM, or its promise
version prAM.

A major development in the area are hardness versus randomness tradeoffs [Yao82, NW94,
BFNW93, IW97], which state that either nonuniformity speeds up computations significantly or
else nontrivial derandomization is possible. More precisely, these results show how to use a language

∗Partially supported by NSF grant 1017597.
†Partially supported by NSF grant 1017597.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 80 (2012)

in some complexity class C that is assumed to require “large” circuits, to construct a pseudorandom
generator (PRG) computable in C with “small” seed length. The PRG transforms its seed into a
longer string, say of length s, such that the average behavior of any circuit C of size s is almost the
same when the input to C is provided from the uniform distribution or from the output distribution
of the PRG on a uniform seed. We say that the PRG fools the circuit C. If C requires large circuits
of a certain type τ , then the resulting PRG fools circuits of type τ , and can be used to derandomize
any procedure that can be modeled by small circuits of type τ [KvM02]. See the table below for
some examples from the above papers and [SU06], where E

.
= DTIME(2O(n)), NE

.
= NTIME(2O(n)),

and τ ∈ {d, n} denotes deterministic (d) or nondeterministic (n) circuits.

τ class C
randomized

class derandomization

d E prBPP DTIME(t)

n NE ∩ coNE prAM NTIME(t)

Once we have such a PRG, the derandomization is obtained by cycling over all seeds and simulating
the randomized procedure on the output of the PRG for each seed. Stronger circuit lower bounds for
C imply smaller seed lengths for the generator, yielding more efficient derandomizations. At the “low
end”, superpolynomial circuit lower bounds yield subpolynomial seed length and derandomizations
that run in subexponential time t. At the “high end”, linear-exponential circuit lower bounds yield
logarithmic seed length and derandomizations that run in polynomial time t.

As the circuit lower bounds seem plausible, even at the high end, the hardness versus randomness
tradeoffs have fueled the conjecture that prBPP can be fully derandomized to P, and prAM to NP.
However, even the low-end hardness conditions remain open to date. This raises the question
whether there are means of derandomizing that do not need any of the above hardness conditions,
or whether derandomization is equivalent to hardness.

Proving an equivalence would establish a “canonical form” of derandomization, namely through
PRGs. It would show that if we can individually derandomize each procedure of the type considered,
then we can derandomize them “all at once” – we do not need to known the particulars of a
procedure in order to derandomize it. On the other hand, proving a non-equivalence would establish
that the hardness-based PRG approach to derandomization is incomplete, i.e., that there are better
avenues to derandomization. In fact, since the existence of PRGs is known to imply the hardness
conditions that yield them, this would render incomplete any PRG-based approach – using hardness
or not. Therefore another way of phrasing the question is whether or not the ability to derandomize
implies the ability to do so through PRGs.

In recent years we have seen a number of result for (pr)BPP showing that derandomization of
some sort implies hardness of some sort, although typically not strong enough so as to imply back
the derandomization (e.g., [IKW02, KI04, KvMS12]). One exceptional example is an equivalence
for a mild notion of derandomization for prBPP, implicit in the work of Impagliazzo et al. [IKW02].
They show that NE 6⊆ P/poly if and only if every prBPP-problem can be decided in NTIME(2n

ε
)

with an advice of length nε for infinitely-many input lengths, for arbitrarily small ε > 0. Note that
this notion of derandomization is indeed mild compared to what is conjectured to hold (namely
a derandomization of prBPP in P): it uses nondeterminism, a subexponential amount of time, a
subpolynomial amount of nonuniformity, and it is only required to work infinitely often. Mild
though it may be, it is a nontrivial derandomization nonetheless, and one that is not known to

2

hold. If it can be done at all, the [IKW02] result shows that it can be done in a canonical way –
through PRGs.

In contrast to the class prBPP, not much is known regarding derandomization-to-hardness con-
nections for Arthur-Merlin games. The only result in this direction is a “hybrid” connection that
shows an implication from derandomizing prAM to deterministic circuit lower bounds [AGHK11],
whereas the hardness-to-derandomization implication for prAM involves nondeterministic circuits.
In particular, what kind of nondeterministic circuit lower bounds, if any, are implied by derandom-
izing prAM is an open question.

Our results. In this paper we take up this last question and obtain an analogue of the equivalence
of hardness and derandomization from [IKW02] for the class prAM instead of prBPP.

Theorem 1 (Equivalence for Arthur-Merlin games). The following are equivalent:

◦ Every prAM-problem can be decided in Σ2TIME(2n
ε
)/nε at infinitely many input lengths, for

every ε > 0.

◦ Σ2E 6⊆ NP/poly.

Recall that prAM can be simulated in Π2P. Although plausible hardness assumptions imply
simulations in NP, it is open whether a simulation in Σ2TIME(t) is possible for subexponential t –
even with subpolynomial advice, and even if the simulation is only required to succeed infinitely
often. In this sense, Theorem 1 is a full analogue of the equivalence result by Impagliazzo et
al. [IKW02] for prBPP. In both their equivalence and ours the derandomizations are mild in the
same way: compared to the standard notion they use extra time, extra advice, and an extra level
of nondeterminism (where each “extra” is quantified identically in both results), and they are only
required to work infinitely often.

As it is currently open whether Σ2E 6⊆ NP/poly, Theorem 1 implies that mildly derandomizing
Arthur-Merlin games would yield new circuit lower bounds. In fact, it is even open whether
EΣ2P 6⊆ NP/poly. The situation for nondeterministic circuits mimics the one for deterministic
circuits “one level down” in the exponential-time hierarchy, where it is open whether ENP 6⊆ P/poly.

More interestingly, Theorem 1 implies that mildly derandomizing prAM in any way implies that
the same derandomization can be done canonically.

Corollary 1 (Derandomization-to-PRG connection for Arthur-Merlin games). If prAM
can be derandomized as in Theorem 1, then there exist pseudorandom generators that yield the
same derandomization.

A key step in the proof of Theorem 1 shows that mild derandomizations of prAM imply improved
Karp-Lipton style collapse results for nondeterministic circuits. The following are two instantiations
that may be of independent interest.

Theorem 2 (High-end collapse results). Suppose that every prAM-problem can be decided in
Σ2P. Then

(i) PSPACE ⊆ NP/poly =⇒ PSPACE ⊆ Σ2P, and

(ii) coNP ⊆ NP/poly =⇒ PH ⊆ PΣ2P.

3

Karp and Lipton [KL82] showed that if NP ⊆ P/poly then PH ⊆ Σ2P. Yap’s adaptation
[Yap83] of the Karp-Lipton result gives that if coNP ⊆ NP/poly then PH ⊆ Σ3P. Modulo the
derandomization assumption, the second item of Theorem 2 improves Yap’s result by “half a level”.
Another variant of the Karp-Lipton argument (attributed to Meyer) states that if PSPACE ⊆ P/poly
then PSPACE ⊆ Σ2P. Relativizing the latter result yields the strongest collapse consequence of
PSPACE ⊆ NP/poly known unconditionally, namely PSPACE ⊆ Σ3P. The first item of Theorem 2
improves this collapse by one level, modulo the derandomization assumption. We refer to Section
2.4 for related work on more refined collapses.

We use a low-end version of the first collapse result in Theorem 2 to establish the forward
direction of Theorem 1. The proof relies on interactive proofs for PSPACE, and as such does not
relativize. If we use the second collapse result instead of the first one, we obtain a relativizing proof
of a weaker result, namely that the same derandomization assumption implies EΣ2P 6⊆ NP/poly.

A lower bound framework. Once we have established our collapse results, we develop the
derandomization-to-hardness part of Theorem 1 as an instantiation of a generic framework that
captures our results as well as the corresponding one from [IKW02]. Also captured is the result by
Kabanets and Impagliazzo [KI04] that either NE 6⊆ P/poly or that PERM (the permanent over the
integers) requires superpolynomial-size arithmetic circuits, under the same mild derandomization
assumption as in [IKW02] but for the class BPP instead of prBPP.

Organization. In Section 2 we sketch the ideas behind our results, set up the lower bound
framework, and discuss the relationship with earlier work. In Section 3 we introduce our notation
for the formal development. In Section 4 we present the collapse results, and in Section 5 the main
result.

2 Outline of the Arguments and Related Work

We now outline the proofs of Theorem 1 and Theorem 2. We focus on the most novel part of
the proof of Theorem 1, which is the direction from derandomization to hardness, as well as the
weaker but relativizing variant mentioned in the introduction. Both can be cast as instantiations
of a general framework that also captures several known results of this ilk. The framework is based
on Kannan’s theorem [Kan82] that some level of the polynomial-time hierarchy cannot be decided
by circuits of fixed-polynomial size, and critically relies on collapse results in order to bring down
the required level of the polynomial-time hierarchy.

We first explain the collapse results we need and then present the framework. For ease of
exposition, in this overview we use the assumption that prAM can be simulated in Σ2P, yielding
the high-end collapse results of Theorem 2, although for the proof of Theorem 1 it suffices to have
the weaker assumption that prAM can be simulated in ∩ε>0i.o.− Σ2TIME(2n

ε
)/nε.

2.1 First high-end collapse result

Our first collapse result is an adaptation to the nondeterministic setting of the classical result that
if PSPACE has polynomial-size deterministic circuits then PSPACE ⊆ MA [LFKN92, Sha92]. Let
us first recall the proof of that classical result.

4

Assuming that PSPACE has polynomial-size deterministic circuits, we want to compute some
PSPACE-complete language L in MA. The proof hinges on the existence of an interactive proof
system for L in which the honest prover’s responses are computable in PSPACE. By assumption,
there is a polynomial-size deterministic circuit Dprover that encodes the honest prover’s strategy;
i.e., given the transcript of a message history, the circuit computes the next bit the honest prover
sends. Now the MA-protocol for L is as follows: Merlin sends a polynomial-size circuit D′ to
Arthur, who then carries out the interactive protocol for L by himself, evaluating the circuit D′ to
determine the prover’s responses. If the input is in L, Merlin can send the circuit Dprover, which
makes Arthur accept with high probability. If the input is not in L, the soundness property of
the interactive proof system guarantees that no deterministic circuit can make Arthur accept with
significant probability. This proves that L ∈ MA.

Now let us turn to our setting and try to achieve a similar collapse under the assumption
that PSPACE has nondeterministic circuits of polynomial size. Since Arthur may need Merlin’s
help in evaluating nondeterministic circuits, we allow for one more round of interaction between
Arthur and Merlin, and aim for a collapse to MAM=AM rather than MA. By assumption, there
exists a polynomial-size nondeterministic circuit Cprover implementing the honest prover’s strategy;
i.e., given the transcript of a message history and a bit b, Cprover accepts if the honest prover’s
next message bit is b, and rejects otherwise. Now consider the following attempt at a protocol
for the PSPACE-complete language L: Merlin sends a polynomial-size nondeterministic circuit C ′,
purported to encode the strategy of the honest prover. Upon receiving the circuit C ′, Arthur reveals
his coin flips ρ to Merlin. Merlin then provides the certificates for the circuit C ′ that allow Arthur
to construct and verify every bit of the transcript of the interactive proof corresponding to the coin
flips ρ. Finally, Arthur accepts if the resulting transcript is accepting.

This protocol is complete but not necessarily sound. Indeed, Merlin can send a nondeterministic
circuit C ′ that has accepting and rejecting computation paths on every input, which allows Merlin to
adapt his strategy to the coin flips ρ in whatever way he wants, by revealing accepting computation
paths only if he wishes to. We somehow need to force Merlin to commit to a fixed strategy in
advance.

In order to do so, we use our derandomization assumption and aim for a collapse to Σ2P
instead of AM. First, in an existential phase we “guess” a nondeterministic circuit C ′ supposed
to implement the honest prover’s strategy for L. We provide C ′ as additional input to the AM-
protocol, and require Merlin to convince Arthur using the specific circuit C ′ provided. Moreover,
in parallel to the AM-protocol, we make sure C ′ commits Merlin to a fixed strategy. More precisely,
in a universal phase we check that on every partial transcript for at least one of the choices of the
bit b, C ′ rejects on all computation paths. This fixes the soundness problem while maintaining
completeness.

Note that the above procedure can be implemented within Σ2P: We use two alternations outside
the AM-protocol, where the second alternation for checking the circuit is executed in parallel to
the protocol. Since by our derandomization assumption the AM-protocol can be simulated in Σ2P,
a collapse of PSPACE to Σ2P follows.

2.2 Second high-end collapse result

To outline the proof of our second collapse result, let us first recall the proof of the classical result by
Karp and Lipton for the case of NP and deterministic circuits. Assuming that satisfiability (SAT)
has polynomial-size circuits, we consider any Π2P-predicate of the form (∀u)(∃v)ϕ(u, v), where ϕ

5

is a Boolean formula, and translate it into an equivalent Σ2P-predicate.
One way to construct the Σ2P-predicate goes as follows. Use an existential quantifier to “guess”

a deterministic circuit D, verify that D correctly decides SAT, and then use D to transform the
inner existential phase of the original Π2P-predicate into a deterministic one, effectively eliminating
one quantifier alternation. Hence, we obtain an equivalent predicate that reads as

(∃D) [correct(D) ∧ (∀u)D(“(∃v)ϕ(u, v)”) = 1] . (1)

Exploiting the self-reducibility of SAT, correct(D) can be expressed as a coNP-predicate. This
way (1) becomes a Σ2P-predicate.

Let us now turn to our setting and try to achieve the same collapse under the assumption
that SAT has nondeterministic circuits of polynomial size. Mimicking the above proof, we use an
existential quantifier to guess a nondeterministic circuit C, check its correctness for SAT, and then
feed the existential phase of the Π2P-predicate into C. The latter transforms the existential phase
into an equivalent universal phase, which can be merged with the initial universal phase of the
original Π2P-predicate. This complementation gives us a new equivalent predicate of the form

(∃C) [correct(C) ∧ (∀u)C(“(∃v)ϕ(u, v)”) = 0] . (2)

In fact, it suffices that the predicate correct(C) checks the completeness of C for SAT (that
C accepts every unsatisfiable formula) without explicitly checking the soundness of C for SAT
(that C only accepts unsatisfiable formulas). However, while soundness can be tested in coNP,
completeness seems to require Π2P. This turns (2) into a Σ3P-predicate rather than a Σ2P-predicate.
Note that obtaining an equivalent Σ3P-predicate is trivial since we started from a Π2P-predicate.
If we start from a ΠP

3 -predicate instead, an analogous transformation yields an equivalent Σ3P-
predicate, implying a collapse of the polynomial-time hierarchy to the third level (this is Yap’s
theorem [Yap83]). If we could check for completeness in Σ2P, then the collapse would deepen
to the second level and we would be done, but we do not know how to do this, even under our
derandomization assumption. What we can do under our assumption, is to construct a correct
nondeterministic circuit for SAT “half a level” up from Σ2P, namely in PΣ2P (just like we could if
we knew how to check completeness in Σ2P). This collapses the polynomial-time hierarchy down
to PΣ2P, giving our second collapse result.

The particular problem in prAM that we assume can be derandomized is the following approxi-
mate lower bound problem: Given a circuit C and an integer a, decide whether C accepts at least
a inputs or noticeably less than a, say, less than a(1 − ε) where ε = 1/poly(n). Goldwasser and
Sipser [GS86] showed that this problem lies in prAM, even when C is nondeterministic.

The key difference our derandomization assumption makes is the added ability to guarantee,
within Σ2P, that a nondeterministic circuit C is “almost” complete, i.e., that C accepts at least a
(1−ε)-fraction of all unsatisfiable formulas, and even more generally, that a nondeterministic circuit
C accepts at least a (1 − ε)-fraction of all unsatisfiable formulas that are rejected by some other
given nondeterministic circuit. This enables us to construct in PΣ2P, out of a sound nondeterministic
circuit Ci for SAT, another sound nondeterministic circuit Ci+1 for SAT that misses at most half
as many unsatisfiable formulas as Ci does. Starting from the trivial sound circuit C0 that rejects
everything, this process yields a sound and complete nondeterministic circuit for SAT within n
iterations.

To explain the role of the derandomization hypothesis in more detail, we first sketch how to
find C1 because that case is easier. In constructing C1 we make oracle queries of the form: Is there

6

a sound nondeterministic circuit of size s(n) for SAT that accepts a inputs. These queries can be
decided approximately by a Σ2P-oracle because of our derandomization assumption and because
soundness can be checked in coNP. Assuming SAT has nondeterministic circuits of size s(n), this
enables us to approximate the number ā of unsatisfiable formulas of length n through a binary
search using a Σ2P-oracle. Moreover, by self-reduction we get a sound circuit C1 that accepts at
least (1− ε)ā inputs, with the factor (1− ε) being due to the gap between the yes and no instances
of the approximate lower bound problem. Setting ε = 1/2, we thus find a sound circuit C1 for SAT
that accepts at least half of all unsatisfiable formulas of length n.

To construct C2 we want to employ a similar strategy as in the construction of C1, namely to
find a sound circuit C̃1 for SAT that seems to accept as many inputs as possible, and then set
C2 = C1 ∨ C̃1. The difference, however, is that this time we want to maximize not over all inputs,
but just over those inputs that C1 rejects. This causes a problem because the set of inputs that C1

rejects is in coNP, whereas the approximate lower bound problem allows us to estimate the size of
NP sets only.

We overcome this obstacle by using the complementation idea again. By assumption, SAT has
small nondeterministic circuits not only at input length n, but also at larger input lengths. In
particular, there is a nondeterministic circuit C ′ of size s(n′) for SAT at input length n′, where
n′ is large enough that we can express the computation of an n-input size-s(n) nondeterministic
circuit – in particular C1 – with a Boolean formula of length n′. If we can get a hold of such a
circuit C ′, then we can express the coNP-set {x ∈ {0, 1}n : C1 rejects x} alternately as the NP-set
{x ∈ {0, 1}n : C ′ accepts φC1(x, ·)}, where φC1(x, y) is a Boolean formula of size n′ that expresses
that y is a valid accepting computation of C1 on input x. Since the latter set is in NP, it can be
provided as input to the approximate lower bound problem. Of course, getting a hold of a circuit
C ′ for SAT at length n′ is the very problem we are trying to solve – only harder since n′ > n.
We observe, however, that we do not need to explicitly check the completeness of C ′ for SAT; it
suffices to check the soundness of C ′ for SAT. Since the latter can be done in coNP, we can guess
and check the circuit C ′ in Σ2P.

To recapitulate, we want to find a sound nondeterministic circuit C̃1 for SAT that misses at
most half of the unsatisfiable formulas that C1 misses. We accomplish this by first encoding the
computation of C1 on a generic input x as a Boolean formula φC1(x, y) of length n′, such that
φC1(x, ·) is satisfiable for a particular x iff C1 accepts x. Then we make oracle queries that ask: Is
there a nondeterministic circuit C ′ of size s(n′) on n′ inputs, and a nondeterministic circuit C̃1 of
size s(n) on n inputs, such that (i) the set {x ∈ {0, 1}n : C̃1 accepts x and C ′ accepts φC1(x, ·) } is
of size at least a, and (ii) C ′ and C̃1 are both sound for SAT. By our derandomization assumption
that prAM ⊆ Σ2P, these queries can be made to a Σ2P-oracle, which allows us to construct C̃1 in
PΣ2P. We then set C2 = C1 ∨ C̃1.

As a side remark we point out that, although we do not explicitly require the circuit C ′ to be
complete for SAT, the maximization of a forces C ′ to be complete (on the relevant instances). This
is how we can avoid checking completeness explicitly (which seems to require the power of Π2P)
although we rely on it.

Having found C2, we then iterate to get a third nondeterministic circuit C3 that misses at most
half as many unsatisfiable formulas as C2 does, and so on until we reach perfect completeness. This
way we construct in PΣ2P a nondeterministic circuit of size O(n · s(n)) for SAT at length n. The
collapse of the polynomial-time hierarchy to PΣ2P follows.

7

2.3 The lower bound framework

In both our main equivalence for prAM and the one for prBPP due to Impagliazzo et al. [IKW02], the
proof of the forward direction – from derandomization to hardness – can be cast as an instantiation
of a generic framework. We now describe that framework.

Our goal is to show, under some derandomization assumption, that some class C does not have
polynomial size circuits of type τ , where C is a linear-exponential class such as E or NE, and τ could
be deterministic, nondeterministic, or even arithmetic1.

The proof goes by contradiction and consists of the following ingredients. Assume that C has
τ -circuits of polynomial size.

1. Collapsing the polynomial-time hierarchy. Use the hypothesis that C has τ -circuits of poly-
nomial size to show that the polynomial-time hierarchy can be simulated in some randomized
class R.

2. Derandomization. Use the derandomization assumption to show that every language in R is
decidable in C with a fixed-polynomial amount of advice for infinitely many input lengths.

Note that classes C such as E and NE contain complete languages under fixed-polynomial time
reductions (in fact linear-time reductions), and therefore C having polynomial size circuits is equiv-
alent to C having size-nc circuits for a fixed constant c. By combining the above two ingredients, we
can thus conclude that all of the polynomial-time hierarchy can be decided by τ -circuits of size less
than nd for some fixed constant d and infinitely many input lengths. This contradicts Kannan’s
result that for any fixed polynomial nd, there exists a language in some level of the polynomial-time
hierarchy that requires τ -circuits of size at least nd for all but finitely many input lengths [Kan82].2

Figure 2.3 lists the instantiations of the above framework that yield derandomization-to-hardness
results implied by the works of Impagliazzo et al. [IKW02] and of Kabanets and Impagliazzo [KI04]
mentioned in the introduction. The last two lines represent our main result (Theorem 1) obtained
via our first collapse involving PSPACE, and our weaker but relativizing result obtained via our
second collapse involving coNP.

C τ R derandomization hypothesis

[IKW02] NE d MA prBPP ⊆ ∩ε>0i.o.− NTIME(2n
ε
)/nε

[KI04] NE ∪ {PERM} a N·BPP BPP ⊆ ∩ε>0i.o.− NTIME(2n
ε
)/nε

main result Σ2E n M(AM||coNP)
prAM ⊆ ∩ε>0i.o.− Σ2TIME(2n

ε
)/nε

relativizing result EΣ2P n PprM(AM||coNP)

Figure 1: Framework to show that C does not have polynomial-size circuits of type τ , assuming a
derandomization hypothesis and using an intermediate randomized class R.

The values “d,” “a,” and “n” for τ in Figure 2.3 stand for deterministic, arithmetic, and
nondeterministic circuits, respectively. In the line for [KI04], the class R is expressed using the

1We say that an arithmetic circuit C on n inputs decides a language L at length n if C agrees with the characteristic
function of L on {0, 1}n.

2Kannan’s result is originally stated for deterministic circuits, but it is straightforward to generalize it to nonde-
terministic or arithmetic circuits.

8

operator “N”; this is the natural operator that yields the class NP when applied to the class P.
The same operator can also be used to express the class MA as N·prBPP. The classes R we use for
our results in Figure 2.3 are technical augmentations of Arthur-Merlin protocols; they are implicit
in the proof of Theorem 2 and are explicitly defined in Section 3.

As a side remark we point out that the first two lines of Figure 2.3 represent proofs that are
somewhat simpler than the original ones. The original proofs use the relatively involved collapse
NEXP ⊆ P/poly =⇒ NEXP ⊆ MA [IKW02], which itself relies on the nondeterministic time
hierarchy theorem, a hardness-based PRG construction, as well as multi-prover interactive proofs.
The framework shows that the same result can be obtained by collapsing PH rather than NEXP,
hence it suffices to use a more basic collapse technology using the assumption PSPACE ⊆ P/poly
or even the weaker assumption P#P ⊆ P/poly (for [KI04] this was observed earlier in [AvM11]).

2.4 Related work

In the setting of decision problems, Goldreich [Gol11a, Gol11b] showed that the standard notion of
derandomization for prBPP (deterministic simulations without advice that work for all but finitely
many inputs) is equivalent to the existence of so-called “targeted PRGs,” which are PRGs that
have access to the input or even to the circuit that models the randomized computation on the
given input. For standard PRGs (which are oblivious to the input and only depend on the running
time of the randomized computation) he showed an equivalence between their existence and de-
randomizations of prBPP in an average-case setting: deterministic simulations without advice that
may err on some inputs but such that generating erroneous inputs is computationally difficult. In
both cases the equivalence with circuit lower bounds remains open.

In the setting of Arthur-Merlin games, Gutfreund et al. [GST03] suggest an approach to prove
that AM can be simulated in Σ2SUBEXP. Theorem 1 implies that if the approach works for prAM
then it would yield new circuit lower bounds.

Using Kannan’s argument to get circuit lower bounds from a derandomization assumption for
prAM was carried out by Gutfreund and Kawachi [AGHK11]. The same paper also presents an
alternate and simpler proof that does not use Kannan’s argument, but uses the power of prAM to
directly diagonalize against deterministic circuits.

The technique of using a prAM-oracle to iteratively construct a sound circuit with rapidly
increasing completeness, appears in the work of Chakaravarthy and Roy [CR08]. Using this tech-
nique they show that PH collapses to PprAM, under the classical Karp-Lipton assumption that
NP ⊆ P/poly.

Be it for diagonalization as in [AGHK11], or for finding a circuit as in [CR08, AGHK11] and our
work, the use of a prAM-oracle can be viewed as finding a witness ỹ that approximately maximizes
a “quality measure” f defined on the set of all strings. For diagonalization purposes this measure
would be the number of circuits that a given string y eliminates when viewed as the characteristic
string of a function. For finding a circuit for SAT at length n, y is viewed as a circuit and f(y)
measures the number of unsatisfiable formulas that y accepts provided that y is sound.

In [Gol11a, Gol11b] a prBPP-oracle is used to construct targeted PRGs. The constructions
also involve approximately maximizing a quality measure f ; in this case f(y) may be defined
recursively as the average quality of the extensions of y, i.e., f(y) = 1

2(f(y0)+f(y1)). The difference
between the works mentioned in the previous paragraph and Goldreich’s is that in the latter f
can be additively approximated using a prBPP-oracle, whereas in the former f is multiplicatively
approximated using a prAM-oracle.

9

Regarding our high-end collapse result involving coNP and NP/poly, at a more refined level
of granularity the strongest unconditional collapse consequence of the condition coNP ⊆ NP/poly
is that PH collapses to S2PNP [CCHO05], a class that contains PΣ2P but is not known to equal
it. Similarly, the strongest unconditional collapse consequence of PSPACE ⊆ NP/poly is that
PSPACE ⊆ S2PNP.

3 Notation and Conventions

In this section we introduce our notation and conventions, including the notion of an augmented
Arthur-Merlin protocol, which is a technical construct that naturally arises in our collapse argu-
ments.

Promise problems and languages. A promise problem Π is a pair of disjoint sets (ΠY ,ΠN)
of strings over the binary alphabet {0, 1}. A language L is a promise problem of the form (L,L),
where L

.
= {x ∈ {0, 1}∗ : x 6∈ L}. A promise problem Π′ = (Π′Y ,Π

′
N) is said to agree with a

promise problem Π = (ΠY ,ΠN) if ΠY ⊆ Π′Y and ΠN ⊆ Π′N . To decide a promise problem Π is to
correctly determine, for all inputs x ∈ ΠY ∪ ΠN , which of ΠY and ΠN contains x. For two classes
of promise problems C and C′, we write C ⊆ C′ if for every Π ∈ C there exists Π′ ∈ C′ such that
Π′ agrees with Π. We say that Π reduces to Π′ if there exists an oracle Turing machine M such
that ML′ agrees with Π for every language L′ that agrees with Π′. In particular, a language L is in
PΠ′ if there exists a polynomial-time oracle Turing machine M such that ML′ decides L for every
language L′ that agrees with Π′. For more on promise problems, see the survey [Gol06].

prAM represents the class of promise problems Π for which there exists a constant c and a
language L ∈ P such that for every input x

[completeness] x ∈ ΠY ⇒ Pry[(∃z)〈x, y, z〉 ∈ L] ≥ 2/3, and
[soundness] x ∈ ΠN ⇒ Pry[(∃z)〈x, y, z〉 ∈ L] ≤ 1/3,

where n denotes the length of x, the variables y and z range over {0, 1}nc , and the probabilities are
with respect to the uniform distribution. AM denotes those problems in prAM that are languages.
Underlying each problem in prAM there is a protocol between a randomized polynomial-time verifier
(Arthur) and an all-powerful prover (Merlin); we refer to these protocols as Arthur-Merlin protocols
or Arthur-Merlin games.

In our proofs the following technical augmentation of Arthur-Merlin protocols arises naturally.
For lack of a better name, we refer to them as “augmented” Arthur-Merlin protocols.

Definition 1 (Augmented Arthur-Merlin protocol). The class prM(AM||coNP) consists of
all promise problems Π for which there exists a constant c, a promise problem Γ ∈ prAM, and
a language V ∈ coNP such that

[completeness] x ∈ ΠY ⇒ (∃y) (〈x, y〉 ∈ ΓY ∧ 〈x, y〉 ∈ V) , and
[soundness] x ∈ ΠN ⇒ (∀y) (〈x, y〉 ∈ ΓN ∨ 〈x, y〉 6∈ V) ,

where n denotes the length of x, and y ranges over {0, 1}nc. M(AM||coNP) denotes those problems
in prM(AM||coNP) that are languages.

10

Similar to the class prAM, underlying each problem in prM(AM||coNP) there is a protocol between
an all-powerful prover, Merlin, and – in this case – two verifiers, who cannot communicate with
each other. One verifier is the usual randomized polynomial-time Arthur from the prAM-problem
Γ; the other one is the coNP-verifier V . Merlin goes first and sends a common message to both
verifiers. At this point, V has to make a decision to accept/reject, whereas Arthur can interact
with Merlin as in the Arthur-Merlin protocol for Γ before making a decision. The input is accepted
by the protocol iff both verifiers accept.

Nondeterministic circuits. A nondeterministic Boolean circuit C consists of AND and OR
gates of fan-in 2, NOT gates of fan-in 1, input gates of fan-in 0, and additionally, choice gates of
fan-in 0. We say that the circuit accepts input x, or C(x) = 1 in short, if there is some assignment
of Boolean values to the choice gates that makes the circuit evaluate to 1; otherwise we say that C
rejects x, or C(x) = 0 in short. We measure the size of a circuit by the number of its connections.
A circuit of size s can be described by a binary string of length O(s log s).

4 Collapse Results

In this section we establish our collapse result (Theorem 2), which uses the assumption that prAM
can be mildly derandomized. In fact, we prove an unconditional collapse result involving the class
of augmented Arthur-Merlin protocols introduced in Definition 1, from which Theorem 2 follows
under the derandomization assumption. We first establish a collapse result assuming PSPACE has
nondeterministic circuits of polynomial size (corresponding to the first part in Theorem 2) and then
do the same for coNP instead of PSPACE (corresponding to the second part in Theorem 2).

4.1 Collapse result for PSPACE

The proof of the following theorem uses interactive proofs for PSPACE and as such does not rela-
tivize.

Theorem 3. If PSPACE ⊆ NP/poly then PSPACE ⊆ M(AM||coNP).

Proof. Let L be in PSPACE, fix an interactive proof system for L, and consider the language Lprover

consisting of all tuples 〈x, y, b〉 such that y is a prefix of the transcript of an interaction of the verifier
with the honest prover on input x, and the next bit in the transcript is sent by the prover and equals
b. Without loss of generality we can assume that Lprover is paddable such that given a random
string ρ for the verifier, we can construct the entire transcript with the honest prover on an input
x ∈ {0, 1}n by making queries to Lprover of a single length `(n) = poly(n).

By the assumption that PSPACE ⊆ NP/ poly, Lprover can be decided by some polynomial-size
nondeterministic circuit Cprover. Now consider the following augmented Arthur-Merlin protocol for
deciding L on x ∈ {0, 1}n. Merlin sends to both verifiers a polynomial-size nondeterministic circuit
C ′, purported to compute Lprover at length `(n). The coNP-verifier V checks that C ′ is “single-
valued”, i.e., for all possible queries to the circuit C ′, if for some query 〈x0, y0, b0〉 the circuit C ′

accepts then C ′ rejects the complementary query 〈x0, y0,¬b0〉. Note that this check is indeed in
coNP.

Arthur picks a random string ρ of the appropriate length (at most `(n)) and sends it to Merlin.
Merlin sends the transcript for the interactive protocol for L on input x corresponding to the coin

11

flips ρ. Merlin also sends the certificates for C ′ that purportedly produce that transcript. Arthur
accepts iff C ′ produces the transcript when given those certificates, and the transcript is accepting.

To argue completeness, consider x ∈ L. Then Merlin can just send C ′ = Cprover. That circuit
passes the coNP-verifier V and also passes Arthur’s verification with high probability.

For the soundness, consider x /∈ L, and suppose that Merlin sends a circuit C ′ that passes
the coNP-verifier. This means that C ′ is single-valued, and corresponds to a fixed prover strategy.
Then Arthur rejects with high probability by the soundness of the original interactive proof system
for L. �

The proof of the first part of Theorem 2 follows immediately from Theorem 3:

Proof (of part (i) of Theorem 2). If prAM can be simulated in Σ2P then so can prM(AM||coNP).
This follows because replacing ΓY in Definition 1 by a Σ2P-predicate and ΓN by its complement,
turns ΠY into a Σ2P-predicate and ΠN into its complement. If in addition PSPACE ⊆ NP/poly,
Theorem 3 implies that PSPACE ⊆ M(AM||coNP) ⊆ Σ2P. �

4.2 Collapse result for coNP

We proceed with a relativizable proof of the following unconditional collapse result assuming coNP
has nondeterministic circuits of polynomial size.

Theorem 4. If coNP ⊆ NP/poly then Σ3P ⊆ PprM(AM||coNP).

The second part of Theorem 2 follows immediately from Theorem 4 under the mild derandomization
assumption for prAM, in a relativizable way.

Proof (of part (ii) of Theorem 2). As we argued in the proof of part (i) in Section 4.1, if prAM can
be simulated in Σ2P then so can prM(AM||coNP). If in addition coNP ⊆ NP/poly, Yap’s theorem
[Yap83] and Theorem 4 imply that PH ⊆ Σ3P ⊆ PprM(AM||coNP) ⊆ PΣ2P. �

We now argue Theorem 4. Assume that SAT has nondeterministic circuits of size s(n), where s
is some polynomial. Following the outline of Section 2.2, with the aid of a prM(AM||coNP)-oracle,
we construct a circuit of size O(n · s(n)) that correctly decides SAT on all instances of size n. The
circuit is obtained as the end of a sequence of sound circuits with rapidly improving completeness,
starting from the trivial circuit that rejects everything.

To measure the improvement in each step, we consider the following function f : {0, 1}∗ ×
{0, 1}∗ → N, which takes as arguments the current circuit C in the sequence, and a candidate
circuit C̃ to improve the completeness of C in the next step, while maintaining soundness.

f(C, C̃) =

{
|C−1(0) ∩ C̃−1(1)| if C̃ is sound for SAT
0 otherwise.

(3)

We map circuits C̃ that are not sound to zero because their use would violate the soundness of the
sequence. If C̃ is sound, f counts the number of instances of SAT that are missed by C but caught
by C̃.

For a given circuit C that is sound but not complete, our goal is to find a circuit C̃ that
approximately maximizes f(C, C̃). For this task we only need access to an approximation of f
to within a constant multiplicative factor. In general, for a function f : {0, 1}∗ × {0, 1}∗ → N,

12

approximating f to within a multiplicative factor is captured by the following promise problem
Af = (Yf , Nf), which additionally takes an integer a in binary and a positive integer 1/ε in unary.

Yf = {〈x, y, a, ε〉 : f(x, y) ≥ a}
Nf = {〈x, y, a, ε〉 : f(x, y) < (1− ε)a}. (4)

The crux of our argument is the following lemma.

Lemma 1. Let f be the function defined by (3), and Af the promise problem given by (4). If
coNP ⊆ NP/poly then Af ∈ prM(AM||coNP).

Proof. We follow the outline from Section 2.2, but cast the resulting algorithm for Af in terms of
an augmented Arthur-Merlin protocol with coNP-verifier V on input (C, C̃).

Since V can check whether C̃ is sound for SAT, it suffices to construct an augmented Arthur-
Merlin protocol for Ag, where g is the simplification of f defined by g(C, C̃)

.
= |C−1(0) ∩ C̃−1(1)|.

Goldwasser and Sipser [GS86] showed that for every predicate L ∈ NP and function

h : {0, 1}∗ × {0, 1}∗ → N, h : (u, v) 7→ |{w ∈ {0, 1}∗ : 〈u, v, w〉 ∈ L}|, (5)

the promise problem Ah is in prAM. Note that the function g is of the form (5), except that the
underlying predicate C(w) = 0 ∧ C̃(w) = 1 is the difference of two NP sets rather than just an NP
set. We remedy this issue by invoking the hypothesis coNP ⊆ NP/poly as follows.

Let C and C̃ have n inputs and be of size at most s. By the Cook-Levin Theorem, we can
construct in time poly(s) a Boolean formula φC(x, y) of size n′ such that for all x ∈ {0, 1}n, C(x) = 0
iff φC(x, ·) ∈ SAT. Let C ′ denote a circuit that takes inputs of size n′, and let L denote the predicate
that on input 〈u, v, w〉 with u = 〈C,C ′〉 and v = C̃, decides whether C ′(φC(w, ·)) = 1 ∧ C̃(w) = 1.
Note that L ∈ NP, so Ah ∈ prAM for h defined by (5).

Whenever C ′ is sound for SAT on instances of size n′, 〈〈C,C ′〉, C̃, w〉 ∈ L only if C(w) = 0 and
C̃(w) = 1, which implies that h(〈C,C ′〉, C̃) ≤ g(C, C̃). Moreover, if C ′ correctly decides SAT at
length n′, then 〈〈C,C ′〉, C̃, w〉 ∈ L iff C(w) = 0 ∧ C̃(w) = 1, and h(〈C,C ′〉, C̃) = g(C, C̃). By the
hypothesis that coNP ⊆ NP/poly, there exists a circuit C ′ of size poly(n′) that computes SAT on
instances of length n′. This suggests the following augmented Arthur-Merlin protocol for Ag on
input 〈C, C̃, a, ε〉.

If a ≤ 0 the protocol trivially accepts, as g is nonnegative. Otherwise, Merlin sends as his initial
message a circuit C ′ of size poly(n′) on n′-inputs, purported to be a circuit for SAT at length n′.
The coNP-verifier checks that C ′ is sound with respect to SAT, and Arthur engages in a protocol
with Merlin for the promise problem Ah on input 〈〈C,C ′〉, C̃, a, ε〉.

To argue completeness of the protocol for Ag, suppose that g(C, C̃) ≥ a > 0. In order to make
both verifiers accept, Merlin can send as his initial message a polynomial-size circuit C ′

SAT
for SAT

at length n′, which exists by the hypothesis that coNP ⊆ NP/poly. Since C ′
SAT

is sound for SAT,

the coNP-verifier accepts. As for the other verifier (Arthur), since C ′
SAT

is a correct circuit for SAT,

we have that h(〈C,C ′
SAT
〉, C̃) = g(C, C̃) ≥ a. The completeness of the Arthur-Merlin protocol for

Ah then guarantees that Arthur can be convinced with high probability.
To argue soundness, suppose that g(C, C̃) < a(1 − ε). First, if the coNP-verifier accepts, then

Merlin must have sent a sound circuit C ′ for SAT in the first round. In that case h(〈C,C ′〉, C̃) ≤
g(C, C̃), so h(〈C,C ′〉, C̃) < a(1 − ε). By the soundness of the Arthur-Merlin protocol for Ah, this
means that Arthur rejects with high probability. Thus, whenever the coNP-verifier accepts, Arthur
rejects with high probability. This completes the proof. �

13

Lemma 1 allows us to efficiently improve the completeness of a sound but incomplete circuit
C for SAT when given oracle access to a language that agrees with Af by finding a circuit C̃ that
approximately maximizes f(C, C̃), and outputting C ∨ C̃. The approximate maximization can be
done using the following generic lemma.

Lemma 2. Let f : {0, 1}∗ × {0, 1}∗ → N be such that f(x, y) ≤ 2|x|
c

for some constant c. If
Af ∈ prM(AM||coNP), where Af denotes the promise problem defined by (4), then there exists a
promise problem Π ∈ prM(AM||coNP) such that the following holds for any language L that agrees
with Π. On input x ∈ {0, 1}∗, a nonnegative integer m in unary, and a positive integer 1/ε̃ in
unary, we can find, in deterministic polynomial time with oracle access to L, a value ỹ ∈ {0, 1}m
such that

f(x, ỹ) ≥ (1− ε̃) · max
y∈{0,1}m

f(x, y).

Lemma 2 holds more generally when prM(AM||coNP) is replaced by any reasonable complexity class
C that is closed under the existential operator,3 such as ΣP

k for any k ≥ 1. Chakaravarthy and Roy
[CR08] implicitly use it with C = prAM.

Proof (of Lemma 2). We run a prefix search for ỹ. In order to do so, we make use of the auxiliary
function g(x, y)

.
= maxyy′∈{0,1}m f(x, yy′), where yy′ denotes the concatenation of y and y′. The

fact that Af ∈ prM(AM||coNP) implies that Π
.
= Ag ∈ prM(AM||coNP). This is because on input

〈x, y, a, ε〉, the augmented Arthur-Merlin protocol for Ag can have Merlin first guess y′ ∈ {0, 1}m−|y|
and then run the augmented Arthur-Merlin protocol for Af on input 〈x, yy′, a, ε〉. Let L denote a
language that agrees with the promise problem Π.

In a first phase we find an approximation ã to a∗
.
= maxy∈{0,1}m f(x, y). To do so, we make use

of the predicate P (a)
.
= 〈x, λ, a, ε〉 ∈ L, where λ denotes the empty string, ε will be set later, and

the rest of the parameters are the inputs given in the statement of the lemma. Note that P (0) holds
because f is nonnegative. At the other end, P (2|x|

c
+ 1) fails by the assumption on the range of f .

We run a binary search for an integer value ã ∈ [0, 2|x|
c
] such that (i) P (ã) holds and (ii) P (ã+ 1)

fails. This guarantees that (1 − ε)ã ≤ a∗ ≤ ã, where the first inequality follows from (i) and the
fact that P (ã) implies that g(x, λ) ≥ (1 − ε)ã, and the second inequality follows from (ii) and the
fact that ¬P (ã+ 1) implies that g(x, λ) < ã+ 1. This concludes the first phase.

In a second phase we run the actual prefix search for ỹ. We maintain the invariant that

g(x, ỹ1...i) ≥ ãi, (6)

for 0 ≤ i ≤ m, where ỹ1...i denotes the prefix of length i of ỹ, and the values ãi are chosen not too
much smaller than ã. More specially, we set ã0 = (1− ε)ã, and for i = 0, . . . ,m− 1 we extend the
prefix of ỹ of length i to length i + 1 as follows. By (6) we know that for at least one choice of
ỹi+1 ∈ {0, 1},

〈x, ỹ1...i+1, ãi, ε〉 ∈ L, (7)

and for any choice of ỹi+1 ∈ {0, 1} satisfying (7), g(x, ỹ1...i+1) ≥ (1− ε)ãi. Thus, we may pick ỹi+1

as the lesser value in {0, 1} for which (7) holds, and set ãi+1 = (1− ε)ãi.
In the end, we obtain ỹ ∈ {0, 1}m satisfying

f(x, ỹ) = g(x, ỹ) ≥ ãm = (1− ε)mã0 ≥ (1− ε)m+1ã ≥ (1− ε)m+1a∗,

3More precisely, the property needed is that if Π = (ΠY ,ΠN) is in C then so is Π′ = (Π′Y ,Π
′
N), where Π′Y =

{〈x, y′, 1m〉 : (∃y′y′′ ∈ {0, 1}m) 〈x, y′y′′〉 ∈ ΠY } and Π′N = {〈x, y′, 1m〉 : (∀y′y′′ ∈ {0, 1}m) 〈x, y′y′′〉 ∈ ΠN}.

14

which is at least (1− ε̃)a∗ provided we set ε = ε̃/(m+ 1).
Since both phases run in polynomial time with oracle access to L, the result follows. �

Starting from the trivial sound circuit C0 that rejects all inputs, we iteratively apply the im-
provement step based on Lemma 1 and Lemma 2 with ε̃ = 1/2. After no more than n iterations
this yields a circuit of polynomial size that decides SAT on inputs of size n. We have proved the
following theorem.

Theorem 5. Suppose that coNP ⊆ NP/poly. There exists a promise problem Π ∈ prM(AM||coNP)
such that the following holds for any language L that agrees with Π. Given n, we can construct a
polynomial-size nondeterministic circuit for SAT at length n in deterministic polynomial time with
oracle access to L.

With Theorem 5 in hand, the nondeterministic variant of the Karp-Lipton argument yields the
collapse stated in Theorem 4.

Proof (of Theorem 4). Let K denote the Σ3P-complete language consisting of all Boolean formulas
ϕ(x, y, z) on three sets of variables x, y, z such that (∃x)(∀y)ϕ(x, y, ·) ∈ SAT. We show that under
the assumptions of the theorem, K ∈ PprM(AM||coNP).

Consider the related language K ′ consisting of all pairs 〈ϕ,C〉, where ϕ is a Boolean formula
as above and C is a circuit such that (∃x)(∀y)C(ϕ(x, y, ·)) = 0. As the condition C(ϕ(x, y, ·)) = 0
can be decided in quasilinear time on a co-nondeterministic machine, K ′ ∈ Σ2P ⊆ M(AM||coNP).
Moreover, if C is a circuit that correctly decides SAT on inputs of the appropriate size, then ϕ ∈ K
iff 〈ϕ,C〉 ∈ K ′.

In order to decide L on an input ϕ of size n, we first run the algorithm from Theorem 5 on
input n to obtain a circuit C of polynomial size for SAT on inputs of the required size, and then
check whether 〈ϕ,C〉 ∈ K ′. Note that any language L that agrees with the promise problem
Π ∈ prM(AM||coNP) from Theorem 5, suffices as oracle for the construction; the circuit C we
construct may depend on the choice of L, but the final membership decision to K does not. The
theorem follows. �

5 Equivalence Result

In this section we establish our hardness-derandomization equivalence for Arthur-Merlin games
(Theorem 1). We first argue the derandomization-to-hardness direction for Σ2E, as well as a
weaker but relativizing claim for EΣ2P. We finish with the hardness-to-derandomization direction
for Σ2E.

5.1 From derandomization to hardness

We use the lower bound framework introduced in Section 2.3. We assume that C ⊆ NP/poly, where
C = Σ2E or C = EΣ2P, and derive a contradiction with Kannan’s result that the polynomial-time
hierarchy does not have (nondeterministic) circuits of fixed-polynomial size. The derivation entails
two key ingredients: (i) collapsing the polynomial-time hierarchy to some randomized class R,
and (ii) derandomizing R assuming that prAM ⊆ ∩ε>0i.o.− Σ2TIME(2n

ε
)/nε. We developed (i) in

Section 4. We now discuss (ii).

15

The classes R we consider involve augmented Arthur-Merlin protocols as introduced in Defi-
nition 1 of Section 3. More precisely, we consider R = prM(AM||coNP) and R = PprM(AM||coNP).
Under the stronger derandomization assumption that prAM ⊆ Σ2SUBEXP

.
= ∩ε>0Σ2TIME(2n

ε
),

those classes R can trivially be simulated in Σ2SUBEXP or SUBEXPΣ2P, respectively. To carry
over that argument to the i.o.-setting with small advice, we need to make sure that the deran-
domization of R on inputs of length n only makes use of the derandomization of prAM on one
of the infinitely many good input lengths m where the latter simulation is guaranteed to work.
The following lemma shows how to do that for infinitely many input lengths n by exploiting the
paddability of prAM and using an additional short advice string to point to a nearby good length
m.

Lemma 3 (Derandomization Lemma). If prAM ⊆ ∩ε>0i.o.− Σ2TIME(2n
ε
)/nε then

(i) prM(AM||coNP) ⊆ ∩ε>0i.o.− Σ2TIME(2n
ε
)/nε, and

(ii) PprM(AM||coNP) ⊆ ∩ε>0i.o.− DTIMEΣ2P(2n
ε
)/nε.

Proof. Part (i): Let C denote ∩ε>0i.o.− Σ2TIME(2n
ε
)/nε, and let Π ∈ prM(AM||coNP). Let Γ

denote the prAM-problem underlying Π, and V the coNP-verifier, as in Definition 1. By assumption,
there is a language Q ∈ C that agrees with Γ. If we replace the predicate Γ by Q in the definition
of Π, we obtain the language

R = {x : (∃y ∈ {0, 1}nc) (〈x, y〉 ∈ Q ∧ 〈x, y〉 ∈ V)}. (8)

Observe that R agrees with Π. It remains to show that R ∈ C.
We can assume without loss of generality that Q is paddable; by this we mean (a) 〈x, y〉 ∈ Q iff

〈x, y, 0pad〉 ∈ Q for all pad ∈ N, and (b) if 〈x, y〉 is of length m then there is a setting of pad such
that 〈x, y, 0pad〉 is of length m′ for all m′ ≥ m.

Fix any ε > 0. We want to exhibit a language Rε ∈ Σ2TIME(2n
ε
)/nε that agrees with R on in-

finitely many lengths n. By assumption, for every δ > 0 there is a language Qδ ∈ Σ2TIME(2m
δ
)/mδ

and an infinite set of lengths Mδ such that Qδ agrees with Q on all lengths in Mδ. We use Qδ for
a sufficiently small value of δ > 0 to construct Pε as follows.

Let `(n) denote the maximum length of the (unpadded) queries issued to the language Q when
deciding the language R on inputs x of length n. Suppose there exists a length m ∈ Mδ in the
range `(n) ≤ m ≤ `(n + 1). Then we pick such a length m, give Rε at length n as advice the
value of m as well as the advice for Qδ at length m, and let Rε at length n be defined by (8) but
with each query “〈x, y〉 ∈ Q” replaced by the equivalent query to Qδ padded to length m, i.e., by
“〈x, y, 0pad〉 ∈ Qδ”, where pad is such that |〈x, y, 0pad〉| = m. Note that in this case Rε agrees with
R at length n. If there is no length m ∈Mδ in the range `(n) ≤ m ≤ `(n+ 1), we define Rε in the
same way but with m set to `(n). In this case there is no guarantee that Rε and R agree at length
n.

Since the intervals [`(n), `(n+ 1)] cover all but finitely many lengths m, and Qδ agrees with Q
for infinitely many lengths m, Rε agrees with R on infinitely many lengths n.

All that remains is the complexity analysis of Rε. The queries to Qδ are padded up to length
no more than `(n + 1), which is polynomially bounded in n. It follows that those queries can

be decided in Σ2TIME(2n
cδ

)/ncδ for some fixed constant c. The advice for Rε is of length at most
log(`(n+1))+ncδ. Thus, if we set δ = ε/(c+1) we have that Rε ∈ Σ2TIME(2n

ε
)/nε. This completes

part (i).

16

Part (ii): Let L ∈ DTIMEΠ(nc) where Π ∈ prM(AM||coNP). By padding all queries of the base
machine up to an appropriate length m depending on n as in part (i), and providing the base
machine with the advice we gave Rε in part (i), we obtain that

L ∈ ∩ε>0i.o.− DTIMEΣ2TIME(2n
ε
)(nd)/nε,

where d is a constant depending on c. Since Σ2TIME(2n
ε
) ⊆ DTIMEΣ2P(2n

ε
), the conclusion

follows. �

For our main result, and more generally for superpolynomial lower bounds, the framework
exploits the fact that linear-exponential classes such as E, NE, etc. have polynomial-size circuits
if and only if they have fixed -polynomial-size circuits; this follows because those classes contain
complete languages under linear-time reductions. The next lemma formalizes this fact in a way
that will be handy later.

Lemma 4. Let C ∈ {Σ2E,EΣ2P}. Suppose C ⊆ NP/poly. Then every language in C/n has nonde-
terministic circuits of size nd for all but finitely many input lengths, where d is a fixed constant.

The framework derives a contradiction with the following nondeterministic version of a classical
result of Kannan’s.

Lemma 5 (implicit in [Kan82]). For every constant d > 0 there exists a language in PΣ3P that
requires nondeterministic circuits of size nd for all but finitely many input lengths n.

We include a proof for completeness.

Proof. Let s(n) = nd. For all but finitely many n, s(n) is no more than the maximum circuit
complexity at length n. Therefore, there exists a characteristic sequence of length 2n that cannot
be computed by circuits of size less than s(n). Moreover, the length ` of the shortest prefix σ
such that no circuit of size less than s(n) agrees with σ satisfies ` = O(s(n) log s(n)). This follows
because circuits of size s(n) can be described by strings of length O(s(n) log s(n)) and distinct
prefixes need distinct circuits.

The lexicographically least such prefix σ, say σ∗, can be found through a binary search, by
using a Σ3P-oracle, in time poly(s(n)). To see this, given a size-s circuit C and a length-` string
σ, consider the task of deciding whether the circuit C does not agree with σ. This task can be
performed with an NP-oracle in time poly(s(n)), and hence in Π2TIME(poly(s(n)). To run the
binary search, we need to answer queries as to whether a given string can be extended to a string
σ such that for all circuits C of size less than s(n), C does not agree with σ. As these queries can
be decided in Σ3TIME(poly(s(n))) and s(n) is polynomial, we can construct σ∗ in polynomial time
with oracle access to Σ3P.

Once found, σ∗ is viewed as a string σ′ of length 2n that is all zeroes beyond the first ` bits
(and that equals σ∗ in its first ` bits). It follows that σ′ is the characteristic string of a language
L that cannot be decided by a circuit of size less than s(n) at length n. On input x of length n,
whether x ∈ L can be decided according to the xth bit of σ′. Thus, L ∈ PΣ3P. �

We now have all the ingredients to instantiate the lower bound framework described in Section
2.3 and obtain the following derandomization-to-hardness results for Arthur-Merlin games.

17

Theorem 6. (i) If prAM ⊆ ∩ε>0i.o.− Σ2TIME(2n
ε
)/nε then Σ2E 6⊆ NP/poly.

(ii) Relative to any oracle, if prAM ⊆ ∩ε>0i.o.− Σ2TIME(2n
ε
)/nε then EΣ2P 6⊆ NP/poly.

Proof. For part (i) we set C = Σ2E and R = M(AM||coNP), and for part (ii) we set C = EΣ2P and
R = PprM(AM||coNP). The following derivation proves both parts by contradiction.

C ⊆ NP/poly

=⇒ PH ⊆ R (by the collapse results from Section 4)

=⇒ PH ⊆ i.o.− C/n (by Lemma 3)

=⇒ PH ⊆ i.o.− NSIZE(nd) (by Lemma 4)

=⇒ contradiction (by Lemma 5),

where d is some constant and NSIZE(nd) denotes the class of languages with nondeterministic
circuits of size nd.

The relativization claim in (ii) follows because all steps in that part relativize (whereas the
collapse argument for (i) involves a nonrelativizing step). �

Note that part (i) of Theorem 6 yields the forward direction of Theorem 1.

5.2 From hardness to derandomization

Finally, we argue the direction from hardness to derandomization in Theorem 1. This direction
follows in a straightforward way from the known hardness versus randomness tradeoffs.

Theorem 7 (implicit in [KvM02, SU06]). Let s and σ denote monotone constructible func-
tions from N to N. If

Σ2E 6⊆ NSIZE(s(n))

then there exists a pseudorandom generator that yields the derandomization

prAM ⊆ i.o.− Σ2TIME
(
2σ(nO(1))

)
/σ(nO(1)),

provided that σ(n) ≥ (s−1(nc))2/ log n, where c > 0 is a universal constant and s−1(m) denotes
min{n ∈ N : s(n) ≥ m}.

Given the hardness hypothesis, for any ε > 0, we can pick s(n) in Theorem 7 to be nk for a large
enough k and get a PRG that yields the simulation of a polynomial-time Arthur-Merlin protocol
in Σ2TIME(2n

ε
)/nε for infinitely many input lengths n. This establishes the backward direction of

Theorem 1.

Proof (of Theorem 7). The proof follows by combining two lemmas that are implicit in the litera-
ture. First, in order to derandomize prAM it suffices to construct pseudorandom generators that
fool nondeterministic circuits.

Lemma 6 (implicit in [KvM02]). If there is a pseudorandom generator G that on seed length
σ(n) is computable in Σ2TIME(2O(σ(n))) with advice of length σ(n), and fools nondeterministic cir-

cuits for infinitely many n, then prAM can infinitely often be simulated in Σ2TIME(2O(σ(nO(1)))nO(1))
with advice of length σ(nO(1)).

18

The pseudorandom generators needed in Lemma 6 follow from the given hardness assumption
by the known hardness versus randomness tradeoffs for prAM.

Lemma 7 (implicit in [SU06]). There exists a constant c > 0 such that the following holds for
any constructible function ` : N→ N. If there is a language in Σ2E that requires nondeterministic
circuits of size nc at length `(n) for infinitely many n, then there exists a pseudorandom generator
G that has constructible seed length σ(n) = O(`2(n)/ log n), is computable in Σ2TIME(2O(σ(n))) on
seed length σ(n) with advice of length σ(n), and fools nondeterministic circuits at infinitely many
lengths n.

Using G in Lemma 6 yields the required derandomization of prAM. �

6 Concluding Remarks

Both our main result (Theorem 1) and the corresponding result for prBPP in [IKW02] establish an
equivalence of derandomization and PRGs at just one point within the derandomization spectrum.
A natural question to ask is whether these equivalences can be extended to other regions of the
derandomization spectrum: simulations of prBPP/prAM using less time, less advice, or with one
fewer alternation – if they can be done at all, then can they be done through PRGs? What about
simulations that succeed on all-but-finitely-many input lengths rather than infinitely-many?

As for the amount of advice, in both the prBPP and the prAM setting we can show that an
equivalence still holds if we reduce the advice from subpolynomial down to polylogarithmic. In
the setting of prMA we can reduce the advice down to a constant. These results follow from
parameterizations of the proofs in Sections 4 and 5, and will be developed in the final version of
the paper.

References

[AGHK11] Barış Aydınlıog̃lu, Dan Gutfreund, John M. Hitchcock, and Akinori Kawachi. De-
randomizing Arthur-Merlin games and approximate counting implies exponential-size
lower bounds. Computational Complexity, 20(2):329–366, 2011.

[AvM11] Scott Aaronson and Dieter van Melkebeek. On circuit lower bounds from derandom-
ization. Theory of Computing, 7:177–184, 2011.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3:307–318, 1993.

[CCHO05] Jin-Yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogi-
hara. Competing provers yield improved Karp-Lipton collapse results. Information and
Computation, 198(1):1–23, 2005.

[CR08] Venkatesan T. Chakaravarthy and Sambuddha Roy. Finding irrefutable certificates for
SP

2 via Arthur and Merlin. In Proceedings of the Symposium on Theoretical Aspects of
Computer Science (STACS), pages 157–168, 2008.

19

[Gol06] Oded Goldreich. On promise problems: A survey. In Essays in Memory of Shimon
Even, pages 254–290, 2006.

[Gol11a] Oded Goldreich. In a world of P=BPP. In Studies in Complexity and Cryptography,
pages 191–232. 2011.

[Gol11b] Oded Goldreich. Two comments on targeted canonical derandomizers. Electronic Col-
loquium on Computational Complexity (ECCC), 18:47, 2011.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interac-
tive proof systems. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 59–68, 1986.

[GST03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus ran-
domness tradeoffs for Arthur-Merlin games. Computational Complexity, 12(3-4):85–130,
2003.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: exponential time vs. probabilistic polynomial time. Journal of Computer and
System Sciences, 65(4):672–694, 2002.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 220–229, 1997.

[Kan82] Ravi Kannan. Circuit-size lower bounds and nonreducibility to sparse sets. Information
and Control, 55(1):40–56, 1982.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complexity, 13(1/2):1–46, 2004.

[KL82] Richard M. Karp and Richard J. Lipton. Turing machines that take advice.
L’Enseignement Mathématique, 28(2):191–209, 1982.

[KvM02] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Comput-
ing, 31(5):1501–1526, 2002.

[KvMS12] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom generators,
typically-correct derandomization, and circuit lower bounds. Computational Complex-
ity, 21(1):3–61, 2012.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM, 39(4):859–868, 1992.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences, 49(2):149–167, 1994.

[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.

20

[SU06] Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting
and sampling. Computational Complexity, 15(4):298–341, 2006.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In Proceedings of the IEEE Symposium on Foundations of Computer Science
(FOCS), pages 80–91, 1982.

[Yap83] Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes.
Theoretical Computer Science, 26:287–300, 1983.

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

