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Abstract

In this work we consider representations of multivariate polynomials in F[x] of the form

f(x) = Q1(x)e1 +Q2(x)e2 + . . .+Qs(x)es ,

where the ei’s are positive integers and the Qi’s are arbitary multivariate polynomials of
degree at most d. We give an explicit n-variate polynomial f of degree n such that any
representation of the above form for f requires the number of summands s to be 2Ω(n

d ). We
also give a asymptotically matching upper bound of 2O(n

d ).

1 Introduction

Motivation. Let F be a field, x = (x1, x2, . . . , xn) be an n-tuple of formal variables and F[x]
be the set of (n-variate) polynomials in x over F. Let d ≥ 1 be an integer. For a polynomial
f(x) ∈ F[x], we consider representations of the form

f(x) = Q1(x)e1 +Q2(x)e2 + . . .+Qs(x)es , (1)

where the Qi(x)’s are polynomials of degree at most d. Historically, representing an integer (resp. a
polynomial) as a sum of powers of integers (resp. polynomials) has been investigated in connection
with the famous Waring problem for integers (resp. polynomial variants of the Waring problem -
cf. [Ell69,FOS12]). It is known (cf. [Ell69,FOS12] or remark 2.3 here) that for every d ≥ 1, every
polynomial f can be written as a sum of powers of polynomials of degree at most d. Our aim here
is to prove lower bounds for the number of summands s required to write some explicit polynomial
f in the form (1) above. Our motivation for this line of inquiry stems from some recent results
and problems posed in the field of arithmetic complexity. Agrawal and Vinay [AV08] showed
that proving exponential lower bounds for depth four arithmetic circuits implies exponential lower
bounds for arbitrary depth arithmetic circuits. In our case, a representation of the form (1) above
corresponds to computing f via a depth four ΣΠΣΠ arithmetic circuit where the bottommost layer
of multiplication gates have fanin bounded by d and the second-last layer of multiplication gates
actually consists of exponentiation gates of arbitrarily large degree (i.e. multiplication gates where
all the incoming edges originate from a single node). Some other work in this direction is by Grenet,
Koiran, Portier and Strozecki [GKPS11]. Meanwhile Hrubes, Wigderson and Yehudayoff [HWY10]
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look at the situation where d = e1 = e2 = . . . = es = 2 and ask for a superlinear lower bound on the
number of summands s for a specific 2n-variate biquadratic polynomial f . They show that such
a superlinear lower bound implies an exponential lower bound on the size of arithmetic circuits
computing the noncommutative permanent. Finally Chen, Kayal and Wigderson [CKW11] pose
the problem of proving lower bounds for bounded depth arithmetic circuits with addition and
exponentiation gates. Our main theorem is a lower bound on the number of summands in any
representation of the form (1) for an explicit polynomial.

Theorem 1. (Lower bound for sum of powers). Let F be any field and F[x] be the ring
of polynomials over the set of indeterminates x = (x1, x2, . . . , xn). Let e1, e2, . . . , es be positive
integers and Q1, Q2, . . . , Qs ∈ F[x] be multivariate polynomials each of degree at most d. If

Qe1
1 +Qe2

2 + . . .+Qes
s = (x1 · x2 · . . . · xn),

then we must have that s = 2Ω(n
d ). In particular, if d is a constant then s = 2Ω(n).

Remark 2. 1. The fact that the f in the lower bound above consists of a single monomial
indicates above all the severe limitation of representations of the form (1).

2. A asymptotically matching upper bound of 2n/d is an easy corollary of a result of Fischer
[Fis94]. Specifically, let F be an algebraically closed field with char(F) > n. Then for all
integers d ≥ 1 there exist polynomials Q1, Q2, . . . , Qs each of degree d such that

Qe1
1 +Qe2

2 + . . .+Qes
s = (x1 · x2 · . . . · xn),

and the number of summands s is at most 2n/d. Fischer [Fis94] gives an explicit set of 2m−1

linear forms `1, `2, . . . , `2m−1 such that

(y1 · y2 · . . . · ym) =
∑

i∈[2m−1]

`i(y)m. (2)

To obtain an upper bound of 2n/d for our problem, replace yi by (
∏

j∈[d] x(i−1)d+j) in equation

2 to obtain a representation of f =
∏

i∈[n] xi as a sum of about 2n/d powers of polynomials
of degree d.

3. The above remark implies in particular that for every d ≥ 1 any polynomial f can always
be written as a sum of (a sufficiently large number of) powers polynomials of degree at most
d. This can be seen by first expressing the given f as a (weighted) sum of monomials and
then expressing each monomial as a sum of powers using the previous remark.

4. The problem posed by Chen, Kayal and Wigderson ( [CKW11], section 10.1) remains open
– even for the case of depth five circuits with addition and exponentiation gates (i.e. sums
of powers of sums of powers of affine forms), where all the exponentiation gates are allowed
to raise their respective inputs to an arbitrary exponent. The problem posed by Hrubes,
Wigderson and Yehudayoff remains tantalizingly open as well.

2 Notation and Preliminaries

[n] denotes the set {1, 2, . . . , n}. For an n-tuple of nonnegative integers i = (i1, i2, . . . , in) ∈ Zn
≥0,

|i| denotes the sum
∑

j∈[n] |ij|.
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Shorthand for partial derivatives. For a polynomial f(x) ∈ F[x1, x2, . . . , xn], we use ∂if
as a shorthand for ∂f

∂xi
, the formal partial derivatve of f with respect to the variable xi. For

i = (i1, i2, . . . , in) ∈ Zn
≥0, we use the following shorthand

∂if
def
=

∂i1

∂xi1
1

(
∂i2

∂xi2
2

(· · · (∂
inf

∂xin
n

) · · · )).

F-linear dependence. We will say that polynomials f1(x), f2(x), . . . , fm(x) are F-linearly
dependent if there exist scalars α1, α2, . . . , αm ∈ F, not all zero, such that

α1 · f1 + α2 · f2 + . . .+ αm · fm = 0,

otherwise they are F-linearly independent. For a set of polynomials S ⊆ F[x], dim(S) is the
size of a maximal F-linearly independent subset of polynomials in S. The F−span of a set S of
polynomials is defined as the set of all possible F-linear combinations of polynomials from S, i.e.

F−span(S)
def
= {(α1 · f1 + . . .+ αm · fm) : fi ∈ S and αi ∈ F for all i ∈ [m].}

Note that F−span(S) forms an F-vector space and that dim(S) is the same as the dimension of
this vector space.
Stirling’s formula and binomial estimates. Using Stirling’s Formula (given below), it is
straightforward to derive the following asymptotic binomial estimates that we would need in our
proof.

Proposition 3 (Stirling’s Formula, cf. [Rom]). ln(n!) = n lnn− n+O(lnn)

Claim 4. Let α, β be constants. Suppose that a(n), b(n) : Z>0 7→ Z>0 are increasing functions of
n with b(n) = o(a(n)). Then:

ln
(
a+ αb

βb

)
= βb · ln

(
a

βb

)
+ (βb) ·

[
1− b

2a
· (β − 2α)− b2

6a2
· (3α2 − 3αβ + β2)− . . .

]
+O(ln a)

3 Proof of the lower bound (theorem 1)

Definition 5. For a polynomial f ∈ F[x1, x2, . . . , xn], let

(∂≤kf)
def
= {∂if : i ∈ Zn

≥0 and |i| ≤ k}

For a set S ⊆ F[x] let

x≤` · S def
= {xj · f : f ∈ S, j ∈ Zn

≥0 and |j| ≤ `} ⊆ F[x].

In particular,

x≤` · (∂≤kf)
def
= {xj · (∂if) : i ∈ Zn

≥0, j ∈ Zn
≥0 where |i| ≤ k, |j| ≤ `}

Finally, for a polynomial g ∈ F[x] we will often use x≤` · g as a shorthand for x≤` · {g}.

In what follows we use the following convention to improve clarity: for an integer t < 0 and a
polynomial Q(x), Qt stands for the zero polynomial.
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Lemma 6. Let
f = Qe1

1 +Qe2
2 + . . .+Qes

s ,

where each Qj(x) ∈ F[x] is of degree at most d. Then for all k, ` ∈ Z≥0

x≤` · (∂≤kf) ⊆ F−span

⋃
j∈[s]

⋃
t∈[0..k]

⋃
i∈Zn
≥0

|i|≤`+(d−1)t

xi ·Qej−t
j

 (3)

In particular,

dim
(
x≤` · (∂≤kf)

)
≤ s · (k + 1) ·

(
n+ `+ (d− 1)k

`+ (d− 1)k

)
Proof. By linearity of derivatives we have

x≤` · (∂≤k(
∑
j∈[s]

Q
ej

j )) ⊆ F−span

⋃
j∈[s]

(x≤` · (∂≤kQ
ej

j ))


and therefore it suffices to show that

x≤` · (∂≤k(Q
ej

j )) ⊆ F−span

 ⋃
t∈[0..k]

⋃
i∈Zn
≥0

|i|≤`+(d−1)t

xi ·Qej−t
j

 . (4)

Now, by induction on k one can show that

∂≤k(Q
ej

j ) ⊆ F−span

 ⋃
t∈[0..k]

⋃
i∈Zn
≥0

|i|≤(d−1)t

xi ·Qej−t
j

 . (5)

Also note that for any polynomial g and any two nonnegative integers `, r we have

x≤` · (x≤r · (g)) = x≤`+r · (g). (6)

Thus applying (6) to (5) we get (4) and therefore (3) as well. Finally since the set of monomials
x≤r is of size

(
n+r

r

)
we have

dim
(
x≤` · (∂≤kf)

)
≤

∑
j∈[s]

∑
t∈[0..k]

(
n+ `+ (d− 1)t

`+ (d− 1)t

)

= s ·
∑

t∈[0..k]

(
n+ `+ (d− 1)t

`+ (d− 1)t

)

≤ s · (k + 1) ·
(
n+ `+ (d− 1)k

`+ (d− 1)k

)
This proves the lemma.
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Lemma 7. Let f = (x1 · x2 · . . . · xn) ∈ F[x]. Then for all k, ` ∈ Z≥0 we have:

dim
(
x≤` · (∂≤kf)

)
≥
(
n

k

)
·
(
n− k + `

`

)
.

Proof. Let S =
(
x≤` · (∂≤kf)

)
⊆ F[x]. Since f is a monomial, we have that all the polynomials

in S are in fact monomials and therefore dim(S) is precisely the number of distinct monomials in
S. Since monomials with distinct supports are distinct, it therefore suffices to show that for every
set T ⊆ [n] of size (n− k), there are

(
n−k+`

`

)
distinct monomials in S supported only on variables

indexed by T ; in other words there are
(

n−k+`
`

)
monomials in S of the form

∏
i∈T x

ei
i , where each

ei ≥ 1. To see this consider the monomial m =
∏

i∈T xi. Then m ∈ ∂≤kf as m can be obtained
from f by taking the derivative with respect to the set of k variables with indices not in T , i.e.

m = ∂i(x1 · x2 · . . . · xn), i = (i1, i2, . . . , in) where ij =

{
0 if j ∈ T
1 otherwise

Thus the set of monomials in S supported on variables indexed by T is precisely the set of
monomials of the form(∏

i∈T

xei
i

)
·m, where each ei ≥ 0 and

∑
i∈T

ei ≤ `.

There are exactly
(

n−k+`
`

)
monomials of the above form. This proves the lemma.

With these estimates in hand, we are ready to give a proof of theorem 1.
Proof of Theorem 1: Assume that

(x1 · x2 · . . . · xn) = Qe1
1 +Qe2

2 + . . .+Qes
s .

Then for every k, ` ≥ 0 we must have

dim

x≤` · (∂≤k(
∏
i∈[n]

xi))

 = dim

x≤` · (∂≤k(
∑
i∈[s]

Qei
i ))


Using the estimates provided by lemmas 6 and 7 for all k, ` ≥ 0 we have(

n

k

)
·
(
n− k + `

`

)
≤ s · (k + 1) ·

(
n+ `+ (d− 1)k

`+ (d− 1)k

)
and therefore

s ≥ 1

k + 1

(
n

k

)
·
(
n− k + `

`

)
/

(
n+ `+ (d− 1)k

`+ (d− 1)k

)
. (7)

We now choose our parameters ` and k to be as follows:

` = nd and k = ε · n
d

(for a suitable constant ε).

Plugging in the above choice of parameters into equation (7) and using claim 4 to do the compu-
tation for the rhs of (7), we obtain the following asymptotic estimate

ln s = Ω
(n
d

)
+O

( n
d2

+ log n
)
.
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This gives s = 2Ω(n
d ). This proves the theorem. 2
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