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Abstract

We prove that a random linear code over Fq, with probability arbitrarily close to 1, is list
decodable at radius 1− 1/q− ε with list size L = O(1/ε2) and rate R = Ωq(ε2/(log3(1/ε))). Up
to the polylogarithmic factor in 1/ε and constant factors depending on q, this matches the lower
bound L = Ωq(1/ε2) for the list size and upper bound R = Oq(ε2) for the rate. Previously only
existence (and not abundance) of such codes was known for the special case q = 2 (Guruswami,
H̊astad, Sudan and Zuckerman, 2002).

In order to obtain our result, we employ a relaxed version of the well known Johnson bound on
list decoding that translates the average Hamming distance between codewords to list decoding
guarantees. We furthermore prove that the desired average-distance guarantees hold for a code
provided that a natural complex matrix encoding the codewords satisfies the Restricted Isometry
Property with respect to the Euclidean norm (RIP-2). For the case of random binary linear
codes, this matrix coincides with a random submatrix of the Hadamard-Walsh transform matrix
that is well studied in the compressed sensing literature.

Finally, we improve the analysis of Rudelson and Vershynin (2008) on the number of random
frequency samples required for exact reconstruction of k-sparse signals of length N . Specifically,
we improve the number of samples from O(k log(N) log2(k)(log k + log logN)) to O(k log(N) ·
log3(k)). The proof involves bounding the expected supremum of a related Gaussian process by
using an improved analysis of the metric defined by the process. This improvement is crucial
for our application in list decoding.
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1 Introduction

This work is motivated by the list decodability properties of random linear codes for correcting a
large fraction of errors, approaching the information-theoretic maximum limit. We prove a near-
optimal bound on the rate of such codes, by making a connection to and establishing improved
bounds on the restricted isometry property of random submatrices of Hadamard matrices.

A q-ary error correcting code C of block length n is a subset of [q]n, where [q] denotes any
alphabet of size q. The rate of such a code is defined to be (logq |C|)/n. A good code C should be
large (rate bounded away from 0) and have its elements (codewords) well “spread out.” The latter
property is motivated by the task of recovering a codeword c ∈ C from a noisy version r of it that
differs from c in a bounded number of coordinates. Since a random string r ∈ [q]n will differ from
c on an expected (1 − 1/q)n positions, the information-theoretically maximum fraction of errors
one can correct is bounded by the limit (1 − 1/q). In fact, when the fraction of errors exceeds
1
2(1 − 1/q), it is not possible to unambiguously identify the close-by codeword to the noisy string
r (unless the code has very few codewords, i.e., a rate approaching zero).

In the model of list decoding, however, recovery from a fraction of errors approaching the limit
(1− 1/q) becomes possible. Under list decoding, the goal is to recover a small list of all codewords
of C differing from an input string r in at most ρn positions, where ρ is the error fraction (our
interest in this paper being the case when ρ is close to 1 − 1/q). This requires that C have the
following sparsity property, called (ρ, L)-list decodability, for some small L : for every r ∈ [q]n, there
are at most L codewords within Hamming distance ρn from r. We will refer to the parameter L
as the “list size” — it refers to the maximum number of codewords that the decoder may output
when correcting a fraction ρ of errors. Note that (ρ, L)-list decodability is a strictly combinatorial
notion, and does not promise an efficient algorithm to compute the list of close-by codewords. In
this paper, we only focus on this combinatorial aspect, and study a basic trade-off between between
ρ, L, and the rate for the important class of random linear codes, when ρ→ 1− 1/q. We describe
the prior results in this direction and state our results next.

For integers q, L ≥ 2, a random q-ary code of rate R = 1− hq(ρ)− 1/L is (ρ, L)-list decodable
with high probability. Here hq : [0, 1−1/q]→ [0, 1] is the q-ary entropy function: hq(x) = x logq(q−
1)−x logq x− (1− x) logq(1−x). This follows by a straightforward application of the probabilistic
method, based on a union bound over all centers r ∈ [q]n and all (L + 1)-element subsets S
of codewords that all codewords in S lie in the Hamming ball of radius ρn centered at r. For
ρ = 1 − 1/q − ε, where we think of q as fixed and ε → 0, this implies that a random code of rate
Ωq(ε

2) is (1 − 1/q − ε, Oq(1/ε2))-list decodable. (Here and below, the notation Ωq and Oq hide
constant factors that depend only on q.)

Understanding list decodable codes at the extremal radii ρ = 1− 1/q− ε, for small ε, is of par-
ticular significance mainly due to numerous applications that depend on this regime of parameters.
For example, one can mention hardness amplification of Boolean functions [STV01], construction
of hardcore predicates from one-way functions [GL89], construction of pseudorandom generators
[STV01] and randomness extractors [Tre01], inapproximability of NP witnesses [KS99], and approx-
imating the VC dimension [MU01]. Moreover, linear list-decodable codes are further appealing due
to their symmetries, succinct description, and efficient encoding. For some applications, linearity
of list decodable codes is of crucial importance. For example, the black-box reduction from list
decodable codes to capacity achieving codes for additive noise channels in [GS10], or certain appli-
cations of Trevisan’s extractor [Tre01] (e.g., [Che10, § 3.6, § 5.2]) rely on linearity of the underlying
list decodable code. Furthermore, list decoding of linear codes features an interplay between linear
subspaces and Hamming balls and their intersection properties, which is of significant interest from
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a combinatorial perspective.

This work is focused on random linear codes, which are subspaces of Fnq , where Fq is the
finite field with q elements. A random linear code C of rate R is sampled by picking k = Rn
random vectors in Fnq and letting C be their Fq-span. Since the codewords of C are now not
all independent (in fact they are not even 3-wise independent), the above naive argument only
proves the (ρ, L)-list decodability property for codes of rate 1 − hq(ρ) − 1/ logq(L + 1) [ZP82].1

For the setting ρ = 1 − 1/q − ε, this implies a list size bound of exp(Oq(1/ε
2)) for random linear

codes of rate Ωq(ε
2), which is exponentially worse than for random codes. Understanding if this

exponential discrepancy between general and linear codes is inherent was raised an open question
by Elias [Eli91]. Despite much research, the exponential bound was the best known for random
linear codes (except for the case of q = 2, and even for q = 2 only an existence result was known;
see the related results section below for more details).

Our main result in this work closes this gap between random linear and random codes, up to
polylogarithmic factors in the rate. We state a simplified version of the main theorem (Theorem 12)
below.

Theorem 1 (Main, simplified). Let q be a prime power, and let ε > 0 be a constant parameter.
Then for some constant aq > 0 only depending on q and all large enough integers n, a random
linear code C ⊆ Fnq of rate aqε

2/ log3(1/ε) is (1− 1/q− ε, O(1/ε2))-list decodable with probability at

least 0.99. (one can take aq = Ω(1/ log4 q).)

We remark that both the rate and list size are close to optimal for list decoding from a (1−1/q−ε)
fraction of errors. For rate, this follows from the fact the q-ary “list decoding capacity” is given by
1 − hq(ρ), which is Oq(ε

2) for ρ = 1 − 1/q − ε. For list size, a lower bound of Ωq(1/ε
2) is known

— this follows from [Bli86] for q = 2, and was shown for all q in [GV10] (and also in [Bli05] under
a convexity conjecture that was later proved in [Bli08]). We have also assumed that the alphabet
size q is fixed and have not attempted to obtain the best possible dependence of the constants on
the alphabet size.

1.1 Related results

We now discuss some other previously known results concerning list decodability of random linear
codes.

First, it is well known that a random linear code of rate Ωq(ε
4) is (1 − 1/q − ε, O(1/ε2))-list

decodable with high probability. This follows by combining the Johnson bound for list decoding
(see, for example, [GS01]) with the fact that such codes lie on the Gilbert-Varshamov bound and
have relative distance 1 − 1/q − ε2 with high probability. This result gets the correct quadratic
dependence in list size, but the rate is worse.

Second, for the case of q = 2, the existence of (ρ, L)-list decodable binary linear codes of rate
1 − h(ρ) − 1/L was proved in [GHSZ02]. For ρ = 1/2 − ε, this implies the existence of binary
linear codes of rate Ω(ε2) list decodable with list size O(1/ε2) from an error fraction 1/2− ε. This
matches the bounds for random codes, and is optimal up to constant factors. However, there are
two shortcomings with this result: (i) it only works for q = 2 (the proof makes use of this in a
crucial way, and extensions of the proof to larger q have been elusive), and (ii) the proof is based

1The crux of the argument is that any L non-zero vectors in Fkq must have a subset of logq(L + 1) linearly
independent vectors, and these are mapped independently by a random linear code. This allows one to effectively
substitute logq(L+ 1) in the place of L in the argument for fully random codes.
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on the semi-random method. It only shows the existence of such a code while failing to give any
sizeable lower bound on the probability that a random linear code has the claimed list decodability
property.

Motivated by this state of affairs, in [GHK11], the authors proved that a random q-ary linear
code of rate 1−hq(ρ)−Cρ,q/L is (ρ, L)-list decodable with high probability, for some Cρ,q <∞ that
depends on ρ, q. This matches the result for completely random codes up to the leading constant
Cρ,q in front of 1/L. Unfortunately, for ρ = 1− 1/q − ε, the constant Cρ,q depends exponentially2

on 1/ε. Thus, this result only implies an exponential list size in 1/ε, as opposed to the optimal
O(1/ε2) that we seek.

Summarizing, for random linear codes to achieve a polynomial in 1/ε list size bound for error
fraction 1 − 1/q − ε, the best lower bound on rate was Ω(ε4). We are able to show that random
linear codes achieve a list size growing quadratically in 1/ε for a rate of Ω̃(ε2). One downside of our
result is that we do not get a probability bound of 1− o(1), but only 1− γ for any desired constant
γ > 0 (essentially our rate bound degrades by a log(1/γ) factor).

Finally, there are also some results showing limitations on list decodability of random codes.
It is known that both random codes and random linear codes of rate 1− hq(ρ)− η are, with high
probability, not (ρ, cρ,q/η)-list decodable [Rud11, GN12]. For arbitrary (not necessarily random)
codes, the best lower bound on list size is Ω(log(1/η)) [Bli86, GN12].

1.2 Proof technique

The proof of our result uses a different approach from the earlier works on list decodability of
random linear codes [ZP82, Eli91, GHSZ02, GHK11]. Our approach consists of three steps.

Step 1: Our starting point is a relaxed version of the Johnson bound for list decoding that only
requires the average pairwise distance of L codewords to be large (where L is the target list size),
instead of the minimum distance of the code.

Technically, this extension is easy and pretty much follows by inspecting the proof of the Johnson
bound. This has recently been observed for the binary case by Cheraghchi and is implicit in the
survey [Che11]. Here, we give a proof of the relaxed Johnson bound for a more general setting of
parameters, and apply it in a setting where the usual Johnson bound is insufficient. Furthermore,
as a side application, we show how the average version can be used to bound the list decoding
radius of codes which do not have too many codewords close to any codeword — such a bound
was shown via a different proof in [GKZ08], where it was used to establish the list decodability of
binary Reed-Muller codes up to their distance.

Step 2: Prove that the L-wise average distance property of random linear codes is implied by the
order L restricted isometry property (RIP-2) of random submatrices of the Hadamard matrix (or
in general, matrices related to the Discrete Fourier Transform).

This part is also easy technically, and our contribution lies in making this connection between
restricted isometry and list decoding. The restricted isometry property has received much attention
lately due to its relevance to compressed sensing (cf. [Can08, CRT06a, CRT06b, CT06, Don06])
and is also connected to the Johnson-Lindenstrauss dimension reduction lemma [BDDW08]. Our
work shows another interesting application of this concept.

2 The constant Cρ,q depends exponentially on 1/δρ, where q−δpn is an upper bound on the probability that
two random vectors in Fnq of relative Hamming weight at most ρ, chosen independently and uniformly among all
possibilities, sum up (over Fnq ) to a vector of Hamming weight at most ρ. When ρ = 1−1/q− ε, we have δρ = Θq(ε

2)
which makes the list size exponentially large.
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Step 3: Prove the needed restricted isometry property of the matrix obtained by sampling rows
of the Hadamard matrix.

This is the most technical part of our proof. Let us focus on q = 2 for simplicity, and let H be
the N ×N Hadamard (Discrete Fourier Transform) matrix with N = 2n, whose (x, y)’th entry is
(−1)〈x,y〉 for x, y ∈ {0, 1}n. We prove that (the scaled version of) a random submatrix of H formed
by sampling a subset of m = O(k log3 k logN) rows of H satisfies RIP of order k with probability
0.99. This means that every k columns of this sampled matrix M are nearly orthogonal — formally,
every m× k submatrix of M has all its k singular values close to 1.

For random matrices m × N with i.i.d Gaussian or ±1 entries, it is relatively easy to prove
RIP-2 of order k when m = O(k logN) [BDDW08]. Proving such a bound for submatrices of the
Discrete Fourier Transform (DFT) matrix (as conjectured in [RV08]) has been an open problem for
many years. The difficulty is that the entries within a row are no longer independent, and not even
triple-wise independent. The best proven upper bound on m for this case was O(k log2 k(log k +
log logN) logN), improving an earlier upper bound O(k log6N) of Candès and Tao [CT06]. We
improve the bound to O(k log3 k logN) — the key gain is that we do not have the log logN factor.
This is crucial for our list decoding connection, as the rate of the code associated with the matrix
will be (logN)/m, which would be o(1) if m = Ω(logN log logN). We will take k = L = Θ(1/ε2)
(the target list size), and the rate of the random linear code will be Ω(1/(k log3 k)), giving the
bounds claimed in Theorem 1. We remark that any improvement of the RIP bound towards the
information-theoretic limit m = Ω(k log(N/k)), a challenging open problem, would immediately
translate into an improvement on the list decoding rate of random linear codes via our reductions.

Our RIP-2 proof for row-subsampled DFT matrices proceeds along the lines of [RV08], and is
based on upper bounding the expectation of the supremum of a certain Gaussian process [LT91,

Chap. 11]. The index set of the Gaussian process is Bk,N2 , the set of all k-sparse unit vectors in RN ,

and the Gaussian random variable Gx associated with x ∈ Bk,N2 is a Gaussian linear combination of
the squared projections of x on the rows sampled from the DFT matrix (in the binary case these are
just squared Fourier coefficients)3. The key to analyzing the Gaussian process is an understanding
of the associated (pseudo)-metric X on the index set, defined by ‖x− x′‖2X = EG|Gx−Gx′ |2. This
metric is difficult to work with directly, so we upper bound distances under X in terms of distances
under a different metric X ′. The principal difference in our analysis compared to [RV08] is in the
choice of X ′ — instead of the max norm used in [RV08], we use a large finite norm applied to
the sampled Fourier coefficients. We then estimate the covering numbers for X ′ and use Dudley’s
theorem to bound the supremum of the Gaussian process.

Organization of the paper. The rest of the paper is organized as follows. After fixing
some notation, in Section 2 we prove the average-case Johnson bound that relates a lower bound
on average pair-wise distances of subsets of codewords in a code to list decoding guarantees on
the code. In Section 3 we prove our main theorem on list decodability of random linear codes
by demonstrating a reduction from RIP-2 guarantees of DFT-based complex matrices to average
distance of random linear codes, combined with the Johnson bound. Finally, the RIP-2 bounds on
matrices related to random linear codes are proved in Section 4.

Notation. Throughout the paper, we will be interested in list decodability of q-ary codes. We

3We should remark that our setup of the Gaussian process is slightly different from [RV08], where the index set
is k-element subsets of [N ], and the associated Gaussian random variable is the spectral norm of a random matrix.
Moreover, in [RV08] the number of rows of the subsampled DFT matrix is a random variable concentrating around
its expectation, contrary to our case where it is a fixed number. We believe that the former difference in our setup
may make the proof accessible to a broader audience.
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will denote an alphabet of size q by [q] (which one can identify with {0, 1, . . . , q − 1}); for linear
codes, the alphabet will be Fq, the finite field with q elements (when q is a prime power).

We use the notation i :=
√
−1. When f ≤ Cg (resp., f ≥ Cg) for some absolute constant

C > 0, we use the shorthand f . g (resp., f & g). We use the notation log(·) when the base of
logarithm is not of significance (e.g., f . log x). Otherwise the base is subscripted as in logb(x).
The natural logarithm is denoted by ln(·).

For a matrix M and a multiset of rows T , define MT to be the matrix with |T | rows, formed
by the rows of M picked by T (in some arbitrary order). Each row in MT may be repeated for the
appropriate number of times specified by T .

2 Average-distance based Johnson bound

In this section, we show how the average pair-wise distances between subsets of codewords in a
q-ary code translate into list decodability guarantees on the code.

Recall that the relative Hamming distance between strings x, y ∈ [q]n, denoted δ(x, y), is defined
to be the fraction of positions i for which xi 6= yi. The relative distance of a code C is the minimum
value of δ(x, y) over all pairs of codewords x 6= y ∈ C. We define list decodability as follows.

Definition 2. A code C ⊆ [q]n is said to be (ρ, `)-list decodable if ∀y ∈ [q]n, the number of
codewords of C within relative Hamming distance less than ρ is at most `.4

The following definition captures a crucial function that allows one to generically pass from
distance property to list decodability.

Definition 3 (Johnson radius). For an integer q ≥ 2, the Johnson radius function Jq : [0, 1−1/q]→
[0, 1] is defined by

Jq(x) :=
q − 1

q

(
1−

√
1− qx

q − 1

)
.

The well known Johnson bound in coding theory states that a q-ary code of relative distance
δ is (Jq(δ − δ/L), L)-list decodable (see for instance [GS01]). Below we prove a version of this
bound which does not need every pair of codewords to be far apart but instead works when the
average distance of a set of codewords is large. The proof of this version of the Johnson bound
is a simple modification of earlier proofs, but working with this version is a crucial step in our
near-tight analysis of the list decodability of random linear codes.

Theorem 4 (Average-distance Johnson bound). Let C ⊆ [q]n be a q-ary code and L ≥ 2 an integer.
If the average pairwise relative Hamming distance of every subset of L codewords of C is at least δ,
then C is (Jq(δ − δ/L), L− 1)-list decodable.

Thus, if one is interested in a bound for list decoding with list size L, it is enough to consider
the average pairwise Hamming distance of subsets of L codewords.

2.1 Geometric encoding of q-ary symbols

We will give a geometric proof of the above result. For this purpose, we will map vectors in [q]n to
complex vectors and argue about the inner products of the resulting vectors.

4We require that the radius is strictly less than ρ instead of at most ρ for convenience.
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Definition 5 (Simplex encoding). The simplex encoding maps x ∈ {0, 1, · · · , q − 1} to a vector
ϕ(x) ∈ Cq−1. The coordinate positions of this vector are indexed by the elements of [q − 1] :=
{1, 2, . . . , q − 1}. Namely, for every α ∈ [q − 1], we define ϕ(x)(α) := ωxα where ω = e2πi/q is the
primitive qth complex root of unity.

For complex vectors v = (v1, v2, . . . , vm) and w = (w1, w2, . . . , wm), we define their inner product
〈v, w〉 =

∑m
i=1 viw

∗
i . From the definition of the simplex encoding, the following immediately follows:

〈ϕ(x), ϕ(y)〉 =

{
q − 1 if x = y,
−1 if x 6= y.

We can extend the above encoding to map elements of [q]n into Cn(q−1) in the natural way by
applying this encoding to each coordinate separately. From the above inner product formula, it
follows that for x, y ∈ [q]n we have

〈ϕ(x), ϕ(y)〉 = (q − 1)n− qδ(x, y)n . (1)

Similarly, we overload the notation to matrices with entries over [q]. Let M be a matrix in [q]n×N .
Then, ϕ(M) is an n(q − 1)×N complex matrix obtained from M by replacing each entry with its
simplex encoding, considered as a column complex vector.

Finally, we extend the encoding to sets of vectors as well. For a set C ⊆ Fnq , ϕ(C) is defined as a
(q − 1)n× |C| matrix with columns indexed by the elements of C, where the column corresponding
to each c ∈ C is set to be ϕ(c).

2.2 Proof of average-distance Johnson bound

We now prove the Johnson bound based on average distance.

Proof (of Theorem 4). Suppose {c1, c2, . . . , cL} ⊆ [q]n are such that their average pairwise relative
distance is at least δ, i.e., ∑

1≤i<j≤L
δ(ci, cj) ≥ δ ·

(
L

2

)
. (2)

We will prove that c1, c2, . . . , cL cannot all lie in a Hamming ball of radius less than Jq(δ − δ/L)n.
Since every subset of L codewords of C satisfy (2), this will prove that C is (Jq(δ− δ/L), L− 1)-list
decodable.

Suppose, for contradiction, that there exists c0 ∈ [q]n such that δ(c0, ci) ≤ ρ for i = 1, 2, . . . , L
and some ρ < Jq(δ − δ/L). Recalling the definition of Jq(·), note that the assumption about ρ
implies (

1− qρ

q − 1

)2

> 1− qδ

q − 1
+

q

q − 1

δ

L
. (3)

For i = 1, 2, . . . , L, define the vector vi = ϕ(ci)− βϕ(c0) ∈ Cn(q−1), for some parameter β to be
chosen later. By (1) and the assumptions about c0, c1, . . . , cL, we have 〈ϕ(ci), ϕ(c0)〉 ≥ (q−1)n−qρn,
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and
∑

1≤i<j≤L〈ϕ(ci), ϕ(cj)〉 ≤
(
L
2

)(
(q − 1)n− qδn

)
. We have

0 ≤
〈 L∑
i=1

vi,
L∑
i=1

vi

〉
=

L∑
i=1

〈vi, vi〉+ 2 ·
∑

1≤i<j≤L
〈vi, vj〉

≤ L
(
n(q − 1) + β2n(q − 1)− 2β(n(q − 1)− qρn)

)
+

+ L(L− 1)
(
n(q − 1)− qδn+ β2n(q − 1)− 2β(n(q − 1)− qρn)

)
= L2n(q − 1)

(
q

q − 1

δ

L
+

(
1− qδ

q − 1
+ β2 − 2β

(
1− qρ

q − 1

)))
Picking β = 1− qρ

q−1 and recalling (3), we see that the above expression is negative, a contradiction.

2.3 An application: List decodability of Reed-Muller and locally sparse codes

Our average-distance Johnson bound implies the following combinatorial result for the list decod-
ability of codes that have few codewords in a certain vicinity of every codeword. The result allows
one to translate a bound on the number of codewords in balls centered at codewords to a bound
on the number of codewords in an arbitrary Hamming ball of smaller radius. An alternate proof
of the below bound (using a “deletion” technique) was given by Gopalan, Klivans, and Zucker-
man [GKZ08] where they used it to argue the list decodability of (binary) Reed-Muller codes up to
their relative distance. A mild strengthening of the deletion lemma was later used in [GGR11] to
prove combinatorial bounds on the list decodability of tensor products and interleavings of binary
linear codes.

Lemma 6. Let q ≥ 2 be an integer and η ∈ (0, 1 − 1/q]. Suppose C is a q-ary code such that
for every c ∈ C, there are at most A codewords of relative distance less than η from c (including c
itself). Then, for every positive integer L ≥ 2, C is (Jq(η − η/L), AL− 1)-list decodable.

Note that setting A = 1 above gives the usual Johnson bound for a code of relative distance at
least η.

Proof. We will lower bound the average pairwise relative distance of every subset of AL codewords
of C, and then apply Theorem 4.

Let c1, c2, . . . , cAL be distinct codewords of C. For i = 1, 2, . . . , AL, the sum of relative distances
of cj , j 6= i, from ci is at least (AL−A)η since there are at most A codewords at relative distance
less than η from ci. Therefore

1(
AL
2

) · ∑
1≤i<j≤AL

δ(ci, cj) ≥
AL · (AL−A)η

AL(AL− 1)
=
A(L− 1)

AL− 1
η .

Setting η′ = A(L−1)η
AL−1 , Theorem 4 implies that C is (Jq(η

′ − η′

AL), AL − 1)-list decodable. But

η′ − η′

AL = η − η/L, so the claim follows.

3 Proof of the list decoding result

In this section, we prove our main result on list decodability of random linear codes. The main
idea is to use the restricted isometry property (RIP) of complex matrices arising from random
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linear codes for bounding average pairwise distances of subsets of codewords. Combined with the
average-distance based Johnson bound shown in the previous section, this proves the desired list
decoding bounds. The RIP-2 condition that we use in this work is defined as follows.

Definition 7. We say that a complex matrix M ∈ Cm×N satisfies RIP-2 of order k with constant
δ if, for any k-sparse vector x ∈ CN , we have5

(1− δ)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + δ)‖x‖22.

Generally we think of δ as a small positive constant, say δ = 1/2.

Since we will be working with list decoding radii close to 1−1/q, we derive a simplified expression
for the Johnson bound in this regime; namely, the following:

Theorem 8. Let C ⊆ [q]n be a q-ary code and L ≥ 2 an integer. If the average pairwise relative
Hamming distance of every subset of L codewords of C is at least (1 − 1/q)(1 − ε), then C is
((1− 1/q)(1−

√
ε+ 1/L), L− 1)-list decodable.

Proof. The proof is nothing but a simple manipulation of the bound given by Theorem 4. Let
δ := (1− 1/q)(1− ε). Theorem 4 implies that C is (Jq(δ(1− 1/L)), L− 1)-list decodable. Now,

Jq(δ(1− 1/L)) =
q − 1

q

(
1−

√
1− q

q − 1
· q − 1

q

(
1− ε

)(
1− 1

L

))
=
q − 1

q

(
1−

√
ε+

1

L
− ε

L

)
≥ q − 1

q

(
1−

√
ε+

1

L

)
.

In order to prove lower bounds on average distance of random linear codes, we will use the
simplex encoding of vectors (Definition 5), along with the following simple geometric lemma.

Lemma 9. Let c1, . . . , cL ∈ [q]n be q-ary vectors. Then, the average pairwise distance δ between
these vectors satisfies

δ :=
∑

1≤i<j≤L
δ(ci, cj)/

(
L

2

)
=
L2(q − 1)n−

∥∥∥∑i∈[L] ϕ(ci)
∥∥∥2
2

qL(L− 1)n
.

Proof. The proof is a simple application of (1). The second norm on the right hand side can be
expanded as ∥∥∥ ∑

i∈[L]

ϕ(ci)
∥∥∥2
2

=
∑
i,j∈[L]

〈ϕ(ci), ϕ(cj)〉

(1)
=

∑
i,j∈[L]

(
(q − 1)n− qnδ(ci, cj)

)
= L2(q − 1)n− 2qn

∑
1≤i<j≤L

δ(ci, cj)

= L2(q − 1)n− 2qn

(
L

2

)
δ,

and the bound follows.
5We stress that in this work, we crucially use the fact that the definition of RIP that we use is based on the

Euclidean (`2) norm.
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Now we are ready to formulate our reduction from RIP-2 to average distance of codes.

Lemma 10. Let C ⊆ [q]n be a code and suppose ϕ(C)/
√

(q − 1)n satisfies RIP-2 of order L with
constant 1/2. Then, the average pairwise distance between every L codewords of C is at least(
1− 1

q

)(
1− 1

2(L−1)
)
.

Proof. Consider any set S of L codewords, and the real vector x ∈ R|C| with entries in {0, 1} that
is exactly supported on the positions indexed by the codewords in S. Obviously, ‖x‖22 = L. Thus,
by the definition of RIP-2 (Definition 7), we know that, defining M := ϕ(C),

‖Mx‖22 ≤ 3L(q − 1)n/2. (4)

Observe that Mx =
∑

i∈[L] ϕ(ci). Let δ be the average pairwise distance between codewords in S.
By Lemma 9 we conclude that

δ =
L2(q − 1)n−

∥∥∥∑i∈[L] ϕ(ci)
∥∥∥2
2

2q
(
L
2

)
n

(4)

≥ (L2 − 1.5L)(q − 1)n

qL(L− 1)n

=
q − 1

q

(
1− 1

2(L− 1)

)
.

We remark that the exact choice of the RIP constant in the above result is arbitrary, as long as
it remains an absolute constant. Contrary to applications in compressed sensing, for our application
it also makes sense to have RIP-2 with constants larger than one, since the proof only requires the
upper bound in Definition 7.

By combining Lemma 10 with the simplified Johnson bound of Theorem 8, we obtain the
following corollary.

Theorem 11. Let C ⊆ [q]n be a code and suppose ϕ(C)/
√

(q − 1)n satisfies RIP-2 of order L with

constant 1/2. Then C is
((

1− 1
q

)(
1−

√
1.5
L−1

)
, L− 1

)
-list decodable.

The matrix ϕ(C) for a linear code C ⊆ Fnq has a special form. It is straightforward to observe

that, when q = 2, the matrix is an incomplete Hadamard-Walsh transform matrix with 2k̃ columns,
where k̃ is the dimension of the code. In general ϕ(C) turns out to be related to a Discrete Fourier
Transform matrix. Specifically, we have the following observation.

Observation 1. Let C ⊆ Fnq be an [n, k̃] linear code with a generator matrix G ∈ Fk̃×nq , and define

N := qk̃. Consider the matrix of linear forms Lin ∈ FN×Nq with rows and columns indexed by

elements of Fk̃q and entries defined by

Lin(x, y) := 〈x, y〉,

where 〈·, ·〉 is the finite-field inner product over Fk̃q . Let T ⊆ Fk̃q be the multiset of columns of G.
Then, ϕ(C) = ϕ(LinT ) (recall, from Definition 5, that the former simplex encoding is applied to the
matrix enumerating the codewords of C, while the latter is applied to the entries of a submatrix of
Lin).
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When G is uniformly random, C becomes a random linear code and ϕ(C) can be sampled by
the following process: Arrange n uniformly random rows of Lin, sampled independently and with
replacement, as rows of a matrix M . Then, replace each entry of M by its simplex encoding, seen
as a column vector in Cq−1. The resulting complex matrix is ϕ(C).

The RIP-2 condition for random complex matrices arising from random linear codes is proved
in Theorem 13 of Section 4. We now combine this theorem with the preceding results of this section
to prove our main theorem on list decodability of random linear codes.

Theorem 12 (Main). Let q be a prime power, and let ε, γ > 0 be constant parameters. Then for
all large enough integers n, a random linear code C ⊆ Fnq of rate R, for some

R &
ε2

log(1/γ) log3(q/ε) log q

is ((1− 1/q)(1− ε), O(1/ε2))-list decodable with probability at least 1− γ.

Proof. Let C ⊆ Fnq be a uniformly random linear code associated to a random Rn × n generator
matrix G over Fq, for a rate parameter R ≤ 1 to be determined later. Consider the random matrix
M = ϕ(C) = ϕ(LinT ) from Observation 1, where |T | = n. Recall that M is a (q− 1)n×N complex
matrix, where N = qRn. Let L := 1 + d1.5/ε2e = Θ(1/ε2). By Theorem 13, for large enough N
(thus, large enough n) and with probability 1−γ, the matrix M/

√
(q − 1)n satisfies RIP-2 of order

L with constant 1/2, for some choice of |T | bounded by

n = |T | . log(1/γ)L log(N) log3(qL). (5)

Suppose n is large enough and satisfies (5) so that the RIP-2 condition holds. By Theorem 11, this
ensures that the code C is ((1− 1/q)(1− ε), O(1/ε2))-list decodable with probability at least 1− γ.

It remains to verify the bound on the rate of C. We observe that, whenever the RIP-2 condition is
satisfied, G must have rank exactly Rn, since otherwise, there would be distinct vectors x, x′ ∈ FRnq
such that xG = x′G. Thus in that case, the columns of M corresponding to x and x′ become
identical, implying that M cannot satisfy RIP-2 of any nontrivial order. Thus we can assume that
the rate of C is indeed equal to R. Now we have

R = logq |C|/n = logN/(n log q)

(5)

&
logN

log(1/γ)L log(N) log3(qL) log q
.

Substituting L = Θ(1/ε2) into the above expression yields the desired bound.

4 Restricted isometry property of DFT-based matrices

In this section, we prove RIP-2 for random incomplete Discrete Fourier Transform matrices.
Namely, we prove the following theorem.

Theorem 13. Let T be a random multiset of rows of Lin, where |T | is fixed and each element of
T is chosen uniformly at random, and independently with replacement. Then, for every δ, γ > 0,
and assuming N ≥ N0(δ, γ), with probability at least 1 − γ the matrix ϕ(LinT )/

√
(q − 1)|T | (with

(q − 1)|T | rows) satisfies RIP-2 of order k with constant δ for a choice of |T | satisfying

|T | . log(1/γ)

δ2
k log(N) log3(qk). (6)

11



The proof extends and closely follows the original proof of Rudelson and Vershynin [RV08].
However we modify the proof at a crucial point to obtain a strict improvement over their original
analysis which is necessary for our list decoding application. We present our improved analysis in
this section.

Proof (of Theorem 13). Let M := ϕ(LinT ). Each row of M is indexed by an element of T and some

α ∈ F∗q (recall that T ⊆ Fk̃q , where N = qk̃). Denote the row corresponding to t ∈ T and α ∈ F∗q
by Mt,α, and moreover, denote the set of k-sparse unit vectors in CN by Bk,N2 .

In order to show that M/
√

(q − 1)|T | satisfies RIP of order k, we need to verify that for any

x = (x1, . . . , xN ) ∈ Bk,N2 ,

|T |(q − 1)(1− δ) ≤ ‖Mx‖22 ≤ |T |(q − 1)(1 + δ). (7)

In light of Proposition 19, without loss of generality we can assume that x is real-valued (since the
inner product between any pair of columns of M is real-valued).

For i ∈ Fnq , denote the ith column of M by M i. For x = (x1, . . . , xN ) ∈ Bk,N2 , define the random
variable

∆x := ‖Mx‖22 − |T |(q − 1)

=
∑

i,j∈supp(x)
i 6=j

xixj〈M i,M j〉,

where the second equality holds since each column of M has `2 norm
√

(q − 1)|T | and ‖x‖2 = 1.
Thus, the RIP-condition (7) is equivalent to

∆ := sup
x∈Bk,N2

|∆x| ≤ δ|T |(q − 1). (8)

Recall that ∆ is a random variable depending on the randomness in T . The proof of the RIP
condition involves two steps. First, bounding ∆ in expectation, and second, a tail bound. The first
step is proved, in detail, in the following lemma.

Lemma 14. Let δ′ > 0 be a real parameter. Then, E[∆] ≤ δ′|T |(q− 1) for a choice of |T | bounded
as follows:

|T | . k log(N) log3(qk)/δ′
2
.

Proof. We begin by observing that the columns of M are orthogonal in expectation; i.e., for any
i, j ∈ Fnq , we have

ET 〈M i,M j〉 =

{
|T |(q − 1) i = j,
0 i 6= j.

This follows from (1) and the fact that the expected relative Hamming distance between the columns

of Lin corresponding to i and j, when i 6= j, is exactly 1− 1/q. It follows that for every x ∈ Bk,N2 ,
E[∆x] = 0, namely, the stochastic process {∆x}x∈Bk,N2

is centered.

Recall that we wish to estimate

E := ET∆

= ET sup
x∈Bk,N2

∣∣∣∣∣∣
∑
t∈T

∑
α∈F∗q

〈Mt,α, x〉2 − |T |(q − 1)

∣∣∣∣∣∣ . (9)
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The random variables 〈Mt,α, x〉 and 〈Mt′,α′ , x〉 are independent whenever t 6= t′. Therefore, we can
use the standard symmetrization technique on summation of independent random variables in a
stochastic process (Proposition 20) and conclude from (9) that

E . E1 := ETEG sup
x∈Bk,N2

∑
t∈T

gt
∑
α∈F∗q

〈Mt,α, x〉2
 , (10)

where G := (gt)t∈T is a sequence of independent standard Gaussian random variables. Denote the
term inside ET in (10) by ET ; namely,

ET := EG sup
x∈Bk,N2

∑
t∈T

gt
∑
α∈F∗q

〈Mt,α, x〉2
 .

Now we observe that, for any fixed T , the quantity ET defines the supremum of a Gaussian
process. The Gaussian process {Gx}x∈Bk,N2

induces a pseudo-metric ‖ · ‖X on Bk,N2 (and more

generally, CN ), where for x, x′ ∈ Bk,N2 , the (squared) distance is given by

‖x− x′‖2X := EG|Gx −Gx′ |2

=
∑
t∈T

∑
α∈F∗q

〈Mt,α, x〉2 −
∑
α∈F∗q

〈Mt,α, x
′〉2
2

=
∑
t∈T

∑
α∈F∗q

〈Mt,α, x+ x′〉〈Mt,α, x− x′〉

2

. (11)

By Cauchy-Schwarz, (11) can be bounded as

‖x− x′‖2X ≤
∑
t∈T

∑
α∈F∗q

〈Mt,α, x+ x′〉2
∑

α∈F∗q

〈Mt,α, x− x′〉2
 (12)

≤
∑
t∈T

∑
α∈F∗q

〈Mt,α, x+ x′〉2 max
t∈T

∑
α∈F∗q

〈Mt,α, x− x′〉2
 . (13)

Here is where our analysis differs from [RV08]. When q = 2, (13) is exactly how the Gaussian
metric is bounded in [RV08]. We obtain our improvement by bounding the metric in a different
way. Specifically, let η ∈ (0, 1] be a positive real parameter to be determined later and let r := 1+η
and s := 1 + 1/η such that 1/r + 1/s = 1. We assume that η is so that s becomes an integer. We
use Hölder’s inequality with parameters r and s along with (12) to bound the metric as follows:

‖x− x′‖X ≤

∑
t∈T

( ∑
α∈F∗q

〈Mt,α, x+ x′〉2
)r1/2r∑

t∈T

( ∑
α∈F∗q

〈Mt,α, x− x′〉2
)s1/2s

. (14)

Since ‖x‖2 = 1, x is k-sparse, and |Mt,α| = 1 for all choices of (t, α), Cauchy-Schwarz implies that
〈Mt,α, x〉2 ≤ k and thus, using the triangle inequality, we know that∑

α∈F∗q

〈Mt,α, x+ x′〉2 ≤ 4qk.
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Therefore, for every t ∈ T , seeing that r = 1 + η, we have( ∑
α∈F∗q

〈Mt,α, x+ x′〉2
)r
≤ (4qk)η

∑
α∈F∗q

〈Mt,α, x+ x′〉2,

which, applied to the bound (14) on the metric, yields

‖x− x′‖X ≤ (4qk)η/2r

∑
t∈T

∑
α∈F∗q

〈Mt,α, x+ x′〉2


︸ ︷︷ ︸
E2

1/2r∑
t∈T

( ∑
α∈F∗q

〈Mt,α, x− x′〉2
)s1/2s

.(15)

Now,

E2 ≤ 2

∑
t∈T

∑
α∈F∗q

〈Mt,α, x〉2 +
∑
t∈T

∑
α∈F∗q

〈Mt,α, x
′〉2
 ≤ 4E ′T , (16)

where we have defined
E ′T := sup

x∈Bk,N2

∑
t∈T

∑
α∈F∗q

〈Mt,α, x〉2. (17)

Observe that, by the triangle inequality,

E ′T ≤ sup
x∈Bk,N2

∣∣∣∣∣∣
∑
t∈T

∑
α∈F∗q

〈Mt,α, x〉2 − |T |(q − 1)

∣∣∣∣∣∣+ |T |(q − 1). (18)

Plugging (17) back in (15), we so far have

‖x− x′‖X ≤ 4(4qk)η/2rE ′T
1/2r

∑
t∈T

( ∑
α∈F∗q

〈Mt,α, x− x′〉2
)s1/2s

. (19)

For a real parameter u > 0, define NX(u) as the minimum number of spheres of radius u

required to cover Bk,N2 with respect to the metric ‖ · ‖X . We can now apply Dudley’s theorem on
supremum of Gaussian processes (cf. [LT91, Theorem 11.17]) and deduce that

ET .
∫ ∞
u=0

√
logNX(u)du. (20)

In order to make the metric ‖ · ‖X easier to work with, we define a related metric ‖ · ‖X′ on

Bk,N2 , according to the right hand side of (19), as follows:

‖x− x′‖2sX′ :=
∑
t∈T

( ∑
α∈F∗q

〈Mt,α, x− x′〉2
)s
. (21)

Let K denote the diameter of Bk,N2 under the metric ‖ · ‖X′ . Trivially, K ≤ 2|T |1/2s
√
qk. By (19),

we know that
‖x− x′‖X ≤ 4(4qk)η/2rE ′T

1/2r‖x− x′‖X′ . (22)
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Define NX′(u) similar to NX(u), but with respect to the new metric X ′. The preceding upper
bound (22) thus implies that

NX(u) ≤ NX′(u/(4(4qk)η/2rE ′T
1/2r

)). (23)

Now, using this bound in (20) and after a change of variables, we have

ET . (4qk)η/2rE ′T
1/2r

∫ ∞
u=0

√
logNX′(u)du. (24)

Now we take an expectation over T . Note that (18) combined with (9) implies

ETE ′T ≤ E + |T |(q − 1). (25)

Using (20), we get

E2r
(10)

. E2r1 = (ETET )2r ≤ ETE2rT

. (4qk)ηET

(
(E ′T )1/2r

∫ ∞
u=0

√
logNX′(u)du

)2r

≤ (4qk)η(ETE ′T ) max
T

(∫ ∞
u=0

√
logNX′(u)du

)2r

(25)

≤ (4qk)η(E + |T |(q − 1)) max
T

(∫ ∞
u=0

√
logNX′(u)du

)2r

.

Define

Ē := E ·
(

E
E + |T |(q − 1)

)1/(1+2η)

. (26)

Therefore, recalling that r = 1 + η, the above inequality simplifies to

Ē . (4qk)η max
T

(∫ K

u=0

√
logNX′(u)du

)1+1/(1+2η)

, (27)

where we have replaced the upper limit of integration by the diameter of Bk,N2 under the metric
‖ · ‖X′ (obviously, NX′(u) = 1 for all u ≥ K).

Now we estimate NX′(u) in two ways. The first estimate is the simple volumetric estimate
(cf. [RV08]) that gives

logNX′(u) . k log(N/k) + k log(1 + 2K/u). (28)

This estimate is useful when u is small. For larger values of u, we use a different estimate as follows.

Claim 15. logNX′(u) . |T |1/s(logN)qks/u2.

Proof. We use the method used in [RV08] (originally attributed to B. Maurey, cf. [Car85, § 1]) and

empirically estimate any fixed real vector x = (x1, . . . , xN ) ∈ Bk,N2 by an m-sparse random vector
Z, for sufficiently large m. The vector Z is an average

Z :=

√
k

m

m∑
i=1

Zi, (29)
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where each Zi is a 1-sparse vector in CN and E[Zi] = x/
√
k. The Zi are independent and identically

distributed.

The way each Zi is sampled is as follows. Let x′ := x/
√
k so that ‖x′‖1 = ‖x‖1√

k
≤ 1. With

probability 1 − ‖x′‖, we set Zi := 0. With the remaining probability, Zi is sampled by picking a
random j ∈ supp(x) according to the probabilities defined by absolute values of the entries of x′,
and setting Zi = sgn(x′j)ej , where ej is the jth standard basis vector6. This ensures that E[Zi] = x′.
Thus, by linearity of expectation, it is clear that E[Z] = x. Now, consider

E3 := E‖Z − x‖X′ .

If we pick m large enough to ensure that E3 ≤ u, regardless of the initial choice of x, then we can
conclude that for every x, there exists a Z of the form (29) that is at distance at most u from x
(since there is always some fixing of the randomness that attains the expectation). In particular,

the set of balls centered at all possible realizations of Z would cover Bk,N2 . Since the number of
possible choices of Z of the form (29) is at most (2N + 1)m, we have

logNX′(u) . m logN. (30)

In order to estimate the number of independent samples m, we use symmetrization again to
estimate the deviation of Z from its expectation x. Namely, since the Zi are independent, by the
symmetrization technique stated in Proposition 20 we have

E3 .
√
k

m
· E

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
X′

, (31)

where (εi)i∈[m] is a sequence of independent Rademacher random variables in {−1,+1}. Now,
consider

E4 := E

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
2s

X′

= E
∑
t∈T

( ∑
α∈F∗q

〈Mt,α,

m∑
i=1

εiZi〉2
)s

=
∑
t∈T

E

∑
α∈F∗q

( m∑
i=1

εi〈Mt,α, Zi〉
)2s

=
∑
t∈T

E

 m∑
i,j=1

εiεj
∑
α∈F∗q

〈Mt,α, Zi〉〈Mt,α, Zj〉∗
s

. (32)

Since the entries of the matrix M are bounded in magnitude by 1, we have∣∣∣ ∑
α∈F∗q

〈Mt,α, Zi〉〈Mt,α, Zj〉∗
∣∣∣ ≤ q.

Using this bound and Proposition 21, (32) can be simplified as

E4 = E

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
2s

X′

≤ |T |(4qms)s,

6Note that, since we have assumed x is a real vector, sgn(·) is always well-defined.
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and combined with (31), and using Jensen’s inequality,

E3 . |T |1/2s
√

4qks/m.

Therefore, we can ensure that E3 ≤ u, as desired, for some large enough choice of m; specifically,
for some m . |T |1/sqks/u2. Now from (30), we get

logNX′(u) . |T |1/s(logN)qks/u2. (33)

Claim 15 is now proved.

Now we continue the proof of Lemma 14. Break the integration in (27) into two intervals.
Consider

E5 :=

∫ A

u=0

√
logNX′(u)du︸ ︷︷ ︸
E6

+

∫ K

u=A

√
logNX′(u)du︸ ︷︷ ︸
E7

,

where A := K/
√
qk. We claim the following bound on E5.

Claim 16. E5 . |T |1/2s
√

(logN)qks log(qk).

Proof. First, we use (28) to bound E6 as follows.

E6 . A
√
k log(N/k) +

√
k

∫ A

u=0

√
ln(1 + 2K/u)du. (34)

Observe that 2K/u ≥ 1, so 1 + 2K/u ≤ 4K/u. Thus,∫ A

0

√
ln(1 + 2K/u) du ≤

∫ A

0

√
ln(4K/u) du

= 2K

∫ A/2K

0

√
ln(2/u) du

= 2K

(
A

2K

√
ln(4K/A) +

√
π
(

1− erf
(√

ln(4K/A)
)))

= A
√

ln(4K/A) + 2
√
πK erfc

(√
ln(4K/A)

)
, (35)

where erf(·) is the Gaussian error function erf(x) := 2√
π

∫ x
t=0 e

−t2dt, and erfc(x) := 1− erf(x), and

we have used the integral identity∫ √
ln(1/x)dx = −

√
π

2
erf
(√

ln(1/x)
)

+ x
√

ln(1/x) + C

that can be verified by taking derivatives of both sides. Let us use the following upper bound

(∀x > 0) erfc(x) =
2√
π

∫ ∞
t=x

e−t
2
dt ≤ 2√

π

∫ ∞
t=x

t

x
e−t

2
dt =

1√
π
· e
−x2

x
,

and plug it into (35) to obtain∫ A

0

√
ln(1 + 2K/u) du ≤ A

√
ln(4K/A) + 2

√
πK

(
1√
π
· A

4K
· 1√

ln(4K/A)

)

= A
√

ln(4K/A) +
A

2
√

ln(4K/A)

. A
√

log(qk) . |T |1/2s
√

log(qk)),
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where the last inequality holds since A = K/
√
qk . |T |1/2s. Therefore, by (34) we get

E6 . |T |1/2s
√
k(
√

logN +
√

log(qk)). (36)

On the other hand, we use Claim 15 to bound E7.

E7 .
√
|T |1/s(logN)qks

∫ K

u=A
du/u

. |T |1/2s
√

(logN)qks log(qk). (37)

Combining (36) and (37), we conclude that for every fixed T ,

E5 = E6 + E7 . |T |1/2s
√

(logN)qks log(qk).

Claim 16 is now proved.

By combining Claim 16 and (27), we have

Ē . (4qk)η max
T
E1+1/(1+2η)
5

. (4qk)η
(
|T |1/2s

√
(logN)qks log(qk)

)1+1/(1+2η)

= (4qk)η|T |η/(1+2η)
(√

(logN)qks log(qk)
)1+1/(1+2η)

. (38)

By Proposition 22 (setting a := E/(|T |(q − 1)) and µ := 2η), and recalling the definition (26) of Ē ,
in order to ensure that E ≤ δ′(q − 1)|T |, it suffices to have

Ē ≤ δ′
2(1+η)
1+2η |T |(q − 1)/4. (39)

Using (38), and after simple manipulations, (39) can be ensured for some

|T | . (4qk)2η

η
k(logN) log2(qk)/δ′

2
.

This expression is minimized for some η = 1/Θ(log(qk)), which gives

|T | . k(logN) log3(qk)/δ′
2
.

This concludes the proof of Lemma 14.

Now we turn to the tail bound on the random variable ∆ and estimate the appropriate size
of T required to ensure that Pr[∆ > δ|T |(q − 1)] ≤ γ. We observe that the tail bound proved in
[RV08] uses the bound on E[∆] as a black box. In particular, the following lemma, for q = 2, is
implicit in the proof of Theorem 3.9 in [RV08] (the extension to arbitrary alphabet size q requires
only syntactical modifications to the exact argument in [RV08]).

Lemma 17. [RV08, implicit] Suppose that, for some δ′ > 0, E[∆] ≤ δ′|T |(q − 1). Then, there are
absolute constants c1, c2, c3 such that for every λ > 0,

Pr[∆ > (c1 + c2λ)δ′|T |(q − 1)] ≤ 3 exp(−λ2),

provided that

|T |/k ≥ c3
√
λ/δ′. (40)
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Now it suffices to instantiate the above lemma with λ :=
√

ln(3/γ) and δ′ := δ/(c1 + c2λ) =
δ/Θ(

√
ln(3/γ)), and use the resulting value of δ′ in Lemma 14. Since Lemma 14 ensures that

|T |/k = Ω(logN), we can take N large enough (depending on δ, γ) so that (40) is satisfied. This
completes the proof of Theorem 13.

The proof of Theorem 13 does not use any property of the DFT-based matrix other than
orthogonality and boundedness of the entries. However, for syntactical reasons, that is, the way
the matrix is defined for q > 2, we have presented the theorem and its proof for the special case
of the DFT-based matrices. The proof goes through with no technical changes for any orthogonal
matrix with bounded entries (as is the case for the original proof of [RV08]). In particular, we
remark that the following variation of Theorem 13 also holds:

Theorem 18. Let A ∈ CN×N be any orthonormal matrix with entries bounded by O(1/
√
N). Let T

be a random multiset of rows of A, where |T | is fixed and each element of T is chosen uniformly at
random, and independently with replacement. Then, for every δ, γ > 0, and assuming N ≥ N0(δ, γ),
with probability at least 1 − γ the matrix (

√
N/|T |)AT satisfies RIP-2 of order k with constant δ

for a choice of |T | satisfying

|T | . log(1/γ)

δ2
k(logN) log3 k.
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A Useful tools

The original definition of RIP-2 given in Definition 7 considers all complex vectors x ∈ Cn. Below
we show that it suffices to satisfy the property only for real-valued vectors x.

Proposition 19. Let M ∈ Cm×N be a complex matrix such that M †M ∈ RN×N and for any
k-sparse vector x ∈ RN , we have

(1− δ)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + δ)‖x‖22.

Then, M satisfies RIP-2 of order k with constant δ.

Proof. Let x = a + ib, for some a, b ∈ RN , be any complex vector. We have ‖x‖22 = ‖a‖22 + ‖b‖22,
and ∣∣∣‖Mx‖22 − ‖x‖22

∣∣∣ =
∣∣∣x†M †Mx− ‖x‖22

∣∣∣
=

∣∣∣(a† − ib†)M †M(a+ ib)− ‖x‖22
∣∣∣

=
∣∣∣a†M †Ma+ b†M †Mb+ i(a†M †Mb− b†M †Ma)− ‖x‖22

∣∣∣
(?)
=

∣∣∣a†M †Ma+ b†M †Mb− ‖x‖22
∣∣∣

=
∣∣∣a†M †Ma− ‖a‖22 + b†M †Mb− ‖b‖22

∣∣∣
(??)

≤ δ‖a‖22 + δ‖b‖22
= δ‖x‖22,

21



where (?) is due to the assumption that M †M is real, which implies that a†M †Mb and b†M †Ma
are conjugate real numbers (and thus, equal), and (??) is from the assumption that the RIP-2
condition is satisfied by M for real-valued vectors and the triangle inequality.

As a technical tool, we use the standard symmetrization technique summarized in the follow-
ing proposition for bounding deviation of summation of independent random variables from the
expectation. The proof is a simple convexity argument (see, e.g., [LT91, Lemma 6.3] and [Ver12,
Lemma 5.70]).

Proposition 20. Let (Xi)i∈[m] be a finite sequence of independent random variables in a Banach
space, and (εi)i∈[m] and (gi)i∈[m] be sequences of independent Rademacher (i.e., each uniformly
random in {−1,+1}) and standard Gaussian random variables, respectively. Then,

E

∥∥∥ ∑
i∈[m]

(Xi − E[Xi])
∥∥∥ . E

∥∥∥ ∑
i∈[m]

εiXi

∥∥∥ . E
∥∥∥ ∑
i∈[m]

giXi

∥∥∥.
More generally, for a stochastic process (X

(τ)
i )i∈[m],τ∈T where T is an index set,

E sup
τ∈T

∥∥∥ ∑
i∈[m]

(
X

(τ)
i − E[X

(τ)
i ]
)∥∥∥ . E sup

τ∈T

∥∥∥ ∑
i∈[m]

εiX
(τ)
i

∥∥∥ . E sup
τ∈T

∥∥∥ ∑
i∈[m]

giX
(τ)
i

∥∥∥.

The following bound is used in the proof of Claim 15, a part of the proof of Lemma 14.

Proposition 21. Let (εi)i∈[m] be a sequence of independent Rademacher random variables, and
(aij)i,j∈[m] be a sequence of complex coefficients with magnitude bounded by K. Then,∣∣∣∣∣∣E

( ∑
i,j∈[m]

aijεiεj

)s∣∣∣∣∣∣ ≤ (4Kms)s.

Proof. By linearity of expectation, we can expand the moment as follows.

E
( ∑
i,j∈[m]

aijεiεj

)s
=

∑
(i1,...is)∈[m]s

(j1,...js)∈[m]s

(
ai1j1 · · · aisjsE

[
εi1 · · · εisεj1 · · · εjs

])
.

Observe that E[εi1 · · · εisεj1 · · · εjs ] is equal to 1 whenever all integers in the sequence

(i1, . . . , is, j1, . . . , js)

appear an even number of times. Otherwise the expectation is zero. Denote by S ⊆ [m]2s the set
of sequences (i1, . . . , is, j1, . . . , js) that make the expectation non-zero. Then,∣∣∣∣∣∣E

( ∑
i,j∈[m]

aijεiεj

)s∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(i1,...is,j1,...js)∈S

ai1j1 · · · aisjs

∣∣∣∣∣∣ ≤ Ks|S|.

One way to generate a sequence σ ∈ S is as follows. Pick s coordinate positions of σ out of the 2s
available positions, fill out each position by an integer in [m], duplicate each integer at an available
unpicked slot (in some fixed order), and finally permute the s positions of σ that were not originally
picked. Obviously, this procedure can generate every sequence in S (although some sequences may
be generated in many ways). The number of combinations that the combinatorial procedure can
produce is bounded by

(
2s
s

)
ms(s!) ≤ (4ms)s. Therefore, |S| ≤ (4ms)s and the bound follows.
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We have used the following technical statement in the proof of Lemma 14.

Proposition 22. Suppose for real numbers a > 0, µ ∈ [0, 1], δ ∈ (0, 1], we have

a ·
( a

1 + a

) 1
1+µ ≤ δ

2+µ
1+µ

4
.

Then, a ≤ δ.

Proof. Let δ′ := δ
2+µ
1+µ /4

1
1+µ ≥ δ

2+µ
1+µ /4. From the assumption, we have

a ·
( a

1 + a

) 1
1+µ ≤ δ′ ⇒ a2+µ ≤ δ2+µ(1 + a)/4. (41)

Consider the function
f(a) := a2+µ − δ2+µa/4− δ2+µ/4.

The proof is complete if we show that, for every a > 0, the assumption f(a) ≤ 0 implies a ≤ δ; or
equivalently, a > δ ⇒ f(a) > 0. Note that f(0) < 0, and f ′′(a) > 0 for all a > 0. The function
f attains a negative value at zero and is convex at all points a > 0. Therefore, it suffices to show
that f(δ) > 0. Now,

f(δ) = δ2+µ − δ3+µ/4− δ2+µ/4 ≥ (3δ2+µ − δ3+µ)/4.

Since δ ≤ 1, the last expression is positive, and the claim follows.
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