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Abstract

We exhibit an explicit pseudorandom generator that stretches anO
((

w4 logw + log(1/ε)
)

· logn
)

-
bit random seed to n pseudorandom bits that cannot be distinguished from truly random bits
by a permutation branching program of width w with probability more than ε. This improves
on the seed length O

((

(w!)11 + log(1/ε)
)

· log n
)

of Koucký, Nimbhorkar, and Pudlák [8] and

O
((

w8 + log(1/ε)
)

· logn
)

of De [4]. More importantly, the analysis of our generator uses only
combinatorial and linear-algebraic arguments, whereas the previous proofs refer to groups or
representation theory.

1 Introduction

This paper is about derandomizing small space computations—that is, we wish to simulate ran-
domized computations using deterministic ones without significantly increasing the space required.
Thus we hope to understand the relationship between two important computational resources:
randomness and space.

The typical way we derandomize a randomized computation is to replace the truly random bits
used by the computation with suitable pseudorandom bits. We require that using pseudorandom,
rather than truly random, bits does not change the output of the computation with probability
more than ε; we call this parameter the error. The algorithm that produces the pseudorandom bits
is called a pseudorandom generator and the number of random bits needed by this algorithm
to sample the distribution is called the seed length. The pseudorandom generator needs to be
efficiently computable and the seed length needs to be short enough for all possible seeds to be
enumerated in a deterministic simulation.

The model of (nonuniform) small-space computation we use is (oblivious read-once) branching
programs. A length-n width-w branching program can be used to represent a computation that
has logw bits of space and uses n random bits. (The actual input to the computation is captured
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in the nonuniformity of the model.) The branching program has n time steps and w states; the ith

step is given by a function Bi : {0, 1} × [w] → [w] that takes the ith random input bit x and the
state u at time i− 1 and maps it to a new state B[x](u) at time i. It is helpful to view each step
of the branching program as a bipartite graph with w vertices on each side and edges of the form
(u,B[x](u)) labelled by the bit x. The whole branching program can then be viewed as a directed
graph with n layers.

A major goal for derandomization research is to prove that any randomized computation can be
simulated by a deterministic computation with only a constant factor increase in space usage—in
particular, RL = L. This problem has a long history [7, 9, 15, 13, 1]. To prove this, it suffices
to construct a pseudorandom generator for length-n width-2O(logn) branching programs that has
seed length O(log n). However, so far the best seed length is O(log2 n) [9, 7] (although the best
derandomization result is RL ⊂ L3/2 [15], which uses Nisan’s pseudorandom generator [9] in a very
sophisticated way). These general results have been unbeaten for over a decade.

Stronger results are known for restricted classes of branching programs. In particular, we consider
sublogarithmic space (that is, subpolynomial width)—usually constant space and width. More-
over, we focus on regular and permutation branching programs: A regular branching program
satisfies the condition that each output of the ith step Bi : {0, 1} × [w] → [w] corresponds to two
inputs—that is, for each i ∈ [n] and v ∈ [w], there are exactly two pairs (x, u) ∈ {0, 1} × [w] with
Bi[x](u) = v. Equivalently, each step in the branching program corresponds to a 2-regular bipartite
graph. A permutation branching program has the additional constraint that these pairs are
of the form (0, u0) and (1, u1) or, equivalently, Bi[x] is a permutation on [w] for each fixed i and
x. In the graph of a permutation branching program, the edges labelled 0 form a matching in each
step and the edges labelled 1 form another matching.

Intuitively, a regular branching program is one that monotonically “absorbs” randomness as the
computation progresses. More formally, the entropy of the program state monotonically increases
(or stays the same) every time a random input bit is read. A permutation branching program has
an even stronger property: the randomness of the state will monotonically increase even when given
imperfect random bits (subject to certain constraints). More interestingly, a permutation branching
program can be “run backwards.” These properties are useful because there is an interesting
relationship between the randomness a program absorbs and the error it accumulates when given
pseudorandom input—this relationship is a central theme in this paper.

A major objective is to construct a pseudorandom generator for constant-width length-n regular
branching programs with seed length O(log n) for constant error; presently O(log n · log log n) is
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the best known seed length [2, 3]. We give a pseudorandom generator with seed length O(log n)
for constant-width permutation branching programs and we look at generalising this result to the
regular case.

1.1 INW Generator

Our results are based on the Impagliazzo-Nisan-Wigderson (INW) generator [7]. Many results
(including [14, 2, 3, 8, 4, 10] to name a few) have been based on this generator.

Intuitively, the INW generator ‘recycles’ randomness: The basic observation underlying its analysis
is as follows

If, at time t, the program has used t random bits and only has s bits of space, then it
must have ‘forgotten’ t − s of those bits. Hence, those forgotten bits can be ‘recycled’
and used by the program in later time steps.

The randomness extraction properties of expander graphs are used to do this recycling. This
basic observation essentially allows us to halve the amount of random bits used by the program.
Recursively repeating this construction log n many times produces the INW generator.

The key parameter of the INW generator is the second eigenvalue λH ∈ (0, 1) of the expander
graphs used. (See [16, 6, 11] for more background on expander graphs.) Each application of the
expander requires O (log(1/λH)) random bits, giving total seed length O (log(1/λH) · log n) for the
INW generator. And the recycled bits are O(w · λH) close to uniform in statistical distance, where
s = logw bits have been ‘remembered’ and need to be replaced.

The difficult part of the analysis of the INW generator is bounding the total error—that is, we
need to show that, for any branching program B of the relevant type and size, replacing the truly
random input of B with the pseudorandom input from the INW generator does not change the
output distribution of B by more than ε in statistical distance.

The original analysis of the INW generator shows that, for a width-w length-n branching program,
the error is bounded by O(n ·w ·λH): the λH factor comes from the expander not perfectly recycling
randomness; the w factor comes from the logw bits that are ‘remembered’ by the program and
need to be replaced; and the n factor comes from the fact that the ‘recycling’ is performed n times
in total. (Subsequent results, discussed below, have shown that this analysis is pessimistic in some
cases and the error does not grow linearly in n.)

The original analysis of the INW generator gives seed length O ((logw + log(1/ε) + log n) · log n).
Even for constant w and ε, the seed length is O(log2 n), rather than the desired O(log n). The
original INW analysis matches the results for Nisan’s generator [9]; however, the INW generator
has shown to be more amenable to generalisation and improvement, as shown below.

1.2 Previous Work

The 20-year-old original analysis of the INW generator remains unbeaten, even for branching pro-
grams of width w = 3. (Some progress has recently been made on hitting sets for width-3 branching
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programs [17, 5].) However, restricting the analysis to regular or permutation branching programs
allows significant improvement.

The results we discuss in this section all improve the error analysis of the INW generator for
the special cases of regular and permutation branching programs. Specifically, they improve the
dependence on n: they show that the error grows logarithmically for regular branching programs
or is even independent of n for permutation branching programs, rather than growing linearly, as
in the original analysis.

Braverman, Rao, Raz, and Yehudayoff [2] show that most input bits for regular branching programs
have small ‘weight’—that is, they have little influence on the output of the program. Specifically,
the total weight of all the bits is bounded by a polynomial in the width of the program (independent
of the length n). Thus most bits have low weight and cannot contribute much error to the output
of the program. This analysis suffices to prove that the INW generator works for width-w length-n
regular branching programs with seed length O ((logw + log(1/ε) + log log n) · log n) for error ε.
Our proof incorporates similar techniques, which we discuss in Section 3.1. Brody and Verbin [3]
use a lower bound on the ability of branching programs to distinguish product distributions in
order to achieve a similar seed length.

Building on [12, 11], Rozenman and Vadhan [14] analyse the behaviour of the INW generator on
consistently labelled regular digraphs, which are simply permutation branching programs with each
step being identical. They use this to give a different proof of Reingold’s result [12] that undirected
s-t connectivity can be solved in deterministic log space—that is, SL = L. (The difference between
SL and RL is analogous to the difference between permutation branching programs and (regular)
branching programs [13].) Their arguments, when applied to permutation branching programs, say
that, if the program state steadily accumulates randomness (or, more formally, converges to its
stationary distribution), then this convergence overpowers the error introduced by the INW gener-
ator, as long as the program is sufficiently long. We also use mixing to bound error accumulation
in Section 3.2.

Koucký, Nimbhorkar, and Pudlák [8] show that the INW generator works for length-n group product
programs over a group G with seed length O

((

|G|11 + log(1/ε)
)

· log n
)

for error ε. Group products
are a subclass of permutation branching programs with an algebraic structure; the size of the group
corresponds to the width. By a reduction to the symmetric group, their work gives a pseudorandom
generator for general permutation branching programs. However, this gives a seed length with an
exponential dependence on the width, namely O

((

(w!)11 + log(1/ε)
)

· log n
)

.

De [4] obtained an improved seed length of O
((

w8 + log(1/ε)
)

· log n
)

for error ε and length-n
width-w permutation branching programs. He also obtains seed length O

((

w8 + log(1/ε) + log log n
)

· log n
)

for regular branching programs.

1.3 Our Results

We give an improved analysis of the INW generator for permutation branching programs. Our
main result is the following.

Theorem 1 (Main Result). The INW generator stretches a random seed of length
O
((

w4 logw + log(1/ε)
)

· log n
)

to n pseudorandom bits that cannot be distinguished from truly
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random bits by a permutation branching program of width w with probability greater than ε.

More importantly, our analysis uses purely linear-algebraic and combinatorial arguments and com-
pletely avoids any reference to groups or representation theory, which are used in the proofs of
Koucký et al. [8] and De [4]. Our approach yields an improved seed length, clarifies intuition and
obstacles, and gives a shorter proof. Our analysis is inspired by that of Koucký, Nimbhorkar, and
Pudlák [8], but was developed largely independently of De’s, the full proof of which was not made
available until June 2012.

Our analysis hinges on the two following ideas. These ideas are implicit in Koucký et al., but we
make them explicit. Both ideas depend on the connection between randomness and error.

• “Introducing Error Requires Introducing Randomness”: Every bit of the input has a
certain amount of influence on the output of the program. This influence does two things: (i)
it adds randomness to the program state and (ii) it can introduce error if the bit is not truly
random. Crucially, a bit cannot do (ii) without doing (i). So error can only be introduced in
conjunction with randomness. Since only log(width) bits of randomness can be introduced,
we can bound the amount of error that is introduced this way. This is very similar to the
argument used by Braverman et al. [2], although we are in a different context (permutation
branching programs, rather than regular branching programs) and have slightly different
intuition.

• “Mixing Kills Error”: Introducing randomness (mixing) also reduces error. Randomiz-
ing or mixing the states makes the program ‘forget’ the past, thereby reducing the error.
Whenever we introduce error, we also introduce randomness and this randomness reduces
the error. The introduction of error and mixing balance out and error does not accumulate
without bound. Cosmetically at least, this argument is similar to the known proofs that
undirected s-t connectivity is in logspace (SL = L) [12, 14].

Much of the overall structure of our proof comes from Koucký et al.. However, we argue about
permutation programs directly, rather than about group product programs. Crucially, our argu-
ments are combinatorial and linear-algebraic, rather than group-theoretic: Rather than reasoning
about cosets of subgroups, we reason about connected components. Rather than reasoning about
the two-norm of a probability distribution over the group elements, we reason about the Frobenius
norm of the stochastic matrix corresponding to a section of the program. Rather than reasoning
about convolutions of distributions over group elements, we reason about composition of programs
and matrix multiplication.

An important open problem is developing an explicit pseudorandom generator for constant-width
length-n regular branching programs with seed length O(log n). One hope for solving this problem
is to generalise the results of Koucký et al. from permutation branching programs to regular
branching programs. However, we cannot easily discuss non-permutation branching programs in
the language of group theory. Thus the first step in generalising these results is to translate them
into a language that is amenable to the analysis of regular branching programs. We do this; and this
is our main contribution. We also show that many of the intermediate results in the proof hold for
non-permutation regular branching programs. Thus we can pinpoint the obstacles to generalising
the proof. (De also uses a linear-algebraic approach to reason about regular branching programs.)
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Moreover, our linear-algebraic and combinatorial approach also clarifies the intuition behind the
proof. In particular, it makes the connection to related works [2, 3, 12, 14] clearer.

2 Notations, Definitions, and Basic Facts

This section provides formal definitions as well as useful lemmas.

2.1 Branching Programs

Before we define branching programs, we consider different ways of viewing an arbitrary computa-
tion. We then define branching programs as a restricted class of programs.

• Intuitively, a program takes a start state and an input string and produces a final state. So
we can view a program as a function as follows.

Formally, a length-n width-w program is a function B : {0, 1}n × [w] → [w]. We denote B
evaluated at x ∈ {0, 1}n and u ∈ [w] by B[x](u). We view the program B as taking an input
string x and an initial state u to a final state B[x](u).

• In our applications, the input x is a (pseudo)random string. So we also view programs
as Markov chains represented by matrices, as is done in [4]. For each x ∈ {0, 1}n, we let
B[x] ∈ {0, 1}w×w be a matrix defined by

B[x](u, v) = 1 ⇐⇒ B[x](u) = v.

Then the matrix B[x] represents a deterministic Markov chain that shows how B maps initial
states to final states with a given input x. Note that we use brackets rather than subscripts
to index matrices or vectors; subscripts are reserved for denoting sequences.

For a random variable X on {0, 1}n, we define

B[X] := E [B[X]] ∈ R
w×w.

Then B[X](u, v) is the probability that B takes the initial state u to the final state v when
given a random input from the distribution X. We further overload notation by defining
B := B[U ] to be a matrix where U is uniform on {0, 1}n. Here the matrix B represents a the
action of the program B with truly random input as the transition matrix of a Markov chain.

• A program can also be depicted as a labelled bipartite graph. Each initial state u is a left
vertex and each final state v is a right vertex. There is an edge labelled x from u to v if and
only if B[x](u) = v. Running the program B on a random input corresponds to taking a
random outgoing edge from the start state vertex to the final state vertex.

However, we are not interested in arbitrary computations. We demand that the program reads
one input bit at a time, rather than all at once. A branching program captures this restriction by
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demanding that the program be composed of several smaller programs. They are formally defined
as follows.

Let B and B′ be width-w programs of length n and n′ respectively. We define the composition
B ◦B′ : {0, 1}n+n′ × [w] → [w] of B and B′ by

(B ◦B′)[x ◦ x′](u) := B′[x′](B[x](u)),

which is a width-w length-(n + n′) program. This corresponds to running B then B′ on separate
inputs, but B passes information to B′ as the final state of B becomes the initial state of B′. In the
matrix view of programs, composition corresponds to matrix multiplication—that is, B◦B′ = B ·B′,
where the two programs are composed on the left hand side and the two matrices are multiplied
on the right hand side. We can also view this composition as a three-layer graph, where we take
the bipartite graphs of B and B′ and use the right vertices of B as the left vertices of B′.

A length-n width-w branching program is a program B that can be written B = B1◦B2◦· · ·◦Bn,
where each Bi is a length-1 width-w program.

Note that a branching program can be viewed as a directed acyclic graph: the vertices are in n+1
layers each containing w vertices. Let (u, i) be a vertex in layer i. Then the neighbours of (u, i) are
(Bi+1[0](u), i + 1) and (Bi+1[1](u), i + 1).

For a program B and an arbitrary distribution X, the matrix B[X] is stochastic—that is,
∑

v B[X](u, v) = 1 for all u and B[X](u, v) ≥ 0 for all u and v. A program B is called a regular
program if the matrix B is a doubly stochastic matrix—that is, B and its transpose B∗ are
stochastic. A program B is called a permutation program if B[x] is a permutation for every x or,
equivalently, B[x] is doubly stochastic. Note that a permutation program is necessarily a regular
program and, if both B and B′ are regular or permutation programs, then so is their composition.

A regular program B has the property that the uniform distribution is the stationary distribution of
the Markov chain B, whereas, if B is a permutation program, the uniform distribution is stationary
for B[X] for any distribution X.

A regular branching program is a branching program where each Bi is a regular program and
likewise for a permutation branching program.

2.2 Pseudorandom Generators

We are interested in analysing pseudorandom generators for (permutation) branching programs.
A pseudorandom generator for a class C of programs is an efficiently computable family of
functions Gn : {0, 1}s(n) → {0, 1}n such that, for any B ∈ C, the output distribution of B when
given pseudorandom input is ε-close to the output distribution of B when given truly random
input—that is,

∣

∣

∣

∣B[Gn(Us(n))]−B
∣

∣

∣

∣ ≤ ε,

where n is the length of B and Us(n) is uniform on {0, 1}s(n). Here s(n) is the seed length of
G and ε is the error of G. We say that G ε-fools C. In our applications C will be the class of
length-n width-w permutation branching programs.
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2.3 INW Generator

The pseudorandom generator we use is the Impagliazzo-Nisan-Wigderson (INW) generator, which
is defined formally as follows.

Let H be an explicit family of 2d-regular expander graphs with normalised second eigenvalue
bounded by λH ∈ (0, 1). Let Hn be the graph in the family H of size 2n and let Hn(x, y) be the
yth neighbour (y ∈ {0, 1}d) of x ∈ {0, 1}n in the graph Hn. The optimal dependence of d on λH is
d = O(log(1/λH )) [11].

The INW generator of length 2i is a function Gi : {0, 1}i·d+1 → {0, 1}2i and is defined recursively
by

G0(x) = x and Gi+1(x, y) = (Gi(x), Gi(Hi·d+1(x, y)).

To produce n pseudorandom bits we use the output of G⌈log n⌉ (with uniform random bits as input),
which has seed length d · ⌈log n⌉+1 = O(log(1/λH ) · log n). Also note that Gi can be computed in
space O(d · log n) [11].

2.4 Expander Product

The INW generator can also be viewed as repeated “pseudorandom composition” of programs.

We can express this pseudorandom composition as an operation on programs: Let H be a family
of 2d-regular graphs where Hn has vertex set {0, 1}n. For x ∈ {0, 1}n and y ∈ {0, 1}d, denote
by Hn(x, y) ∈ {0, 1}n the yth neighbour of x. We define the expander product B ◦H B′ :
{0, 1}n+d × [w] → [w] of length-n width-w programs B and B′ with respect to H by

(B ◦H B′)[x ◦ y](u) := B′[Hn(x, y)](B[x](u)).

Define J to be the complete graph on {0, 1}n with J(x, y) = y, then B ◦J B′ = B ◦B′. An expander
graph H approximates J and thus the expander product approximates composition—that is, the
expander product is a “pseudorandom composition”.

We can view the INW generator as an operation that maps a length-n width-w branching program
B to a length-(d · log n+ 1) width-w program B̃, where B̃[x] := B[Glogn(x)]. We can equivalently
define the INW generator in terms of the expander product: If B has length 1, then B̃[x] := B[x].
Otherwise, if B = B0 ◦B1, then B̃ = B̃0 ◦H B̃1, where H is the family of 2d-regular expander graphs
used by G.

It is also important that the expander product preserves the permutation property of programs like
composition does.

Lemma 2. Let B and B′ be length-n width-w permutation programs. Let H be a family of 2d-regular
graphs. Then B ◦H B′ is a permutation program.

Proof. Fix (x, y) ∈ {0, 1}n×{0, 1}d. By assumption, B[x] and B′[Hn(x, y)] are permutations. Thus
(B ◦H B′)[x ◦ y] = B[x] ·B′[Hn(x, y)] is also a permutation.
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2.5 Spectral Analysis of Branching Programs

We reason about the connected components of branching programs. We will decompose the matrices
corresponding to branching programs into a subspace that is uniform on each connected component
of the branching program and a subspace that is orthogonal to uniform on these components.

Formally, for a doubly stochastic matrix matrix B ∈ R
w×w, define subspaces of Rw as follows

||B := {x : ||xB||2 = ||x||2} , B|| := {x : ||Bx||2 = ||x||2} .

Also define ⊥B as the orthogonal complement of ||B and B⊥ as the orthogonal complement of B||.
The following lemma clarifies the meaning of these subspaces.

Lemma 3. Let B be a doubly stochastic w×w matrix. Define a graph G(B) on [w] where there is
an edge between u and v if and only if u and v have a common neighbour in B—that is,

(u, v) ∈ G(B) ⇐⇒ ∃s (B(u, s) > 0 ∧B(v, s) > 0) .

Equivalently, (u, v) ∈ G(B) if and only if (BB∗)(u, v) > 0, where B∗ is the transpose of B. Note
that this graph is undirected. Then x ∈ ||B if and only if x is constant on each connected component
of G(B)—that is,

x ∈ ||B ⇐⇒ ∀(u, v) ∈ G(B) (x(u) = x(v)) .

And y ∈⊥B if and only if y averages to zero on each connected component of G(B). The same
holds for B|| and B⊥ except with G(B) replaced with G∗(B) := G(B∗).

We refer to the connected components of G(B) from Lemma 3 as the left connected components
of B. The right connected components of B are the connected components of G∗(B). We say
that a doubly stochastic matrix B is connected if it has only one left (or, equivalently, right)
connected component.

Proof. We have

||xB||22 =
∑

u

(

∑

v

x(v)B(v, u)

)2

≤
∑

u

∑

v

x(v)2B(v, u) =
∑

v

x(v)2 = ||x||2 ,

where the inequality holds because x 7→ x2 is convex and B is doubly stochastic. Since x 7→ x2 is
strictly convex, the inequality is tight if and only if x is constant on {v : B(v, u) > 0} for every
u—that is, for every u, v, and v′, if B(v, u) > 0 and B(v′, u) > 0, then x(v) = x(v′). This gives the
first part of the lemma. Note that this also shows that ||B is in fact a subspace. The second part
of the lemma holds because ⊥B is defined as the orthogonal complement of ||B.

We also measure how much B mixes on its left (and right) connected components by λ(⊥B) (and
λ(B⊥) respectively). Formally, define λ(⊥B) and λ(B⊥) to be the operator norm of B restricted
to ⊥B and B⊥—that is

λ(⊥B) := max
x∈⊥B:||x||

2
=1

||xB||2 and λ(B⊥) := max
x∈B⊥:||x||

2
=1

||Bx||2 .
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We need the following bound on λ(⊥B) and λ(B⊥), which is analogous to the bound on the second
eigenvalue of a connected undirected graph [16].

Proposition 4. Let B be a length-n width-w regular branching program. Then λ(⊥B) ≤ λw :=
1− 1/(16w2) and likewise for λ(B⊥).

This bound is tight up to the constant factor 16. Crucially, this bound does not depend on n. De
[4, Lemma 5.11] obtains the weaker bound λ(⊥B) ≤ 1− w−3w.

Proof. For now, assume that B is connected. Choose x ∈⊥B with ||x||2 = 1 and ||xB||2 = λ(⊥B).
Let B = B1 ◦B2 ◦ · · · ◦Bn. Define x0 = x and xi = xi−1Bi for i ∈ {1, · · · , n}. Then

1− λ(⊥B)2 = ||x||22 − ||xB||22
= ||x0||22 − ||xn||22
=

∑

i∈{1,··· ,n}

(

||xi−1||22 − ||xi||22
)

=
∑

i∈{1,··· ,n}

(

||xi−1||22 − ||xi−1Bi||22
)

=
∑

i∈{1,··· ,n}





1

2





∑

u∈[w]

xi−1(u)
2 +

∑

v∈[w]

xi−1(v)
2



− xi−1BiB
∗
i x

∗
i−1





=
∑

i∈{1,··· ,n}









1
2

∑

u∈[w] xi−1(u)
2
(

∑

v∈[w](BiB
∗
i )(u, v)

)

+1
2

∑

v∈[w] xi−1(v)
2
(

∑

u∈[w](BiB
∗
i )(u, v)

)

−∑u,v∈[w] xi−1(u)(BiB
∗
i )(u, v)xi−1(v)









(since BiB
∗
i is doubly stochastic)

=
∑

i∈{1,··· ,n}





∑

u,v∈[w]

(BiB
∗
i )(u, v)

(

1

2
xi−1(u)

2 +
1

2
xi−1(v)

2 − xi−1(u)xi−1(v)

)





=
1

2

∑

i∈{1,··· ,n}

∑

u,v∈[w]

(BiB
∗
i )(u, v)(xi−1(u)− xi−1(v))

2

≥1

8

∑

i∈{1,··· ,n}

∑

u,v∈[w]:(BiB∗

i )(u,v)>0

(xi−1(u)− xi−1(v))
2,

where the inequality follows from the fact that Bi(u, v) is either 0, 1/2, or 1 for all i, u, and v.

Now we define a game. The game keeps track of a collection of closed intervals on the real line.
Initially there are w intervals (of zero length) of the form [x0(u), x0(u)]. At each step in the game
we add an interval to the collection and, if that interval intersects other intervals, the connected
intervals are merged into one large interval. We add all the intervals of the form [xi−1(u), xi−1(v)]
with (BiB

∗
i )(u, v) > 0 in order of increasing i—that is, if i < i′, then [xi−1(u), xi−1(v)] is added

before [xi′−1(u
′), xi′−1(v

′)].

10



We only consider the steps where the total length of the collection of intervals increases. Let
[xi−1(u), xi−1(v)] with (i, u, v) ∈ S be the relevant intervals. Let α be the total length of the
intervals at the end of the game. Then

∑

(i,u,v)∈S
|xi−1(u)− xi−1(v)| ≥ α.

Note that

1− λ(⊥B)2 ≥ 1

8

∑

(i,u,v)∈S
(xi−1(u)− xi−1(v))

2 ≥ 1

8|S|





∑

(i,u,v)∈S
|xi−1(u)− xi−1(v)|





2

≥ α2

8|S| ,

where the middle inequality follows from the fact that ||v||22 ≥ 1
m ||v||21 for all v ∈ R

m. So

1− λ(⊥B) =
1− λ(⊥B)2

1 + λ(⊥B)
≥ 1− λ(⊥B)2

2
≥ α2

16|S| .

Now we must upper bound |S| and lower bound α. We make some observations about the game:

(i) At each step, the number of intervals either stays the same or decreases, as the added interval
merges with existing intervals: Suppose we add the interval [xi−1(u), xi−1(v)]. Then the
point xi−1(u) is already contained in an interval, so the added interval merges with that
interval: If i = 1, then xi−1(u) is contained in one of the initial intervals. Otherwise, note
that xi−1(u) = (xi−2Bi−1)(u) = (xi−2(a) + xi−2(b))/2 for some a and b; thus xi−1(u) is the
midpoint of the interval [xi−2(a), xi−2(b)], which has already been added.

(ii) At each step, if the total length of the collection of intervals increases, then the number of
intervals decreases: Suppose we add the interval [xi−1(u), xi−1(v)]. As in (i), both endpoints
xi−1(u) and xi−1(v) are contained in existing intervals. If both endpoints are in the same
interval, the total length remains unchanged. If instead the endpoints are in different intervals,
then those intervals are merged with the new interval and the number of intervals will decrease.
Also note that the total length of the intervals can increase by at most the length of the new
interval.

(iii) Since B is connected, at the end of the game there is only one interval: Let (u, v) be an edge
in the graph G(B) defined in Lemma 3. It suffices to show that x0(u) and x0(v) are in the
same interval at the end of the game, as, by transitivity and the connectedness of G(B), this
implies that all the intervals have merged.

We have (BB∗)(u, v) > 0, whence there exist sequences u0, u1, · · · , un and v0, v1, · · · , vn such
that u0 = u, v0 = v, un = vn, and, for each i, Bi(ui−1, ui) > 0 and Bi(vi−1, vi) > 0. (To
see this, note that (BB∗)(u, v) > 0 implies that independent random walks in the branching
program B starting at u and v have a nonzero probability of colliding. The two sequences
are two such colliding walks.)

For each i, there is some u′i−1 such that xi(ui) = (xi−1(ui−1)+xi−1(u
′
i−1))/2 andBi(u

′
i−1, ui) >

0. Since xi(ui), xi−1(ui−1) ∈ [xi−1(ui−1), xi−1(u
′
i−1)] and (BiB

∗
i )(ui−1, u

′
i−1) > 0, both xi(ui)

and xi−1(ui−1) are in the same interval at the end of the game. Likewise, for each i, both
xi(vi) and xi−1(vi−1) are covered by one interval. By transitivity, x0(u) and x0(v) are in the
same interval at the end of the game.

11



(iv) The one final interval contains 0: Note that, since x ∈⊥B, by Lemma 3,
∑

u x(u) = 0. Thus
there exist u and v with x0(u) ≤ 0 ≤ x0(v). But the final interval must contain the initial
points x0(u) and x0(v), which implies that it contains 0.

By observation (ii), there are at most w−1 steps where the total length of the collection of intervals
increases, as the number of intervals can only decrease w − 1 times. Thus |S| ≤ w − 1.

Now it only remains to lower bound α. By observation (iii), there is only one interval at the end
of the game. This one final interval must contain all the initial intervals and, by observation (iv),
0. Thus

α ≥ max
u

|x0(u)− 0| = ||x||∞ ≥ 1√
w

||x||2 =
1√
w
.

This gives the required result, assuming that B is connected.

If B is not connected, we must change the proof of observations (iii) and (iv). We can still show
that every connected component of G(B) is covered by one interval—that is, for any connected
component C of G(B), at the end of the game there is one interval IC that contains all the points
{x0(u) : u ∈ C}. However, we can also show that 0 ∈ IC , as, by Lemma 3,

∑

u∈C x0(u) = 0. Since
all the intervals IC intersect at 0, they have been merged into one interval. Thus there is still only
one final interval and the rest of the proof proceeds as before.

Let B and E be a matrices. We say that E is a natural error of B if E(u, v) 6= 0 implies that
B(u, v) > 0 and B + E is a stochastic matrix. If in addition B + E is doubly stochastic, then we
say that E is a doubly natural error of B. Equivalently we say that B̃ = B + E is a (doubly)
natural approximation of B. Note that, if B is a program and X an appropriate random
variable, then B[X] is a natural approximation to B. And, if, in addition, B is a permutation
program, then B[X] is a doubly natural approximation to B.

2.6 Frobenius Norm

Let B be an n× n matrix. Then the Frobenius norm of B is defined by

||B||2Fr :=
∑

i,j

|B(i, j)|2 = trace(B∗B) =
∑

λ

|λ|2,

where the last sum is taken over the singular values of B. Note that the Frobenius norm is just the
Euclidean norm on the vector space of matrices, which makes it clear that it is indeed a norm and
that it is convex.

We use the Frobenius norm throughout this paper, so we will establish some basic facts about it.

Lemma 5. Let B be a stochastic w × w matrix. Then

1 ≤ ||B||
Fr

≤
√
w.

Moreover, ||B||
Fr

= 1 if and only if B = J—that is, B takes any distribution to uniform. And
||B||

Fr
=

√
w if and only if B has entries in {0, 1}.

12



Proof. Let bu be the uth row of B. Then

||B||2Fr =
∑

u∈[w]

||bu||22 =
∑

i

CP(bu),

where CP(bu) is the collision probability of two independent walks starting at node u when viewing
B as a stochastic process. We have

1/w ≤ CP(bu) ≤ 1,

where each inequality is tight if and only if bu is uniform or deterministic respectively. Applying
this inequality to the sum gives the desired bounds, which can only be tight if the inequality is
tight for each u.

We view the Frobenius norm of a stochastic matrix B as a measure of the “randomness” of B: We
can view B as a Markov chain, where B(u, v) is the probability of ending at node v, when starting
at node u. If ||B||Fr = 1, then B has maximal randomness, as it takes any start node to a uniformly
random node. If ||B||Fr =

√
w, then B has minimal randomness, as it represents a deterministic

stochastic process—every start node leads to only one final node. Note that ||B||2Fr is the sum over
all start nodes of the collision probability of two independent random steps.

The following are useful inequalities for our analysis.

Lemma 6. Let A be a doubly stochastic w × w matrix and B another w × w matrix. Then

||AB||
Fr

≤ ||B||
Fr

and ||BA||
Fr

≤ ||B||
Fr
.

Lemma 6 implies that the composition of two regular branching programs is at least as random as
each individual program.

Proof. Let au and bu be the uth rows of A and B respectively. Then

||AB||2Fr =
∑

u

||auB||22 =
∑

u

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

v

au(v)bv

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤
∑

u,v

au(v) ||bv||22 =
∑

v

||bv||22 = ||B||2Fr .

Lemma 7. Let A and B be w × w matrices. Then

||AB||
Fr

≤ ||A||
Fr
||B||

Fr
.

Proof. We have

||AB||2Fr =
∑

u,v

(

∑

s

A(u, s)B(s, v)

)2

≤
∑

u,v

(

∑

s

A(u, s)2

)(

∑

s

B(s, v)2

)

= ||A||2Fr ||B||2Fr ,

where the inequality follows from Cauchy-Schwarz.

We can generalise Lemmas 6 and 7 to ||AB||Fr ≤ ||A||2 ||B||Fr and ||AB||Fr ≤ ||A||Fr ||B||2, where
||B||2 = maxxmax{||xB||2 , ||Bx||2}/ ||x||2 is the spectral norm. Note that ||B||2 ≤ ||B||Fr.
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3 Results

Before we prove our results, we sketch the original analysis of the INW generator in order to clarify
how we improve on it.

Proposition 8. The INW generator fools width-w length-n branching programs with error O(n ·
w · λH), where λH is the second eigenvalue of the expander graphs being used.

Proof Sketch. Let εi be a bound on the error for width-w branching programs of Gi, the INW
generator of length 2i, when using expanders with second eigenvalue bounded by λH—that is, for
any width-w length-2i branching program B, we have

||B[Gi(Ui·d+1)]−B||Fr ≤ εi,

where i ·d+1 is the seed length of Gi and Ui·d+1 is uniform on {0, 1}i·d+1. We simply need to prove
that εlogn = O(n · w · λH).

Clearly ε0 = 0. This forms the base case of our induction. Now we bound εi+1 in terms of εi: Let
B0 and B1 be two width-w length-2i branching programs and B = B0 ◦B1 a width-w length-2i+1

branching program. Let X be uniform on {0, 1}i·d+1. Then
∣

∣

∣

∣B[Gi+1(U(i+1)d)]−B
∣

∣

∣

∣

Fr
= ||E [B0[Gi(X)]B1[Gi(H(X,Ud))]]−B0B1||Fr
≤ ||E [B0[Gi(X)]B1[Gi(H(X,Ud))]]−B0[Gi(Ui·d+1)]B1[Gi(Ui·d+1)]||Fr

+ ||B0[Gi(Ui·d+1)]B1[Gi(Ui·d+1)]−B0B1||Fr
≤wλH + ||B0[Gi(Ui·d+1)]B1[Gi(Ui·d+1)]−B0B1||Fr ,

where the last inequality follows from standard facts about expander graphs. Now it remains to
bound ||B0[Gi(Ui·d+1)]B1[Gi(Ui·d+1)]−B0B1||Fr. We have

||B0[Gi(Ui·d+1)]B1[Gi(Ui·d+1)]−B0B1||Fr ≤ ||B0[Gi(Ui·d+1)]B1[Gi(Ui·d+1)]−B0B1[Gi(Ui·d+1)]||Fr
+ ||B0B1[Gi(Ui·d+1)]−B0B1||Fr

≤ ||B0[Gi(Ui·d+1)]−B0||Fr + ||B1[Gi(Ui·d+1)]−B1||Fr
≤εi + εi.

Thus we have the recurrence
εi+1 ≤ 2εi + wλH ,

which solves to εi = O(2iwλH), as required.

One way to improve on the original analysis of the INW generator is to reduce the wλH term added
with each recursion. For permutation programs, this term can be reduced to λH [14, 4]. Changing
the generator to more aggressively recycle randomness can also improve this term [10].

However, it is more fruitful to improve the bound

||B0[Gi(Ui·d+1)]B1[Gi(Ui·d+1)]−B0B1||Fr ≤ ||B0[Gi(Ui·d+1)]−B0||Fr + ||B1[Gi(Ui·d+1)]−B1||Fr .
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This is what we do to achieve our results. This bound comes from the inequality

∣

∣

∣

∣

∣

∣
ÃB −AB

∣

∣

∣

∣

∣

∣

Fr
≤
∣

∣

∣

∣

∣

∣
Ã−A

∣

∣

∣

∣

∣

∣

Fr
.

We sharpen this inequality in two ways in Sections 3.1 and 3.2. These sharpened bounds are
assembled to give our main result in Section 3.3.

3.1 “Introducing Error Requires Introducing Randomness”

Consider ÃB versus AB, where A and B are programs and Ã is a natural approximation to A.
Suppose that A does not contribute randomness to the product AB—that is, ||AB||Fr = ||B||Fr.
Then we can show that A does not contribute any error to the product either—that is, ÃB = AB.
Formally, we have the following.

Proposition 9. Let A and B be doubly stochastic matrices and let E be a natural error of A.
Suppose that ||AB||

Fr
= ||B||

Fr
. Then EB = 0.

The assumption ||AB||Fr = ||B||Fr implies that A is not mixing B. The only way A cannot be
mixing is if it is acting on a uniform distribution. This means that A is irrelevant—that is, if A
and B are programs, A[x]B = A[y]B for all x and y.

Proof. Let bj be the jth column of B. Then ||Abj ||2 = ||bj ||2 for all j. So bj ∈ A|| for all j. By
Lemma 3, this means that, if (A∗A)(u, v) > 0, then bj(u) = bj(v).

Let ai and ei be the ith rows of A and E respectively. Fix i and j. Suppose that ei(u) 6= 0
and ei(v) 6= 0. Then ai(u) > 0 and ai(v) > 0. Thus (A∗A)(u, v) > 0 and bj(u) = bj(v). Since
∑

u ei(u) = 0, we have

(EB)(i, j) = eibj =
∑

u

ei(u)bj(u) = bj(u
∗)
∑

u

ei(u) = 0.

Thus EB = 0.

We have the following quantitative version of Proposition 9.

Proposition 10. Let A and B be doubly stochastic matrices and let E be a natural error of A.
Suppose that ||AB||2

Fr
= ||B||2

Fr
− γ. Then

||EB||
Fr

≤ ||E||
Fr

√

γ

1− λ(A ⊥)2
.

Proof. Let bj be the j
th column of B. Decompose bj into b

||
j ∈ A|| and b⊥j ∈ A⊥. Let B = B||+B⊥,

where b
||
j and b⊥j are the jth columns of B|| and B⊥ respectively. Here B|| is the component of B

that is indifferent to A, as it is uniform on the connected components of A and B⊥ is orthogonal
to B|| and, as we will see, small.
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Now

||B||2Fr =
∑

j

(

∣

∣

∣

∣

∣

∣
b
||
j

∣

∣

∣

∣

∣

∣

2

2
+
∣

∣

∣

∣

∣

∣
b⊥j

∣

∣

∣

∣

∣

∣

2

2

)

and ||AB||2Fr =
∑

j

(

∣

∣

∣

∣

∣

∣
b
||
j

∣

∣

∣

∣

∣

∣

2

2
+
∣

∣

∣

∣

∣

∣
Ab⊥j

∣

∣

∣

∣

∣

∣

2

2

)

.

So

γ = ||B||2Fr − ||AB||2Fr =
∑

j

(

∣

∣

∣

∣

∣

∣
b⊥j

∣

∣

∣

∣

∣

∣

2

2
−
∣

∣

∣

∣

∣

∣
Ab⊥j

∣

∣

∣

∣

∣

∣

2

2

)

≥ (1− λ(A⊥)2)
∑

j

∣

∣

∣

∣

∣

∣
b⊥j

∣

∣

∣

∣

∣

∣

2

2
,

whence
∣

∣

∣

∣

∣

∣B⊥
∣

∣

∣

∣

∣

∣

2

Fr
=
∑

j

∣

∣

∣

∣

∣

∣b⊥j

∣

∣

∣

∣

∣

∣

2

2
≤ γ

1− λ(A⊥)2
.

By Proposition 9, EB|| = 0. Now, by Lemma 7,

||EB||Fr =
∣

∣

∣

∣

∣

∣EB⊥
∣

∣

∣

∣

∣

∣

Fr
≤ ||E||Fr

∣

∣

∣

∣

∣

∣B⊥
∣

∣

∣

∣

∣

∣

Fr
≤ ||E||Fr

√

γ

1− λ(A⊥)2
.

By taking transposes, we immediately obtain the following.

Corollary 11. Let A and B be doubly stochastic matrices and let E be a doubly natural error of
B. Suppose that ||AB||2

Fr
= ||A||2

Fr
− γ. Then

||AE||
Fr

≤ ||E||
Fr

√

γ

1− λ(⊥B)2
.

Note that Corollary 11 requires E to be a doubly natural error. This is important, as we need to
assume that B is a permutation branching program in order to guarantee that the error from using
a pseudorandom generator is doubly natural. Proposition 10 only requires a natural error, which
does not require this assumption. This prevents us from analysing non-permutation branching
programs.

3.2 “Mixing Kills Error”

Again consider ÃB versus AB. Suppose for now that B is connected and thus ||B − J ||2 = λ(B) <
1. Then B “mixes” the error in A, thereby reducing it. Then we have

∣

∣

∣

∣

∣

∣
ÃB −AB

∣

∣

∣

∣

∣

∣

Fr
≤
∣

∣

∣

∣

∣

∣
(Ã−A)J

∣

∣

∣

∣

∣

∣

Fr
+
∣

∣

∣

∣

∣

∣
(Ã−A)(B − J)

∣

∣

∣

∣

∣

∣

Fr
≤ 0 +

∣

∣

∣

∣

∣

∣
Ã−A

∣

∣

∣

∣

∣

∣

Fr
λ(B).

This is a modest improvement over the bound
∣

∣

∣

∣

∣

∣
ÃB −AB

∣

∣

∣

∣

∣

∣

Fr
≤
∣

∣

∣

∣

∣

∣
Ã−A

∣

∣

∣

∣

∣

∣

Fr
, but it can be powerful

when applied repeatedly.

Consider B̃1B̃2 · · · B̃k versus B1B2 · · ·Bk. We have

∣

∣

∣

∣

∣

∣B̃1B̃2 · · · B̃k −B1B2 · · ·Bk

∣

∣

∣

∣

∣

∣ ≤
∑

i

∣

∣

∣

∣

∣

∣B̃i −Bi

∣

∣

∣

∣

∣

∣ .
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However, assuming that each Bi is connected, we have
∣

∣

∣

∣

∣

∣B̃1B̃2 · · · B̃k −B1B2 · · ·Bk

∣

∣

∣

∣

∣

∣ ≤
∑

i∈{1,··· ,k}

∣

∣

∣

∣

∣

∣B̃1B̃2 · · · B̃i−1(B̃i −Bi)Bi+1 · · ·Bk

∣

∣

∣

∣

∣

∣

≤
∑

i∈{1,··· ,k}

∣

∣

∣

∣

∣

∣
B̃1B̃2 · · · B̃i−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
B̃i −Bi

∣

∣

∣

∣

∣

∣
λ(Bi+1 · · ·Bk)

≤
∑

i∈{1,··· ,k}

∣

∣

∣

∣

∣

∣B̃i −Bi

∣

∣

∣

∣

∣

∣λk−i

≤ 1

1− λ
max

i

∣

∣

∣

∣

∣

∣B̃i −Bi

∣

∣

∣

∣

∣

∣ ,

where λ is an upper bound on λ(Bi). The crucial difference is that the sum is replaced by a
maximum and thus this bound does not depend on k.

We can remove the assumption that each Bi is connected and obtain the following result. We also
add in expander products.

Theorem 12 (Key Convergence Lemma). Let B0, · · · , Bk be width-w regular branching programs

and B̃0, · · · , B̃k programs with
∣

∣

∣

∣

∣

∣B̃i −Bi

∣

∣

∣

∣

∣

∣

Fr

≤ δ for i ∈ {1, · · · , k}. Let H1, · · · ,Hk be expander

graphs of the appropriate size and with second eigenvalue λH . Then
∣

∣

∣

∣

∣

∣

(

· · ·
((

B̃0 ◦H1
B̃1

)

◦H2
B̃2

)

· · ·
)

◦Hk
B̃k −B0B1 · · ·Bk

∣

∣

∣

∣

∣

∣

Fr

≤
(√

wλH + δ
)

·
√
w · w! ·

(

3

1− λw

)w

+
∣

∣

∣

∣

∣

∣
B̃0 −B0

∣

∣

∣

∣

∣

∣

Fr

= (λH + δ) · 2O(w logw) +
∣

∣

∣

∣

∣

∣
B̃0 −B0

∣

∣

∣

∣

∣

∣

Fr

.

The crucial aspect of Theorem 12 is that the bound does not depend on k.

Theorem 12 follows from Proposition 13. First we give a proof sketch.

Proof Sketch. We wish to reduce the problem to the case where each Bi is connected. We also use
induction on the width w. So suppose that the theorem holds for all programs of width at most
w − 1.

Now we prove the result for increasingly more general cases.

(a) Suppose B1B2 · · ·Bk is disconnected. Then we can simply apply the induction hypothesis on
each connected component and obtain the desired bound.

(b) Suppose B1B2 · · ·Bk is “minimally connected”—that is, B1B2 · · ·Bk−1 is disconnected and
B1B2 · · ·Bk is connected. Then we can use case (a) to bound the error in B1B2 · · ·Bk−1 and
a basic analysis to bound the error from the last part.

(c) In general, partition B1B2 · · ·Bk into minimally connected blocks of the formBki+1Bki+2 · · ·Bki+1
.

Cases (a) and (b) cover the error added by each block. Now, since each block is connected,
we can use the same analysis as when every Bi is connected.
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Proposition 13 is simply Theorem 12 restricted to a single starting vertex (so we analyse vectors,
rather than matrices) with several technical conditions needed for the induction.

Proposition 13. Suppose that all of the following hold.

• For i ∈ {1, · · · , k}, Bi is a length-ni width-w regular branching program and B̃i is a length-ñi

width-w program, with
∣

∣

∣

∣

∣

∣B̃i −Bi

∣

∣

∣

∣

∣

∣

Fr

≤ δ.

• b0 : {0, 1}n0 → [w] and b̃0 : {0, 1}ñ0 → [w] are functions, the output of which we equate with
a row vector in R

w.

• Y1, · · · , Yk are independent uniform random variables over {0, 1}d.

• X0 is uniform over S̃ ⊂ {0, 1}ñ0 and independent from Y1, · · · , Yk.

• For i ∈ {1, · · · , k}, we have Xi = Hi(Yi, (Yi−1, · · · , Y1,X0)) ∈ {0, 1}ñi , where Hi is a 2d-
regular λH -expander. Note that this implies that ñi = ñ0 + (i− 1)d for i ∈ {1, · · · , k}.

• US is uniform over S ⊂ {0, 1}n0 .

Then

∣

∣

∣

∣

∣

∣E

[

b̃0[X0]B1[X1] · · ·Bk[Xk]
]

− E

[

b̃0[X0]
]

B1 · · ·Bk

∣

∣

∣

∣

∣

∣

2
≤ f

(

w, λw, λH , δ,
|S̃|
2ñ0

)

,

where

f (w, λw, λH , δ, µ) =
1

µ

(√
wλH + δ

)

w!

(

3

1− λw

)w

.

The triangle inequality gives

∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B1[X1] · · ·Bk[Xk]
]

− E [b0[US ]]B1 · · ·Bk

∣

∣

∣

∣

∣

∣

2
≤ f (w, λw, λH , δ, µw′)+

∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]
]

− E [b0[US ]]
∣

∣

∣

∣

∣

∣

2
.

Proof. We proceed by induction on w. Clearly the proposition holds for w = 1. Now assume that
it holds for width strictly less than w.

In all of the following lemmas we assume the hypotheses of Proposition 13 and the induction
hypothesis.

Denote µ(S) = |S|/2n0 and µ(S̃) = |S̃|/2ñ0 .

Lemma 14. Suppose that B1 · · ·Bk is disconnected. Then

∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B̃1[X1] · · · B̃k[Xk]
]

− E

[

b̃0[X0]
]

B1 · · ·Bk

∣

∣

∣

∣

∣

∣

2
≤ wf

(

w − 1, λw, λH , δ, µ(S̃)
)

.
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Proof. We partition the program (and S̃) into several smaller programs and apply the induction
hypothesis.

Let C1, · · ·Ct be the left connected components of B1 · · ·Bk. For i ∈ {1, · · · , t}, define

Si = {x ∈ S : b0[x] ∈ Ci} and S̃i = {x ∈ S̃ : b̃0[x] ∈ Ci}.

Denote µ(Si) = |Si|/2n0 and µ(S̃i) = |S̃i|/2ñ0 . We can apply the induction hypothesis to each
connected component—that is, for all i,
∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B̃1[X1] · · · B̃k[Xk] | X0 ∈ S̃i

]

− E

[

b̃0[X0] | X0 ∈ S̃i

]

B1 · · ·Bk

∣

∣

∣

∣

∣

∣

2
≤ f

(

|Ci|, λw, λH , δ, µ(S̃i)
)

.

Note that

E

[

b̃0[X0]B̃1[X1] · · · B̃k[Xk]
]

=
∑

i

P

[

X0 ∈ S̃i

]

E

[

b̃0[X0]B̃1[X1] · · · B̃k[Xk] | X0 ∈ S̃i

]

and

E

[

b̃0[X0]
]

B1 · · ·Bk =
∑

i

P

[

X0 ∈ S̃i

]

E

[

b̃0[X0] | X0 ∈ S̃i

]

B1 · · ·Bk.

Thus
∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B̃1[X1] · · · B̃k[Xk]
]

− E

[

b̃0[X0]
]

B1 · · ·Bk

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

P

[

X0 ∈ S̃i

] (

E

[

b̃0[X0]B̃1[X1] · · · B̃k[Xk] | X0 ∈ S̃i

]

− E

[

b̃0[X0] | X0 ∈ S̃i

]

B1 · · ·Bk

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤
∑

i

∣

∣

∣

∣

∣

∣
P

[

X0 ∈ S̃i

] (

E

[

b̃0[X0]B̃1[X1] · · · B̃k[Xk] | X0 ∈ S̃i

]

− E

[

b̃0[X0] | X0 ∈ S̃i

]

B1 · · ·Bk

)∣

∣

∣

∣

∣

∣

2

≤
∑

i

P

[

X0 ∈ S̃i

]

f
(

|Ci|, λw, λH , δ, µ(S̃i)
)

≤
∑

i

µ(S̃i)

µ(S̃)
f
(

w − 1, λw, λH , δ, µ(S̃i)
)

= tf
(

w − 1, λw, λH , δ, µ(S̃)
)

≤ wf
(

w − 1, λw, λH , δ, µ(S̃)
)

,

where the last equality follows from the fact that f (w − 1, λw, λH , δ, µ) = (1/µ)·g (w − 1, λw, λH , δ)
for some g.

Lemma 15 is a simple one-step analysis. The proof is omitted, as it is a simple calculation based
on a standard result [16].

Lemma 15.
∣

∣

∣

∣

∣

∣E

[

b̃0[X0]B̃1[X1]
]

− E [b0[US ]]B1

∣

∣

∣

∣

∣

∣

2
≤ λH

√
w

µ(S̃)
+ δ +

∣

∣

∣

∣

∣

∣E

[

b̃0[X0]
]

− E [b0[US ]]
∣

∣

∣

∣

∣

∣

2
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Now Lemma 14 covers the case that the whole program is disconnected and Lemma 15 gives an
analysis of one step. We can combine these two results to analyse the minimally connected case.

Lemma 16. Suppose that B1 · · ·Bk is connected, but B1 · · ·Bk−1 is not. Then

∣

∣

∣

∣

∣

∣E

[

b̃0[X0]B̃1[X1] · · · B̃k[Xk]
]

− E [b0[US ]]B1 · · ·Bk

∣

∣

∣

∣

∣

∣

2

≤ λH
√
w

µ(S̃)
+ δ + wf

(

w − 1, λw, λH , δ, µ(S̃)
)

+ λw

∣

∣

∣

∣

∣

∣E

[

b̃0[X0]
]

− E [b0[US ]]
∣

∣

∣

∣

∣

∣

2
.

Proof. By Lemma 14,

∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B̃1[X1] · · · B̃k−1[Xk−1]
]

− E

[

b̃0[X0]
]

B1 · · ·Bk−1

∣

∣

∣

∣

∣

∣

2
≤ wf

(

w − 1, λw, λH , δ, µ(S̃)
)

.

Now Lemma 15 gives

∣

∣

∣

∣

∣

∣E

[(

b̃0[X0]B̃1[X1] · · · B̃k−1[Xk−1]
)

B̃k[Xk]
]

− E

[

b̃0[X0]B1 · · ·Bk−1

]

Bk

∣

∣

∣

∣

∣

∣

2

≤
∣

∣

∣

∣

∣

∣E

[(

b̃0[X0]B̃1[X1] · · · B̃k−1[Xk−1]
)

B̃k[Xk]
]

− E

[

b̃0[X0]B̃1[X1] · · · B̃k−1[Xk−1]
]

Bk

∣

∣

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

∣

(

E

[

b̃0[X0]B̃1[X1] · · · B̃k−1[Xk−1]
]

− E

[

b̃0[X0]
]

B1 · · ·Bk−1

)

Bk

∣

∣

∣

∣

∣

∣

2

≤ λH
√
w

µ(S̃)
+ δ +

∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B̃1[X1] · · · B̃k−1[Xk−1]
]

− E

[

b̃0[X0]
]

B1 · · ·Bk−1

∣

∣

∣

∣

∣

∣

2

≤ λH
√
w

µ(S̃)
+ δ +wf

(

w − 1, λw, λH , δ, µ(S̃)
)

.

Thus
∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B̃1[X1] · · · B̃k[Xk]
]

− E [b0[US ]]B1 · · ·Bk

∣

∣

∣

∣

∣

∣

2

≤
∣

∣

∣

∣

∣

∣
E

[(

b̃0[X0]B̃1[X1] · · · B̃k−1[Xk−1]
)

B̃k[Xk]
]

− E

[

b̃0[X0]B1 · · ·Bk−1

]

Bk

∣

∣

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

∣

(

E

[

b̃0[X0]
]

− E [b0[US ]]
)

B1 · · ·Bk

∣

∣

∣

∣

∣

∣

2

≤ λH
√
w

µ(S̃)
+ δ + wf

(

w − 1, λw, λH , δ, µ(S̃)
)

+ λ(⊥(B1 · · ·Bk))
∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]
]

− E [b0[US ]]
∣

∣

∣

∣

∣

∣

2

≤ λH
√
w

µ(S̃)
+ δ + wf

(

w − 1, λw, λH , δ, µ(S̃)
)

+ λw

∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]
]

− E [b0[US ]]
∣

∣

∣

∣

∣

∣

2
,

where the last inequality follows from Proposition 4.
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Now we partition B1B2 · · ·Bk into minimally connected blocks. Choose k0 · · · kt such that k0 = 0
and, for all i, Bki+1 · · ·Bki+1

is connected and Bki+1 · · ·Bki+1−1 is not connected and Bkt+1 · · ·Bk

is also not connected.

Now we can apply the same analysis to the connected blocks as we did in the case where each
individual Bi was connected.

Lemma 17. For all i ∈ {0, · · · , t},

∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B̃1[X1] · · · B̃ki [Xki ]
]

− E

[

b̃0[X0]
]

B1 · · ·Bki

∣

∣

∣

∣

∣

∣

2
≤

λH

√
w

µ(S̃)
+ δ + wf

(

w − 1, λw, λH , δ, µ(S̃)
)

1− λw

Proof. We apply Lemma 16 to each segment Bki+1 · · ·Bki+1
and proceed by induction on i. Clearly

the claim is true for i = 0. Suppose the claim is true for i. Then, by Lemma 16,

∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B̃1[X1] · · · B̃ki+1
[Xki+1

]
]

− E

[

b̃0[X0]
]

B1 · · ·Bki+1

∣

∣

∣

∣

∣

∣

2

≤ λH
√
w

µ(S̃)
+ δ + wf

(

w − 1, λw, λH , δ, µ(S̃)
)

+ λw

∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B̃1[X1] · · · B̃ki [Xki ]
]

− E

[

b̃0[X0]
]

B1 · · ·Bki

∣

∣

∣

∣

∣

∣

2

≤ λH
√
w

µ(S̃)
+ δ + wf

(

w − 1, λw, λH , δ, µ(S̃)
)

+ λw

λH

√
w

µ(S̃)
+ δ + wf

(

w − 1, λw, λH , δ, µ(S̃)
)

1− λw

=

λH

√
w

µ(S̃)
+ δ + wf

(

w − 1, λw, λH , δ, µ(S̃)
)

1− λw
.

All that remains is to deal with the last block that doesn’t fit into the minimally connected com-
ponents analysis.

21



Now we can combine Lemmas 17 and 14 to complete the induction.
∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B1[X1] · · ·Bk[Xk]
]

− E

[

b̃0[X0]
]

B1 · · ·Bk

∣

∣

∣

∣

∣

∣

2

≤
∣

∣

∣

∣

∣

∣
E

[

b̃0[X0]B1[X1] · · ·Bk[Xk]
]

− E

[

b̃0[X0]B1[X1] · · ·Bk[Xkt ]
]

Bkt+1 · · ·Bk

∣

∣

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

∣

(

E

[

b̃0[X0]B1[X1] · · ·Bk[Xkt ]
]

− E

[

b̃0[X0]
]

B1 · · ·Bkt

)

Bkt+1 · · ·Bk

∣

∣

∣

∣

∣

∣

2

≤ wf
(

w − 1, λw, λH , δ, µ(S̃)
)

+

λH

√
w

µ(S̃)
+ δ + wf

(

w − 1, λw, λH , δ, µ(S̃)
)

1− λw

≤
(

1 +
1

1− λw

)

wf
(

w − 1, λw, λH , δ, µ(S̃)
)

+
1

µ(S̃)

λH
√
w + δ

1− λw

=
1 + 1

1−λw

3
1−λw

f
(

w, λw, λH , δ, µ(S̃)
)

+
1

µ(S̃)

λH
√
w + δ

1− λw

≤ 2

3
f
(

w, λw, λH , δ, µ(S̃)
)

+
1

µ(S̃)

λH
√
w + δ

1− λw

≤ f
(

w, λw, λH , δ, µ(S̃)
)

,

as
1

3
f
(

w, λw, λH , δ, µ(S̃)
)

=
1

3

1

µ(S̃)

(√
wλH + δ

)

w!

(

3

1− λw

)w

≥ 1

µ(S̃)

λH
√
w + δ

1− λw
.

Note that the expander product is not associative and Theorem 12 only allows the expander product
to be repeatedly applied on the right. This can be generalised. The following proposition shows
how we can reduce arbitrary orders of expander products to the case where every product is on the
right.

Proposition 18. Let B0, · · · , Bk, B
′
1, · · · , B′

k be width-w permutation branching programs and

B̃0, · · · , B̃k, B̃
′
1, · · · , B̃′

k permutation programs with
∣

∣

∣

∣

∣

∣
B̃i −Bi

∣

∣

∣

∣

∣

∣

Fr

≤ δ and
∣

∣

∣

∣

∣

∣
B̃′

i −B′
i

∣

∣

∣

∣

∣

∣

Fr

≤ δ for

i ∈ {1, · · · , k}. Let H1, · · · ,Hk,H
′
1, · · · ,H ′

k be expander graphs of the appropriate size and with
second eigenvalue λH . Then
∣

∣

∣

∣

∣

∣B̃′
k ◦H′

k

((

· · ·
(

B̃′
2 ◦H′

2

((

B̃′
1 ◦H′

1

(

B̃0 ◦H1
B̃1

))

◦H2
B̃2

))

· · ·
)

◦Hk
B̃k

)

−B′
k · · ·B′

1B0B1 · · ·Bk

∣

∣

∣

∣

∣

∣

Fr

≤ 2
(√

2wλH + δ
)√

2w(2w)!

(

3

1− λ2w

)2w

+ 2
∣

∣

∣

∣

∣

∣
B̃0 −B0

∣

∣

∣

∣

∣

∣

Fr

= (λH + δ)2O(w logw) + 2
∣

∣

∣

∣

∣

∣
B̃0 −B0

∣

∣

∣

∣

∣

∣

Fr

.

To prove Proposition 18, we give a program that simulates the given order of products using only
right expander products and twice the width. This is possible because a permutation branching
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program can be “run backwards:” Suppose we wish to simulate only left expander products. Con-
sider the transpose of a sequence of left multiplications. For permutation programs, this transpose
is still a permutation program. This is because each node has distinct labels on incoming edges.
So we can use the same edge labelling to take a random walk backwards through the program.
Non-permutation branching programs do not satisfy this property—they “lose entropy”. So, while
Theorem 12, can be applied to non-permutation branching programs, Proposition 18 cannot. This
prevents us from generalising our result to regular branching programs.

Proof. We give a program A that simulates B and B′ with the desired order of expander products.
Define, for i ∈ {1, · · · , k},

A0[x] =

(

B0[x] 0
0 I

)

A2i−1[x] =

(

Bi[x] 0
0 I

)

A2i[x] =

(

I 0
0 B′

i[x]
∗

)

and

Ã0[x] =

(

B̃0[x] 0
0 I

)

Ã2i−1[x] =

(

B̃i[x] 0
0 I

)

Ã2i[x] =

(

I 0

0 B̃′
i[x]

∗

)

,

where B′
i[x]

∗ is the transpose of B′
i[x]. This is where we use the assumption that everything is a

permutation program—otherwise Ai and Ãi would not be programs. Now, by Theorem 12,

∣

∣

∣

∣

∣

∣

(

· · ·
((

Ã0 ◦H1
Ã1

)

◦H′

1
Ã2

)

· · ·
)

◦H′

k
Ã2k −A0A1 · · ·A2k

∣

∣

∣

∣

∣

∣

Fr

≤
(√

2wλH + δ
)√

2w(2w)!

(

3

1− λ2w

)2w

+
∣

∣

∣

∣

∣

∣
Ã0 −A0

∣

∣

∣

∣

∣

∣

Fr
= (λH + δ)2O(w logw) +

∣

∣

∣

∣

∣

∣
B̃0 −B0

∣

∣

∣

∣

∣

∣

Fr
.

Now we show how A simulates B. Define

π

(

X 0
0 Y

)

= Y ∗X.

Then

B̃′
k ◦H′

k

((

· · ·
(

B̃′
2 ◦H′

2

((

B̃′
1 ◦H′

1

(

B̃0 ◦H1
B̃1

))

◦H2
B̃2

))

· · ·
)

◦Hk
B̃k

)

= π
((

· · ·
((

Ã0 ◦H1
Ã1

)

◦H′

1
Ã2

)

· · ·
)

◦H′

k
Ã2k

)

and

B′
k · · ·B′

1B0B1 · · ·Bk = π (A0A1 · · ·A2k) .

Now we are done, as
||π(X) − π(Y )||Fr ≤ 2 ||X − Y ||Fr .
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3.3 Putting it all Together

Now we combine the two bounds from Sections 3.1 and 3.2 to give our main result.

Theorem 19 (Main Result). The INW generator with seed length O
((

w4 logw + log(1/ε)
)

· log n
)

ε-fools width-w length-n permutation branching programs—that is, for any length-n width-w per-
mutation branching program B, if G⌈logn⌉ is the INW generator with λH = ε · 2O(w4 logw), then

∣

∣

∣

∣B
[

G⌈log n⌉
(

UO((w4 logw+log(1/ε))·logn)
)]

−B
∣

∣

∣

∣

Fr
≤ ε.

The general approach of the proof is to identify the the right places to use each of our two bounds.

• The “Introducing Error Requires Introducing Randomness” bound from Section 3.1 is used
when little randomness is introduced. In particular, when

max
{

||A||2Fr , ||B||2Fr
}

− ||AB||2Fr ≤
1

O(w2)
,

we can show that

∣

∣

∣

∣

∣

∣ÃB̃ −AB
∣

∣

∣

∣

∣

∣

Fr
≤ 1

8
max

{∣

∣

∣

∣

∣

∣Ã−A
∣

∣

∣

∣

∣

∣

Fr
,
∣

∣

∣

∣

∣

∣B̃ −B
∣

∣

∣

∣

∣

∣

Fr

}

.

• The “Mixing Kills Error” bound from Section 3.2 is somewhat more complicated, as the
bound applies to sequences. Essentially it shows that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∏

j

B̃j −
∏

j

Bj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fr

≤ 2O(w logw)max
i

∣

∣

∣

∣

∣

∣B̃i −Bi

∣

∣

∣

∣

∣

∣

Fr
.

If randomness is added to every term in the sequence—that is,

min
i

||Bi||2Fr ≥

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∏

j

Bj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Fr

+
1

O(w2)
,

then we can afford the 2O(w logw) blowup in error.

The 2O(w logw) blowup can happen only O(w3) times, as it only happens when 1/O(w2) randomness
is added (as measured by Frobenius norm squared) and there is only capacity for w−1 randomness

to be added. Hence the final error blowup is
(

2O(w logw)
)O(w3)

. This means that the final error is

bounded by λH2O(w4 logw), where λH is a bound on the second eigenvalue of the expanders used by
the INW generator.

The proof proceeds by inductively proving that, for any permutation branching program B with
the appropriate parameters,

∣

∣

∣

∣

∣

∣B̃ −B
∣

∣

∣

∣

∣

∣

Fr
≤ ρ

(

||B||2Fr
)

,
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where B̃ is the program obtained by applying the INW generator to B and ρ is some function.
This bound effectively says

“error of B” ≤ ρ (“randomness of B”) .

This is a further formalisation of the “Introducing Error Requires Introducing Randomness” intu-
ition from Section 3.1.

Proof. Let B = B1 ◦ B2 ◦ · · · ◦ Bn be a width-w length-n permutation branching program. For
simplicity, we assume that n is a power of two. In general, we can round n up to the next power
of two and discard the extra pseudorandom bits.

Consider the binary recursion tree of the INW generator applied to B with each node labelled
by the program formed by its descendants. The leaves of the tree are B1, B2, · · · , Bn. And an
internal node is the concatenation of its two children. More formally, the ith node in the jth layer
(0 ≤ j ≤ log n and 1 ≤ i ≤ n2−j) is denoted by Bi,j. If j = 0, Bi,j is a leaf representing Bi. If j > 0,
Bi,j has left and right children B2i−1,j−1 and B2i,j−1 respectively and the program represented by
Bi,j is

Bi,j = Bi·2j ◦Bi·2j+1 · · ·B(i+1)·2j−1 = B2i−1,j−1 ◦B2i,j−1.

If A is a node, then Ã is the program obtained by using the INW generator on A. Formally, we
define B̃i,j recursively by B̃i,0 = Bi and

B̃i,j+1 = B̃2i−1,j ◦H B̃2i,j ,

where H is the expander family used by the INW generator. Note that, by Lemma 2, Bi,j and B̃i,j

are permutation programs for all i and j. The overall program is B = B1,logn and B run on the
output of the INW generator is B̃1,logn. So our goal is to show that

∣

∣

∣

∣

∣

∣B̃1,logn −B1,logn

∣

∣

∣

∣

∣

∣

Fr
≤ ε.

Let α, β, and γ be constants (depending on w) to be determined later. Let ρ(x) = αβ−x. We
inductively show that for each node Bi,j we have

∣

∣

∣

∣

∣

∣B̃i,j −Bi,j

∣

∣

∣

∣

∣

∣

Fr
≤ ρ(||Bi,j||2Fr).

Label each tree edge (B2i−1,j−1, Bi,j) or (B2i,j−1, Bi,j) with the length ||B2i−1,j−1||2Fr − ||Bi,j||2Fr or
||B2i,j−1||2Fr − ||Bi,j||2Fr respectively. The edge length represents the amount of randomness added
by the composition. Note that, by Lemma 6, these lengths are always non-negative.

For each node, remove the longer edge (breaking ties arbitrarily) and, if the longer edge is shorter
than γ2, remove both edges. Now only disjoint paths remain.

We will use the Key Convergence Lemma (Theorem 12 “Mixing Kills Error”) to bound the error
buildup along these paths. The induction hypothesis and Proposition 10 (“Introducing Error
Requires Introducing Randomness”) are used to bound the error along removed edges.
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Choose a node Bi,j and consider the path Bi0,j, Bi1,j−1, Bi2,j−2 · · ·Bil,j−l (possibly of trivial length
l = 0) starting at Bi0,j = Bi,j. Let x = ||Bi,j||Fr.
By Proposition 18, the error accumulated along the path is

∣

∣

∣

∣

∣

∣
B̃i,j −Bi,j
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∣
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∣

∣

∣

Fr
≤ g(w)(λH + δ) + 2

∣

∣

∣

∣

∣

∣
B̃il,j−l −Bil,j−l

∣

∣

∣

∣

∣

∣

Fr
,

where

g(w) = 4w(2w)!

(

3

1− λ2w

)2w

= 2O(w logw)

and δ is an upper bound on the error of any node to the side of the path. Choose i′s such that, for
0 ≤ s < l, either

Bis,j−s = Bi′s,j−s−1 ◦Bis+1,j−s−1 or Bis,j−s = Bis+1,j−s−1 ◦Bi′,j−s−1.

We need to bound the error on nodes that are off the side of the path—that is, we need to find δ

such that
∣
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∣B̃i′s,j−s−1 −Bi′s,j−s−1
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∣

∣

∣

∣

Fr
≤ δ.

We inductively assume that each node Bi′,j′ lower (j
′ < j) in the tree
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∣
B̃i′,j′ −Bi′,j′
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∣
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Fr
≤ ρ(
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∣

∣Bi′,j′
∣

∣

∣

∣

2

Fr
).

Since the edge (Bi′s,j−s−1, Bis,j−s) was cut and (Bis+1,j−s−1, Bis,j−s) was not cut, the length of
(Bi′s,j−s−1, Bis,j−s) is at least γ

2. Thus
∣

∣

∣

∣Bi′s,j−s−1

∣

∣

∣

∣

2

Fr
≥ ||Bis,j−s||2Fr + γ2 ≥ ||Bi,j||2Fr + γ2 = x2 + γ2,

whence, by the induction hypothesis, we can take δ = ρ(x2 + γ2).

Now we bound the error at the end of the path—that is,
∣

∣

∣

∣

∣

∣
B̃il,j−l −Bil,j−l
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. If Bil,j−l is a leaf

in the original tree (j − l = 0), then
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= 0. Suppose j − l > 0. Then Bil,j−l =

B2il−1,j−l−1◦B2il,j−l−1. Since ||B2il−1,j−l−1||Fr ≤ ||Bi,j||Fr = x, we have
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≤ ρ(x2). Thus, by Proposition 10 and Lemmas 15 and
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So it remains to show that
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Let

γ =

√

1− λ2
w

16
=

1

O(w)
,

β = (4g(w))γ
−2

= 2O(w3 logw), and

α = λH4(g(w) + 2w)βw = λH2O(w4 logw).

We assume that α ≤ 1/4 or, equivalently, λH ≤ β−w/(16g(w)) = 2−O(w4 logw). Then

(g(w) + 2w)λH =
αβ−w

4
=

1

4
ρ(w) ≤ 1

4
ρ(x2),

g(w)ρ(x2 + γ2) =g(w)β−γ2
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1

4
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4γ
√
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w
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4
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ρ(x2)2 ≤1

4
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whence

g(w)(λH + ρ(x2 + γ2)) + 2(λHw +
2γ

√
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w

ρ(x2) + ρ(x2)2)

= (g(w) + 2w)λH + g(w)ρ(x2 + γ2) +
4γ

√
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ρ(x2) + ρ(x2)2,

≤ 4
1

4
ρ(x2)

= ρ(x2),

as required. Now the final error is

∣

∣

∣

∣
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∣B̃1,logn −B1,logn

∣
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∣

∣

∣

∣

Fr
≤ ρ

(

||B1,logn||2Fr
)

≤ ρ(1) = λH2O(w4 logw).

So setting λH = ε · 2−O(w4 logw) suffices to prove the theorem.

4 Further Work

There are a number of interesting research directions opened by our results, including the following.
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• We would like to generalise these results to regular branching programs. Much of the intuition
for our result carries over to this more general setting and our linear-algebraic language allows
us to reason about them. Indeed, many of our results hold for regular non-permutation
branching programs. In particular, Theorem 12 (but not Proposition 18) and Proposition
10 (but not Corollary 11) carry over to this more general setting. If we could generalise
Proposition 18 and Corollary 11, then we could generalise the main theorem.

• We would also like to unify our results with other results for regular and permutation branch-
ing programs, such as [2, 3, 12, 14]. There are strong intuitive connections, as we mentioned
in Section 1.2. We can make some of these connections more formal. For example, we can
show that, if A and B are regular branching programs, then

√

||B||2Fr − ||AB||2Fr ≤ poly(w) · weight(A),

where weight(A) is a natural generalisation of the weight used by Braverman et al. [2].

• The two intuitions “Introducing Error Requires Introducing Randomness” and “Mixing Kills
Error” are related. Unifying them may further simplify the proof and lead to a better under-
standing of our results.
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