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Abstract

We prove a strong limitation on the ability of entangled provers to collude in a multiplayer
game. Our main result is the first nontrivial lower bound on the class MIP* of languages having
multi-prover interactive proofs with entangled provers; namely MIP* contains NEXP, the class
of languages decidable in non-deterministic exponential time. While Babai, Fortnow, and Lund
(Computational Complexity 1991) proved the celebrated equality MIP = NEXP in the absence
of entanglement, ever since the introduction of the class MIP* it was open whether shared
entanglement between the provers could weaken or strengthen the computational power of
multi-prover interactive proofs. Our result shows that it does not weaken their computational
power: MIP C MIP*.

At the heart of our result is a proof that Babai, Fortnow, and Lund’s multilinearity test is
sound even in the presence of entanglement between the provers, and our analysis of this test
could be of independent interest. As a byproduct we show that the correlations produced
by any entangled strategy which succeeds in the multilinearity test with high probability can
always be closely approximated using shared randomness alone, and are thus restricted to
being quasi-classical.

1 Introduction

Multiprover interactive proof systems [BGKW88] are at the heart of much of the recent history
of complexity theory, and the celebrated characterization MIP = NEXP [BFL91] is one of the cor-
nerstones on which the PCP theorem [AS98, ALMSS98] was built. While the key assumption on
the multiple provers in an interactive proof system is that they are not allowed to communicate,
traditionally this has been taken to mean that their only distributed resource was shared random-
ness. In a quantum universe, however, it is natural to relax this assumption and allow the provers
to share entanglement. While still not allowing them to communicate, this increases their ability
to collude against the verifier by exploiting the nonlocal correlations allowed by entanglement.
The corresponding complexity class MIP* was introduced in [CHTW04], raising a fundamental
question: what is the computational complexity of entangled provers?
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Even before their modern re-formulation in the language of multiplayer games, starting with
the work of Bell in the 1960s [Bel64] the strength of the nonlocal correlations that could be ob-
tained from performing local measurements on entangled particles has been intensely investi-
gated through the use of Bell inequalities (upper bounds on the strength of classical correlations)
and Tsirelson inequalities (upper bounds on the strength of quantum correlations). Games, or proof
systems, generalize this setup by introducing an additional layer of interaction: in this new context,
we think of the experimenter (the verifier) as interacting with the physical devices (the provers)
through the specific choice of settings (questions) that he makes, and the outcomes (answers) that
he observes. The arbitrary state and measurements that are actually made inside the devices are
reflected in the provers’ freedom in choosing their strategy. The fundamental observation that
quantum mechanics violates certain Bell inequalities translates into the fact that there exists in-
teractive proof systems in which entangled provers can have a strictly higher success probability
than could any classical, non-entangled provers.

A dramatic demonstration of this possibility is given by the Magic Square game [Mer90, Per90],
a simple one-round game for which the maximum success probability of classical provers is 8/9,
but there exists a perfect winning strategy for entangled provers. Cleve, Hoyer, Toner, and Wa-
trous [CHTWO04] were the first to draw complexity-theoretic consequences from such non-local
properties of entanglement. They study the class ©@MIP of languages having two-prover interac-
tive proofs in which there is a single round of interaction, each of the provers is restricted to an-
swering a single bit, and the verifier only bases his accept/reject decision on the parity of the two
bits that he received. While it follows from work of Hastad [Has01] that this class equals NEXP
(and is thus as powerful as the whole of MIP) for an appropriate setting of completeness and
soundness parameters, Cleve et al. show that the corresponding entangled-prover class ©MIP*
collapses to EXP for any choice of completeness and soundness parameters that are separated by
an inverse polynomial gap.!

Despite intense efforts, for a long time little more was known, and prior to our work the best
lower bound on MIP* resulted from the trivial observation that multiple entangled provers are
at least as powerful as a single prover, hence IP = PSPACE C MIP*, where the first equality
is due to [LFKN92, Sha92].> The main difficulty in improving this trivial lower bound is the
following: while the PCP theorem gives us a variety of two-prover interactive proof systems for
NEXP-complete problems, there is strong indication (see e.g. the Magic Square game, which has
a very similar structure to that of basic proof systems for MAX-3-XOR, or the aforementioned
collapse of @MIP*) that these may no longer be sound in the presence of entanglement. The
fact that entanglement, as a shared resource, is poorly understood is also reflected in the complete
absence of reasonable upper bounds on the complexity class MIP*: while the inclusion MIP C NEXP
is straightforward, we do not know of any limits on the dimension of entanglement that may be
useful to the provers in a given interactive proof system, and as a result their maximum success
probability is not even known to be computable (see [SW08, DLTW08, NPAO08] for more on this
aspect).

Since existing protocols may no longer be sound in the presence of entanglement between the
provers, previous work has focused on finding ways to modify a given protocol in a way that would
make it entanglement resistant; that is, honest provers can convince the verifier without shared en-

1This was later improved [Weh06] to the inclusion of @MIP* in the class of two-message single-prover interactive
proofs QIP(2) C PSPACE [JUW09].

2Tt was recently shown that quantum messages are no more powerful than classical messages in single-prover inter-
active proof systems [JJUW11]: QIP = PSPACE. That result, however, has no direct relationship with our work: in
our setting the messages remain classical; rather the “quantumness” manifests itself in the presence of entanglement
between the provers, which is a notion that only arises when more than one prover is present.
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tanglement while dishonest provers cannot convince the verifier with high probability even with
shared entanglement. This was the route taken in [KKMTV11, IKPSY08, IKM09], which intro-
duced techniques to limit the provers’ use of their entanglement. They proved non-trivial lower
bounds on variants of the class MIP*, but with error bounds that are weaker than the standard
definitions allow for. These relatively weak bounds came as a result of the “rounding” technique
developed in these works: by adding additional constraints to the protocol, one ensures that op-
timal entangled strategies are in a sense close to classical, un-entangled strategies. This closeness,
however, was shown using a rounding procedure that had a certain “local” flavor, inducing a
large loss in the quality of the approximation.?

In addition, [IKM09], based on [KKMTV11], showed that PSPACE has two-prover one-round
interactive proofs with entangled provers, with perfect completeness and exponentially small
soundness error. Prior to our work, this was the best lower bound known on single-round multi-
prover interactive proof systems with entanglement.

Other related work. Given the apparent difficulty of proving good lower bounds on the power
of multi-prover interactive proof systems with entangled provers, researchers have studied a va-
riety of related models. Maybe the most natural extension of MIP* consists in giving the verifier
more power by allowing him to run in quantum polynomial-time, and exchange quantum mes-
sages with the provers. The resulting class is called QMIP* (the Q stands for “quantum verifier”,
while the * stands for “entangled provers”), and it was formally introduced in [KMO03], where it
was shown that QMIP* contains MIP* (indeed, the verifier can always force classical communica-
tion by systematically measuring the provers” answers in the computational basis). Little more is
known of QMIP*; in fact it is believed to equal MIP* [BFK10]. Ben-Or et al. [BHP08] introduced a
model in which the verifier is quantum and the provers are allowed communication but no entan-
glement, and showed that the resulting class contains NEXP. Other works attempt to characterize
the power of MIP* systems using tensor norms [RT07, JPPVW10]; so far however such norms have
either led to computable, but very imprecise, approximations, or have remained (to the best of our
knowledge) intractable.

1.1 Results

Let MIP* (k, m, ¢, s) be the class of languages that can be decided by an m-round interactive proof
system with k (possibly entangled) provers and with completeness ¢ and soundness error s.* Our
main result is the following.

Theorem 1. All languages in NEXP have a four-prover poly-round interactive proof system with perfect
completeness and exponentially small soundness error against entangled provers. That is, for every q &
poly, it holds that

NEXP C MIP* (4, poly,1,279).

Theorem 1 resolves a long-standing open question [KMO03], showing that entanglement does
not weaken the power of multi-prover interactive proof systems: together with the celebrated
result NEXP = MIP [BFL91], it implies that MIP C MIP*. We note that the proof system in
Theorem 1 does not require honest provers to use any entanglement in order to achieve perfect
completeness in the case of a YES-instance. In other words, if we denote by MIP® the class of
languages having entanglement resistant multi-prover interactive proof systems with bounded

3See the “almost-commuting implies nearly-commuting” conjecture in [KKMTV11] for more on this aspect.
“We refer to Section 2.2 for a more complete definition of the class MIP*.



error, our proof of Theorem 1 shows that NEXP C MIP®. Because MIP*" C MIP by definition, this
implies MIP®" = NEXP.

The interactive proof system used in the proof of Theorem 1 uses four provers and a polyno-
mial number of rounds of interaction. We do not know if the number of provers can be reduced;
however if one is willing to increase it by one then the amount of interaction required can be re-
duced to a single round, i.e. one message from the verifier to each prover, and one message from
each prover to the verifier. Indeed, our proof system has the additional property of being non-
adaptive: the verifier can select his questions for all the rounds before interacting with any of the
provers. It is shown in [Ito11] that a non-adaptive entanglement-resistant protocol may be paral-
lelized to a single round of interaction at the cost of adding an extra prover. Applying this result
to Theorem 1 gives the following corollary.

Corollary 2. All languages in NEXP have a five-prover one-round interactive proof system with perfect
completeness and soundness error against entangled provers bounded away from 1 by an inverse polyno-
mial, that is:

NEXP C MIP*(5,1,1,1 — 1/ poly).

Prior results on the complexity of multi-prover interactive proofs with entangled provers have
often been stated using the languages of games [CHTW04, KKMTV11, KRT10]. The main differ-
ence, in terms of computational complexity, is in the way the input size is measured. In the case of
games the input is an explicit description of the game, including a list of all possible questions and
valid answers, while in the setting of proof systems the messages may be described implicitly: it
is their length that is polynomial in the input size.

Because of this difference in scaling, our results do not immediately imply any NP-hardness
result in the setting of multi-player games with entangled players. Nevertheless, by adapting the
proof of Theorem 1 and using the PCP theorem one can show the following. There is a constant
¥ > 1 and a procedure that, given as input an arbitrary 3-SAT formula with n variables and
m = poly(n) clauses, runs in time 2°°8"") and produces an explicit description of a four-player
game of size S = 20008"") (j.e. the number of rounds of interaction and the total number of
questions and answers that can be sent and received is at most S). The game has the property that,
if the 3-SAT formula was satisfiable, then there is a perfect strategy for the players, which does
not require any entanglement. If, however, the 3-SAT formula was not satisfiable, then there is
no strategy for the players, even using entanglement, that succeeds with probability greater than
1/2.

If one could show the above with constant ¥ = 1 then it would follow that finding a constant-
factor approximation to the maximum success probability of four entangled players in a game
with polynomially many rounds and questions is NP-hard; however our result is limited to ob-
taining some possibly large ¥ > 1. The main point, however, is that the hardness of approximation
is up to constant factors. This is in contrast to all previous results which were limited to hardness
of approximation up to factors approaching 1 very quickly as the input size grew (even after arbi-
trary sequential or even parallel repetition).’

At the heart of the proof of Theorem 1 is a soundness analysis of Babai, Fortnow and Lund’s
multilinearity test in the presence of entanglement between the provers: we show that it is in a sense
“immune” to the strong non-local correlations that entangled provers may in general afford. We
believe that this analysis should be of wider interest, and we explain the test and the main ideas
behind its analysis in the presence of entanglement in Section 1.3 below. We first briefly outline

5Cleve, Gavinsky, and Jain [CGJ09] obtained a constant-factor hardness result for games with constant answer size,
but in which the number of questions sent by the verifier is exponential.



the overall structure of our proof system in Section 1.2. It is very similar to the one introduced by
Babai, Fortnow, and Lund [BFL91] to prove NEXP C MIP; our contribution consists in proving its
soundness against entangled provers.

1.2 Proof outline

Our interactive proof system, just as the one by Babai et al.,® verifies membership in a specific
NEXP-complete language, Oracle-3-satisfiability (see Problems 1 and 2 in Section 2.3 for a defini-
tion). We give a four-prover, poly-round interactive protocol for it that has perfect completeness
and soundness error bounded away from 1 by an inverse-polynomial in the input size. (Theorem 1
is obtained by sequentially repeating this interactive proof system.)

Simplifying a little bit (we refer the reader to Section 3 for details), the verifier in our pro-
tocol is given as input two integers 1, N in unary (think of N as much larger than n, but still
polynomial), a description of a finite field IF of size N, and a low-degree polynomial f : (IF")3 x
(F)® — . His goal is to verify whether there exists a multilinear function g : F” — F such that
f(x,y,2,8(x),8(y),g(z)) = 0forall x,y,z € {0,1}" C F". If this is the case then the input is a
YES-instance, whereas if for all functions g that are “close” to multilinear functions at least one
of the constraints f(x,y,z, g(x),g(y),g(z)) = 0is not satisfied then it is a NO-instance. The diffi-
culty, of course, is that there are exponentially many constraints to verify, and all must be satisfied
for the instance to be a YES-instance.

The protocol is divided into two distinct parts, which only weakly interact with each other.
In the first part of the protocol, the verifier performs a polynomial-round low-degree sum-check test
with a single prover, say the last prover (see Lemma 9 for an explicit formulation). This test is
based on ideas already introduced by Lund, Fortnow, Karloff, and Nisan [LFKN92] and can be
used to verify that a low-degree function defined over IF¥ vanishes on all of {0, 1}*. We will apply
it to the low-degree function h : (IF")® — I defined by h(x,y,z) = f(x,y,z,¢(x),¢(y),g¢(z)). An
important point for us is that, in the LFKN protocol, the verifier eventually only needs to evaluate
h at a single point (x,y,z) € (F")? chosen uniformly at random.

Of course, the verifier only knows f, not g, and the goal of the second part of the protocol
is for the verifier to learn the three values g(x),g(y),g(z). Note that here the function g is arbi-
trary (we are trying to verify its existence), except that it has to be multilinear. Hence the verifier
will perform one of two tests with the three remaining provers: either directly ask them for the
values g(x),8(y), g(z), or perform a certain “multilinearity test”, which enforces that, however
the provers answer their queries, it must be according to a function that is close to a multilinear
function. The two tests will be indistinguishable from the point of view of the provers because the
marginal distribution on the question to each prover is uniform over [F” in both cases.

Our contribution consists in showing that this protocol is sound even in the presence of en-
tanglement between the provers. Precisely, assuming four entangled provers succeed with prob-
ability that is polynomially close to 1, we wish to conclude that the instance given as input to the
verifier is a YES-instance.

Note that provers successful in the overall protocol must, in particular, succeed with high prob-
ability in the multilinearity test. The key step in the analysis consists in showing the following:
Any three entangled provers that succeed in the multilinearity test with high probability are “in-
distinguishable” from classical provers who use shared randomness to jointly sample a multilinear

6We emphasize that the proof system we use is not new, as it is essentially the same as the one introduced in [BFL91].
We nevertheless outline it because there is a small difference in how the “oracle” in [BFL91] is simulated by provers,
which is the reason our protocol, unlike the one in [BFL91], requires more than two provers.



function g, and then answer question x with g(x). This step is the one that requires the most work,
and we explain it in more detail in the next section. (In particular, we will clarify what is meant
by “indistinguishable”.)

Assuming this informal statement holds, it is not too hard to conclude the analysis of the pro-
tocol. Indeed, having replaced the three provers used in the multilinearity test by three classical
provers, there is only a single “quantum” prover left, the one used to perform the sum-check test
in the first part of the protocol. But entanglement cannot be useful to a single prover, and hence
we may also assume that this last prover behaves classically. Since all provers are now classical,
we have reduced our analysis to the classical setting and can appeal to the results in [BFL91] to
conclude. We refer to Section 3 for a more detailed presentation and soundness analysis of the
protocol.

1.3 The multilinearity game

The key step in the proof of Theorem 1 is the analysis of the multilinearity test of [BFL91], which
generalizes the celebrated linearity test of Blum, Luby, and Rubinfeld [BLR93] and is essential
in constructing a protocol for NEXP that has messages of polynomial length.” The test can be
formulated as a game played between the verifier and three players. The game is parametrized
by a finite field IF and an integer 7. In the game, the verifier performs either of the following with
probability 1/2 each:

o Consistency test. The verifier chooses x € F" uniformly at random and sends the same ques-
tion x to all three players. He expects each of them to answer with an element of IF, and
accepts if and only if all the answers are equal.

e Linearity test. The verifier choosesi € {1,...,s}, x € F" and y;, z; € F uniformly at random,
and sets y; = z; = x; for every j € {1,...,n} \ {i}. He sends x,y, z to the three players,
receives a,b,c € [F, and accepts if and only if

b—a c—b c—a

Vi—X  zZi—VYi Zi— X

Babai, Fortnow, and Lund show that, if any three deterministic players are accepted by the
verifier with probability at least 1 — ¢ in this game, then the functions they each apply to their
questions in order to determine their respective answers are close to a single multilinear function
g : F" — F (see Theorem 4.16 in [BFL91] for an analysis of a variant of the test over the integers).
That is, for all but at most a fraction roughly O(n?¢) (provided || is large enough) of x € F", the
players’ answer to question x is precisely g(x).

A major hurdle in proving a similar statement in case the players are allowed to use quantum
mechanics already arises in formulating the statement to be proven: even in the case of players
restricting their use of entanglement as shared randomness, what meaning should one ascribe to
their strategies being “close to multilinear”? Indeed, it could be that the answer of each player to a
fixed question, when taken in isolation, is uniformly random: the whole substance of the strategy
is in the correlations between the answers of different players. This difficulty is usually set aside
by “fixing the randomness”. Quantum entanglement, however, cannot be “fixed”, and this forces
us to face even the presumably simpler case of randomized strategies head on. We show that the

7One can devise a protocol based on the linearity test alone, but it requires the verifier to send messages with
exponential length to the provers. Such use of the linearity test was already key in establishing the early result NP =
PCP(poly, 1); see e.g. Theorem 2.1.10 in [ALMSS98].



following is an appropriate formulation of Babai et al.’s multilinearity test in the general setting
of entangled (or even just randomized) players (see Theorem 11 for a precise statement).

Theorem 3 (Informal). Suppose that three entangled players who share a permutation-invariant state |'¥')
succeed in the multilinearity game with probability 1 — e where each player uses the set of measurements
{ AL} scr to determine his answer to the verifier’s question x € F".

Then there exists a single measurement {V8}, independent of any question and with outcomes in the
set of all multilinear functions g : F" — IF, such that, in the multilinearity game, each player’s action is
indistinguishable from that of player whom, upon receiving his question x, would

1. Measure his share of |'¥) with {V8}, obtaining a multilinear function g as an outcome,
2. Answer his question x with g(x).
Moreover, the multilinear functions used by the three players are identical with high probability.

In case the players are classical, but may use shared randomness, the theorem makes the fol-
lowing simple statement: players successful in the multilinearity game are “indistinguishable”
from players who would first look up their random string, based on that alone select a multilinear
function g, and finally answer their respective questions x; with g(x;). While such a statement
is a direct corollary of Babai, Fortnow, and Lund’s analysis, our contribution is to prove it with-
out first “fixing the randomness” — and to show that it also holds for the case of players using
entanglement.

An appropriate notion of distance on entangled-prover strategies. Crucial to the applicability
of Theorem 3 is the precise notion of “indistinguishability” used. Indeed, while there is no hope
of making statements on the players’ measurements or their shared entangled state themselves
(since the verifier has no direct access to them throughout the protocol), one still needs to use a
notion that is strong enough to be meaningful even when the multilinearity game is executed as a
building block in the larger protocol explained in the previous section.

The measure we use is based on the notion of consistency between two measurements, and
it may be useful to introduce it here in a simplified setting (precise definitions are given in Sec-
tion 2.1). Let {A'};c; and {B'};c; be two quantum measurements of the same dimension and
indexed by the same set of outcomes: A’, B’ > 0 foralli € I,and }; A’ = ¥; B! = Id. Let |¥) be
a bipartite state that is invariant under permutation of its two subsystems, and p its reduced state
on either. We say that A and B are e-consistent if the following holds:

CON(A,B) := Y (Y[A'®B[¥) > 1—e. (1)

1

This definition has an operational interpretation: the two measurements A and B, when per-
formed on the two subsystems of |¥), give the same outcome except with probability e . The
key fact about consistent measurements is the following. Suppose that A and A, B and B, and A
and B are all e-consistent. Then A and B are indistinguishable in the sense that

Y [[VAipVA — VB VB, = O(Ve). )

This last expression corresponds to a more familiar notion of closeness of two measurements: they
are close if the post-measurement states resulting from applying either are close in trace distance.
The fact that (1) essentially implies (2) relies on Winter’s “gentle measurement” lemma [Win99,
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Lemma 9] (see also Aaronson’s “almost as good as new” lemma [Aar05, Lemma 2.2]), a key tool
in our analysis.

In this paper we will consider two measurements to be close whenever they are consistent,
having the assurance that this notion of closeness implies the more traditional one expressed
by (2). In particular, it is not hard to verify that (2) implies that either measurement may be
“replaced” by the other even in a wider context; see the proof of Claim 12 in Section 3 for more
details on how this can be done. The advantage of using this measure is that constraints on the
consistency of measurements arise naturally from the analysis of the multilinearity game, and it
is a notion that is very convenient to work with.

Analysis of the multilinearity game: rounding entangled strategies. Theorem 3 states that suc-
cess in the multilinearity game forces even entangled players to make a trivial use of their entan-
glement: since the measurement {V$} is independent of their respective questions, they might as
well perform it before the game starts, in which case they are not using their entanglement at all.
Hence the theorem implies that entangled players are no more powerful than classical players in
that game. A key insight of our work, however, is to avoid any attempt to prove such a statement
directly. Instead, our proof technique consists in progressively manipulating the players’ strategies
themselves, without explicitly trying to relate them to a classical strategy.

Our goal is to show how the measurement {V¢} can be extracted from the initial set of mea-
surements {A%} which depend on x € "8 More precisely, we show how, starting from the
original measurements { A%}, one may remove the dependence of { A%} on x € F" one coordinate
at a time — eventually reaching the measurement {V8}. Towards this we construct a sequence of

measurements {By, | }g, for k = 1,...,n, with outcomes g in the set of multilinear functions

F¥ — TF. Each of these measurements has the following key property: the respective strategies
corresponding to (i) measuring according to {A%} and answering a or (ii) measuring according
to {BY,., . x| and answering g(xi,...,x;) are consistent, in the sense described in Eq. (1): two
distinct players using either strategy will obtain the same answer with high probability (provided
they started with the same question).

This sequence of measurements is defined by induction, and we only explain the one-dimensional
case here. Our construction is intuitive: { BS } corresponds to measuring using { A%, } twice, in suc-
cession, using two randomly chosen values of x1, and returning the unique linear function ¢ which
interpolates between the two outcomes obtained. This can be interpreted as a quantum analogue
of the reconstruction procedure already used in the linearity test of Blum, Luby, and Rubinfeld: to
recover a linear function it suffices to evaluate it at two random points, and then interpolate. The
construction of the measurements {B§k +1,.‘,,xn} for the one dimensional case is given in Claim 15,
and in the general case in Lemma 18, which states a quantum analogue of Babai et al.’s “pasting
lemma” [BFL91, Lemma 5.11].

An additional hurdle arises as a result of the induction: the quality of the approximation be-
tween the original measurements {A%} and the constructed measurements {B5, , _ .} blows up
exponentially with k. In order to control this error, one has to perform an additional step of self-
improvement. This step was a key innovation in the work of Babai, Fortnow, and Lund, and ex-
tending it to the setting of entangled strategies requires substantially more work. While for the
case of deterministic strategies Babai et al. were able to show, using the expansion properties of
the hypercube, that any “reasonably good” k-linear approximation g at any point in the induction
was automatically “extremely good”, in our case we need to actively update the measurements

8While we do give an explicit, inductive algorithmic procedure showing how {V8} can be constructed, this is not
necessary: the point is only in proving its existence.



through a self-correction procedure, obtaining the “improved” measurements as the optimum of
a certain convex optimization problem. The need for such active correction is not a limitation of
our approach, but rather reflects a fundamental difference between the quantum and the classical,
deterministic settings: while two binary-valued functions either fully agree or fully disagree at
any point, two quantum measurements can produce outcomes according to distinct but arbitrar-
ily close distributions (think of one of the measurements as being obtained from the other by a
small perturbation, such as an arbitrarily small rotation). It is this kind of “error” that needs to be
corrected, and we explain our method to do so in more detail in Section 5.1.

1.4 Discussion and open questions

Improving the parameters in Theorem 1 and Corollary 2 is an open problem. For example, it
might be possible to reduce the number of provers to two, and the number of rounds of in-
teraction to one, while still preserving exponentially small soundness error, resulting in the in-
clusion NEXP C MIP*(2,1,1,271) for every polynomial q. This would be an analogue of the
known containment NEXP C MIP(2,1,1,2°7) [FL92]. Our overall protocol for NEXP requires
four provers, and five provers if we would like to parallelize it by using [Ito11]. We leave the
problem of reducing the number of provers to fewer than four for future work. It may also be
possible to improve the soundness guarantees in Corollary 2 by using the parallel repetition tech-
niques from [KV11], but we have not explored this possibility.

In comparison to the PCP theorem, there are important parameters which are not explicit in
Theorem 1 and Corollary 2: the amount of randomness used by the verifier and the total answer
length. In our constructions, both of them are just bounded by a polynomial in the input length
for NEXP, and they are poly-logarithmic for the scaled-down version corresponding to verification
of languages in NP. If these numbers are respectively reduced to a logarithm and a constant
for NP with a constant soundness, the result will be an analogue of the PCP theorem in presence
of entanglement. Obtaining such a result may require extending our analysis of the multilinearity
test to the more powerful low-degree tests that were key to establishing the “scaled-down” version
of the PCP theorem.

Honest provers in our protocol do not need entanglement in order to achieve completeness 1
in the case of a YES-instance. It remains open whether entanglement can have any positive use in
this context: is MIP* strictly larger than MIP = NEXP?

Organization of the paper. After giving some necessary preliminaries, Section 3 describes the
protocol used to prove Theorem 1, and shows how the theorem follows from a claim about the
multilinearity game in the presence of entangled provers. Section 4 introduces a more technical
claim about the analysis of the multilinearity game, which is suitable to a proof by induction on
the number n of variables in the verifier’s questions in the game. The actual analysis is given in
Section 5.
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2 Preliminaries

In the remainder of the paper we assume that the reader is familiar with computational complexity
theory [Gol08, AB09], as well as with basic notions in quantum information [NCO01, KSV02] such
as density matrices, POVM measurements, quantum channels, and the trace distance. For more
on quantum computational complexity we refer the reader to a recent survey by Watrous [Wat09].

2.1 Notation

For a field FF, a linear function ¢: IF — F is a function such that there exists a,b € F, g(x) = ax + b.
A multilinear function g¢: F* — F is a function that is linear in each of its coordinates. ML(FF¥, F)
will denote the set of all multilinear functions from F¥ to IF. We will denote tuples using bold
symbols such as x and b. Given a tuple x = (x1,...,%,) and k € [n], we let x< := (x1,..., %),
Xog = (Xpp1,. -, xn) and x_g = (X1, .o, Xk 1, Xkg 1, -+ 0 Xn)-

Given a positive matrix p and an arbitrary matrix A, we let Tr,(A) := Tr(Ap). In case p is a
matrix on the tensor product of two Hilbert spaces # and H’, and A is a matrix acting on H, we
will sometimes abuse notation and write Tr,(A) for Tr,(A ® Idgy). If [¥) € H® @ H' is a state
that is invariant under permutation of the first k registers, we will often abuse notation further
and use the symbol p to denote the reduced density of |'¥) on either of the first k registers, or even
any pair of registers among the first k, etc. Hence any expression of the form Tr,(A ® B) should
really be read as

(YA®B®1dy @ ®1dy @ Idy [¥),

where the position of A and B among the first k registers is immaterial by permutation-invariance.
For any p > 0, we let

1AII5 = Tr(AATp),
and observe that A — [|Al|, is a semi-norm (it is definite if p is invertible). It satisfies the following
Cauchy-Schwarz inequality: for any A, B,

Te, (AB") < [|Allo [|Blo-

Measurements. In this paper, a measurement is a collection of non-negative matrices {P"},c
such that ), P? = Id (this is usually called a Positive Operator-Valued Measure, or POVM). The set
A is the set of outcomes of the measurement; outcomes will always appear as superscripts. The
measurement is said projective if P” is a projector, i.e. (P?)? = P?, for every a. A sub-measurement
is a collection of non-negative matrices { P?},c 4 such that }_, P* < Id. For integers 0 < k < n we
will also consider families of sub-measurements, indexed by x € F"~¥ and with outcomes in the
set ML(IF¥, F). Such a family P = {P{_ } will be called a family of sub-measurements of arity k (the
parameter 1 will often be left implicit). A family of sub-measurements of arity 7 is thus a single
sub-measurement with outcomes in ML(FF", F). Given a family of sub-measurements P = {P5_ }
of arity k, we will often use the notation B

Pe,:=Y P, and P, :=Ey x P,
8

for any k < ¢ < n, where the expectation is taken with respect to the uniform distribution on Fik,
Given two families of sub-measurements P and Q with arities k < ¢ respectively, we define their
consistency
CON(P/ Q) := Exepr Z Trp (Pkfzk X Qﬁz/)’
f8 81 o =f
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where g|,, , , is the (n — ¢)-linear function obtained by restricting ¢’s (¢ — k) first variables to
Xk...¢—1, and their inconsistency

INC(P/ Q) = ExE]F” Z Trp (Pxfzk X Qiz(’)/
f18 8.y 1#f

where p is a density matrix which will always be clear from the context. If k > ¢ then we define
CON(P, Q) := CON(Q, P) and INC(P, Q) := INC(Q, P). We will also use shorthands CON(P) =
CON(P, P) and INC(P) = INC(P, P). Note that if P is a complete family of measurements, i.e.

Y P,{Zk = Id for every x>, then

CON(P,Q) +INC(P,Q) = E, ) Tr,(Q%.,) = Tr,(Q),

8

which equals 1 if Q is also complete.

2.2  Multi-prover interactive proofs

In this section we define the complexity classes that this work is concerned with: multi-prover
interactive proof systems (MIP systems) and multi-prover interactive proof systems with entangle-
ment (MIP* systems).

Let k(n) be an integer, denoting the number of provers, and m(n) an integer denoting the num-
ber of rounds. Both k(1) and m(n) are from the set of polynomially bounded, polynomial-time
computable functions in the input size |x|, denoted by poly. Further, ¢ and s denote polynomial-
time computable functions of the input size into [0, 1] corresponding to completeness acceptance
probability and soundness error. For notational convenience in what follows we will omit the
arguments of these functions.

Multi-prover interactive proof systems (MIP systems): Let k,m,| € poly. A k-prover interac-
tive proof system consists of a verifier V and k provers P, ..., P. The verifier is a probabilistic
polynomial-time Turing machine, and the provers are computationally unbounded. Each of them
has a read-only input tape and a private work tape. Each prover has a communication tape. The
verifier has a random tape. The verifier also has k communication tapes, one for each prover, each
of which is I bits long.

The input tape for every party contains the same input string x. The protocol consists of m(]x|)
rounds. In each round, first the verifier runs for a polynomial amount of time, updating the work
and communication tapes. After that, the content of the ith communication tape is sent to the ith
prover for each i = 1,...,k(|x|). Each prover reads this string, updates the content of his own
work tape, and decides a reply to the verifier. The reply from the ith prover is written in the ith
communication tape, and this round completes. After m(|x|) rounds of interaction, the verifier
produces a special output bit, designating acceptance or rejection. The operations by provers are
instantaneous and do not have to be even computable; the provers are assumed to be able to
“compute” any function.

For simplicity, we assume that each message between the verifier and the provers in each
round is exactly / bits long for the purpose of a formal definition, but it is not hard to modify the
definition to incorporate the more general case which does not satisfy this assumption. Formally,
a strategy for Py, ..., P, in a k-prover m-round interactive proof system consists of the length I’ €
N of a work tape, and km mappings fi;: {0,1} x {0,1}/ — {0,1}' x {0,1}' for1 < i < k
and 1 < j < m. Each mapping ﬂj specifies the operation which prover i performs in round j:

11



fij(q,w) = (4',w") means that if the message from the verifier in this round is g and the work tape
contains string w before the operation by the prover, then the message to the verifier in this round
is ¢’ and the work tape contains string w after the operation.

Definition 4. Let k,m: N — N, and let ¢,s: N — [0,1] such that c(n) > s(n) foralln € IN. A
language L is in MIP(k, m,c,s) if and only if there exists an m-round polynomial-time verifier V for a
k-prover interactive proof system such that, for every input x:

(Completeness) if x € L, there exists a strategy for provers Py, ..., Py such that the interaction protocol
of Vwith (Py, ..., Py) results in the verifier accepting with probability at least c,

(Soundness) if x & L, for any strategy for provers Py, ..., P|, the probability that the interaction protocol
of Vwith (Py,...,Py) results in the verifier accepting is at most s.

In this formulation, the provers are deterministic, but this is not a limitation because it is well-
known that the power of the model does not change if we allow the provers to share a random
source.

If some of the parameters k, m, ¢, and s are sets of functions instead of single functions, the
class is interpreted to be the union over all choices in the sets. For example,

MIP(6,1,1,1— 1/ poly) = |J MIP(6,1,1,1—1/f).
fepoly

We denote MIP(poly, poly,2/3,1/3) simply by MIP.

Multi-prover interactive proof systems with entanglement (MIP* systems): First introduced
in [CHTWO04], MIP* systems are defined analogously to MIP systems. The only difference is
that now the provers are allowed to be quantum, while the verifier (and communication) remains
bounded in classical probabilistic polynomial-time. This implies that the provers may share an ar-
bitrary entangled state |'¥) among themselves before the protocol starts and that each prover may
use his part of the entangled state to determine his reply to the verifier. In each round, the provers
individually receive the messages from the verifier in a message register, perform a quantum oper-
ation on this register together with their share of the entangled state, measure the message register
in the computational basis, and send back the outcome to the verifier.

Formally, an entangled strategy for Py, ..., P, in a k-prover m-round interactive proof system
with entanglement consists of the length I’ € IN of a work tape, km quantum channels ®;; from a
quantum register of [ + I qubits to itself for 1 < i < kand 1 < j < m, and the initial quantum
state |¥) of the work tape, which is a kI’-qubit state. Each channel ®;; specifies the operation
which prover i performs in round j: the first [ qubits in the state correspond to the message from
and to the verifier, and the last I’ qubits represent the content of the work tape. After the prover’s
operation, the first | qubits are measured in the computational basis and sent to the verifier.

Definition 5. A language L is in MIP* (k,m, c,s) if and only if there exists an m-round polynomial-time
verifier V for k-prover interactive proof systems such that, for every input x:

(Completeness) if x € L, there exists an entangled strategy for provers Py, . .., P such that the interaction
protocol of V with (Py, ..., Py) results in the verifier accepting with probability at least c,

(Soundness) ifx ¢ L, for any entangled strategy for provers P|, ..., P/, the probability that the interaction
protocol of V with (Py, ..., Py) results in the verifier accepting is at most s.

12



In certain cases, we can simplify part of the definition of entangled strategies. Suppose that
the verifier interacts with certain prover P; only once; i.e., the verifier is guaranteed to send P; the
empty string (or a fixed string) in rounds other than round j, and is guaranteed to ignore the reply
from P; in rounds other than round j. In this case, instead of specifying m quantum channels to
describe the behavior of P; in the m rounds, we may just specify measurements A; = (Ay) for each

message ¢ from the verifier, where the outcome of each measurement gives a reply to the verifier.”
Since all the interactive proof systems considered in this paper have the property that the verifier
interacts with each prover only once except for one prover, we use this simplified formulation in
many places.

Note that we do not assume any upper bound on the size I" of the work tape used by each
prover (in particular, we do not assume that I’ € poly; the model with this restriction is considered
in [KMO03]). However, we do assume that they only use a finite-dimensional Hilbert space. A more
general definition is commuting-operator provers, considered by Tsirelson [Tsi80] in the context
of Bell inequalities and later in [SW08, DLTW08, NPA08, IKPSY08]. Although we expect that our
results remain valid with minor modifications to the proofs even if dishonest provers are allowed
to use arbitrary commuting-operator strategies, we have not explored this possibility.

Symmetry. We will make an important use of symmetry in the protocols that we introduce. It
will be a useful simplifying assumption in two respects: first it lets one assume that the set of
measurements used by all provers is the same. Second, and most important, it implies that the
provers’ shared entangled state is also permutation-invariant.

Definition 6. Let (Py,..., P, [Y)) be a k-prover strateqy.'® We say that this stratey is symmetric, or
permutation-invariant, if Py = --- = P, and |¥) is invariant with respect to any permutation of the
subsystems corresponding to each prover.

The following simple lemma (which already appears in [KKMTV11, Lemma 4]) shows that
one can always assume without loss of generality that if a game has a certain symmetry then there
is an optimal strategy for the provers which reflects that symmetry.

Lemma 7. Suppose an MIP* proof system is given such that the protocol treats provers Py, ..., Py sym-
metrically (i.e. the protocol is invariant under permutation of their questions and corresponding inverse-
permutation of their answers). Then given any strategy Py, ..., Py with entangled state |¥) that succeeds
with probability p, there exists a strategy Pj, ..., P, with entangled state [¥') and success probability p
such that P{ = - - - = P, and |¥') is permutation-invariant.

Proof. By appropriately padding with extra qubits, assume that all k registers of [¥) have the
same dimension. Define strategies Pj,..., P as follows: the provers share the entangled state
[¥') = Loes, 10(1)) @ - - @ |o(k)) ® [¥7), where the register containing |o(i)) is given to prover
i and |¥7) is obtained from |¥) by permuting its registers according to . For 1 < i < k prover
i measures the register containing |o'(i)) and behaves as in the strategy P,(;). By the assumed
symmetry of the protocol this new strategy has the same success probability p, and |¥’) has the
required symmetry properties. O

The following claim states a trivial but useful fact about symmetric one-round strategies.

9 Any classical post-processing by the prover can be incorporated as part of the description of his measurement.
19We think of P; as an arbitrary representation of the set of all quantum channels applied by prover i throughout the
protocol.

13



Claim 8. Let (Py,..., Py, |Y)) be a symmetric one-round strategy, and for every i € {1,...,k}, {A%}qa
measurement for the i-th prover in that strategy. Then for every permutation o on {1,..., k}, and every
(611, .. .,ak),

a, gy
(YIAT @ @ AF[Y) = (F|A[) @ @ A Y).

2.3 NEXP-complete problems
We will use the following NEXP-complete problem, as stated in Proposition 4.2 of Ref. [BFLI1]:

Problem 1: Oracle-3-satisfiability.
Instance. Integers r,n € IN in unary and a Boolean formula B(z, by, by, b3, a1, a2, a3) in variables z €
{O, 1}r, by, by, b3 € {O, 1}” and aq,a5,a3 € {O, 1}

Question. Does there exist A: {0,1}" — {0,1} such that B(z, by, by, b3, A(by), A(b2), A(bs3)) = 1
simultaneously for all z € {0,1}" and by, b, bz € {0,1}"?

Using the standard technique of arithmetization (see e.g. Proposition 3.1 and Lemma 7.1 of
Ref. [BFL91]), one can show that the following problem is also NEXP-complete.

Problem 2: Oracle-3-satisfiability, arithmetized version.
Instance. Integers r,n € N in unary and an arithmetic expression!! for a polynomial f(z, by, by, bs,
a1,az,a3), where z represents r variables and each of by, by, b3 represents n variables.

Yes-promise. There exists an A: {0,1}" — {0,1} such that for all z € {0,1}" and all by, by, b3 €
{0,1}", it holds that
f(z/ bl/ b21b31A(b1)1A(b2)1A(b3)) =0 (3)

in Z (and therefore in every field).

No-promise. For every pair (IF, A) of a field F and a mapping A: {0,1}" — F, thereexistz € {0,1}"
and by, by, by € {0,1}" such that Eq. (3) is not satisfied in FF.

We note that the degree of the polynomial f represented by the arithmetic expression can be at
most the size of the arithmetic expression, and is therefore bounded by the input size.

2.4 Summation test

Let TF be a finite field of characteristic two.1? If |[IF| = 2%, an encoding scheme of elements in TF is
specified by k and a primitive polynomial f(t) over IF, of degree k. It is well-known that given 1,
f(t), and the complete factorization of 25 — 1 along with the certificate that each factor in the
factorization is indeed a prime (such as the Pratt certificate), it is possible to check that k and f(t)
form a valid encoding scheme of the field IF in polynomial time.

Consider the following promise problem, which has both an explicit and an implicit input.

Problem 3: Summation Test Problem.
Explicit input. Integers m,d € IN in unary, and an encoding scheme of a finite field IF of character-
istic two.

Implicit input. A mapping h: F" — F.

1 An arithmetic expression is a rooted tree whose internal nodes represent either addition or multiplication and whose
leaves represent either variables or an integer constant. The size of an arithmetic expression is the number of nodes
plus the sum of the number of bits required to represent the integer for each constant node.

12The restriction to fields of characteristic two arises from the use of Theorem 43 in Appendix C.
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Promise. The given encoding scheme is valid, and the mapping h: F" — T is a polynomial func-
tion of degree at most d in each variable.

Question. Is

Z h(x) =0 (inlF)? 4)

xe{0,1}m

In a (single-prover) interactive proof system for a problem with an implicit input, the implicit
input is given to the verifier as an oracle.!® The following variant of the summation test of Lund,
Fortnow, Karloff, and Nisan [LFKN92] is a special case of Lemma 3.5 in Ref. [BFL91].

Lemma 9 (Summation test [BFLI1]). Suppose that |IE| > 2dm. Then there exists a single-prover in-
teractive proof system for the Summation Test Problem with perfect completeness and soundness error
at most dm/|IF|. Moreover, in this interactive proof system, the verifier behaves as follows. First he
chooses q € F™ uniformly at random. Then he interacts with the prover. At the same time, he reads the
value h(q) from the implicit input. Finally he accepts or rejects depending on q, h(q), and the interaction
with the prover.1*

To apply the summation test to Problem 2, we have to consider exponentially many constraints
instead of one.

Problem 4: AND Test Problem.
Explicit input. Integers k,d € IN in unary, and an encoding scheme of a finite field IF of character-
istic two.

Implicit input. A mapping h: FF — .

Promise. The given encoding scheme is valid, and the mapping : IF* — TF is a polynomial function
of degree at most d in each variable.

Question. Is h(i) = 0 (in F) for all i € {0,1}¥?

The idea for the following corollary is already explained in Section 7.1 of Ref. [BFLI1]. We will
give a proof in Appendix C for the sake of completeness.

Corollary 10. There exists a polynomial q: IN x IN — IN for which the following holds. There exists a
single-prover interactive proof system for the AND Test Problem with perfect completeness and soundness
error at most 5/8 + q(k,d) / |IE|. Moreover, in this interactive proof system, the verifier behaves as follows.
First he chooses i € TF* uniformly and independently at random. Then he interacts with the prover. At
the same time, he reads the value h(i) from the implicit input. Finally he accepts or rejects depending on i,
h(i), and the interaction with the prover.

3 A proof system for Oracle-3-Satisfiability

In this section we prove Theorem 1, assuming the soundness analysis of the multilinearity game
(see Theorem 11 below), which will be given in Sections 4 and 5. We first describe a four-prover

13Tn Ref. [BFL91], the authors refer to the interactive proof system for the Summation Test Problem as an “interactive
oracle-protocol,” viewing the mapping & as an exponentially long certificate string which is given to the verifier as an
oracle. However, for our purposes it will be more convenient to treat k as part of the input.

14n particular, this implies that the verifier reads only one value /i(g) from the implicit input and the position g € F™
to read is chosen uniformly in [F”. Together with the soundness guarantee, this in turn implies that if the implicit input
is 8-close to a polynomial function h of degree at most d in each variable and I fails to satisfy the equation (4), then the
verifier accepts with probability at most § 4+ dm/|F| no matter what the prover does.
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poly-round proof system for the NEXP-complete Oracle-4-satisfiability problem, Problem 2, in
Section 3.1. In Section 3.2 we show that the protocol has perfect completeness with classical
provers, and in Section 3.3 we show that it has soundness error at most 1 — 1/ poly with entangled
provers. Theorem 1 is then obtained by repeating this protocol sequentially.

3.1 Description of the protocol

We construct a four-prover poly-round proof system for Problem 2. Our protocol follows that
of [BFLI1] very closely. We replace the three queries to the Oracle in their protocol by queries to
three distinct provers.

Label the provers as P, X;, X5, X3. The protocol will be symmetric under any permutation of
the three provers Xj, Xp, X3. Let (r,n, f) be an instance of Problem 2, as described in Section 2.3.
Let d; be the maximum degree of f in any one variable. Letm = r+3nandd = 2d;. Let0 < ¢o < 1
be a constant defined later (in Theorem 11), and p be the smallest power of two such that p >
max{8q(m,d),n'/«**}, where g is the polynomial appearing in the statement of Corollary 10.
Let FF be the finite field of size p.

The verifier first receives an encoding scheme for [F and its certificate from P (as defined in
Section 2.4), and rejects if it is not valid. In the rest of the protocol, all arithmetic operations in IF
are performed using this encoding scheme. If it is valid, the verifier performs one of the following
three tests chosen uniformly at random:

o Consistency test. He chooses x € [F" uniformly at random and sends the same question x to
provers Xi, X, X3. He expects each prover to answer with an element of IF, and accepts if
and only if all the answers are equal.

e Linearity test. He choosesi € {1,...,n}, x € F" and y; # z; € F\{x;} uniformly at random,
and sets y; = z; = x; forevery j € {1,...,n} \ {i}. He sends x to X;, y to X5, and z to X3.
He receives a,b, ¢ € FF from these three provers, and accepts if and only if

b—a c—b c—a

YVi—Xi  zZi—Yi Zi—X

e Summation test. The verifier simulates the interactive proof system from Corollary 10 with
the explicit input (m,d) and prover P. When the verifier in Corollary 10 tries to read the
value h(z, by, by, b3) in the implicit input, where z € " and by, by, b3 € F", our verifier
simulates this by sending b; to X, b, to X5, and b3 to X3. Upon obtaining answers a1, a2, a3
to his queries from these three provers, he evaluates f(z, by, by, b3, a1,4,a3) and uses the
result as the value of h(z, by, by, b3).

Note that in each of the three tests, each of the provers Xj, X5, X3 is asked a question x ¢ [F"
distributed uniformly at random.

3.2 Completeness

Let (r,n, f) be a yes-instance of Problem 2. Then there exists a mapping A: {0,1}" — {0,1} such
that Eq. (3) is satisfied for all z € {0,1}" and all by, by, b3 € {0,1}" simultaneously. Let g be the
unique extension of A to a multilinear function g: F” — F. Each of X;, X», X3 answers g(b) on
question b € F", while P behaves as it should in the AND test. It is clear that this deterministic
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strategy is accepted with certainty in the consistency test and the linearity test. In the summation
test, note that the value of h(z, by, by, b3) which the verifier uses is given by

h(z,b1,by,b3) = f(z,b1,b2,b3,8(b1),8(b2),g(b3)),

which is a polynomial in z, by, by, b3 of degree at most 2d F= d in each variable. Therefore, the
promise in the AND test is satisfied and prover P has a strategy which makes the verifier accept
with certainty.

3.3 Soundness

The soundness analysis is divided in two parts. First we analyze the consistency and linearity
tests, which only involve the three provers X1, X», X3, and show that success in those tests implies
the following. (We refer the reader to Section 2 for some relevant notation and definitions.)

Theorem 11. There exist universal constants 0 < co,c < 1, C > 1 such that the following holds.
Let n > 1 be an integer. Let IF be a finite field, and (|'¥),{A%}) a (symmetric, projective) strategy for the
provers in the three-player multilinearity game in n variables over IF (as defined in Definition 13 below) that
passes both the consistency and the linearity tests with probability at least 1 — e. Assume furthermore that
p:= |F| > n*e V2 and ¢ < n=2/%_ Then there exists a sub-measurement {V8}, indexed by multilinear

g € ML(IFF", ), such that
E:} Tr,((AL— /V2)?) < C¢, (5)

where for every x € F" and a € ¥ we defined Vi ==} . o(x)—o V&.

The proof of Theorem 11 is our main technical contribution, and it is given in Sections 4 and 5.
Assuming the theorem, we prove that our proof system has soundness error at most 1 — n=2/<% /3,
provided  is larger than an absolute constant depending on ¢, ¢, and C.

Let (r,n, f) be a no-instance. Toward contradiction, suppose that the provers have a sym-
metric!® entangled strategy S whose acceptance probability is at least 1 — e/3, where e = n=2/.
Let [¥) € P® X ® X, ® A3 be the state used in the strategy S and (A%),cr be the projective
measurements used by each of the provers Xj, X5, X3 in the strategy S.

The verifier can be viewed as playing the multilinearity game with the players X, X», X3 with
probability 2/3 and performing something else, namely the summation test, with probability 1/3.
Therefore, the marginal strategy of S for players Xj, X,, X3 has winning probability at least 1 —e/2
in the multilinearity test. Because |F| = p > n!/%** = n*~1/2, Theorem 11 implies that there
exists a sub-measurement { V8 }g ML(F" F) such that inequality (5) holds, where p is the reduced
state of |¥) (¥| on X;. For every x € F" and a € F, let

vi= Y Ve
SEML(F"F)
g(x)=a

For 0 <i < 3, let S; be the entangled strategy obtained from S by replacing the measurement
for the first i provers Xy, ..., X; by V2.1 Note Sg = S. In the strategy S;, the provers Xj, ..., X; can
be implemented so that they measure the prior entanglement without looking at their question. In

15Lemma 7 shows that we may assume this holds without loss of generality.
16Gince V is a sub-measurement, the Vy may not sum to identity. In that case we introduce an additional outcome
“fail”, corresponding to the element Id — )}, V. Whenever a prover obtains that outcome he aborts the protocol.
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particular, in the strategy S3, every prover except for P measures the prior entanglement without
looking at the question, and therefore S3 can be implemented using shared randomness alone.

For 0 < i < 3, let p; be the probability that the strategy S; is accepted in the four-prover
protocol. By definition, pg > 1 — &/3. We prove the following.

Claim 12. Fori =1,...,3, it holds that |p;_1 — p;| < V/Ce*/?,

Proof. The only difference between strategies S;_; and S; is the measurements used by prover X;.
We call the message from the verifier to X; as register .A, and call everything other than A and the
private space &; for prover X; as register 3. Register A is classical, but we treat it as a quantum
register which always contains a state in the computational basis. Let ¢ be the global state before
the prover X; performs his measurement, and o4 (resp. oy) be the global state after the prover X;
performs the measurement Ay (resp. V) on his share of the state, and then discards the post-
measurement state. Since the marginal distribution on the question to X; is uniform, the state o
has the following form:
0 = Exepr|x) (x| 4 @ 055,

where Trgoyi? = ot = p is independent of x. We want to bound (1/2)||ow — oum||;, where

o = Tr e ) w14 X o) ol (4% 8 )2 (43 ),

acF
o = Tey | Excrn o) 14 X5 o) ale © (/W © Ie)oi (v ),
aclF

and C denotes the register used for prover i’s answers. For x € [F", define isometries Uy, Vy: &} ®
B — X ® B®C by

ux = ZAyac@IB@ |a>C1

acF
Vy = Z \/V;\e®13®‘a>C
acF
Then,
low — omlly
< ‘ Evepr |2) (x4 ® Y |a)(ale @ (AL ® Ip)oP (AL @ Ig) — (v VE® Ig) o (\/VE @ Ip) )
acF
< Exepr|| ) [a) (ale @ (A% ® I5)0 "B (AL ® Is) — (v/VE @ I5) 03 \/Vﬂ®13)
acF

< 2B e \/ Y Tr((AL - V/VE)%p)
aclF
2 \/EIF Y Tr((A% — /VE)2p)
acF
< 2V Ces,

where the third inequality is by Lemma 35, the fourth is by convexity and the last by (5). Therefore,
we have that [p; 1 — pi| < (1/2)|low — om|l; < V/Ce®/? as claimed. O
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By the triangle inequality, Claim 12 implies that |pg — p3| < 3v/Ce®/?, and therefore

p3 > po—3VCe’? >1—¢/3—3VCe? >1—4/Ce?,

where the last inequality usesc < 1and C > 1.

If not all of the provers choose the same multilinear function, then they pass in the consistency
test with probability at most n/|F| < 1/6 by the Schwartz-Zippel lemma [Sch80, Zip79] (see
Lemma 33 in Appendix A for a statement). In the strategy Ss, they pass in the consistency test
with probability at least 1 — 121/Ce“/2. Therefore, they choose the same multilinear function with
probability at least 1 — 121/Ce“/? /(1 —1/6) > 1 — 151/Ce*/2. This implies that if an oracle chooses
a multilinear function in the same way as the prover X; and uses it for all three queries, the
distribution on their answers will differ by at most 2 - 15/Ce®/? = 30+/Ce®/? in statistical distance.
Therefore, this oracle (which always implements a multilinear function) together with the prover P
is accepted in the interactive proof system of Corollary 10 with probability at least 1 — 12+/Ce/2 —
30v/Ce/? =1 —42¢/Ce/2.

Because (7,1, f) is a no-instance of Problem 2 and |F| = p > 8¢q(m, d), the acceptance probabil-
ity in the interactive proof system of Corollary 10 is less than 3/4. Comparing this with the lower
bound in the previous paragraph, we obtain

1—42v/Ce/? < 2,
which implies
1

>
£ (1682 - C)1/e

contradicting the definition ¢ = n~/2 as soon as 1 is large enough. Since we obtained this contra-
diction from the assumption that there exists an entangled strategy with acceptance probability at
least 1 — ¢/3, we have proved the claimed soundness guarantee against entangled provers.

4 The multilinearity game

In this section we analyze the combination of the consistency test and the linearity test described
in Section 3 as a stand-alone game played between a referee and r > 3 players, which we call the
r-player multilinearity game in n variables over IF. The game is parametrized by an integer n and a
finite field FF of arbitrary size p = |[F| (which is not necessarily a prime), and it is performed with
r players Xj, ..., X, treated symmetrically. The referee performs either of the following two tests
with probability 1/2 each:

o Consistency test. The referee chooses x € IF" uniformly at random and sends the same ques-
tion x to all players X, ..., X,. He expects each player to answer with an element of IF, and
accepts if and only if all the answers are equal.

e Linearity test. The referee chooses i € {1,...,n}, x € F" and y; # z; € F\{x;} uniformly at
random, and sets y; = z; = x;j forevery j € {1,...,n} \ {i}. He sends x, y, z to 3 out of the r
players chosen at random, receives a,b,c € F, and accepts if and only if

b—a c—b c—a

Vi—Xi zZi—Yi Zi—Xi
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We now define explicitly what we mean by a strategy for the players in the multilinearity game.

Definition 13. A strategy for the players in the r-player multilinearity game in n variables over F
is given by the following. Finite-dimensional Hilbert spaces X1, ..., X, and P, a state |[¥) € X1 ® --- ®
X, ® P, and for every i € [r] and x € F" a measurement {(A;)%}ser on X;. It is understood that,
upon receiving question x; € ", player i measures register X; corresponding to his share of |¥) using the
measurement {(A;)§, }ack, sending the outcome a back to the verifier as his answer.

We will say that a strategy is symmetric if X} >~ --- ~ &, (A1)} = -+ = (A,)} for every x and a
(in which case we will simply call the resulting measurement {A%}), and |¥) is invariant with respect to
arbitrary permutation of the registers Xy, ..., X;.

Finally, a strateqy will be called projective if all measurements {(A;)%} ek are projective.

In case a strategy is symmetric, we will often abuse notation and use the symbol p to denote
the reduced density of |¥) on any ®;csAj, for S C [r], without specifying explicitly which registers
are understood: by symmetry only the number of registers matters, and this will always be clear
in context.

The main result of this section is the following. We refer to Section 2.1 for definitions of the
quantities appearing in the theorem, and to Lemma 7 for a proof that the symmetry assumption
made in the theorem is without loss of generality.

Theorem 14. There exists universal constants 0 < c¢o < 1, Co > 1 such that the following holds. Let
(['¥), {AL}a) be a permutation-invariant projective strategy for r > 3 players in the r-player multilinearity
game in n variables over IF with success probability at least 1 — e/2. Assume furthermore that p = |F| >
n*e=1/2 and e < n=2/%. Then there exists a sub-measurement {V38 }gemr(Er ), indexed by multilinear
g : F" — IF, such that

1. V is consistent with A: INC(V, A) < Cpe®,
2. Tr,(V) > 1—Coe.

The two items in the conclusion of the theorem intuitively state the following. Suppose that
one of the players in the multilinearity game was to receive a question x € F", measure his share
of the entangled state |¥) according to the projective measurement { A%}, and answer the outcome
he obtains (as he would in the original game). Now, suppose further that another player, upon
receiving the same question x € ", instead of measuring her own share of |¥) according to
{ A%}, was to perform the measurement {V$,Id —V}, where V = Y, V& (which is independent
of x!). If she obtains the last outcome then she aborts the experiment. If, however, she obtains an
outcome § € ML(FF", F), then she answers her question x with g(x). Item 1. above states that,
on average over the choice of x, the probability that both players eventually produce different
outcomes (conditioned on the second player not aborting) is at most O(&®). Item 2. guarantees
that, in the hypothetical scenario we just described, the second player does not abort too often: the
probability that she obtains the outcome “Id —V" is at most Cy €.

We will show that Theorem 14 implies Theorem 11 in Section 4.2, while Theorem 14 will be
proved in Section 5. In the following section we prove a weaker version of the multilinearity test,
the “linearity test”, which implies Theorem 14 for n = 1.

4.1 Preliminary analysis: the linearity test

Let (|¥), {A%},) be a symmetric projective strategy for the players in the multilinearity game, as
defined in Definition 13. The following relations translate the assumption that the players succeed
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in the consistency test with probability 1 — ¢, and in the linearity test with probability 1 — e.

E.Y Tr,(AZ®A2) > 1—¢, (6)
a
Vi € [n], - Y Trp(Af e, ® AL, ©AY ) 2 1—ne > 1=V (7)

Ii—XZ‘ X —X,‘

where all expectations are taken under the uniform distribution over the sets in which their indices
range, and the last inequality follows from our assumption that n < e=%/2 < ¢=1/2,

The following claim proves the “linearity” part of the multilinearity test, thereby establishing
the base case for the induction that will be performed in Section 5. It also illustrates some of the key
techniques, in terms of the manipulation of measurement operators, that will be used throughout
the paper. (The interested reader may thus wish to gain good familiarity with the proof of the
claim before moving on to later sections, in which proofs will not always be as detailed.)

Claim 15. Let i € [n], and ¢ > p~'. Suppose that (|¥),{A%}) is a (symmetric, projective) strategy
passing the consistency test with probability at least 1 — €, and the linearity test in the i-th direction with
probability at least 1 — \/e. Then there exists a family of measurements {chﬁl_} (EML(EF) of arity 1 such

that )
E. Y )A; - Y BL
a 0:4(x;)=a p

— 0(v5). (8)

We will often use the notation By := ) /. y(y,)—a Bﬁﬂ,, leaving the dependence on i implicit. We
note for future use that the bound (8) implies that

CON(A,B) > 1—-0(ve) and  CON(B) > 1-0O(Ve).

These inequalities can be deduced directly from (8), but they will also be apparent from the proof
of Claim 15, which we now give.

Proof. For any ¢ € ML(F, ), define

Bé

X

0(x;) 40020 4 0(x;
R Exﬁéxf Axg;ziAxgiczisz(',};zi‘
Then {Bﬁﬂ, }, is a well-defined measurement: each operator is non-negative, and since for fixed
x; # x!, as £ ranges over ML(IF?, F) both ¢(x;) and ¢(x!) independently range over F, they sum to
Y.,(A%)? = Id since, by assumption, for every x and a the measurement operator A is a projector.
Using the definition of || - ||,, we can expand

2 '
B[4 B B[ =BT B L (B )
a : i)= a !
0:l(x;)=a é(xi)&:eé/(xi)
—2B, Y Tr,(A%BL). ©)

al:l(x;)=a

We first lower bound the last term above. Applying Lemma 40 from Appendix B with T} = A%
and Z!" = B%, we get

E. Y T (ABL)-E. Y Trp(Afc@)Bﬁﬁf)‘ = O(INCc(A)Y?) = O(ve)  (10)
al:l(x;)=a al:l(x;)=a
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by (6), hence it will suffice to show a lower bound on Ey}., r. ¢(x,)=a Trp (AL ® Bf;ﬂ_). Using the
definition of Bﬁﬁ]_, we have

B Y T(Al@Bl)

a0 0(x;)=a
= Eyuia » 4(2) Tr, (A% ® Ax( xle(leAigﬁl)
= Eyytxr » 4(2) Q;TYP(A” ® Ax( xlAi(xilAi( xZ, AL, )
SEur T To(4te Ay Ay Ay @Ayl v
< Byt (Z) ZTrp(Afc@Ai;’xﬂiA( >A; x1®A( ))+€, 1)
al:l(x;)=a @

where the first equality simply uses that the A” ~sum to identity over 4/, the first inequality

l ﬁl

uses (6) on the last two registers (together with A2 < Id), and the last is by positivity. Let o := p(®)
be the reduced density of |¥) on any 3 of the provers, and apply Claim 37 to the POVM { A%}, for
every x. Eq. (6) implies that this POVM is consistent, hence

Y (4r01d)p@ (Ar@1d) —p?|| = O(ve),

a

Ey

where we used that the Af are projectors. Hence

Ex,xﬁéx ‘ ZTr,D Aa x X Ax( xz,AJuc X Axg/ xz,) ® Ax( xz,))

a,l: é (x;)=

= Exxiza ‘Tr< (Az @A E’ )@ Ax( D)

a,l: é( i)=a
(Z(Id @ AL, @1d)p(de AL, ©ld)- p)) ‘
ﬂ/
< Ex,x,f ZA L, IOAx X _pH \/g)’
u/

where for the inequality we used that for every x and x; # xi, Y4 r:4(x,)=a A% ® A E/ ) ® A, o) o

X! X xjxop —
Id, and monotonicity of the trace distance. Combining this last bound with (11), we obtain

Be Y To(AL®BL) =B Y Tp(aieayy) oall)+0(ve)
a,l:l(x;)=a al:l(x;)=a

= Exaog L Trp (A oAl oAl )+0(ve).

XirX i

If x; = x} or x; = x/, the last summation above evaluates to 1. Hence the expectation is at least as
large as the probablhty that the { A%} pass the linearity test along the i-th coordinate, which is at
least 1 — /e by (7), hence

Ex Y Tr(Ai®BL ) >1-0(Ve).
al:4(x;)=a

Combining this inequality with (10) and using that the first two terms in (9) are at most 1 each
proves the claim. O
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4.2 Proof of Theorem 11

In this section we show how Theorem 11, which is the result we need in order to analyze the
overall protocol from Section 3, follows from Theorem 14. Theorem 14 is proved in Section 5.

Proof of Theorem 11. Let {V&}
panding

EML(F"F) be the sub-measurement guaranteed by Theorem 14. Ex-

E. Y Tr, (A2 — /VE)?) = Z(Trp ((A%)%) + Ty (Vi) = 2Trp (A%/ V7))
—2Ey ) T, (ALY VE), (12)

it will suffice to show that this last expectation is close to 1. By applying Lemma 40 from Ap-
pendix B with T!' = A% and Z! = ,/V# we obtain that

E.) Tr,(A%/VE) — By Y Tr, (AL ® /VE)| = O(INC(A)?) = O(V/e)

by (6). Hence to upper-bound the right-hand-side of (12) it suffices to lower-bound

B Y Top (AL @ V) > Ee Y Trg (A7 0 V)
a a

<1—Coe® —E, Y Tr, (V8@ AL)
8.a7g(x)
Z 1-— ZCOECO,

where the second inequality uses item 2. from Theorem 14, and the last inequality follows from
item 1. and the definition of INC(V, A). Combined with (12), this proves Theorem 11. O]

5 Soundness analysis of the multilinearity game

In this section we prove our main result on the analysis of the multilinearity game in the presence
of entanglement between the provers, Theorem 14. The proof proceeds by induction, and the key
inductive step is summed up in the following proposition. (We refer to section 2.1 for a definition
of the quantities that appear in the proposition.)

Proposition 16. There exists a universal constant 0 < c¢; < 1/2 such that the following holds. Suppose
that (|'Y), { A%}a) is a symmetric projective strategy for the players in the 3-player multilinearity game in n
variables over IF that is accepted with probability at least 1 — € in both the linearity test and the consistency
test, for some e > 0. Let p := |IF| and 6 > 0, and assume that n8d > 5> \/nel/8 > np~1/4, Let
1 <k <n—1and T be a given family of sub-measurements of arity k such that INC(T, A) < J. Then
there exists a family of sub-measurements V of arity k + 1 such that

1. INC(V,A) = O(em),
2. For any family of sub-measurements P of arity at least k + 1,

|CON(P, V) — CON(P, T)| = O(6 +INC(P, A)/?),
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3. For any family of sub-measurements P, of arbitrary arity,

|CON(P, V) — cON(P,T)| = O(6“ + |coN(T, T) —Trp(T)\l/z).

We first show that Theorem 14 follows from Proposition 16.

Proof of Theorem 14. Starting from Vy = A, let Vi, ..., V, be the sequence of measurements of in-
creasing arity 1,...,n given by Proposition 16. By item 1, for every i € [n] we have INC(V;, A) <
C1€“ for some universal constant C;. Applying item2to P = V;and V =V, V;_4,..., Vp, an easy
induction shows that

|CON(V;, Vi) — CON(V;, A)| = O(i (67 +¢1/2)).

Hence using item 1. and INC(V, A) + CON(V, A) = Tr,(V), since A is a complete family of mea-
surements, we also get

|CON(V;, Vi) — Tip (Vi) | = O(i "),
where we used c¢; < 1/2. Applying item 3 with P = A, an immediate induction then gives

|CON(V;,, A) — CON(A, A)| = O(ny/ner™/?).

But CON(A,A) > 1— ¢ by (6), and using Tr,(V,) = CON(V,;, A) + INC(V;;, A) once more the
theorem is proved for an appropriate choice of the constants ¢, Cp. O

The proof of Proposition 16 itself proceeds by induction, and is based on two lemmas. The
first is a quantum analogue of the “self-improvement lemma” [BFL91, Lemma 5.10]. It shows
that, if a family of sub-measurements {R$_,} is weakly consistent with {A%}, and it passes the
consistency and linearity tests with high probability, then there exists an “improved” family of
sub-measurements {T§._, } that are highly consistent with {A2%}. (Item 3 in the conclusion of the
lemma is not ultimately needed, but is required to combine Lemma 17 with Lemma 18 in the proof
of Proposition 16.)

Lemma 17 (Self-improvement lemma). Let (|'¥),{A%},) be a (symmetric, projective) strategy for 3
players in the multilinearity game, and n=8 > § > \/ne'/8 > 1/p such that the following hold:

1. The strategy (|¥), {A%},) is accepted with probability at least 1 — €/2 in the multilinearity game,
2. There exists a family of sub-measurements R of arity k such that INC(R, A) < 6.

Then there exists a family of sub-measurements T of arity k, together with, for every x € F", a family of
matrices {5% }g, indexed by ¢ € ML(IF*~1,TF), such that the following hold:

1. INC(T, A) = O(¢!/19),

2. For any family of sub-measurements P, of arbitrary arity,

CON(P,R) — coN(P,T)| = O(V),

S8(889)" < A%, and for every x-y and g, TS, = (Ey,$5) (Ex,5)'

. 2
Exg(sg_,/n%;k p

3. Forevery x and a, } g.o(
and

x<k):

< J.
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The second lemma is an analogue of the “pasting lemma” [BFL91, Lemma 5.11]. It shows
how, starting from a family of sub-measurements T of arity k that is consistent with A, one may
construct a family of sub-measurements V of increased arity k 4 1 that is still somewhat consistent
with A, as expressed in item 1 below. Items 2 and 3 are important to ensure that the new sub-
measurement V is not “too incomplete”, which would render item 1 trivial.

Lemma 18 (Pasting lemma). There exists a universal constant 0 < c; < 1 such that the following holds.
Let €,6 > 0 be such that np~t < ¢ < 6. Let (|'Y), {A%}s) be a (symmetric, projective) strategy for 3
players that is accepted with probability at least 1 — €/2 in the multilinearity game. Let 1 < k < n —1
and T a family of sub-measurements of arity k such that INC(T, A) < ¢, and T satisfies item 3. in the
conclusion of Lemma 17. Then there exists a family of sub-measurements V of arity k 4+ 1 such that

1. V is consistent with A: INC(V, A) = O(6%),
2. For any family of sub-measurements P of arity at least k + 1,
|CON(P, V) — CON(P, T)| = O(5% + INC(P, A)Y/?),
3. For any family of sub-measurements P, of arbitrary arity,
|cON(P, V) — cON(P, T)| = O(6% + |coN(T, T) — Trp(T)\l/z)-

Proposition 16 follows almost immediately by combining the two lemmas.

Proof of Proposition 16. Let T be the family of sub-measurements given in the statement of the
proposition. First apply Lemma 18 to T, obtaining a family of sub-measurements R (called V
in the lemma) of arity k + 1 such that items 1, 2 and 3 in the conclusion of the lemma hold. Next
apply Lemma 17 to R, obtaining a family of sub-measurements V of arity k + 1 (called T in the
lemma) such that items 1 and 2 hold, where given our assumption INC(T, A) < ¢ and item 1 from
Lemma 18 the bound in item 2 is O(6¢/2). Ttem 1 from Lemma 17 implies item 1 in the proposi-
tion (provided c; is chosen small enough), and item 2 (resp. item 3) follows from combining item 2
from Lemma 17 with item 2 (resp. item 3) from Lemma 18. O

5.1 The self-improvement lemma

In this section we prove Lemma 17. Before proceeding with the details, we give some intuition
and a high-level overview of how we will proceed.

Consider the following simplified situation in n = 2 dimensions. Although we will eventually
require p to be a large power of 2, for the purposes of this overview it is sufficient to think about
the case p = 2, so that the players’ answers are simply bits. For every x € [F* we are given a two-
outcome projective measurement (A9, AL): picture two orthogonal “planes” of dimension d/2
each, where d is the dimension of either players’ private space and can be arbitrarily large. Our
goal is to find a global “refinement” of these planes: a single measurement { TS}, with outcomes in
the set of bilinear functions g : F> — T, such that at every x the approximation A% =, Y g(x)=a I8

holds.!” In order to achieve this, we make two additional assumptions:

1. There exists another measurement { RS } which achieves an approximation of weaker quality,
up to some & > ¢, than the one we are looking for,

17 At this point we are being vague as to how the approximation is measured — it will eventually be expressed solely
in terms of the consistency between the two measurements.
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2. The {A%} are very close to linear: for every axis-parallel line (x1,-) (resp. (-, x2)) there is a
measurement {B. }, (resp. {B% };) with outcomes in the set of linear functions ¢ : F — F

such that A?xl’xZ) e Zézﬂ(xz):a Bﬁl (resp. A?xl,xZ) e Z/,:Z(xl):u Bﬁz)

The goal is to use the high quality of the approximation along lines to improve the quality of
the overall “bilinear” approximation. Let’s trust that an ideal measurement {T¢}, achieving an
approximation of order ¢, exists, and think of {R¢} as an adversarially “corrupted” version of
{T8}. There are two main ways in which {T$} can be corrupted: the first is by applying an
arbitrary (but not too large) rotation on the whole space. The second is by “mislabeling” some of
the measurement elements: e.g. for some g, a subspace of the space on which the ideal operator
T8 projects could have been labeled as a subspace of RS for some g’ # g. Note that the first type
of error is unique to the quantum setting, and did not arise in the setting of Babai et al.’s “self-
improvement” lemma [BFL91]. Indeed, while quantum measurements are subject to arbitrarily
small perturbations that may add up over time, nothing short of flipping the output of a binary
function will suffice to corrupt it.

We devise a procedure which recovers from the first type of perturbation, but not the second.
This appears unavoidable: if some components of the measurement {R$} are mis-labeled (say by
completely re-shuffling the part of each measurement element that falls in a small-dimensional
subspace of the whole space), there is no generic way to recover the corresponding ideal measure-
ment elements. This is the main reason why the measurements we construct “shrink” at every
step of the induction, and we have to work with sub-measurements instead: any “mislabeled”
portions of space will have to be ignored. Since we cannot recover from such errors, it is crucial
that they do not add up to too much throughout the whole induction process.

To correct the first type of error, we introduce the following procedure:

1. For every x, find the measurement {S}, which is closest to { R} while being perfectly con-
sistent with {A3}: that is, }p.0(x)—0 S3 = AZ. This is possible only because the elements S
are allowed to depend on x. We define the {S$} as the optimum solution to a specific convex
program (see (13) below). Intuitively, S is obtained as the “projection” of R$ on the subspace

AS),

2. Show that {S{}, in fact only depends on x up to some error depending on ¢ only (and not
J), so that defining T8 := E +S% leads to the consistent measurement we are looking for.

The second step is crucial: why would the {S3} be (almost) independent of x? Here the linearity
relations satisfied by the { A%} come into play. Using the perfect consistency of S and A, together
with the linearity of A, we are able to conclude that the {S$} should not vary too much along
any axis-parallel line. That is, Sfxl,xz) >3 Sfxl,x,z) for any x1 and xp, x5 (and similarly in the other
direction). This step depends on the specific optimization problem that was introduced in order
to define {Si}g (see (13) below). This invariance along axis-parallel lines can then be combined
with the (reasonably) good expansion properties of the hypercube to conclude that the {S§} are in
fact globally invariant, leading to the “corrected” measurement {T¢}. (We note that the fact that
invariance along axis-parallel lines implies global invariance was already used in [BFL91].)

We proceed with the details. In the following section we introduce the optimization procedure
that is used to define the operators {Si}g. In Section 5.1.2 we show that the {S5} are close to

being independent of x, leading to the definition of the family of sub-measurements {T§Zk}. In
Section 5.1.3 we show that T satisfies the conclusions of Lemma 17.
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5.1.1 A convex optimization problem

Let {Rizk }g be the family of sub-measurements promised in the assumptions of Lemma 17. Let

{53}¢, where x € F" and ¢ € ML(FF¥~1, F), be an optimal solution to the following convex opti-
mization problem:

Convex program for self-improvement

n 2
S§ Y/ R§>k
e

vea, Y SUSYT <AL,
§:8(x<x)=a

w := min E, ) (13)
8

where 4/ RS

X>k

is the positive square root of RS . LetSS .= &8 (§§ )Jr.18 Our first claim shows that

X>k*
the optimum of (13) is bounded as a function of the inconsistency of R and A.

Claim 19. Suppose that the {Rﬁzk}g satisfy the assumptions of Lemma 17. Then the optimum w of (13)
is at most INC(A, R) + O(/e).

Proof. We construct a feasible solution achieving the claimed value. Let S8 .= Ai<x<" ) R§2 .- Then

by definition {55} is a feasible solution to (13). To upper-bound its value, we first evaluate
E, Z <T1'p (SAi’\/@) —Tr, (Ré;zk)) =E, ZTIP((Ag(xd) . Id)R§2k)
§ 8
“ELT(a( T RL))
! g (x)#a
= Ex Y Trp (RS, @ ASY) + O(ine(4)12),
8

where the second equality uses that ), A7 = Id for every x, and the last follows from an applica-
tion of Lemma 40. A similar calculation shows that

Ex ) Trp (S5(S9)") = Ex LT (RS, @ A$™) + O(invc(4)/2).
8 8

To conclude, expand }|§‘§ — ,/R‘izk H; and use

E, Y Tro (RS, @ AS¥*) = Tr,(R) — INC(A, R)
8

by definition, together with the bound INC(A) < ¢ from (6). O

18We will usually use a hat, as in S, to denote matrices which we think of as factorizations of positive semidefinite
matrices, but are not necessarily positive themselves. In general, the relation between X and X will always be that
X = XX
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5.1.2 Constructing a family of sub-measurements independent of x_;

As a first step in showing that any optimal solution to (13) must be close to one that does not
depend on x_j, we show that such an optimal solution must be close to another feasible solu-
tion which is furthermore close to being invariant along the direction of any axis-parallel line in
direction i < k. Precisely, we have the following.

Claim 20. Assume p~! < e. For every i < k there exists a feasible solution {Z;‘;}g to (13), with objective

value at most w + O (e'/*), such that

Y12 -EyZ{ L, = O(vVe).
8

Proof. Let {S$} be an optimal solution to (13), and for any i < k let
A 8. (x A
Yéi = Bx@ )(Exi Si)’

where /;(x) is the line going through x and parallel to the i-th axis, and {B_};is the “lines” family
of measurements introduced in Claim 15. We first claim that the Yfﬂ., while not strictly feasible,
achieve an objective value in (13) of at most w + O(e!/4).

Towards proving this, we first show that Bf(xgk )§§ is close to 5. Recall the definition of B =
Yt 0(x)=a Bﬁﬁi. Using the fact that, since {S§} is feasible, Ai(xg")SAﬁ = 55, we get

X<k) & A 112 X< X< xe v
EJ‘;HBi( ’k)Si—Si o= ExZTrp((BEgc( <k) —Ai( ,k))si(Bi'( <k) —Ai( ,k)))

8
<E.)|Bi— Ay
a

= 0(Vfe) (14)

by Claim 15. Using the triangle inequality and convexity, the following (not necessarily feasible)
operators

V8, = By BSOS

also achieve a value w + O(+/¢) in (13).

Next we show that the Yfﬁi are close to the Yii = Bi'fi" g x; S8. From the definition,

~ g 0 (x A A
V¥, = B"" (B, &) +E., Y BL S
C:0(x;)=g(x<x)
LF810;(x)

The norm of the second term can be expanded as follows:

E, Z‘
8

o112
Exi Z Bﬁﬂisi
£ (x)=g(x<k) P
E#g\fi(x)

= Exﬁi Exi/yi Z Z TrP (Bﬁﬂigiﬁifxi (S’\iﬁi/yi)‘]-Bﬁ',—\i)'

8 Cl(x))=g(x<x) U0 (yi) =g (x<k)
C#810.(x) C#80.(x)
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Eq. (29) from Lemma 40 shows that the contribution of all terms such that ¢ # ¢ is at most
O(y/INC(B)) = O(e!/#) by Claim 15. But the only possibility for ¢ = ¢’ is that also x; = y;, since
two distinct linear functions on [F intersect in at most one point. Hence we have that

aoll2 1
E X Z’ Xi Bﬁwsi = Exﬁi *Exi Z Tl'p (B[ SgB[ ) + O( 1/4)
e:6( xl) =g(x<r) P 3 P () =g(xar)
E#816;x) C#810,(x)

<§+o@“)

Given our assumption on p, this implies

E. ZHYg

2= 0(e),
and hence the Yfﬁi, while still not necessarily feasible, achieve an objective value in (13) of w +
O(e'/4).

Finally, define 728 .= A‘i(kk)Bg'k (E 58 ) Then the {Zg } are feasible in (13), and the fact that

Ex ) ||28 - Y| = 0(Ve) (15)
8

follows from arguments similar to those used in the proof of Claim 19. Hence the {Z{} are a
feasible solution to (13) with objective value at most w + O (!/4). Finally, by convexity (15) implies

that A I
Exﬁ,-ZHExizﬁ - Yfﬂin = O(\/E),
8

which together with the triangle inequality and (15) shows that the {Z3 } are close to their expec-
tation on any axis-parallel line in the i-th direction, proving the claim. O

Using convexity of X — || X — Al|? for fixed A, the following follows from Claims 19 and 20.

Claim 21. Let {S§} be an optimal solution to (13). Then

Ex,i<k Z \]§§ — Exfg(agcﬁixl/- H?) = 0(81/4)-
8

Proof. We show that the two solutions constructed to (13), {§§ } and {Zﬁ} from Claim 20, must be
close:!?
Epick ) ||28 — 5%
8

The claim then follows by using the triangle inequality to combine this bound with the fact, proved
in Claim 20, that the Z§ themselves are close to their expectation along any axis-parallel line in the
i-th direction. Hence it suffices to prove (16). Since the feasible set of (13) is convex, for any

o= 0. (16)

Note that Z§ implicitly depends on i, and the following equation is measuring the distance on average over the
k — 1 different constructions of Z$ obtained forall1 < i < k.
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0 <t <1theelements {(1— t)g‘,% +178 } also constitute a feasible solution. By optimality of {§§},
the resulting objective value must be at least w: for every 0 <t <1,

Ey Z §§ Y R§2k
8

2

2 A A
p ggxguu—t)siﬂzﬁ—\/@ )
2 ~ 2
:tzEx§‘ p+Ex§‘S§_\/§>kp
£ YTy (28 - 89) (85— /RE)").
8

VAR

Using the known objective values, re-arranging and making t — 0, we obtain that

Ex YT (28— 89) (RS, = $9)") = 0(e/4).
8

Hence
~ ~ ~ 2 n 2
ExgHsﬁ—Z,% |i:Ex§( 28— /RS, = 88— /RS, p
+27Tr, (28 - %) (VRE, - 89)"))
— 0(51/4)/
proving (16). ]

Claim 21 shows that the {5} do not vary much along any axis-parallel line in the i-th direc-
tion. Using the expansion properties of the hypercube, we can deduce that the {55} ¢ are close (in
the squared || - ||, norm) to a single operator, independent of the first (k — 1) coordinates.

Claim 22. For every x> and g, let szk = Ex<k§§. Then

E: )
8

S8 — szkHi = O(ne'’*).

Proof. This is a direct consequence of the expansion properties of the hypercube, as expressed in
Claim 38. ]

5.1.3 Proof of Lemma 18

We conclude the proof of Lemma 18 by showing that the non-negative operators

Tg

X>k

= T?%zk (T;ng) +’

where for any x> and g the matrix sz , is defined in Claim 22 in the previous section, satisfy the
conclusions of the lemma. First note that item 3 follows directly from Claim 22, so it will suffice to
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verify that items 1 and 2 hold. Regarding item 1, we can bound

INC(T,A) =E, Y, Tr,(T5, ® AS)
g#g(xx)
=E: Y Tr(S§i®AL) +0(Vne?)
878 (x<k)
<Ey ) Tr,(A%® AY) +O(Vne'/®)
a#b

— O(vne’®),

where the second equality follows from Cauchy-Schwarz and Claim 22, the inequality follows
from the fact that the 5§ are a feasible solution to (13), and the last uses self-consistency of A as
in (6).

Item 2 is proved in a similar way. Let P be a family of sub-measurements of arity ¢, and assume
that £ < k, the other case being treated symmetrically. By definition,

|CON(P,T) —CON(P,R)| =E, Y Tro(PL, ® (TS, — RS.,))

881y =S
) R £\ 172
< (Ex . Z - Trp(Pajcrzl(g) (szk_ \/ Rizk)(szk_ V R§2k) ))
f8 81y o =S
(B X Tl e (T, + RO (T8 +RL)D)
X PAT X X>k X>k X>k X>k
f8: 81y x 1 =f

<V2(E. L
8

A 1/2
T’(Cng Y Riﬂ”i)
= O(INC(R, A)V2 + \/ne!/8),

where the first inequality is by Cauchy-Schwarz, the second uses that ) ¢ PJ{ZI < Id for every x>,
and the last follows from the bounds proved in Claim 19 and Claim 22.

5.2 The pasting lemma

In this section we prove Lemma 18. Let T be the family of sub-measurements whose existence
is promised in the lemma’s assumptions. For every x, let {5} , and {Ti;k },, be as in item 3 of
Lemma 17. Let J be such that .

g /Th 2} <5 (17)
X X>k o = ’

where here {Bﬁﬁk }¢ are the “lines” measurements in the k-th direction, as defined in Claim 15. Note
that Claim 15 implies that INC(T, B) < INC(T, A) + O(e'/*), which justifies including INC(T, B)
in (17).

Our goal is to define a new family of sub-measurements V, depending on one less coordinate of
x than T, but such that V is still consistent with A, and moreover V is not “too small”, as measured
by items 2 and 3 in the lemma. The main idea is to define {V5 ,} as (roughly) corresponding to
the sequential application of {Tf>k} twice, for two random choices of x;. This will produce two
(k — 1)-multilinear functions  and %', from which a k-multilinear function g can be recovered

max {INC(T, B), INC(T, A), Ex ) ‘
T
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by interpolation. This is essentially the same method as was used to define the “line” operators
B from the “point” operators A in Claim 15. Here the main additional difficulty is that we are
starting with a family of sub-measurements, instead of complete, projective measurements as was
the case in Claim 15.

This section is organized as follows. We start with some preliminary observations in Sec-
tion 5.2.1. The family of sub-measurements V is defined in Section 5.2.2. Item 1 in the conclusion
of Lemma 18 is proved in Section 5.2.3, and items 2 and 3 are proved in Section 5.2.4.

5.2.1 Pre-processing

In this section we prove a preliminary claim, Claim 23 below, which lets us modify the family of
sub-measurements T into another family Q that has useful properties. The important property is
item 3. in the claim, which establishes a form of commutation between Q and the “line” measure-
ments B. Intuitively, that such a property would hold for Q equal to T should follow from the
consistency between the families of sub-measurements defined by T and B: consistent measure-
ments are “compatible”, and by the gentle measurement lemma (cf. Lemma 35) the order in which
they are performed does not matter. However, we could not show directly that item 3 below holds
for the family of sub-measurements T itself; hence we need to modify it slightly.

Claim 23. Let T be the family of sub-measurements satisfying the assumptions of Lemma 18, and 6 be as
in (17). There exists a family of sub-measurements {Q’;>k} such that the following hold:

1. Try(Q) > Try(T) — O(6%),

2. For every x>y and h, Qx>k x>ka>k xo, for some family of sub-measurements {Qx>k} (and in
particular INC(Q, A) = O(e!/?2)),

3. Let Q. , = Ey, 2 Qka. Foranyr > 1,
2
ExTrp<( Qx>k EBgﬁk Qx>k) Bgﬁk) ) = 0(72(554)’

where ¢y > 0 is a universal constant.

Proof. For any x_i define a “pinching” map

Ex,t TH, — BYITH B,
Note that &,_, also implicitly depends on h(x_), but this dependence will always be clear from

the context. Let £(-) := Ex_ &x_, (). The idea for the definition of Q consists in applying the
map £ to T a certain number of times, leveraging a certain stability property that will follow after
sufficiently many applications.

Let M be an integer to be fixed later, and for every x> and # let Rx>k = EM (T;’>k) where M
denotes the sequential composition of £ with itself M times. Using the Schwarz-Zippel lemma
(Lemma 33) it is not hard to verify that, as long as M > 1, INC(R,B) = O(INC(B,B) +n/p) =
O(e!/2). The proof of Claim 23 is based on the following sequence of facts.

Fact 24. There is a choice of M < 6~'/* for which the following holds:

E ZTrP x>k x<k(Rz>k))2) = 0(51/4)'
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Proof. Let J; = 6~ /4. The proof is based on the use of the potential function
®; = Ex, Y Tr, (EM((EN(T))P),
h

defined for all 0 < i < J;. Note that ®; is non-negative, always at most 1, and by the pinching
inequality (£(X))? < £(X?) for any positive semidefinite X, ®; is non-increasing with i. Let i; the
smallest index 7 for which it holds that

B Y Trp (£ (£ ((E7HTE))?) = (L (ETNTL))?) ) < 64 (18)
h . .

Using operator convexity of the square function, this inequality not being satisfied for some i
implies that ®; | — ®; > §'/4. Since this can happen for at most 6~/# indices i, an 0 < iy < §'/4
such that (18) is satisfied for i = i; must exist. Using self-consistency of B (J; —i1) times, and
consistency of T and B, (18) is seen to imply

X>k X>k

EXZTrP((Siﬁ](Th )_5x<k(5i171(Th )))2) < 0(571/4INC(B)1/2+(51/4).
h

To conclude, we set M := i; — 1 and use INC(B) = O(e!/?) < §1/2. O

The following is a consequence of Fact 24.

Fact 25. The following holds
8 pe 8x
Ex oxtue g e§ Tro (B ROE Ry%  RYE BL ) = O(INC(R, B)'/? + 61/8).
8t g\x<k

Proof. By definition of R,

Sy pSlvk  pSlxk
Ex>erk5‘éyk Z TrP (kax>kRykx>kakx>k)
&g

Bﬁ(’kkyk)Rg\xk

XX~k = Xk Yk VX, = Xk Yk ka>k)

8lx < 8
- Exﬁk/xk#]/k ZTrp (R 0 Bﬁ(" kyk)R Iy
8

XX >k

< 8x, < < 8 < 8x
= Bx i 1T ((BESR Ruk BECR) BEGY Ry B RYE,) +0(617%),
8

where the second equality follows from Fact 24. Using that, by definition, for x; # vy, Biﬁf;,ka) Biﬁfj}fy K —
Bi‘flf" and consistency of R and B, we get
Ex>k/xk7éyk Z TrP (Rilj’]‘;k Ril‘g‘;k Rix;w)
g
= Bty 1 Trp (R B Ry BT RYE ) + O(INC(R B)'/2 +517%)
8
= Ex e 1 T (BY S REE Ry REE B) + O(INC(R, B)'/2 4-6V/%),
8
where the last equality again follows (after a little work) from Fact 24. O

We will also use the following.
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Fact 26. Let {S§_,}¢ be an arbitrary family of sub-measurements and yp > 0. There exists an iy < py "
such that

EzTrp( (E271(SE,)) = €271(8E,))) = Oz + 3 ' INC(B)'/2),

where here we denote £(S3_,) = Ex<kBg|y<" S§>kBg‘y<’c Moreover, for all i > iy it holds that

Be LTy (€77(58.) - £(5%.))°) = O(pz+i1NC(B)'/?).

Proof. The proof is very similar to that of Fact 24, and is based on the use of the potential function

D; := E, ETrp(gh_i((g (S§>k))2))’
8

defined for all 0 < i < ], where [, = i, 1 Note that &, is always at most 1, and by the pinching
inequality £(X)? < £(X?) for any positive semidefinite X, ®; is non-increasing with i. Let i, the
smallest index such that ®;,_; — ®;, < up;aslongas Jo > p, Tsuchan0 < i, < J> must exist. By
definition, it then holds that

Ba Y Trp (€972 (&, ((E771(8E0)%) — (e (€274(85.)))%)) < ma
8
Using self-consistency of B (], — ip) times, we obtain
B T (60, (£71(51.0) ~ €271 (58)%) < s+ OUamve(8) ),

To conclude the proof, it suffices to use the operator convexity of the square function to move the
expectation over x_ inside the square, and then observe that

Ee Y Tro(E((771(SE.,)) — E2((£271(8%.,)))%)
8
< E. Y Tr (E(((271(55.,)) — £((€271(S5.,)))?)
8

< Ey Y Tr, (((E271(S5.,) —E((E7 1(5§>k)))2)—|—O(INC(B)1/2),
3

again using self-consistency of B. O

Let M’ be an integer to be fixed later, and for every x-; and h define

Qx>k = (E B (x<k)) (Rh )(E B (x<k))M/'

X<k X>k X<k
Observe that, as before, as long as M’ > 1 it holds that INC(Q,B) = O(INC(B,B) +n/p) =

O(£'/?). For any ¢ € ML(F, F), let Qx>k = By 2y, i‘k",ﬁzk %c{zw The following implies item 3. in

Claim 23: for any r > 1,
2
ExTrp ( ((Qx>k)r - 2 ( g‘x<k Qx>k g|x<k) ) ) = O(T’Z(sc3)/ (19)
8

where c3 > 0 is a universal constant. Eq. (19) is proved by induction on r. The case r = 1 is stated
in the following claim.
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Fact 27. The following holds
8l g8k )
ExTr‘g((Qx>k ZB | <ka>k | <k) ) — 0(51/16+M/51/8) (20)
Proof. Fact 25 implies that {Q3_, } and B are O(6'/8)-consistent, from which it follows that

X X gx gx X gx
E ZTrP( g‘ <k x>kBg| <kB ‘ <ka>k ‘ <k) — E ZTrp(Qx>k g‘ <kB \ <ka>k) +O(51/8)
8.8

= Ex ZTIP(Q >ka>k g‘x<k ®B ‘x<k) + 0(51/16 + M/él/g)
88

= ExTr, ((Qx.,)?) + 0816 + M'61/8).

Here the second equality follows by applying Fact 26 with py := 6'/1¢ and S§ chosen as Q3 _, to

move the term By o *< on the outside, and holds as long as M’ > u,! = 671/16. (The third uses
consistency of Q and B.) Expanding out the square in (20), all four terms can be related up to
O(M'5'/8) by using similar arguments. O

The induction step required to prove Eq. (19) uses arguments similar to that of the proof of
Fact 27, and we leave the details to the reader. Once that equation is established, choosing M’ =
571716 jitem 3 in Claim 23 follows. Items 1 and 2 in the claim are simple consequences of the
definition of Q from R, and of R from T; again we omit the details. O

5.2.2 Construction of the pasted family of sub-measurements

In this section and for the remainder of the proof of Lemma 18 we rename the family of sub-
measurements {Q§>k} constructed in the previous section into {T,’}>k}. The only properties of
that family that we will need are those stated in Claim 23. In order to define the pasted sub—
measurements V, we first introduce a “pseudo-inverse” T as follows. Asusual, let Ty, = Ey, Y, T x>k
and 1 > 0 a small parameter to be fixed later. Define

B R 1/2
Tx>k = ( Z (Id Tx>k) ) ’ (21)
r=0
where R := (10/1)log(1/7) is chosen so that Ty (1 — Ty T7_,) < 71d (note that, by definition,
Tx>k commutes with Ty_, ). Expanding out the series in the def1n1t1on of Tx>k, Item 3 from Claim 23
implies that the following equation holds:
ExTr, (T, ZBQ Te BL )% = O((6/7)%), (22)

where c5 > 0 is a sufficiently small constant. For every x-y and g € ML(FFX, F), define
R x e Y
V3€g>k = (1 + p ) Ey Tx>k ( Xk FYk Tkal;k) Xk T](/gk?;k x>k ( Xk FYk Tkal;k) Xog

The scaling factor (1 + R/p)~! is necessary to ensure that the {V >k} sum to at most 1dent1ty It
induces an extra error term in all our estimates; however our choice of 7 = 5¢ for some ¢’ > 0
will ensure that this error term is of the same order as ones that already appear; for clarity in the
remainder of this section we will neglect it.
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Claim 28. The {V§ , }g form a family of sub-measurements of arity k + 1.

Proof. Itis clear that Vi, > 0 for every g. When the variable g runs over ML(IFX, TF), for x # yx €
IF the restrictions g|,, and g}, independently run over ML (F*~1,F). Hence, using convexity of the
map A — AXA' forany Aand X > 0,

R

-1 1 ~ o~ / o~ ~
h h h
Z V’§>k < (1 + 7) 2 Z Z Tx>k Txkx>k Tx>k Tykx>k Tx>k Txkx>k Tx>k
g P Yk#xy L h

Ry-11 - - - -
= (1 + 7) o Z Z Tx>k Tka>k Tx>k Tx>k Tx>k Tka>k Tx>k
p p Xk h

R -1 1 ~ h o = h
- (1 + P> P Z Z Tx>k Txkx>k Tx>k Txkx>k Tx>k Txkx>k Tx>k
Xk h

< (1+1;)_1<Id+1;1d) < 1d,

where to obtain the last linewe used (T!, )2 < T! . aswellas Ty , < RY?Idand T, Ty Ty, <

XX >k XX >k Xk~ X>k T X>k

Id. O

5.2.3 Consistency

In this section we show that the “pasted” sub-measurement V' is consistent with A, proving item 1
of Lemma 18. It will be convenient to introduce the shorthand

X>k : Xk~ X5k~ X>k” (23)
We also let dyy := max(d,INC(W, A)).
Claim 29. The following holds

INC(W,A) = Ex Y, Trp(Tx>kT,’§>ka>k®A;) = 0((6/1)%),
ha#h(xy) B

where c5 > 0 is the constant that appears in (22).

Proof. We have

INC(W, A) = By, Y T, (T, TY Te, © (Id —AL))
h
=E:) Tr, (TX>kBﬁ2kRﬁ2kBZZka>k ® (Id —AﬁZk))
h,a

X>k X>k

= E, ;Trp(Bh Tx>kR§2ka>ka;2k ® (Id—AL ) +0((6/1)%)

:Exzh:Trp(T Ry Te, ®(Id—AL ) @ AL ) +0((5/1)%)

Xk M)t Xk X>k
= O(((S/ﬂ)cs),
where the second equality follows from item 2 in Claim 23 (and some sub-measurement {R’;Zk}),

the third follows from (22), the fourth uses Lemma 40 together with consistency of B and A as in
Claim 15, and the last again follows from self-consistency of A, together with Tx>k < RV214 <
11 1d for small enough 7. O
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Claim 30. The family of sub-measurements V is consistent with A:
INC(V, A) = O(67).
Proof. By definition,

g\x 8“
INC(V,A) = By sy, Y, Tro(Wol T Wyt @AY

xkx
878 (x<k)
_ g\x | 8y g(xopxl) 12
=By Y Tp(W,E Tiw W Wk ®ase A + o)
ga7#g(x<x)
_ g\x e WO A8kt 8(xapxp) 1/2
= Boapan L To(Wey Tat Wor AT @ Ate alT5) + 0%
ga#g(x<k)
— 0(81/2 +5%2),

where the second and third equalities each follow from an application of Lemma 39 and the defi-
nition of dyy, and the last follows by applying Cauchy-Schwarz and using linearity of A in the k-th
direction, as in (7). O
5.2.4 Consistency with arbitrary sub-measurements

We now show that items 2 and 3 in the conclusion of Lemma 18 hold. We will make use of the
bound

B Trp (1d = Wa ) o, (1d =W, )) = O(n), (24)
which holds by definition of {W,’Z> .} (cf. (23)) and of Ty, (cf. (21)).
Claim 31. For any family of sub—me;zsurements P of arity at least k + 1,
|CON(P, V) — CON(P,T)| = O(0}? + INC(P, A)Y/2 + 51/2).

Proof. Let P be an arbitrary family of sub-measurements of arity £ > k + 1. We prove the claim in
case ¢ = k + 1, the other cases being exactly similar. Then P = {P§_, } geML(FF), and by definition

CON(P,V) = E, ETrp(Pf ® V§)
8lx | gh
= E, X Xie Xy F Yk ZTrP x>k kaxk>k T§k¥>k x x>k)

xﬁkx

8 <
- Ex’xli'xi/#yk ZTrP X>k ® W k T}/lg‘ikwx Xk ® Ag(x :xk)) + 0(51/2) (25)
8

where the last equality follows from Lemma 39 and the definition of dyy. We can then write

g h | g\x g(xaxxp)
Exx x”?é]/k h; Tl'p (Px>k & W x kTygkgcik ka ® A ﬁkx: k )
8 ghz

gx 4
L (e A o mh, T w0 AN 4ol

X>k XXk ykx>k X! xXsk
gh#gh

I \ glx glxarxy) 1/2 | 51/2
= By i, h; Try (PS, @ W1, T W ok @A) yo(e 245107, (26)
8t
h(x<k):g(x<kx;<)

= Ex X XY # Yk
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where the first equality again uses Lemma 39 and the definition of éy, and the last follows from
an application of the Cauchy-Schwarz inequality and self-consistency of A. In the last expres-
sion, h and g, are two distinct (k — 1)-linear functions over [F: by the Schwartz-Zippel lemma

(see Lemma 33 for a statement) they intersect in a fraction at most O(k/|F|) = O(k/p) points.
Hence, applying the Cauchy-Schwarz inequality to recover a non-negative expression, we can up-
per bound (26) by O(+/n/p + €'/2 + (5%2) = O(&%z) since Sy > & > np~!. Together with (25),
this shows that

8|x <k X}
CON(P,V) = Eox x4y ZTTP( o ® Wy TS W ® Aiix;kxk)) + 0(5%2)

Xk ykx>k xkx

81lt
= B2y, ZTTP( o @ Tygk‘i’;kw ‘ . ® Ag(x<kxk)) + 0632 +1'?),

xkx

where the second equality follows from the Cauchy-Schwarz inequality and (24). Repeating the

&)y . .

same steps for the remaining term Wx,‘, 3];>k, and using consistency of P and A to conclude, proves
k

the claim. O

Claim 32. For any sub-measurement P, of arbitrary arity,
|CON(P, V) — CON(P, T)| = O(|CON(T, T) — Tr,(T) |/ + 61/2 + 7/2).
Proof. The proof closely follows that of Claim 31, and we omit the details. O

This concludes the proof of Lemma 18 provided c; is chosen to be a sufficiently small constant.

A Auxiliary lemmas

We first recall a key lemma in the analysis of low-degree polynomials over a finite field, the
Schwartz-Zippel lemma [Sch80, Zip79], which we state in a form that will be useful to us.

Lemma 33 (Schwartz-Zippel). Let IF be a finite field, n an integer, and f : " — F a non-zero multilinear
function. Then f has at most sn|F|"~! zeros.

The next series of claims are all based on variants of the Cauchy-Schwarz inequality. The first
follows from Eq. (3) of Bhatia and Davis [BD95] (see also [Bha88]), substituting the norm |||-|

by [ - [lr-
Theorem 34. Let A and B be arbitrary matrices such that the product A'B is well-defined. Then,

14"Bll, < [[All [B]]-

s “”

Winter’s gentle measurement lemma [Win99, Lemma 9] (see also Aaronson’s “almost as good
as new” lemma [Aar(05, Lemma 2.2]) is a key lemma formalizing the intuitive fact that if a mea-
surement produces a certain outcome with near-certainty when performed on a specific state, then
the post-measurement state is close to the original state. The following is a variant of that lemma,
and we give a proof following Ogawa and Nagaoka [ON07, Appendix C].

Lemma 35. Let p be a density operator on a Hilbert space H, and X and Y be linear operators from H to a
Hilbert space K such that X*X < I and Y*Y < I. Then,

|XpX* —YpY*[ly < 2¢/Te(X — Y)p(X — Y)*.
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Proof. By the triangle inequality,

1XpX* —YpY*[l; < [(X — Y)pX"[l, + [Yp(X — V)|

By Theorem 34,
(X =Y)pX"[l; < [[(X=Y)vplllve X"
= /T (X~ Y)p(X — Y)* /TeXpX*
< T (X = YV)p(X — V)",
Similarly, [|[Yo(X — Y)*|l; < v/Tr(X — Y)p(X — Y)*, and the lemma follows. O

We state the following two corollaries of Lemma 35.

Claim 36. Let { A;} and {B;} be two sets of positive matrices of the same dimension, and p > 0. Then

|2 VA0 VA - VB VB, < 2AETH(A - VE)D)

Proof. Let X be a block-column matrix with blocks the y/A;, and similarly for Y and the 1/B;. Then

| EVaip VA - VBip VB| < ¥ ||VAip VA - VBip VB

S | XpX" — YpY?

1/

and

Tr((X = Y)p(X =)') = L Te((VAi = VB)p),
1
so that the claim follows from Lemma 35. O

Claim 37. Let ¢ > 0 be a (possibly un-normalized) density matrix on 3 registers, and suppose that o is
invariant with respect to permutation of the first two registers. Let { A;}; be a POVM on either of the first
two registers, and let
6:=) Tr((Ai®A;j®Id)0).
i#]
Then
IY (VA ®1d) Tra(0) (VA @1d) = Tra(0)]|, = O(V9),

i
where here \/ A; acts on the first register of o, and the identity on the third.
Proof. First note that, { A;}; being a POVM,

Tro (Y (ld® VA ®1d) o (Id® VA ©1d)) = Tra(0).

1
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Hence by monotonicity of the trace norm
1Y VA ®1d(Tra(0) /A @ 1d =Tra (0) |,
i
<|LVA®  aedovaie /Aeld-Y lde \[4;edede /4 01d|,
ij j
<Y VA® VA®Ide/A @ VA®Id-Y Id® VA ®ldeld® A @ 1d ||,
i i
+) Tr(A®A;@ldo)
i#]
< z\/ZTr((\/E@ VA ®1d —1d ® /A; ® 1d)20) + 6
i

<2V6+6

where the second inequality is the triangle inequality, the third is by Claim 36, and for the last we
expanded

LT (VA © VA ©d-Td® VA ©1d)%0)

E <TI‘(Ai®Ai®Id0') +Tr(Id®Ai®Id(7) —2Tr(m®Ai®IdU))
< 1 (T

1

Ai® A ©1do) + Tr(ld@A; © 1do) —2Tr (4 © A; @ 1d0) )

Il
S,
N

where for the inequality /A; > A, follows from 0 < A; < Id for every i, and the last equality uses
the definition of é and }; A; = Id. O

The following lemma follows from the standard expansion properties of the hypercube. Recall
that for p > 0 and any A, [|A||7 = Tr(AA"p).

Claim 38 (Expansion lemma). Let e > 0, S a finite set of size |S| = p, n,d integers and A : S"* — C9*4
such that for every x € S, 0 < A, <1d, and

E < e

7

2
Ax— A,

g /
1%, X

where the expectation is taken with respect to the uniform distribution on [n] x S"~! x S x S. Then

2
Ax — E A,
P

E, < 2ne,

where both expectations are taken under the uniform distribution over S™.

Proof. Let M := ¥, s |x)(x'| be the adjacency matrix of the hypercube S”, L := npld — M the
Laplacian,and L = L® p. Let A = ¥, |x) ® A,. Then

ATL-A=2 Y (Ax— Av)Tp(Ax — Ay). (27)
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The normalized Laplacian L/ (np) has smallest eigenvalue 0, and second smallest A; > 1/(2n).
Let the smallest eigenvector of L be |vg) = p~/2¥, |x), and write A = |vg) ® Ag + |v1) ® Ay,
where |v1) is orthogonal to |vg), and Ag = p~"/2Y, Ay. Then

. 1
ATLA = MAlpA; > EALOAL

Taking the trace and using the assumption made in the claim’s statement together with (27), we
get || A4 Hf; < 2nep", and hence by definition of A,

Tr ((A — [v0) ® Ao) ' (Id® p) (A — |vp) ® Ag)) = HAlug < 2nep",

which proves the claim. O

B Lemmas about consistency

The following useful lemma relates the consistency of a measurement when performed on two
separate subsystems of a permutation-invariant state with the possibility of exchanging the sub-
system on which the measurement is performed. Here p is the reduced density of a permutation-
invariant state.

Lemma 39. Let k > ¢ > 1 be two integers, T a family of sub-measurements of arity k, and V a family of
sub-measurements of arity (. Let {Z2_} be such that Ex Y, Z!_ (Z% )" < 1d. Then it holds that

X>k X>k
< /INC(T, V).

Proof. The proof is a direct consequence of the Cauchy-Schwarz inequality: write

BT (ZL T o) B Y To(ZLT eV
h

X>k = X>k X>k ©X>k
g/h:h\xﬁ,.,xkil =8

B Y T (ZL Th @Vi,) =B Y Tro(ZL, T ®VE)
h

ka ka ka ka
grh:h\)(£,..,,xk71 =8

Ex Z TrP (Zﬁzk T’}flzk ® V’i‘)
g,hi h\xé,,,.,xkfl #g

1/2 1/2
(e L mlevi) (BEm L) e w)
8

ka ka ka
g/h: h\x€,444,xk_1 #g

< 4/INC(T, V),

where the last inequality follows from the definition of INC(T, V) and our assumption on Z§’>k. O

Lemma 40. Let T be a family of sub-measurements of arity k, X such that X*X < Id, and {Z§>k} such
that By Y, Z8 (Zh )Jr < Id (for instance, a family of sub-measurements of arity ¢, for any ). Then®

ka ka

Ex) Tro(Z2, TY, @ Te,) —Bx ) Tr,(Z4 Te, @ TP )| < 4/INC(T,T) (28)
h h
Ey Y Tro(TE XTY ®Ty,)| < 24/INC(T,T) (29)

h£h'

20 A special case of interest is when the measurements are complete, in which case the statements simplify.
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Proof. We first prove (28). We have

(Zh TE ®Ty,) —ExZTrp (Zh & T

X>p " X>k x>k)

( x>é X>k ® Tx>k Tx>k ® TJ}CZ>1<>) ‘

(Zm (2 (22)") (T (T, e T 7))

h£h'

< 4/INC(T, T),

where the second inequality follows from Cauchy-Schwarz. Regarding (29), we have

x Z Trp T?}CZ>kXT£l>k ® Tx2k> = (Tx>kXTx>k ® szk) B Ex ZTrP (T£l>kXT3IZ>k ® szk)
h#h! h
From (28) we know that
Ee) Tr(Ty XTr,) ® Te,, — Ex ZTrp (T XTe, ® Ty, )| < 4/INC(T, T).
h

The second term on the left-hand side satisfies

Th XTx>k &® Th E ZTrp x>k x>k ® T£l>k)

1/ 1/2
h h
< (ExZTrp (To XXTo, @ T2, ) (E ZTrp Toye — TL, 2 ® Tx>k))
h
< 4/INC(T, T),

and this concludes the proof.

C Proof of Corollary 10

In this section we give the proof of Corollary 10. A standard method to convert multiple con-
straints to a single constraint involving an exponential sum is by using small-bias probability

spaces.

Definition 41 (Small-bias probability space). Let n € IN. A set S C IF} is called an e-bias probability

space if for every ¢ € IFj \ {0}, it holds that

P —0]—Prlc-7=1]| <e
\ggrs e ]ng[Cg ]| <e

Proposition 42. Let n € IN, and let S C F} be an e-bias probability space. Let F be a finite field of

characteristic two. If ¢ € F" \ {0}, then

1+s

zes 2

Pr [Z gici=0
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Proof. If F = IF, then the proposition holds because

! 1 1 n n
gPers [ZCiQ :0] =5+5 (gzrs L:Zlciéi =O] —(:lzrS [Zciéi = 1])

i=1 i=1
< 1+ 8.
- 2

For general IF, regard F as a vector space over IF,, and let {ay, ..., a;} be a basis of F over F,.
Write ¢ as ¢ = ajcM) + - - + arc®), where ¢V, ..., ¢¥) € F}. Because ¢ # 0, we have that ¢U/") # 0
for some j*. By using the case of IF, it holds that

n
(%) LT+e
P : ;= < .
i;ers [i—l G G O] -2

Since ay, . .., ay are linearly independent over [Fp, 7' ; ¢;(; = 0 implies } } ; cfj )g,- = O forall j, and
therefore in particular )" ; cl(] *)Q = 0. Therefore,

n
P 7i=0
P [; cili

Theorem 43 (Alon, Goldreich, Héastad, and Peralta [AGHP92]). There exist a constant ¢ > 0 and
a polynomial-time algorithm C which, given K, M € N, i € {1,...,K} and j € {1,..., M}, out-
puts a C(K, M,i,j) € T such that the set {{): 1 < j < M} defined by {) = (C(K,M,1,j),...,
C(K, M, K, j)) is an (K/M°¢)-bias probability space in FX.

n
G > _ I+e
< P 2 ) =0 < . O
- gers [i_lcl Gi ] - 2

By arithmetizing the Boolean circuit for C by using a similar idea to the proof of Proposition 4.2
of Ref. [BFL91], we obtain the following corollary.

Corollary 44. There exist a constant ¢ > 0 and a polynomial-time algorithm A which, given 1¥ and 1™,
outputs 1* and an arithmetic expression f(i,j,1) in k + m + t variables such that the set {{): j €

{0,1}"} defined by V1) = (Cieqony f(E 7, 1))ic(oyx is an 25~"-bias probability space in 2

Proof of Corollary 10. The protocol works as follows. The verifier first computes m = [(k+2)/c],
where c is the constant in Corollary 44. He runs the algorithm of Corollary 44 with parameters k
and m to obtain t € IN and an arithmetic expression f(i,f,1) in k + m + t variables. Let d’ be
the maximum degree of f in single variables. He chooses j € {0,1}" uniformly at random, and
sends j to the prover. Then he simulates the protocol in Lemma 9 with explicit inputs k 4t and d +
d’ and implicit input h;(i, 1) := f(i,7,1)h(i).

Fori € Ff,j € F",and 1 € F', let {)/) = ¥, f(i,j,1) € Fand {) = ({);c01y € F.
Because m > (k4 2)/c, Corollary 44 guarantees that {{(): j € {0,1}"} is a 1/4-bias probability
space.

Let c; = h(i). Then for all j € {0,1}", it holds that

Y man= Y Ve (30)

ie{0,1}k1€{0,1}¢ ic{0,1}
Completeness: Suppose that c; = 0 for all i € {0,1}*. Then, by Eq. (30), it holds that
) hi(i,1) =0

i€{0,1}k,1e{0,1}!
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for all j € {0,1}"™. Therefore, the completeness of the protocol in Lemma 9 implies that the proto-
col constructed above also has perfect completeness.
Soundness: Suppose that ¢ # 0. By Proposition 42, it holds that

]+1/4 5
;=0 2
]E{O 1}m |: %}ké c i| 8

Therefore,

Eqg. (30) and the soundness in Lemma 9 imply that for any j € {0,1}" such that)_;. {Ollﬁk 4 ,(j ) ci 70,

the acceptance probability conditioned on the choice of j is at most (d + d’)(k + t) /|IF|.

the overall acceptance probability is at most 5/8 + (d 4+ d")(k + t)/|F|. The corollary follows be-

cause d’ and t are polynomially bounded in k. O
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