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Abstract

Finding a problem that is both hard to solve and hard to solve on many instances is a long standing
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We find hard instances for any given heuristic, either by running the heuristic, applying the techniques
in [5] to NEXP , or using auxiliary provers to gain a more efficient procedure for generating a hard
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to the found instance) of hard instances of the problem.
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1 Introduction

Finding provable hard problems with many hard instances is a challenging task in computer science. The
applications may be in cryptography, for example as a part of the Merkle’s Puzzles technique [9, 4] for
establishing a shared key.

Candidates for a source of such provable hard problems are NEXP -hard problems (we use NEXP
to denote NEXPTIME). The reason is that there are no polynomial solutions for such problems as the
complexity class P is strictly within the NEXP complexity class [6, 10].

To find such hard problems, we turn to the notation of the succinct representation of graphs (or matrices)
that was proposed by Galperin and Wigderson [6]. And the reason is the following theorem that was proven
by Papadmitriou and Ynnakakis [11]:

Theorem 1.1 LetA be some computational problem on graphs. Then if 3SAT can be reduced via reduction-
projection to A, then Succ−A problem is NEXP time hard.

Thus, solving NP -complete graph problems when the graphs are represented in a succinct form is
NEXP -complete.

The permanent is a candidate for a problem that has many instances which could be proven to be hard.
The reason is that there is a proof of random self-reducibility of the permanent, where the solutions of a
small random set of instances solve the given instance [8]. Thus, the permanent is hard on average as in
the worst case. Therefore, we chose to investigate the complexity of the permanent problem, assuming
succinctly represented inputs.

The main motivation of this work, is to detect hard on average problems from high complexity classes.
In addition, we are interested to find a way to efficiently generate hard instances of these problems.
Related work. There are many results showing an equivalence of the worst case and average case hardness
for problems of high complexity classes, basically PSPACE and above [3, 12, 13]. The most recent paper
on this line of research is by Trevisan and Vadhan [12] where the authors show that if BPP 6= EXP ,
then EXP has problems that are hard for all efficient algorithms with respect to uniform distribution over
the inputs. These hard on average problems are obtained by encoding (using error correcting schemes in
the style used in probabilistically checkable proofs) the entire truth table of another hard in the worst case
problem, which we call the source problem. Thus, roughly speaking, ensuring the identification of the value
of a certain bit in the encoded truth table requires knowledge of the solutions of all instances of the source
problem. And hence, every bit in the encoded truth table is hard to compute as the worst case of the source
problem. Therefore, the hardness of revealing any bit in the encoded truth table is similar, implying hardness
in the average case over the chosen indices.

Unfortunately, these languages may have the following property. After investing an exponential effort
on solving some instance of the truth table encoding language, one have, in some sense, the information
about solutions of all the instances of the source problem. Thus, it may happen, that there is an efficient way
to calculate the solutions to all instances (of the same length) of the new encoded bits, using the solution
of the truth table encoding language, and the information regarding solutions of the instances of the source
problem (similar to the idea of the rolling hash function).

This property of the reduction can be a drawback when using it in cryptographic applications. In other
words, if many instances of the problem are used (perhaps as part of cryptographic primitives), one may
invest time (or be lucky to find a way to identify the hard instances) to solve the hard instances of the source
problem and then nullify the hardness of all other encoded bit instances at once.
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It is interesting to note, that the problems with such a property (the solution to one instance or small set
of the instances nullify the hardness of all another instances) belong to the class LEARN that was defined
by Impagliazzo and Wigderson in [7]. Namely, the problem is such that it is possible to construct a boolean
circuit that solves the problem for length n in time PPT fn .
Our contribution. We prove that the succinct permanent modulo a prime problem is NEXP -hard (via
randomized polynomial time reduction). We then extend existing techniques for identifying hard instances
for a given polynomial time heuristic that claims to solve the NEXP time hard problem. In addition,
we provide a new technique that can be interesting as an independent result. Namely, we show how to
efficiently generate interactively (in the standard model of multi-prover interactive proofs where the provers
are computationally unlimited) a hard instance for a heuristic whose running time is larger than that of the
verifier’s (in particular, for superpolynomial-time heuristics). Both these techniques, though, are developed
to work against one-sided error heuristics.

As a consequence, our results state that assuming BPP 6= NEXP and given any polynomial time (de-
terministic or randomized) one-sided error heuristic, there is an efficient procedure that generates instances
of the succinct permanent modulo a prime problem, such that heuristic errs on them. Then we show that for
any given hard instance of the succinct permanent modulo a prime, we can produce exponentially many sets
of hard instances. We then discuss the possibility of the existence of the following property of the gener-
ated sets: the answers of the instances of some set do not reveal information concerning the answers of the
instances of another set.
Organization. In the next section, we prove that the decision problem of whether the value of a permanent
of a matrix is zero when the matrix is given in a succinct representation is NEXP time hard. We use the
obtained result to prove in Section 3 that computing the permanent modulo a prime number is NEXP time
hard. Then in Section 4, we turn to the problem of finding a hard instance for any given heuristic. We present
a polynomial search for finding hard instances in the case that the heuristic is polynomial, and present a
polynomial search that uses two provers in the case that the heuristic is superpolynomial (or exponential,
assuming EXP 6= NEXP). Lastly, given a hard instance of the succinct permanent modulo a prime, we present
a procedure that expands it to an exponential number of sets of the instances. Each set consists of hard on
average instances, where the exponential growth is relative to the number of bits added to the input.

2 Zero Succinct Permanent

In this section, we introduce the Zero Succinct Permanent problem and establish its complexity hardness.

Definition The Zero Succinct Permanent problem is defined by the following input and output:

input: AnO(logkn) sized boolean circuit C succinctly representing an n×n integer matrixA (with positive
and negative polynomially bounded values) where k is some constant integer.

output: permanent(A) == 0.

Definition Let φ be a boolean formula and let #φ denote the number of satisfying assignments of φ. Let
Cφ be a succinct circuit representation of formula φ and #Cφ denote the number of satisfying assignments
of φ.

Next, we prove that the Zero Succinct Permanent is NEXP time hard.
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Theorem 2.1 Zero Succinct Permanent is NEXP time hard.

Proof In [11] the authors have shown that the Succ-3SAT decision problem is NEXP time hard. We reduce
this problem to the Zero Succinct Permanent based on techniques presented in [14]. In this seminal paper,
Valiant presented a polynomial time reduction from #3SAT to the Permanent problem of an integer ma-
trix. Given an instance φ of the 3SAT, the reduction constructs a directed, weighted graph G with weights
−1, 0, 1, 2, 3, such that

permanent(G) = 4t(φ) × s(φ)

where t(φ) is twice the number of occurrences of literals in φ, minus the number of clauses in φ, and s(φ)
is the number of satisfying assignments of φ.

This construction is based on the composition of graph structures in highly regular fashion. An output
graph G is obtained by a combination of a polynomial number of track, interchange and junction structures.
The order and type of structures are predefined by boolean formula and can be efficiently obtained from the
formula. Namely, given two c| log x|-bit integers, the indices of nodes of graph G, it can be determined in
polynomial time (of the length of the integers) whether there is an edge between these nodes. The algorithm
reads at most polylogarithmic number bits of φ. Call this algorithm A.

Let f denote the reduction transformation of Valiant. Given an O(logkn)-sized boolean circuit repre-
sentation of φ, Cφ, combine an algorithm A with Cφ to obtain a polylogarithmic description of the graph
G = f(φ). Finally, using a relation between permanent(G) and the number of satisfying assignments of
φ, we obtain: if permanent(G) == 0, then #φ = 0, and therefore there is no satisfying assignments for
φ; if permanent(G) > 0, then #φ > 0 implying the existence of satisfying assignments for φ. Note, that
4t(φ) is a positive integer number. Thus, the Zero Succinct Permanent problem is NEXP time hard.

In the next section, we discuss the complexity of another variant of the Succinct Permanent problem.

3 Succinct Permanent Modulo a Prime

Definition The Zero Succinct Permanent mod p problem is defined by the following input and output:

input: AnO(logkn) sized boolean circuit C succinctly representing an n×n integer matrixA (with positive
and negative polynomially bounded values) where k is some constant integer.
p is a prime number, s.t. p = O(nk), given in a binary representation.

output: permanent(A) mod p in binary representation.

To prove the hardness of the defined problem, it is enough to prove the decision version of it. Namely,
the problem that decides whether the permanent of a succinctly represented integer matrix is equal to zero
mod p. We call this problem Zero Succinct Permanent mod p. In the previous section, we proved that
Zero Succinct Permanent Problem (the same problem without modulo operation) is NEXP time hard in the
worst case. Next, we build a polynomial time randomized reduction from Zero Succinct Permanent to Zero
Succinct Permanent mod p.

Given an instance of the Zero Succinct Permanent problem, the reduction calls an oracle for the Zero
Succinct Permanent mod p problem to decide whether the permanent of the input matrix is zero with a high
probability.

In more detail, let C be a boolean circuit of sizeO(logkn) (where k is some constant) encoding an n×n
integer matrix A. A is a matrix with bounded integer values: |aij | ≤ nt for some constant t ≤ k. Note that
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|permanent(A)| ≤ n!(nt)n. By the Chinese Reminder Theorem, to compute the value of permanent(A),
it is sufficient to compute permanent(A) mod p′, for each prime p′ ≤ n2 × log(nt). The number of such
primes is too large to be handled by a polynomial time (of the length of the succinct input) deterministic
reduction. Let z denote that number of prime numbers. Define U to be the set of the first 2 × z prime
numbers. By the Prime Number Theorem, to build a set U , it is enough to consider all primes p′ ≤ n3.
In more detail, let π(x) denote the Euler function. The Prime Number Theorem states that π(x) ≈ x

lnx .
Therefore,

π(n3) ≈ n3

lnn3
≥ 2× t× n2 × log n

ln(t× n2 × log n)
= 2× z

for big enough n. Note that the number of bits required to represent each number from the set U is loga-
rithmic in n (therefore, polynomial in the length of the succinctly represented input). We define the set U
to be the union of two sets: U1–the set of primes that are required by the Chinese Reminder Theorem to
represent the permanent of the input matrix and the set U2 – set of primes we added to U1 to extend it to
form a doubled sized set of primes. Thus, the size of U1 is z and the size of U2 is at least z.

A polynomial time randomized algorithm that solves the Zero Succinct Permanent problem is described
in Fig. 1.

1: p′ ← pick a prime uniformly at random from the set U
2: answer ← call to the oracle of Zero Succinct Permanent Problem mod p′

with a given input circuit
3: if answer == 0 then
4: return permanent(A) == 0
5: else
6: return permanent(A) 6= 0
7: end if

Figure 1: Randomized reduction

If permanent(A) == 0, then for each p′ in U permanent(A) ≡ 0 mod p′, and therefore the answer
will be correct with probability 1.

If permanent(A) 6= 0, then define d to be the number of primes from the setU1, such that permanent(A) ≡
0 mod p. Note, that by the Chinese Reminder Theorem, it holds that d < z. Therefore, z−d is the number
of primes from the set U1 such that permanent(A) 6≡ 0 mod p. Let d′ denote the number of primes from
the set U2 such that permanent(A) ≡ 0 mod p. It holds that d′ < (z − d), since otherwise we will get
that permanent(A) ≡ 0 because the multiplication of these primes with d primes from U1 is greater than
the multiplication of all primes that are required by the Chinese Reminder Theorem. Hence, the number of
primes from the set U2 is such that permanent(A) 6≡ 0 mod p is greater than d. Finally, the number of
primes from the whole set U that satisfy the previous equation is at least z + 1. Therefore, for at least half
of the primes p ∈ U , the value of permanent(A) modulo p is not equal to zero. Namely, in the case that
the permanent of A is non-zero, the probability of a correct answer is at least 1

2 .
To complete the description of the algorithm, we should approve that it works in polynomial time of the

size of the input. First, we present a procedure that chooses a prime number uniformly at random from the
set U that is executed in (expected) polynomial time of the (succinct) input. The procedure picks uniformly
at random a number x in the range and applies a polynomial time primality test to x [1]. The random choice
repeats itself until a prime number is obtained. By the Prime Number Theorem, the expected number of
attempts is polynomial in the size of the (succinct) input.
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Note that a single oracle call with a prime found at random yields probability 1
2 for a correct answer

(in case the permanent is not zero). We can exponentially enlarge the probability for a correct answer by
performing a polynomial number of calls to the oracle.

Lastly, we can assume that the input encoded matrices have only positive values, from the field Zp
(when p is also given as a part of the input). Given an input that encodes a matrix with negative values, we
can add an additional small boolean circuit that performs appropriate arithmetical operations to obtain an
equivalent mod p positive valued matrix. The permanent value of the new matrix under modulo operation
is not changed.

4 Finding Hard Instance for a Given Heuristic

The hardness of theNEXP -complete problems we have discussed above is a worst case hardness. Namely,
given any polynomial time deterministic (or nondeterministic) algorithm claiming to solve the problem,
there are infinitely many n, such that the algorithm errs on solving at least one instance of length n. And
that is due to the fact P ⊂ NEXP (NP ⊂ NEXP ). An interesting question is whether we can efficiently
produce hard instances of the problem. In [5], the authors present a technique that provides hard distributions
of the inputs for heuristics (deterministic and randomized) attempting to solve NP -complete problems.
However, to produce a hard instance of some length n, their technique consumes more time than is required
for heuristics to solve this instance.

In this section, we will adapt the technique in [5] to provide a hard distribution for heuristics that at-
tempt to solve NEXP -complete problems. Obviously, this technique inherits the disadvantage mentioned
above. To overcome this obstacle, we use the idea of two-prover interactive protocols that was proposed
and discussed in [2]. We present a new method to generate hard distributions of NEXP problems against
superpolynomial time heuristics.

To generate hard instances for the Succinct Permanent mod p problem, it is enough to show how to
efficiently generate a hard distribution of any specific NEXP -complete problem. To obtain a hard distribu-
tion of any other complete language, we apply many-one reduction. In particular, we are considering hard
distributions of the Succ-3SAT problem.

This section is organized as follows: first, we discuss polynomial time heuristics, both deterministic and
randomized; next, we observe the case of superpolynomial time heuristics.

4.1 Polynomial Time Heuristics

Deterministic Case Assume we are given deterministic polynomial time algorithm B claiming to solve
the Succ-3SAT problem. The goal is to generate hard instances for heuristic B. However, the result we have
established so far is considering some special type of heuristics, namely, heuristics that have only one-sided
error. Suppose we are given algorithm B such that if B answers “yes” on the input x, then it is assumed
that indeed it holds that x is in the language. From now, we assume that the heuristic trying to solve the
Succ-3SAT problem satisfies the above requirement. Next, we describe a technique that generates a set of
instances of the problem that B fails to solve. We use an idea that was proposed by Gutfreund, Shaltiel
and Ta-Shma [5]. In their paper, they describe a procedure that outputs a set of hard instances of the 3SAT
problem. We modify their technique in order to apply it to our case and formulate the following lemma, that
is a NEXP version of Lemma 3.1 of [5].
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Lemma 4.1 There is a deterministic procedure R, a polynomial q() and a constant d, such that the pro-
cedure R gets three inputs: integers n and a and a description of a deterministic machine B, such that B
claims to solve the Succ-3SAT problem and B has one-sided error. The procedure R runs in time nda

2
and

outputs at most two boolean circuits where the length of each circuit is either n or q(na). Furthermore, if
B is an algorithm that runs in time bounded by na on inputs of length n (for some constant a), then for
infinitely many input lengths n, the invocation of R(n, a,B) gives a set F of boolean circuits, such that
there exists C ∈ F with Succ-3SAT(C) 6= B(C).

Proof We know that Succ-3SAT has no deterministic polynomial time algorithm. Therefore, there are
infinitely many natural numbers n, such that the heuristicB errs on the input of the size n. Next we consider
the statement denoted as Φn: ‘there exists a boolean circuit C of length n, such that Succ-3SAT(C)=1 and
B(C) 6= 1’ . We define a language ErrB = {Φn | n ∈ N and Φn is true}. Note, that ErrB is not empty
(due to our assumption of one-sided error of the heuristic), and the length of Φn is a polynomial on the terms
of n. The first observation is that ErrB ∈ NEXP . Indeed, there is a deterministic exponential (in na)
time verifier such that given as a certificate the boolean circuit C, representing a 3SAT instance φC , and an
assignment α (of an exponential length on the terms of n) for φC , checks whether it is the case that both α
is a satisfying assignment for φC and B(C) 6= 1.

Therefore, we can reduce ErrB to the Succ-3SAT problem using the property of the Cook-Levin reduc-
tion noted by the authors in [11]. A result of the Cook-Levin procedure is a boolean formula that reflects the
movements of an exponential time Turing machine verifying a membership of the language ErrB . We call
this formula Ψn. The variables of this formula are x, α, z, such that x variables describe a boolean circuit, α
variables describe an assignment for the formula represented by circuit x, and z are the auxiliary variables
added by the reduction. And the following holds: for any (x, α, z) that satisfies Ψn, x satisfies Φn, and α is
a certificate for that. Furthermore, Ψn has a highly regular structure. In fact, it can be shown, that there is a
polynomial time (on the terms of na) algorithm XΨn , such that given any two binary strings of length c× n
computes a clause-literal relation of the formula Ψn in polynomial in na time. Namely, for every statement
Φn, we match a polynomial sized (in terms of na) boolean circuit XΨn that encodes a 3SAT formula Ψn.
We chose q() to be a polynomial that is large enough so that q(na) is bigger than the length of XΨn . Finally,
we have reduced the language ErrB into the instances of the Succ-3SAT problem. Namely, for every Φn

(polynomially sized on n), there is XΨn (polynomially sized on na), such that Φn ∈ ErrB if and only if
XΨn ∈ Succ−3SAT .
Searching procedure The hard instance for B is obtained by applying the following searching technique.
Assume n is an integer such that B fails to solve an instance of the length n. Run B on XΨn . If B answers
“no” then it errs on XΨn and we have found a hard instance. If B answers “yes”, we start a searching
process that will hopefully end with the boolean circuit C of the size n, such that B errs on it. The process
sequentially runs B on the inputs obtained from XΨn by partial assignment of the variables of Ψn that de-
scribe a boolean circuit (x variables).
The process is as follows:

• Define Ψi
n = Ψn (α1, . . . , αi, xi+1 . . . xn), where α1, . . . αi is a partial assignment for variables of

Ψn that describe a boolean circuit. Ψ0
n = Ψn.

• Suppose we have fixed a partial assignment, namely B
(
XΨi

n

)
= “yes′′. Then define:

Ψi
n, 1 = Ψn (α1, . . . , αi, 1, xi+2 . . . xn).

Ψi
n, 0 = Ψn (α1, . . . , αi, 0, xi+2 . . . xn).

• Run B
(
XΨi

n,1

)
. If it answers “yes”, define Ψi+1

n = Ψi
n, 1.
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Else, run B
(
XΨi

n,0

)
. If it answers “yes”, define Ψi+1

n = Ψi
n, 0.

Else, B errs on one of the two XΨi
n,1

, XΨi
n,0

. Output them.

• At the end, we hold the whole assignment C = α1 . . . αn. C is a circuit B errs on. Output it.

Note, that for each i, Ψi
n defines a NEXP language. Therefore, we can reduce it in polynomial time to

XΨi
n

instances.
Running time of the searching process. In the worst case, the searching process will stop when the whole
assignment for x variables is found. In every step of the process, we run machine B on the input of length
poly(na). Since the number of x variables is polynomial in n and the running time of B is na, the total time
procedure R runs on the inputs n, a, B is poly(na

2
).

Randomized Case The main motivation of this section is to produce a hard distribution of instances of the
Succinct Permanent mod p problem. Since the reduction we have built for this problem from Succ-3SAT is
randomized, we have to consider producing hard instances for polynomial time randomized heuristics. We
assume that the NEXP class of problems is hard for BPP . Namely, we assume that BPP ⊂ NEXP .
Informally, we want to prove that if BPP 6= NEXP , then for any polynomial time randomized algorithm
trying to solve the Succ-3SAT problem, it is possible to efficiently produce two instances of that problem
such that with a high probability the algorithm errs on one of them. For that, again, we follow the technique
of generating a hard distribution of the instances for randomized heuristics that was proposed in [5]. Again
we discuss the heuristics with one-sided error. Namely, the heuristics such that if output “yes” on the input
x, it holds that x belongs to the language with probability 1.

Next, we provide the results from [5] (without their proofs) and combine them with our observations to
get the proof for the following lemma, that is the NEXP analogous lemma to Lemma 4.1 of [5].

Lemma 4.2 Assume that NEXP 6= BPP . For every constant c > 1
2 , there is a randomized procedure

R, a polynomial q() and a constant d such that the procedure R gets three inputs: integers n, a and a
description of a randomized machine B that has one-sided error. The procedure R runs in time nda

2
and

outputs at most two boolean circuits where the length of each circuit is either n or q(na). Furthermore, if
B is a randomized algorithm that runs in time bounded by na on inputs of length n then for infinitely many
input lengths n, invoking R(n, a,B) results with probability 1 − 1

n in a set F of boolean circuits such that
there exists C ∈ F with Succ− 3SAT (C) 6= Bc(C).

Bc : {0, 1}∗ → {0, 1, ∗} is a deterministic function associated with the randomized machine B in
the following way. Given some probabilistic machine M and some function c(n) over integers, such that
1
2 < c(n) ≤ 1, Mc : {0, 1}∗ → {0, 1, ∗} is defined as follows: Mc(x) = 1 (Mc(x) = 0) if M accepts
(rejects) x with probability at least c(|x|) over its coins; otherwise Mc(x) = ∗.

Proof We follow the proof of the Lemma 4.1 in [5].
First, we transform the randomized algorithm B (of the lemma) into a randomized algorithm B by

amplification.
The algorithm B: Given an input x of length n, algorithm B uniformly chooses n2 independent strings
v1, . . . , vn2 each of them of length na. For every 1 ≤ i ≤ n2, the algorithm calls B(x, vi) and outputs the
majority vote of the answers.

Next, the authors of [5] prove the following statement:
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Lemma 4.3 Let 1
2 < c ≤ 1 be some constant. With probability at least 1 − 2−n for a randomly chosen

u ∈ {0, 1}na+2
, it holds that for every x of length n and b ∈ {0, 1}:

B(x, u) = b⇒ Bc(x) ∈ {b, ∗}

Now, the randomized heuristic B(x) can be replaced with deterministic algorithm B(x, u), where u
is a randomly chosen string. Note, that the heuristic B has one sided-error. To find incorrect instances for
randomized algorithmB, we find incorrect instances for deterministic machineB(x, u). Using Lemma 4.3,
we conclude that with high probability one of the instances is incorrect for B as well.
Randomized searching procedure. As in the deterministic case, we start the searching procedure by
defining the following language. Consider the statement denoted as Φn,u : “there exists a boolean circuit
C of length n such that Succ-3SAT(C)=1 and B(C, u) 6= 1” , for every integer n and u ∈ {0, 1}na+2

. We
define the language ErrB =

{
Φn,u | n ∈ N , u ∈ {0, 1}na+2

and Φn,u is true
}

. As in the deterministic
case, due to the assumption of the one-sided error of the heuristic B, it follows that ErrB is not empty. In
addition, it is clear thats it is a NEXP language. In fact, it can be easily shown, that for infinitely many
n, except for probability 1

2n for random u we have that Φn,u ∈ ErrB . Applying the same arguments as in
the deterministic case, we reduce an instance of ErrB to the boolean circuit XΨn,u , with the properties as
noted in the deterministic case. Next, we describe the randomized procedure R of Lemma 4.3.

The procedure R chooses at random strings u ∈ {0, 1}na+2
and u′ ∈ {0, 1}q(na)a+2

. Then it runs
a searching procedure from the deterministic case on the input XΨn,u with the deterministic heuristic B
with the random choices defined by u′, including the following change: when there is a call to B(x), the
procedure calls B(x, u′).

Following that procedure, R outputs at most two instances and the following holds: for infinitely many
n, R outputs a set of instances, such that with probability at least 1 − 1

n there is an instance C in the set,
such that Bc(C) 6= Succ− 3SAT (C).

The analysis of the running time of the randomized searching procedure R is the same as in the deter-
ministic case.

4.2 Superpolynomial Time Heuristics

Suppose we are given a superpolynomial (deterministic) time algorithm claiming to solve the Succ-3SAT
problem. From the hierarchy theorems of complexity theory, we know that such an algorithm cannot solve
all instances of the Succ-3SAT problem correctly. Hence, we would like to efficiently generate a distribution
of the inputs that the heuristic fails to solve. Note, that in this case, we cannot just use the previous technique,
as we have no time to run the heuristic in order to identify its answer on the given instance. Namely, it is not
efficient (not polynomial time) to run the searching procedure in this case. The idea is to use an interactive
two provers protocol, in order to efficiently identify, whether a particular instance is accepted or rejected by
the given superpolynomial time heuristic.

According to [2], it holds that for any NEXP language L, there is a randomized polynomial time
verifier machine V and infinitely powerful machines P1, . . . Pk such that the following holds:

1. If x ∈ L, then Pr (P1, . . . Pk cause V to accept x) > 1− 2n

2. If x /∈ L, then for any provers P ′1, . . . P
′
k, Pr (P ′1, . . . P

′
k cause V to accept x) < 2−n

LetB denote some superpolynomial time deterministic algorithm with one-sided error claiming to solve
Succ-3SAT problem. We use an interactive proof system for the language LB – the language of the heuristic
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B. Namely, LB is the set of all instances such that B answers “yes” on them (and by the assumption of
one-sided error, B does not mistake on the instances from this set). Note, that LB is a NEXP language.
We start with the language ErrB that was defined in the previous section. Strictly following the proof of
the Lemma 4.1, we reduce this language to the Succ-3SAT problem in order to get the set of the instances
{XΨn}.

The idea is to use the scheme of the searching process as before, but with the following change. Every
time the searching procedure calls the heuristic B on the input x, we run the verifier-provers protocol with
the input x. According to the decision V makes, the process outputs the instance such that B errs on it
with high probability or continues to search for such inputs. In that way, we have a randomized polynomial
time procedure that outputs at most two instances of the problem, such that B errs on one of them with a
high probability. Thus, in the standard model of interactive proofs, the above procedure efficiently searches
and finds the hard instances for the heuristic B. Note, that in that model, the running time of the searching
procedure does not include the time required by the provers.

For the randomized superpolynomial heuristic (under an assumption that NEXP is hard for such class
of heuristics), we use the same scheme as in the randomized polynomial case. Namely, first, by the amplifi-
cation argument, we replace the randomized machine with a deterministic one (defined by a random string
of choices), and then we use the idea of the two provers protocol.

5 Many Hard Instances

The number of hard instances of the Succinct Permanent mod p grows exponentially with the input size.
In Section 3, we proved that there exists (for each sufficiently large n) at least one hard instance of size
O(logkn) of the Succinct Permanent mod p problem that requires a given heuristic exponential time to be
computed correctly. In Section 4, we showed how to find a hard instance for any given heuristic. In this sec-
tion, we use any given hard succinct permanent instance for a given heuristic (of size O(log nk)) to generate
a set ofO(n) succinct permanent instances. The generated set is a combination of random self-reducible sets
that can efficiently solve the given hard succinct instance. The number of instances in the set is exponential
in the additional bits used to enlarge the succinct representation.

Given a boolean circuit C and a prime number p as inputs to the Succinct Permanent mod p. Consider
a matrix A = M(C) that is represented by C. Let the first row of A be:

(x11 x12 . . . x1 logn x1 logn+1 . . . x1n)

Then,
permanent(A) = x11 × per1 + . . .+ x1 logn × perlogn + . . .+ x1n × pern

where perj is a permanent of theAdj1j (adjoint) of the matrixA. We can rewrite it as follows: permanent(A) =
x11 × per1 + x12 × per2 + . . .+ x1 logn × perlogn +X .

The idea is to build O(n) circuits representing matrices, that are obtained from A by replacing the first
log n entries in a manner that allows computing a permanent of A modulo p in polylogarithmic time, given
permanent results modulo p of log n randomly chosen circuits from the set.

One of the possibilities to obtain such a construction is to use the features of the Vandermonde matrix.
Note that in the reduction algorithm, we can use the primes p′, that are required by the Chinese Reminder
theorem, such that p′ ≥ n + 1, without changing the complexity result. Therefore, we can assume that the
hard instance is C, p, s.t. the prime p satisfies p ≥ n+ 1.
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For each 1 ≤ i ≤ p and ai ∈ Zp define:

ri = (ai ai
2 ai

3 . . . ai
logn)

Note, that it is necessary that p > n in order to construct a set of size that is exponential in the input size.
Let Ri be an n × n matrix obtained from A by replacing the first log n entries of the first row of A

with the vector ri. We show that given the value of permanent(Ri) mod p of any log n+ 1 matrices from
R1, . . . Rp, there is a polynomial time algorithm that computes permanent(A) mod p.

Let a be a vector of the first log n entries of the first row of the matrix A. For simplicity, suppose we are
given

permanent(R1) mod p ≡ z1, . . . permanent(Rlogn+1) mod p ≡ zlogn+1

To compute a permanent of A modulo p, one should compute the values of

X mod p, per1 mod p, per2 mod p, . . . perlogn mod p

We build a system of linear equations. The system contains log n + 1 equations, each with log n + 1
variables. All constants in the system are from the field Zp, namely, positive integer numbers. The matrix
representation of the system is as follows:

1 a1 a1
2 . . . a1

logn

1 a2 a2
2 . . . a2

logn

...
...

...
1 (alogn+1) (alogn+1)2 . . . (alogn+1)logn


The vector of variables of the system is: (X per1 per2 . . . perlogn), and the vector of answers is

(z1 z2 . . . zlogn zlogn+1).
Since the matrix is a subset of a Vandermonde matrix, there exists a unique solution to the system. Since

all computations are over the field Zp, the time needed for solving the system is polynomial in the size of the
succinctly represented instance. To complete the description of the technique, we should clarify that for each
matrixRi, there exists a succinct circuit representation. We construct circuitC(Ri) by combining the circuit
C (the succinct circuit representation of the matrix A) with succinct circuit Rowi that contains log n inputs
and log n outputs. Rowi(k) outputs a binary representation of aik mod p, for ai ∈ Zp, 1 ≤ k ≤ log n.

In principle, the above technique is not restricted only to the first row of the matrix. The building
procedure is valid if we choose some row of the matrix (or some column) and some log n entries of the
chosen row (or column) — the permanent of the matrix can be computed by each of its rows (or columns).
Therefore, using this observation, we speculate that the succinct permanent problem is not in the LEARN
class. That is, having an oracle for the answers of log n or less instances of the same generated set do not
reveal the answers of the hard instances of the set of another generated set.1 We emphasize, however, that
there is an efficient algorithm such that given the answers for at least logn + 1 instances from the same
generated set provides in polynomial time answers for any other instance in the same set. Hence, instances
should be carefully chosen from different sets. Such a strategy will not base the hardness on a small set of
hard instances as done in the encoding truth tables technique of [13].

Note that we introduce a new framework in which one would like to avoid the dependencies of instances
in the manner that a solution to one instance (say, after an exhaustive search for a private key) reveals a

1Our speculation is based on the fact that the result of one minor does not totally reveal the result of another minor of the
permanent, otherwise we may use this property to solve the permanent problem in polynomial time starting with a matrix of all
zeros and adding (non zero) lines and columns one after the other calculating the delta in the permanent value.
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solution to other (private key) instances. Not only there is a need to introduce provable hard on average
instances, it is also important to ensure non revealing instance solutions.
Acknowledgments: With pleasure, we thank Mihalis Yanakakis and Salil Vadhan for useful inputs.
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