
The Deterministic and Randomized Query Complexity of a

Simple Guessing Game

Peyman Afshani1, Manindra Agrawal2, Benjamin Doerr3,
Kasper Green Larsen1, Kurt Mehlhorn3, Carola Winzen3

1MADALGO, Department of Computer Science, Aarhus University, Denmark
2Indian Institute of Technology Kanpur, India

3Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract

We study the LeadingOnes game, a Mastermind-type guessing game first regarded as a
test case in the complexity theory of randomized search heuristics. The first player, Carole,
secretly chooses a string z ∈ {0, 1}n and a permutation π of [n]. The goal of the second
player, Paul, is to identify the secret (z, π) with a small number of queries. A query is a
string x ∈ {0, 1}n, and the score of x is

fz,π(x) := max{i ∈ [0..n] | ∀j ≤ i : zπ(j) = xπ(j)} ,

the length of the longest common prefix of x and z with respect to π. We are interested in
the number of queries needed by Paul to identify the secret.

By using a relatively straightforward strategy, Paul can identify the secret with O(n log n)
queries and recently only a modest improvement of this to O(n log n/ log log n) was avail-
able [DW12].

In this paper, we completely resolve the problem by offering the following results. We
show that when limited to deterministic strategies, O(n log n) queries is the best possible.
On the other hand, by using randomization Paul can find the secret code with an expected
number of O(n log log n) queries, which we prove is optimal by matching it with a lower
bound of the same asymptotic magnitude. Finally, we prove that a number of problems
that are naturally related to our problem (such as deciding whether a sequence of queries
and scores is consistent) can be solved in polynomial time.

Keywords: Query complexity; randomized algorithms; guessing games; Mastermind.

1 Introduction

Guessing games and query complexity have a long history in theoretical computer science due
to a wide range of applications. Originating from recent attempts to understand the difficulty
of problems for randomized search heuristics, we analyze the following LeadingOnes-game,
which distantly resembles the 2-color variant of the well-known Mastermind game. In our
game, the first player Carole (also called Codemaker) secretly chooses a string z ∈ {0, 1}n and
a permutation π of [n]. The goal of the second player, called Paul or Codebreaker, is to identify
the secret code (z, π) with a small number of queries. A query simply is a string x ∈ {0, 1}n.
Carole’s answer to a query x is its score

fz,π(x) := max{i ∈ [0..n] | ∀j ≤ i : zπ(j) = xπ(j)} ,

the length of the longest common prefix of x and z with respect to π.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 87 (2012)

It is easy to see that Paul can find the secret using O(n log n) queries by a binary search
strategy. He starts by querying the all-zeros string x0 := (0, . . . , 0) and the all-ones string
x1 := (1, . . . , 1, 1). The scores determine zπ(1). By flipping a set I of bits in the better of
the two strings, Paul can determine whether π(1) ∈ I or not. This allows to find π(1) via a
binary search strategy in O(log n) queries. Once π(1) and zπ(1) are known, Paul may iterate this
strategy on the remaining bit positions to determine π(2) and zπ(2), and so on. This yields an
O(n log n) query strategy for identifying the secret code. An upper bound of O(n log n/ log logn)
for a randomized strategy was recently shown in [DW12]. In this work, we greatly expand our
understanding of the LeadingOnes game.

(1) We first show that every deterministic strategy for Paul requires Ω(n log n) queries in
the worst case (see Section 3). Hence the binary search approach is asymptotically optimal
among deterministic strategies.

(2) We then exhibit a randomized strategy for Paul that finds the secret with an expected
number of O(n log log n) queries (Section 4), i.e., on average, we determine a pair (zπ(i), π(i)) in
O(log log n) queries. Putting this into an information-theoretic perspective, this results means
that we succeed in learning an average of O(log n/ log log n) bits of information in each query.

(3) The above bound is asymptotically optimal, as shown in Section 5. In contrast, for most
guessing games (Mastermind for constant number of colors, coin weighting games, many liar
games), the asymptotic query complexity equals the information-theoretic lower bound.

(4) Finally, we show that the decision problem of whether a set of scores is consistent, the
search problem of finding a secret that is consistent with a set of queries and scores, and the
counting problem of determining the number of secrets consistent with a search history, all can
be solved in polynomial time. This is again different from Mastermind, where corresponding
problems are either NP-complete or #P-complete.

Relation to Other Work: Our interest for the LeadingOnes problem stems from the theory
of randomized search heuristics. While problem-independent randomized search heuristics such
as evolutionary algorithms or ant colony optimization proved to be highly successful in efficiently
solving difficult problems, our understanding of these methods still is limited. The application
of techniques from the algorithms and complexity area in the last 15 years has resulted in some
progress. On the algorithms analysis side, this lead to several proven bounds on the run-time
of several randomized search heuristics (see [AD11]). On the complexity side, Droste, Jansen,
and Wegener [DJW06] suggested query complexity, i.e., the minimum number of search points
to be evaluated to find the optimum, as a natural lower bound.

One of the benchmark problems often regarded in the field of evolutionary computation is
the LeadingOnes test function

Lo : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : xj = 1}

assigning to every bit string the length of the longest prefix with all entries equal to one. The
set of functions f(z,π) generalize Lo to a class of instances invariant under automorphisms of
the hypercube. Our result that the query complexity of the LeadingOnes function class is
Θ(n log log n) in particular implies that no general-purpose randomized search heuristics can
solve this problem evaluating less than Θ(n log log n) search points. Note that all classic search
heuristics need a quadratic number of search point evaluations for the LeadingOnes problem.

The archetypal guessing game actually being played is Mastermind (note, though,
that a number of applications have been found, e.g., in the context of comparing DNA-
sequences [Goo09a] and API-level attacks on user PIN data [FL10]). In the original Mastermind
game, Carole chooses a secret code z ∈ [k]n. She returns to each of Paul’s queries x ∈ [k]n the
number eq(z, x) of positions in which x and z agree and the number w(z, x) of additional colors

2

in x that appear in z (formally, w(z, x) := maxπ∈Sn |{i ∈ [n] | zi = xπ(i)}| − eq(z, x)). On the
board, eq(z, x) is typically indicated by black answer-pegs, and w(z, x) is usually indicated by
white answer-pegs. Paul’s task is to identify z with as few queries as possible.

Mastermind has been studied intensively since the sixties [ER63, Knu77, Chv83, CCH96,
Goo09b, Vig12] and thus even before it was invented as a board game. In particular, [ER63,
Chv83] show that for all n and k ≤ n1−ε, Paul can find the secret code by simply guessing
Θ(n log k/ log n) random queries. This can be turned into a deterministic strategy having the
same asymptotic complexity. The information-theoretic lower bound of Ω(n log k/ log n) shows
that this is best possible, and also, that there is no difference between the randomized and
deterministic case. Similar situations have been observed for a number of guessing, liar, and
pusher-chooser games (see, e.g., [Pel02, Spe94]). Our results show that things are different for
the LeadingOnes game.

The same is true for the hardness of finding or counting solutions consistent with previous
queries and scores. For Mastermind with suitably many colors and black and white answer-
pegs, Stuckman and Zhang showed that is is NP-hard to decide whether or not a Mastermind
guessing history is feasible, cf. [SZ06]. Goodrich [Goo09b] showed a corresponding result for
the game with black answer-pegs only. Most recently, Viglietta has shown that both hardness
results apply also to the setting with only two colors [Vig12]. He also shows that computing the
number of secrets that are consistent with a given Mastermind guessing history is #P-complete.
In contrast, for the LeadingOnes-game both problems can be solved efficiently (Section 6).

Other problems related to the LeadingOnes-game include coin weighing, vector reconstruc-
tion, and graph reconstruction games, as well as uniquely decodable codes for noiseless n-user
adder channels. In coin weighing, one is given a set of coins and a (beam or spring) balance.
The goal is to identify the (relative or exact) weight of each coin using as few weighings as
possible. A number of different versions of coin weighing problems exist. A good survey can be
found in Bshouty’s paper on polynomial time algorithms for coin weighing problems [Bsh09].
For most coin weighing problems, the information-theoretic lower bound is tight.

Query complexities are also studied in the context of decision tree complexity and boolean
functions. A well-known example of the former is the Ω(n log n) bound for comparison-based
sorting algorithms. The queries are comparisons, and the secret is the unknown permutation
of the input. Lower bounds for more complex queries, e.g., linear functions of the input, are
also known. In the latter context, see [BdW02] for a survey, the goal is to evaluate a given
Boolean function f on a secret argument x by querying bits of x. For example, x could be the
adjacency matrix of a graph and f is one (zero) if the graph is connected (not connected). For
graph connectivity the deterministic query complexity is Θ(n2) and the randomized complexity
is about Ω(n4/3).

2 Preliminaries

For all positive integers k ∈ N we define [k] := {1, . . . , k} and [0..k] := [k] ∪ {0}. By enk
we denote the kth unit vector (0, . . . , 0, 1, 0, . . . , 0) of length n. For a set I ⊆ [n] we define
enI :=

∑
i∈I e

n
i = ⊕i∈Ieni , where ⊕ denotes the bitwise exclusive-or. We say that we create

y from x by flipping I or that we create y from x by flipping the entries in position I if we
set y := x ⊕ enI . By Sn we denote the set of all permutations of [n]. For r ∈ R≥0, let
dre := min{n ∈ N0 | n ≥ r}. and brc := max{n ∈ N0 | n ≤ r}. To increase readability, we
sometimes omit the d·e signs; that is, whenever we write r where an integer is required, we
implicitly mean dre.

3

Let n ∈ N. For z ∈ {0, 1}n and π ∈ Sn we define

fz,π : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : zπ(j) = xπ(j)} .

z is called the target string of fz,π and π is called the target permutation. Paul must identify
target string and target permutation by asking a sequence (x1, x2, . . .) of queries. The answer
to query xi is the score si = fz,π(xi). Paul can stop after t queries if there is only a single pair
(z, π) ∈ {0, 1}n × Sn with si = fz,π(xi) for 1 ≤ i ≤ t.

A randomized strategy for Paul is a sequence of p(0), p(1), . . . of probability distributions
over {0, 1}n. For any t, the distribution p(t) may only depend on the first t − 1 queries and
scores. A strategy is deterministic if all distributions are one-point distributions. The expected
complexity of a randomized strategy on input (z, π) is the expected number of queries required
to identify the secret, and the expected complexity of a strategy is the worst case over all secrets.

A simple information-theoretic argument gives a Ω(n) lower bound. The search space has
size 2nn!, since the unknown code is an element of {0, 1}n × Sn. That is, we need to “learn”
Ω(n log n) bits of information. Each score is a number between 0 and n, i.e., we learn at most
O(log n) bits of information per query, and the Ω(n) bound follows.

We remark that knowing z allows Paul to determine π with n− 1 queries z⊕ eni , 1 ≤ i < n.
Observe that π−1(i) equals fz,π(z⊕eni)+1. In evolutionary computation, one is frequently only
interested in finding an x maximizing fz,π(x). In our situation, x = z, and hence finding an
optimizing argument is no easier (up to O(n) questions) than learning the secret (z, π).

An observation crucial to all our proofs is the fact that a vector (V1, . . . , Vn) of subsets of [n],
together with a top score query (x∗, s∗), captures the knowledge provided by a guessing history
H = (xi, si)ti=1 about the secret (z, π). Intuitively, Vi corresponds to the possible values of π(i)
and we call Vi the candidate set for position i. Note that, however, that in general not all values
in a candidate set could be valid. For instance, if at some stage V1 = {2, 4, 5}, V2 = {2, 4},
V3 = {2, 5}, and V4 = {5, 7}, the algorithm can deduce that π(4) = 7.

Theorem 1. Let t ∈ N, and let H = (xi, si)ti=1 be a guessing history. Construct sets
V1, . . . , Vn ⊆ [n] according to the following rules:

(1) If there are h and ` with j ≤ sh ≤ s` and xhi 6= x`i , then i 6∈ Vj.
(2) If there are h and ` with s = sh = s` and xhi 6= x`i , then i 6∈ Vs+1.
(3) If there are h and ` with sh < s` and xhi = x`i , then i 6∈ Vsh+1.
(4) If i is not excluded by one of the rules above, then i ∈ Vj.
Furthermore, let s∗ := max{s1, . . . , st} and let x∗ = xj for some j with sj = s∗.
A pair (z, π) is consistent with H if and only if (a) fz,π(x∗) = s∗ and (b) π(i) ∈ Vi for all

i ∈ [n].

Proof. Let (z, π) satisfy conditions (a) and (b). We show that (z, π) is consistent with H. To
this end, let h ∈ [t]. We need to show that fh := fz,π(xh) = sh.

Assume fh < sh. Then zπ(fh+1) 6= xh
π(fh+1)

. Since fh + 1 ≤ s∗, this implies (together

with (a)) that xh
π(fh+1)

6= x∗
π(fh+1)

. Rule (1) yields π(fh + 1) /∈ Vfh+1; a contradiction to (b).

Similarly, if we assume fh > sh, then xh
π(sh+1)

= zπ(sh+1). We distinguish two cases. If

sh < s∗, then by condition (a) we had xh
π(sh+1)

= x∗
π(sh+1)

. By rule (3) this would imply

π(sh + 1) /∈ Vsh+1; a contradiction to (b).
On the other hand, if sh = s∗ was true, then xh

π(sh+1)
= zπ(sh+1) 6= x∗

π(sh+1)
by (a). Rule (2)

would imply π(sh + 1) /∈ Vπ(sh+1), again contradicting (b).
Necessity is trivial.

4

The following update rules maintain the Vj ’s. In the beginning, let Vj := [n], 1 ≤ j ≤ n.
After the first query, do nothing. For all subsequent queries, do the following: Let I be the
set of indices in which the current query x and the current best query x∗ agree. Let s be the
objective value of x and let s∗ be the objective value of x∗.

Rule 1: If s < s∗, then Vi ← Vi ∩ I for 1 ≤ i ≤ s and Vs+1 ← Vs+1 \ I.
Rule 2: If s = s∗, then Vi ← Vi ∩ I for 1 ≤ i ≤ s∗ + 1.
Rule 3: If s > s∗, then Vi ← Vi ∩ I for 1 ≤ i ≤ s∗ and Vs∗+1 ← Vs∗+1 \ I. We further replace

s∗ ← s and x∗ ← x.

3 The Deterministic Query Complexity

Theorem 2. The deterministic query complexity of the LeadingOnes-game with n positions
is Θ(n log n).

As mentioned in the introduction, the upper bound can be achieved by an algorithm that
resembles binary search and iteratively identifies π(1), . . . , π(n) and the corresponding bit values
zπ(1), . . . , zπ(n).

The lower bound follows from the observation that an adversary can force Ω(log n) queries
for every two positions revealed. He proceeds in phases. In each phase, he reveals two positions
and forces Ω(log n) queries. We outline the first phase. The adversary answers 0 or 1 to each
query in the phase. The answer can always be given in a way such that the size of V1 at most
halves; see the update rules in the preceding section. Once |V1| = 2, the adversary chooses
i′ = π(1) ∈ V1 and i′′ = π(2) ∈ V2 arbitrarily, sets zi′ = x∗i′ and zi′′ = 1− x∗i′′ , removes i′ and i′′

from V3, . . . , Vn, and moves on to the next phase. Here x∗ is a query with maximal score.

4 A Randomized O(n log log n) Winning Strategy

We show that Paul needs only O(n log logn) queries to identify the secret code if we allow him
to make random decisions.

Theorem 3. The randomized query complexity of the LeadingOnes-game with n positions is
O(n log log n).

The strategy has two parts. In the first part, we identify the positions π(1), . . . , π(q) and
the corresponding bit values zπ(1), . . . , zπ(q) for some q ∈ n − Θ(n/ log n) with O(n log logn)
queries. In the second part, we find the remaining n − q ∈ Θ(n/ log n) positions and entries
using the binary search algorithm with O(log n) queries per position. Part 1 is outlined below;
the details are in the appendix.

The Strategy: We remind the reader that, at any given stage of the LeadingOnes-game,
all information that the queries reveal about the secret (z, π) is stored in the candidate sets
V1, . . . , Vs∗+1. Here and in the following, by s∗ we denote the current best score. By x∗ we
denote a corresponding query, i.e., fz,π(x∗) = s∗. For brevity, we write f for fz,π.

There is a trade-off between learning more information about π by reducing the sets
V1, . . . , Vs∗+1 and increasing the score s∗. In our O(n log log n) winning strategy, we alternate
between increasing the score s∗ and reducing the sizes of the candidate sets Vi.

To illustrate the main ideas, we describe the first steps. We start by querying f(x) and
f(y), where x is arbitrary and y = x ⊕ 1n. By swapping x and y if needed, we may assume
f(x) = 0 < f(y). We now run a randomized binary search for finding π(1). We choose uniformly
at random a subset F1 ⊆ V1 (V1 = [n] in the beginning) of size |F1| = |V1|/2. We query f(y′)

5

where y′ is obtained from y by flipping the bits in F1. If f(y′) > f(x), we set V1 ← V1 \ F1; we
set V1 ← F1 otherwise. This ensures π(1) ∈ V1. We stop the binary search once π(2) 6∈ V2 is
sufficiently likely; the analysis will show that Pr[π(2) ∈ V1] ≤ (log n)−d for some large enough
constant d is a good choice.

We now start pounding on V2. Let {x, y} = {y, y ⊕ 1V1}. If π(2) 6∈ V2, one of f(x) and
f(y) is one and the other is larger than one. Swapping x and y, if necessary, we may assume
f(x) = 1 < f(y). We now use randomized binary search to reduce the size of V2 to n/(logn)d.

At this point we have |V1|, |V2| ≤ n/ logdn. We hope that π(3) /∈ V1 ∪ V2, in which case we
can continue as before.

At some point the probability that π(i) /∈ V1∪ . . .∪Vi−1 drops below a certain threshold and
we cannot ensure to make progress anymore by simply querying x⊕ ([n]\(V1∪ . . .∪Vi−1)). This
situation is reached when i = log n and hence we abandon the previously described strategy
once s∗ = log n. At this point, we move our focus from increasing the current best score s∗ to
reducing the size of the candidate sets V1, . . . , Vs∗ . We reduce their sizes to at most n/(log2 n)d.
This will be discussed below.

Once the sizes |V1|, . . . , |Vs∗ | have been reduced to at most n/(log2 n)d, we move our focus
back to increasing s∗. The probability that π(s∗ + 1) ∈ V1 ∪ . . . ∪ Vs∗ will be small enough
(details below), and we proceed as before by flipping [n] \ (V1 ∪ . . .∪ Vs∗) and reducing the size
of Vs∗+1 to n/(log n)d. Again we iterate this process until s∗ = 2 log n. At this point we reduce
the sizes of Vlogn+1, . . . , V2 logn to n/(log2 n)d. We say that we add these candidate sets to the
second level. They were on the first level before, i.e., when their size was still n/(log n)d. We
continue with this until log2 n sets have been added to the second level. At this point we reduce
the sizes of V1, . . . , Vlog2 n to at most n/(log4 n)d, thus adding them to the third level.

In total we have t = O(log log n) levels. Each time xi := log2i−1
n sets have been added to

the ith level, we reduce the size of these sets to n/(log2i n)d = n/xdi+1, thus adding them to the
(i+ 1)st level.

When xt sets have been added to the tth level, we reduce the size of each of these sets to
one and move them to the last level, level t+ 1. Thus Vj = {π(j)} for each set Vj on level t+ 1.

We need to discuss how we handle failures; i.e., if f(y) = f(x) = s∗ or f(y), f(x) > s∗ holds.
In this case we know that π(s∗+ 1) has not been flipped. Hence π(s∗+ 1) ∈ ∪s∗j=1Vj must hold.

Therefore, we must reduce the size of ∪s∗j=1Vj to “free” π(s∗ + 1). We immediately abort the

first level by reducing the size of each of the Vis currently on that level to n/xd2, thus adding
them to the second level. Should we still not make progress by flipping all bits in [n]\ ∪s∗j=1 Vj ,

we continue by reducing the size of each level-2 set to n/xd3, and so on, until we eventually have
π(s∗ + 1) /∈ ∪s∗j=1Vj , in which case we can continue with the “increase the score by one, then
reduce the size of the candidate sets”-procedure described above.

We describe how to reduce the sizes of the up to x`−1 candidate sets from some value
≤ n/xd`−1 to the target size n/xd` of level ` with an expected number of O(1)x`−1d(log x` −
log x`−1)/ log x`−1 queries. We make us of a procedure subroutine2 for this reduction: It
reduces the sizes of at most k candidate sets to a kth fraction of their original size using at
most O(k) queries, where k is a parameter. We use subroutine2 with parameter k = x`−1

repeatedly to achieve the full reduction.
subroutine2 is given a set J of at most k indices and a y with f(y) ≥ max J . The goal

is to reduce the size of each candidate set Vj , j ∈ J , below a target size m where m ≥ |Vj |/k
for all j ∈ J . The routine works in phases. Let J be the set of indices of the candidate sets
that are still above the target size at the beginning of a phase. For each j ∈ J , we randomly
choose a subset Fj ⊆ Vj of size |Vj |/k. We create a new bit string y′ from y by flipping all
candidates ∪j∈JFj . A condition on the sets Vj , j ∈ J ensures that we have either f(y′) ≥ max J

6

or f(y′) = j − 1 for some j ∈ J .1

In the first case, i.e., if f(y′) ≥ max J , none of the sets Vj was hit, and for all j ∈ J we can
remove the subset Fj from Vj . We call such queries “off-trials”. An off-trial reduces the size of
all sets Vj , j ∈ J , to a (1− 1/k)th fraction of their original size.

If, on the other hand, we have f(y′) = j − 1 for some j ∈ J , we can replace Vj by set Fj as
π(j) ∈ Fj must hold.1 Since |Fj | = |Vj |/k ≤ m by assumption, this set has now been reduced
to its target size and we can remove it from J .

We continue in this way until at least half of the indices are removed from J and at least
ck off-trials occurred, for some constant c satisfying (1− 1/k)ck ≤ 1/2. Consider any j that is
still in J . The size of Vj was reduced by a factor (1− 1/k) at least ck times. Thus its size was
reduced to at most half its original size. We now may half k without destroying the invariant
m ≥ |Vj |/k for j ∈ J . The effect of halving k is that the relative size of the sets Fj will be
doubled for the sets Vj that still take part in the reduction process.

Lemma 4. Let k ∈ N, let J ⊆ [n] be a set of at most k indices with Vj ∩ Vp = ∅ for j ∈ J and
p ∈ [max J]\{j}, and let y ∈ {0, 1}n be such that f(y) ≥ max J , and let m ∈ N be such that
m ≥ |Vj |/k for all j ∈ J .

In expectation it takes O(k) queries until subroutine2(k, J,m, y) has reduced the size of Vj
to at most m for each j ∈ J .

Proof of Theorem 3: It remains to show that the first phase of our winning strategy requires
at most O(n log log n) queries. If no failure happened, the expected number of queries was
bounded by

q

xt

(
xt log n

log xt
+

xt
xt−1

(
xt−1dc(log xt − log xt−1)

log xt−1

+
xt−1

xt−2

(
. . .+

x2

x1

(
x1dc(log x2 − log x1)

log x1
+ x1d log x1

))))
≤ndc

(
log n

log xt
+

log xt
log xt−1

+ . . .+
log x2

log x1
+ log x1 − t

)
, (1)

where c is the constant hidden in the O(1)-term in Lemma 4. To verify this formula, observe
that we fill the (i − 1)st level xi/xi−1 times before level i is filled with its xi candidate sets.
To add xi−1 candidate sets from level i− 1 to level i, we need to reduce their size from n/xdi−1

to n/xdi . By Lemma 4 this requires at most xi−1dc(log xi − log xi−1)/ log xi−1 queries. The
additional x1d log x1 term accounts for the queries caused by the randomized binary search
algorithm through which we initially reduce the sizes of the Vis to n/xd1—requiring d log x1

queries per call. Finally, the term xt log n/ log xt accounts for the final reduction of the Vis
to a set containing only one single element (at this stage we shall finally have Vi = {π(i)}).
More precisely, this term is (xt(log n− d log xt)) / log xt but we settle for upper bounding this
expression by the term given in the formula.

Next we need to bound the number of queries caused by failures. We show that, on average,
not too many failures happen. More precisely, we show that the expected number of level-i
failures is at most n2/((n − q)(xd−1

i − 1)). By Lemma 4, each such level-i failure causes an
additional number of at most 1 + xidc(log xi+1 − log xi)/ log xi queries; (the 1 counts for the

1This can be ensured by the somewhat technical condition that Vj ∩Vp = ∅ for all j ∈ J and p ∈ [max J]\{j}.
This condition is satisfied throughout our strategy.

7

query in which we failed to increase the current best score). Thus

t∑
i=1

n2

(n− q)(xd−1
i − 1)

(
1 +

xidc(log xi+1 − log xi)

log xi

)
(2)

bounds the expected number of additional queries caused by failures.
We recall the settings of the xi. We have x1 = log n and xi = log2i−1

n. We further have
t ∈ Θ(log log n), so that log xt = Ω(log n). The parameter d is some constant ≥ 4. With these
parameter settings, formula (1) evaluates to

ndc

(
log n

log xt
+ 2(t− 1) + log log n− t

)
= O(n log logn)

and, somewhat wasteful, we can bound formula (2) from above by

n2dc

n− q

t∑
i=1

x
−(d−3)
i = O(n log n)

t−1∑
i=0

x
−(d−3)2i

1 < O(n log n)(xd−3
1 − 1)−1 = O(n) .

This shows that the overall expected number of queries sums to O(n log log n) + O(n) =
O(n log log n).

5 The Ω(n log log n) Lower Bound

Theorem 5. The best winning strategy for the LeadingOnes-game with n positions requires
Ω(n log log n) queries.

Let Π be a permutation drawn uniformly among all the permutations of [n] (in this section,
we use capital letters to denote random variables). Given such a permutation, we let our target
string Z be the one satisfying ZΠ(i) = (i mod 2) for i = 1, . . . , n. Since Z is uniquely determined
by the permutation Π, we will mostly ignore the role of Z in the rest of this section. Finally,
we use F (x) to denote the value of the random variable fZ,Π(x) for x ∈ {0, 1}n. We will also
use the notation a ≡ b to mean that a ≡ b mod 2.

By fixing the random coins (the easy direction of Yao’s principle), a randomized solution
with expected t queries implies the existence of a deterministic query scheme with expected t
queries over our distribution. We lower bound t for such a deterministic query scheme.

A deterministic query scheme is a decision tree in which each node v is labeled with a string
xv ∈ {0, 1}n. Each node has n+1 children, numbered from 0 to n, and the ith child is traversed
if F (xv) = i. To guarantee correctness, no two inputs can end up in the same leaf.

For a node v in the decision tree, we define maxv as the largest value of F seen along the
edges from the root to v. Note that maxv is not a random variable and in fact, at any node v
and for any ancestor u of v, conditioned on the event that the search path reaches v, the value
of F (xu) is equal to the index of the child of u that lies on the path to v. Finally, we define Sv
as the subset of inputs (as outlined above) that reach node v.

We use a potential function which measures how much “information” the queries asked have
revealed about Π. Our goal is to show that the expected increase in the potential function after
asking each query is small. Our potential function depends crucially on the candidate sets. The
update rules for the candidate sets are slightly more specific than the ones in Section 2 because
we now have a fixed connection between the two parts of the secret. We denote the candidate
set for π(i) at node v with V v

i . The precise definition of candidate sets is as follows:

V wt
i =


V v
i ∩ P vi mod 2 if i ≤ t ,
V v
i ∩ P vt mod 2 if i = t+ 1 ,
V v
i if i > t+ 1.

8

As with the upper bound case, the candidate sets have some very useful properties. These
properties are slightly different from the ones observed before, due to the fact that some extra
information has been announced to the query algorithm. We say that a candidate set V v

i is active
(at v) if the following conditions are met: (i) at some ancestor node u of v, we have F (xu) = i−1,
(ii) at every ancestor node w of u we have F (xw) < i − 1, and (iii) i < min {n/3,maxv}. We
call V v

maxv +1 pseudo-active (at v).

Lemma 6. The candidate sets have the following properties:
(i) Two candidate sets V v

i and V v
j with i < j ≤ maxv and i 6≡ j are disjoint.

(ii) An active candidate set V v
j is disjoint from any candidate set Vi provided i < j < maxv.

(iii) The candidate set V v
i , i ≤ maxv is contained in the set V v

maxv +1 if i ≡ maxv and is
disjoint from it if i 6≡ maxv.

(iv) For two candidate sets V v
i and V v

j , i < j, if V v
i ∩ V v

j 6= ∅ then V v
i ⊂ V v

j .

We define the potential of an active candidate set V v
i as log log (2n/|V v

i |). This is inspired
by the upper bound: the potential increase of one corresponds to a candidate set advancing one
level in the upper bound context (in the beginning, a set V v

i has size n and thus its potential is
0 while at the end its potential is Θ(log log n). With each level, the quantity n divided by the
size of Vi is squared). We define the potential at a node v as

ϕ(v) = log log
2n

|V v
maxv +1| − Conv

+
∑
j∈Av

log log
2n

|V v
j |
,

in which Av is the set of indices of active candidate sets at v and Conv is the number of candidate
sets contained inside V v

maxv +1. Note that from Lemma 6, it follows that Conv = bmaxv /2c.
After some lengthy calculations, it is possible to prove the following lemma. The full proof

is presented in Appendix C. Here instead, we give only a very high level overview.

Lemma 7. Let v be a node in T and let iv be the random variable giving the value of F (xv)
when Π ∈ Sv and 0 otherwise. Also let w0, . . . , wn denote the children of v, where wj is the
child reached when F (xv) = j. Then, E[ϕ(wiv)− ϕ(v) | Π ∈ Sv] = O(1).

Note that we have E[ϕ(wiv)−ϕ(v) | Π ∈ Sv] =
∑n

a=0 Pr[F (xv) = a | Π ∈ Sv](ϕ(wa)−ϕ(v)).
We consider two main cases: F (xv) ≤ maxv and F (xv) > maxv. In the first case, the maximum
score will not increase in wa which means wa will have the same set of active candidate sets. In
the second case, the pseudo-active candidate set V v

maxv +1 will turn into an active set V wa
maxv +1 at

wa and wa will have a new pseudo-active set. While this second case looks more complicated,
it is in fact the less interesting part of the analysis. This is because the probability of suddenly
increasing the score by α is extremely small (we will show that it is roughly O(2−Ω(α))) which
subsumes any significant potential increase for values of a > maxv.

Let a1, . . . , a|Av | be the indices of active candidate sets at v sorted in increasing order.
We also define a|Av |+1 = maxv +1. For a candidate set V v

i , and a Boolean b ∈ {0, 1}, let
V v
i (b) = {j ∈ V v

i | xv[j] = b}. Clearly, |V v
i (0)| + |V v

i (1)| = |V v
i |. For even ai, 1 ≤ i ≤ |Av|,

let εi = |V v
i (1)|/|V v

i |, and for odd i, let εi = |V v
i (0)|/|V v

i |. Also, let ε′i := Pr[ai ≤ F (xv) <
ai+1 − 1|Π ∈ Sv ∧ F (xv) ≥ ai]. Note that ε′i = 0 if ai+1 = ai + 1.

With these definitions, it is clear that we have |V wj
ai | = |V v

ai | for j < ai − 1, |V wj
ai | = εi|V v

ai |
for j = ai − 1, and |V wj

ai | = (1− εi)|V v
ai | for j > ai − 1. The important fact is that we can also

bound other probabilities using the εi’s and ε′i’s: we can show that Pr[F (xv) = ai−1|Π ∈ Sv] ≤
εiΠ

i−1
j=1(1− εj)(1− ε′j) and Pr[ai ≤ F (xv) < ai+1 − 1|Π ∈ Sv] ≤ ε′i(1− εi)Π

i−1
j=1(1− εj)(1− ε′j).

Thus, for the most part, proving Lemma 7 reduces to proving an inequality based on εi’s and
ε′i’s. We say for the most part since the potential function also crucially depends on the |V v

j |s

9

(and less importantly on Conv). This presents a challenge since it is impossible to bound the
|V v
j |s using εi’s and ε′i’s. To overcome this problem, we observe that by Lemma 6 any two active

candidate sets are disjoint, enabling us to divide the potential function into smaller summations:
for ϕ(v) (as well as ϕ(wa)), the summation over j ∈ Av is divided into O(log n) summations
such that the ith summation is over all the indices j such that |V v

j | is roughly 2i. Thus, in the

ith summation, we can replace |V v
j | with 2i which enables us to turn the problem into proving

a general inequality. This is merely a very high level overview of the potential function analysis
and there are many details and technical difficulties. For the complete proof see Appendix C.

5.1 Potential at the End

Intuitively, if the maximum score value increases after a query, it increases, on average, only
by a constant factor. In fact, in Appendix C, we prove that the probability of increasing the
maximum score value by α after one query is O(2−α). Thus, it follows from the definition of
the active candidate sets that when the score reaches n/3, there are Ω(n) active candidate sets,
on average. However, by Lemma 6, the active candidate sets are disjoint. This means that
a fraction of them (again at least Ω(n) of them), must be small, or equivalently, their total
potential is Ω(n log log n). In the rest of this section, we prove this intuition.

Given an input (z, π), we say an edge e in the decision tree is increasing if e corresponds
to an increase in the maximum score and it is traversed given the input (z, π). We say that an
increasing edge is short if it corresponds to an increase of at most c in the maximum function
score (in which c is a sufficiently large constant) and we call it long otherwise. Let N be the
random variable denoting the number of increasing edges seen on input Π before reaching a
node with score greater than n/3. Let Lj be the random indicator variable taking the value 0
if the jth increasing edge is short, and taking the value equal to the amount of increase in the
score along this edge if not. If j > N , then we define Lj = 0. Also let Wj be the random variable
corresponding to the node of the decision tree where the jth increase happens. As discussed, in
Appendix C we prove that for every node v, Pr[Lj ≥ α|Wj = v] ≤ 2−Ω(α). We want to upper
bound

∑n
j=1 E[Lj] (there are always at most n increasing edges). From the above, we know

that

E[Lj] ≤ E[Lj | N ≥ j]

=
∑
v∈T

n∑
i=c+1

i · Pr[Lj = i ∧Wj = v | N ≥ j] =
∑
v∈T

n∑
i=c+1

i · Pr[Lj = i ∧Wj = v]

=
∑
v∈T

n∑
i=c+1

i · Pr[Lj = i |Wj = v] Pr[Wj = v] ≤
∑
v∈T

n∑
i=c+1

i

2Ω(i)
Pr[Wj = v]

≤
∑
v∈T

1

2Ω(c)
Pr[Wj = v] ≤ 1

2Ω(c)
,

where the summation is taken over all nodes v in the decision tree T . The computation shows∑n
j=1 E[Lj] ≤ n/2Ω(c). By Markov’s inequality, we get that with probability at least 3/4, we

have
∑n

j=1 Lj ≤ n/2Ω(c). Thus, when the function score reaches n/3, short edges must account

for n/3− n/2Ω(c) of the increase which is at least n/6 for a large enough constant c. Since any
short edge has length at most c, there must be at least n/(6c) short edges. As discussed, this
implies existence of Ω(n) active candidate sets that have size O(1), meaning, their contribution
to the potential function is Ω(log log n). Combined with Lemma 7 this proves Theorem 5.

10

6 Polynomial Time Feasibility Checks

Let H := (xi, si)ti=1 be a vector of search points xi ∈ {0, 1}n and scores si ∈ [0..n]. We call H a
guessing history. H is feasible if there exists a pair (z, π) ∈ {0, 1}n × Sn that is consistent with
it; i.e., fz,π(xi) = si for all i ∈ [t].

Theorem 8. It is decidable in polynomial time whether a guessing history is feasible. Further-
more, we can efficiently compute the number of pairs consistent with it.

Both statements in Theorem 8 are based on Theorem 1. Given a guessing history we first
compute the sets V1, . . . , Vn as described in Theorem 1. Next we construct a bipartite graph
G = G(V1, . . . , Vn) with node set [n] on both sides. Connect j to all nodes in Vj on the other
side. Permutations π with π(j) ∈ Vj for all j are in one-to-one correspondence to perfect
matchings in G. If there is no perfect matching, the history in infeasible. Otherwise, let π be
any permutation with π(j) ∈ Vj for all j. Set zπ(i) := x∗π(i) for i ∈ [s∗], and zπ(i) := 1− x∗π(i) for

i /∈ [s∗]. The pair (z, π) is consistent with H.
For the counting problem we first observe that for any fixed consistent permutation π, the

number of strings z such that (z, π) is consistent with H equals 2n−(s∗+1) if s∗ < n, and it equals
one if s∗ = n. By Hall’s condition a perfect matching exists if and only if | ∪j∈J Vj | ≥ |J | for
every J ⊆ [n]. Constructing the permutations in a greedy fashion, one shows that the number
of consistent permutations is equal to

∏
1≤i≤n (|Vi| − |{j < i | Vj ⊆ Vi}|) .

References

[AD11] Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics. World
Scientific, 2011.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree com-
plexity: a survey. Theoretical Computer Science, 288:21–43, 2002.

[Bsh09] Nader H. Bshouty. Optimal algorithms for the coin weighing problem with a spring
scale. In Proc. of the 22nd Conference on Learning Theory (COLT’09), 2009.

[CCH96] Zhixiang Chen, Carlos Cunha, and Steven Homer. Finding a hidden code by asking
questions. In Proc. of the 2nd Annual International Conference on Computing and
Combinatorics (COCOON’96), volume 1090 of Lecture Notes in Computer Science,
pages 50–55. Springer, 1996.

[Chv83] Vasek Chvátal. Mastermind. Combinatorica, 3:325–329, 1983.

[DJW06] Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and lower bounds for ran-
domized search heuristics in black-box optimization. Theory of Computing Systems,
39:525–544, 2006.

[DW12] Benjamin Doerr and Carola Winzen. Black-box complexity: Breaking the O(n log n)
barrier of LeadingOnes. In Proc. of Artificial Evolution (EA’11), volume 7401 of
Lecture Notes in Computer Science. Springer, 2012. To appear. Available online at
http://www.mpi-inf.mpg.de/∼winzen/DoerrWinzen LeadingOnes.pdf.

[ER63] Paul Erdős and Alfréd Rényi. On two problems of information theory. Magyar Tud.
Akad. Mat. Kutató Int. Közl., 8:229–243, 1963.

11

[FL10] Riccardo Focardi and Flaminia L. Luccio. Cracking bank pins by playing Mastermind.
In Proceedings of the 5th international conference on Fun with algorithms (FUN’10),
pages 202–213. Springer-Verlag, 2010.

[Goo09a] Michael T. Goodrich. The Mastermind attack on genomic data. In Proceedings of the
2009 30th IEEE Symposium on Security and Privacy (SP’09), pages 204–218. IEEE,
2009.

[Goo09b] Michael T. Goodrich. On the algorithmic complexity of the Mastermind game with
black-peg results. Information Processing Letters, 109:675–678, 2009.

[Knu77] Donald E. Knuth. The computer as master mind. Journal of Recreational Mathemat-
ics, 9:1–5, 1977.

[Pel02] Andrzej Pelc. Searching games with errors — fifty years of coping with liars. Theo-
retical Computer Science, 270:71–109, 2002.

[Spe94] Joel Spencer. Randomization, derandomization and antirandomization: Three games.
Theoretical Computer Science, 131:415–429, 1994.

[SZ06] Jeff Stuckman and Guo-Qiang Zhang. Mastermind is NP-complete. INFOCOMP
Journal of Computer Science, 5:25–28, 2006.

[Vig12] Giovanni Viglietta. Hardness of Mastermind. In Proc. of the 6th International Con-
ference on Fun with Algorithms (FUN’12), volume 7288 of Lecture Notes in Computer
Science, pages 368–378. Springer, 2012.

12

Appendix

A Details on the Deterministic Lower Bound

We repeat Theorem 2.

Theorem 2. The deterministic query complexity of the LeadingOnes-game with n positions
is Θ(n log n).

As mentioned in the main text, the upper bound of Theorem 2 can be achieved by an algo-
rithm that resembles binary search and iteratively identifies π(1), . . . , π(n) and the correspond-
ing bit values zπ(1), . . . , zπ(n). The algorithm itself is discussed in Section 4, cf. Algorithm 3.
We provide below the more interesting lower bound.

Proof. We show that an adversary can force Ω(log n) queries for every two positions revealed.
We proceed in phases. In each phase, we (= adversary) reveal two positions and force Ω(log n)
queries. At the beginning of the kth phase, k ≥ 0, π(1) up to π(2k) and zπ(1) to zπ(2k) are fixed,
V2k+1 to Vn are equal to [n] \ {π(1), . . . , π(2k)}, and the largest score ever returned is 2k − 1.
Let z be a string with score 2k − 1; z is undefined at the beginning of the zeroth phase.

We start phase k. Queries that disagree with z in one of the already fixed positions or are
equal to z are answered in the unique way. A clever algorithm will ask no such query. Let
x∗ be the first query in the phase that is different from z and agrees with z in the already
fixed positions; in the zeroth phase, x∗ is the first query. We (= the adversary) answer with
value 2k + 1. Let V ′ = V2k+1 and V ′′ = V2k+2 be the candidate sets for the (2k + 1)st and the
(2k+ 2)th position, respectively. As long as we only answer with values 2k and 2k+ 1, the sets
V2k+3 to Vn are not affected and remain the full set [n] \ {π(1), . . . , π(2k)}. Since the largest
value return before query x∗ is 2k− 1, the answer 2k+ 1 to query x∗ affects only sets V1 to V2k

according to rule (3).2 Thus V ′ = V ′′ = [n] after query x∗

Let x be the next query. Let I = {i | xi = x∗i } be the set of positions in which x and x∗

agree. Let us now see how the sets V ′ and V ′′ change according to the score.

• If we give x score 2k, then V ′ becomes V ′ \ I and V ′′ is unchanged according to rule (1)

• If we give x score 2k + 1, then V ′ becomes V ′ ∩ I and V ′′ becomes V ′′ ∩ I according to
rule (2).

We conclude that V ′ ⊆ V ′′ is an invariant no matter how we answer. We can proceed as long
as |V ′| ≥ 1, |V ′′| ≥ 1 and |V ′∪V ′′| ≥ 2, i.e., as long as Hall’s condition guarantees the existence
of a permutation. All three conditions are subsumed by |V ′| ≥ 2. The strategy is clear now.

If |V ′ ∩ I| ≥ |V ′|/2, we assign to x the score 2k + 1, and if |V ′ ∩ I| < |V ′|/2 and hence
|V ′ \ I| ≥ |V ′|/2, we assign to it score 2k. In this way, the cardinality of V ′ is at most halved.
In particular, if |V ′| ≥ 3 before the query x, then |V ′| ≥ 2 after the query. If |V ′| ≥ 3 still, we
continue with the phase.

If |V ′| = 2, choose i′ = π(2k+ 1) ∈ V ′ and i′′ = π(2k+ 2) ∈ V ′′ arbitrarily, set zi′ = x∗i′ and
zi′′ = 1− x∗i′′ , remove i′ and i′′ from V2k+3 to Vn, and move on to the next phase.

We forced log(n−2k)−1 queries in the kth phase, 0 ≤ k < bn/2c. Thus we force Ω(n log n)
queries in total.

2Rule numbers refer to the rules as stated after Theorem 1.

13

B Details on the Randomized O(n log log n) Winning Strategy

For readability purposes, we repeat the material presented in the main text. The reader only
interested in the proof details may skip Section B.1 and most parts of Section B.4.

Theorem 3. The randomized query complexity of the LeadingOnes-game with n positions is
O(n log log n).

The winning strategy verifying this bound has two parts. In the beginning, we use Algo-
rithm 1 to identify the positions π(1), . . . , π(q) and the corresponding bit values zπ(1), . . . , zπ(q);
for some q ∈ n−Θ(n/ log n). As we shall see below, this requires O(n log logn) queries, cf. The-
orem 11. Once zπ(1), . . . , zπ(q) have been identified, we can find the remaining n−q ∈ Θ(n/ log n)
positions and entries using the binary search algorithm described in the introduction. This is
the second phase of our algorithm. As the binary search strategy requires at most O(log n)
queries per position, the second phase contributes only a linear number of queries—an effort
that is negligible compared to the one of the first phase.

B.1 Outline of the Proof for Theorem 3

The main idea behind Algorithm 1 is the following. We alternate between increasing the scores
by one and reducing the sizes of the Vis. More precisely, we maintain a string x and an integer
s with f(x) ≥ s and have already reduced some elements from V1 to Vs. The sets Vs+1 to Vn
are still equal to [n]. Initially, s = 0 and x is arbitrary. The sets V1 to Vs are arranged into t+ 1
levels. The sets in level i have larger index than the sets in level i+ 1. Level t+ 1 contains an
initial segment of sets; all sets on level t + 1 are singletons. On level i, 1 ≤ i ≤ t, we can have
up to xi sets. The size of any set on level i is at most n/xdi , where d ≥ 1 is some parameter to
be fixed later. Once xi sets have been added to the ith level, we reduce the size of each of them
to at most n/xdi+1 using subroutine2, which we describe in Section B.3. The reduced sets are
added to the (i + 1)st level. subroutine2 essentially allows us to simultaneously reduce the
sizes of k sets to a kth fraction of their original size using at most O(k) queries. After moving
the sets from level i to level i+ 1, we either start filling the ith level again (in case the (i+ 1)st
level has some capacity left), or we reduce the sizes of the sets on the (i + 1)st level. Once
the tth level contains xt sets, we reduce the size of each of these sets to one, again employing
subroutine2, and move them to level t+ 1. Thus Vj = {π(j)} for each set Vj on level t+ 1.

At level one (calls Advance(1)) we attempt to advance s. Let s∗ denote the current value of
s and let x∗ be the current bit string x. We ensure f(x∗) ≥ s∗. We want to start working on
Vs∗+1. We hope (this hope will be true with sufficiently high probability, as the analysis shows)
that π(s∗ + 1) 6∈ ∪j≤s∗Vj . We create from x∗ a new bit string y by flipping in x∗ all bits that

are known not to be the image of 1, . . . , s∗ under π. That is, we set y := x∗ ⊕
(

[n] \ ∪s∗j=1Vj

)
and query f(y). If f(y) = s∗ and f(x) > s∗, we swap the two strings. This step is needed to
ensure correctness of subroutine1.

If f(y) > s∗ and f(x∗) = s holds, we know that π(s∗ + 1) ∈ [n] \ ∪s∗j=1Vj holds. In this case,

we immediately reduce the size of the set Vs∗+1 to n/xd1. This can be done by the binary search
like algorithm, subroutine1, in d log x1 queries. This subroutine is described in Section B.2.

If, on the other hand, a failure happens; i.e., if in line 17 f(y) = f(x∗) = s∗ or f(x∗) > s∗

holds, then we know that π(s∗ + 1) has not been flipped. Hence π(s∗ + 1) ∈ ∪s∗j=1Vj must hold.

Therefore, we must reduce the size of ∪s∗j=1Vj to “free” π(s∗ + 1). We immediately abort the

first level by reducing the size of each of the Vis currently on that level to n/xd2, thus adding
them to the second level. Should we still not make progress by flipping all bits in [n]\ ∪s∗j=1 Vj ,

we continue by reducing the size of each level-2 set to n/xd3, and so on, until we eventually have

14

Algorithm 1: The O(n log log n) winning strategy for the LeadingOnes-game with n
positions.

1 Input: Number of levels t. Maximal number x1, . . . , xt ∈ N of V s in each level. Score
q ∈ n−Θ(n/ log n) that is to be achieved in the first phase. Positive integer d ∈ N.

2 Main Procedure
3 V1, . . . , Vn ← [n] ; //Vi is the set of candidates for π(i)
4 s← 0 ; //s counts the number of successful iterations
5 Choose x ∈ {0, 1}n uniformly at random and query f(x);
6 J ← ∅;
7 while |J | < q do
8 J ′ ← Advance(t);
9 Reduce the size of the sets Vj with j ∈ J ′ to 1 calling subroutine2(xt, J

′, 1, x);
10 J ← J ∪ J ′;

11 Identify the remaining q bits from x and y := x⊕
(

[n] \ ∪sj=1Vj

)
using the binary search

algorithm subroutine1 ; //phase 2

where Advance is the following function.
12 Advance(level `) //returns a set J of up to x` indices such that |Vj | ≤ n/xd` for all j ∈ J
13 J ← ∅;
14 while |J | ≤ x` do
15 if ` = 1 then
16 Create y from x by flipping all bits in [n]\ ∪sj=1 Vj and query f(y);

17 if f(x) > s and f(y) = s then swap x and y;
18 if f(x) = s and f(y) > s then
19 s← s+ 1;

20 Vs ← subroutine1(x, y, n/xd1) ; //Reduce |Vs| to n/xd1
21 J ← J ∪ {s};
22 x← y ; //establishes f(x) ≥ s

else
24 break ; //failure on level 1

else
26 J ′ ← Advance(`− 1);
27 if J ′ 6= ∅ then
28 Reduce the size of the sets Vj with j ∈ J ′ to n/xd` using

28 subroutine2(x`−1, J
′, n/xd` , x);

29 J ← J ∪ J ′;
else

31 break ; //failure on level `

32 return J ;

π(s∗ + 1) /∈ ∪s∗j=1Vj , in which case we can continue with the “increase the score by one, then
reduce the size of the candidate sets”-procedure described above.

It is essential to design the levels in such a way that the probability for such failures is small.
As we shall see below, we achieve this by designing the levels such that their capacities grow
exponentially. More precisely, we set xi+1 = x2

i for all i = 1, . . . , t − 1. The first level has a

15

capacity of x1 = log n sets. Thus, t = O(log log n) levels are sufficient if we want the last level,
level t, to have a capacity that is linear in n. Our choice of the xi’s also guarantees that xi
divides xi+1 and hence a call Advance(`) returns no more than x` elements (exactly x` elements
if the call ends without a failure).

Our strategy is formalized by Algorithm 1. In what follows, we first present the two subrou-
tines, subroutine1 and subroutine2. In Section B.4, we present the full proof of Theorem 3.

B.2 Subroutine 1

subroutine1 is called by the function Advance(1). Simulating a randomized binary search, it
allows us to reduce the number of potential candidates for π(i) from some value v < n to some
value ` < v in log v − log ` queries.

Algorithm 2: The algorithm subroutine1(x, y, `) reduces the size of the set Vf(x)+1 from
v to ` in log v − log ` queries.

1 Input: Two strings x, y ∈ {0, 1}n with f(x) < f(y). An integer ` ∈ N.
2 Initialization: V ← {j ∈ [n] | xj 6= yj} ; //potential candidates for π(f(x) + 1)
3 while |V | > ` do
4 Uniformly at random select a subset F ⊆ V of size |V |/2;
5 Create y′ from y by flipping all bits in F and query f(y′);
6 if f(y′) > f(x) then V ← V \F ;
7 else V ← F ;

8 Output: Set V of size at most `.

Lemma 9. Let x, y ∈ {0, 1}n with f(x) < f(y). Set V := {j ∈ [n] | xj 6= yj} and v := |V |. Let
` ∈ N, ` < v. Algorithm 2 reduces the size of V to ` using at most dlog v − log `e queries.

Proof. For the correctness of the algorithm we note that, by definition, we have xπ(i) = yπ(i) =
zπ(i) for all i ∈ [f(x)]. Therefore, either we have f(y′) > f(x) in line 5 or we have f(y′) = f(x).
In the former case, the bit yπ(f(x)+1) was not flipped, and hence π(f(x) + 1) /∈ F must hold.
In the latter case the bit in position π(f(x) + 1) bit must have been flipped and we can infer
π(f(x) + 1) ∈ F .

The runtime bound is easily verified using the fact that the size of the set V halves in each
iteration.

It is now obvious how subroutine1 (with the “select uniformly at random select”-statement
in line 4 replaced by “arbitrarily select”) yields a deterministic O(n log n) query algorithm for
the LeadingOnes-game. This is Algorithm 3.

Algorithm 3: A deterministic O(n log n) winning strategy for the LeadingOnes-game.

1 Initialization: x← (0, . . . , 0), y ← (1, . . . , 1);
2 Query f(x) and f(y);
3 for i = 1, ..., n− 1 do
4 if f(y) > f(x) then rename x and y;
5 V ← subroutine1(x, y, 1) ; //V = {π(i)}
6 Update x by flipping π(i) and query f(x);

16

Note also that we apply this algorithm in the second phase of Algorithm 1 for identifying
the last Θ(n/ log n) entries of z. This can be done as follows. When we leave the first phase
of Algorithm 1, we have |V1| = . . . = |Vq| = 1 and f(x) ≥ q. Create y from x by flipping all
bits in [n] \ ∪qi=1Vi and query f(y). Then jump into the for-loop of Algorithm 3. This shows
how to determine the remaining q ∈ Θ(n/ log n) bits of the target string z in a linear number
of additional queries.

As mentioned, we call subroutine1 also in the first level of Algorithm 1 (line 19) to reduce
the size of Vf(x)+1 to n/xd1, or, put differently, to reduce the number of candidates for π(f(x)+1)

to n/xd1. As the initial size of Vf(x)+1 is at most n, this requires at most d log x1 queries by
Lemma 9.

B.3 Subroutine 2

We describe the second subroutine of Algorithm 1, subroutine2. This routine is used to reduce
the sizes of the up to x`−1 candidate sets returned by a recursive call Advance(`− 1) from some
value ≤ n/xd`−1 to at most the target size of level `, which is n/xd` . As we shall see below, this
requires an expected number of O(1)x`−1d(log x` − log x`−1)/ log x`−1 queries.The pseudo-code
of subroutine2 is given in Algorithm 4. subroutine2 performs a subtask of this reduction:
It reduces the sizes of at most k candidate sets to a kth fraction of their original size using at
most O(k) queries, where k is a parameter. We use subroutine2 with parameter k = x`−1

repeatedly to achieve the full reduction.
subroutine2 is given a set J of at most k indices and a y with f(y) ≥ max J . The goal is to

reduce the size of each candidate set Vj , j ∈ J , below a target size m where m ≥ |Vj |/k for all
j ∈ J . The routine works in phases. Let J be the set of indices of the candidate sets that are
still above the target size at the beginning of an iteration. For each j ∈ J , we randomly choose a
kth fraction of the potential candidates for π(j). That is, we randomly choose a subset Fj ⊆ Vj
of size |Vj |/k. We create a new bit string y′ from some y by flipping all candidates ∪j∈JFj . A
condition on the set (Vj)j∈J ensures that we have either f(y′) ≥ max J or f(y′) = j − 1 for
some j ∈ J .

In the first case, i.e., if f(y′) ≥ max J , none of the sets Vj was hit, and for all j ∈ J we
can remove the subset Fj from Vj as the elements in Fj are no longer candidates for π(j). We
call such queries “off-trials”. An off-trial reduces the size of all sets Vj , j ∈ J , to a (1− 1/k)th
fraction of their original size.

If, on the other hand, we have f(y′) = j − 1 for some j ∈ J , we can replace Vj by set Fj as
π(j) ∈ Fj must hold.3 Since |Fj | = |Vj |/k ≤ m by assumption, this set has now been reduced
to its target size and we can remove it from J . We further know that for all h ∈ J with h < j
the set Vh was not hit. Thus, we can safely remove Fh from Vh.

We continue in this way until at least half of the indices are removed from J and at least
ck off-trials occurred, for some constant c satisfying (1− 1/k)ck ≤ 1/2. Consider any j that is
still in J . The size of Vj was reduced by a factor (1− 1/k) at least ck times. Thus its size was
reduced to at most half its original size. We now may half k without destroying the invariant
m ≥ |Vj |/k for j ∈ J . The effect of halving k is that the relative size of the sets Fj will be
doubled for the sets Vj that still take part in the reduction process.

We repeat Lemma 4.

Lemma 4. Let k ∈ N, let J ⊆ [n] be a set of at most k indices with Vj ∩ Vp = ∅ for j ∈ J and
p ∈ [max J]\{j}, and let y ∈ {0, 1}n be such that f(y) ≥ max J , and let m ∈ N be such that
m ≥ |Vj |/k for all j ∈ J .

3This again can be ensured by the somewhat technical condition that Vj ∩ Vp = ∅ for all j ∈ J and p ∈
[max J]\{j}.

17

Algorithm 4: subroutine2(k, J,m, y). This subroutine is used in the main program to
reduce the size of at most k sets Vj , j ∈ J , to a kth fraction of their original size using
only O(k) queries.

1 Input: Positive integer k ∈ N, a set J ⊆ [n] with |J | ≤ k, target size m ∈ N with
|Vj |/k ≤ m for all j ∈ J , and a string y ∈ {0, 1}n with f(y) ≥ max J . The sets (Vj)j∈J
are pairwise disjoint. Vj , j ∈ J , is also disjoint from Vp for any p ∈ [max J] \ {j}.

2 for j ∈ J do if |Vj | ≤ m then delete j from J ; //Vj is already small enough
3 while J 6= ∅ do
4 o← 0 ; //counts the number of off-trials that do not hit any of the Vi
5 ` = |J | ; //|Vj |/k ≤ m for all j ∈ J
6 repeat
7 for j ∈ J do Uniformly at random choose a subset Fj ⊆ Vj of size |Vj |/k;
8 Create y′ from y by flipping in y the entries in positions ∪j∈JFj and query f(y′);
9 if f(y′) ≥ max J then

10 o← o+ 1 ; //“off”-trial that did not hit any of the Vj
11 for j ∈ J do Vj ← Vj\Fj ;
12 else
13 Vf(y′)+1 ← Ff(y′)+1 ; //set Vf(y′)+1 is hit

14 for j ∈ J do if j ≤ f(y′) then Vj ← Vj\Fj ;
15 for j ∈ J do if |Vj | ≤ m then delete j from J ;

16 until o ≥ c · k and |J | ≤ `/2 //c is chosen such that (1− 1/k)ck ≤ 1/2;
17 k ← k/2;

18 Output: Sets Vj with |Vj | ≤ m for all j ∈ J .

In expectation it takes O(k) queries until Algorithm 4 has reduced the size of Vj to at most
m for each j ∈ J .

Proof. Let c be some constant. We show below that—for a suitable choice of c—after an
expected number of at most ck queries both conditions in line 16 are satisfied. Assuming this
to hold, we can bound the total expected number of queries until the size of each of the Vjs has
been reduced to m by

log k∑
h=0

ck/2h < 2ck ,

as desired.
In each iteration of the repeat-loop we either hit an index in J and hence remove it from J

or we have an off-trial. The probability of an off-trial is at least (1−1/k)k since |J | ≤ k always.
Thus the probability of an off-trial is at least (2e)−1 and hence the condition o ≥ ck holds after
an expected number of O(k) iterations.

As long as |J | ≥ `/2, the probability of an off-trial is at most (1 − 1/k)`/2 and hence
the probability that a set is hit is at least 1 − (1 − 1/k)`/2. Since ln(1 − 1/k) ≤ −1/k we
have (1 − 1/k)`/2 = exp(`/2 ln(1 − 1/k)) ≤ exp(−`/(2k)) and hence 1 − (1 − 1/k)`/2 ≥ 1 −
exp(−`/(2k)) ≥ `/(2k). Thus the expected number of iterations to achieve `/2 hits is O(k).

If a candidate set Vj is hit in the repeat-loop, its size is reduced to |Vj |/k. By assumption,
this is bounded by m. If Vj is never hit, its size is reduced at least ck times by a factor (1−1/k).
By choice of c, this is at most half of its original size. Thus after replacing k by k/2 we still
have |Vj |/k ≤ m for j ∈ J .

18

Corollary 10. Let k ∈ N, J , and y be as in Lemma 4. Let further d ∈ N and x ∈ R such that
maxj∈J |Vj | = n/xd. Let y ∈ R with y > x.

Using at most d(log y − log x)/ log k calls to Algorithm 4 we can reduce the maximal size
maxj∈J |Vj | to n/yd. The overall expected number of queries needed to achieve this reduction is
O(1)kd(log y − log x)/ log k.

Proof. The successive calls can be done as follows. We first call subroutine2(k, J, n/(kxd), y).
By Lemma 4 it takes an expected number of O(k) queries until the algorithm terminates. The
sets Vj , j ∈ J , now have size at most n/(kxd). We next call subroutine2(k, J, n/(k2xd), y).
After the hth such call we are left with sets of size at most n/(khxd). For h = d(log y −
log x)/ log k we have kh ≥ (y/x)d. The total expected number of queries at this point is
O(1)kd(log y − log x)/ log k.

B.4 Proof of Theorem 3

It remains to show that the first phase of Algorithm 1 takes at most O(n log log n) queries.

Theorem 11. Let q ∈ n − Θ(n/ log n). Using Algorithm 1, we can identify positions
π(1), . . . , π(q) and the corresponding entries zπ(1), . . . , zπ(q) of z in these positions using at most
O(n log log n) queries.

We prove Theorem 11. The proof of the required probabilistic statements is postponed to
Sections B.5 and B.6.

If there is no failure in any call of Advance, the expected number of queries is bounded by

q

xt

(
xt log n

log xt
+

xt
xt−1

(
xt−1dc(log xt − log xt−1)

log xt−1

+
xt−1

xt−2

(
. . .+

x2

x1

(
x1dc(log x2 − log x1)

log x1
+ x1d log x1

))))
≤ndc

(
log n

log xt
+

log xt
log xt−1

+ . . .+
log x2

log x1
+ log x1 − t

)
, (3)

where c is the constant hidden in the O(1)-term in Corollary 10. To verify this formula, observe
that each call of Advance(i) makes xi/xi−1 calls to Advance(i − 1). After each such call we
reduce the size of xi−1 candidate sets from n/xdi−1 to n/xdi . By Corollary 10, this requires at
most xi−1dc(log xi− log xi−1)/ log xi−1 queries. The additional x1d log x1 term accounts for the
queries caused by the calls Advance(1) through which we reduce the sizes of the Vis by the
randomized binary search algorithm, subroutine1, to n/xd1—requiring d log x1 queries per call.
Finally, the term xt log n/ log xt accounts for the final reduction of the Vis to a set containing
only one single element (at this stage we shall finally have Vi = {π(i)}). More precisely, this
term is (xt(log n− d log xt)) / log xt but we settle for upper bounding this expression by the
term given in the formula.

Next we need to bound the number of queries caused by failures. In Sections B.5 and B.6
we show that, on average, not too many failures happen. More precisely, we show that the
expected number of level-i failures is at most n2/((n−q)(xd−1

i −1)). By Corollary 10, each such
level-i failure causes an additional number of at most 1 + xidc(log xi+1 − log xi)/ log xi queries;
the 1 counts for the failured query in line 15. Thus, in total we get an additional number of at
most

t∑
i=1

n2

(n− q)(xd−1
i − 1)

(
1 +

xidc(log xi+1 − log xi)

log xi

)
(4)

19

expected queries caused by failures.
We recall the settings of the xi: We set x1 := log n and we choose the xj such that xj = x2

j−1,
j = 2, . . . , t. We further require that log xt = Ω(log n), which can be achieved by choosing
t ∈ Θ(log log n). In what follows, we do not specify the choice of d, but note that any choice
d ≥ 4 is good enough. With this parameter setting, formula (3) evaluates to

ndc

(
log n

log xt
+ 2(t− 1) + log log n− t

)
= O(n log logn)

and, somewhat wasteful, we can bound formula (4) from above by

n2dc

n− q

t∑
i=1

x
−(d−3)
i = O(n log n)

t−1∑
i=0

x
−(d−3)2i

1 < O(n log n)(xd−3
1 − 1)−1 = O(n) ,

where the first equation is by construction of the xis, the inequality uses the fact that the
geometric sum is dominated by the first term, and the last equality stems from our choice
x1 = log n. This shows that the overall expected number of queries sums to O(n log logn) +
O(n) = O(n log logn).

Key to the failure analyses in Sections B.5 and B.6 is the following observation.

Lemma 12. Each Vj has the property that Vj \ {π(j)} is random, i.e., is a random subset of
[n] \ {π(j)} of size |Vj | − 1.

Proof. Vj is initialized to [n]; thus the claim is true initially. In subroutine1, a random subset
F of Vj is chosen and Vj is reduced to F (if π(j) ∈ F) or to Vj \F (if π(j) 6∈ F). In either case,
the claim stays true. The same reasoning applies to subroutine2.

B.5 Failures on Level One

Lemma 13. A call of Advance(1) (i.e., lines 14 to 23) requires at most x1 +x1d log x1 queries.

Proof. The two occasions where queries are made are in line 15 and in line 19. Line 15 is
executed at most x1 times, each time causing exactly one query. As shown in Lemma 9, each
call to subroutine1 in line 19 causes at most d log x1 queries. The subroutine is called at most
x1 times.

Lemma 14. Let q ∈ n − Θ(n/ log n) be the number of indices i for which we determine π(i)
and zπ(i) in the first phase.

The probability that any particular call of Advance(1) fails is at most n(n −
q)−1

∑t
i=1 x

−(d−1)
i .

Proof. A failure happens if we cannot increase the score of x by flipping the bits in [n] \∪si=1Vi,
i.e., if f(y) ≤ s holds in line 15 of Algorithm 1. This is equivalent to π(s+ 1) ∈ ∪si=1Vi.

Let ` be the number of indices i ∈ [n] for which Vi is on the last level; i.e., ` := |{i ∈ [n] |
|Vi| = 1}| is the number of sets Vi which have been reduced to singletons already. Note that
these sets satisfy Vi = {π(i)}. Therefore, they cannot contain π(s + 1) and we do not need to
take them into account.

By our random construction of the Vis (cf. Lemma 12), the probability that π(s+1) ∈ ∪si=1Vi
is at most | ∪si=`+1 Vi|/(n− `) and hence bounded by

∑s
i=`+1 |Vi|/(n− `).

20

At any time during the run of Algorithm 1, there are at most xi sets Vj on the ith level.
By construction, the size of each such level-i set is at most nx−di . Hence, we can bound the
probability that π(s+ 1) ∈ ∪si=1Vi from above by

n

n− `

t∑
i=1

x
−(d−1)
i .

By the exponential growth of the values x1, . . . , xt and the fact that we call line 15 a total
number of q < n times to improve upon the current best score, from Lemma 14 we immediately
get the following.

Corollary 15. The expected number of level 1 failures is less than

qn(n− q)−1(xd−1
1 − 1)−1 ≤ n2(n− q)−1

(
xd−1

1 − 1
)−1

.

B.6 Failures at Higher Levels

Lemma 16. As in Lemma 14 let q be the number of indices i for which we determine π(i) and
zπ(i) in the first phase. Let i ∈ [t].

The probability that a particular call of Advance(i) fails (level i failure) is at most n(n −
q)−1

(
xd−1
i − 1

)−1
.

Proof. This proof is similar to the one of Lemma 14: A failure on level i occurs only if π(s+1) ∈
∪sj=1Vj and the size of all Vjs has been reduced already to at most n/xdi . There are at most

xj sets V on each level j ≥ i. The size of each level-j V is at most n/xdj , by construction. By
Lemma 12, the probability that π(s+ 1) ∈ ∪sj=1Vj is at most

n

n− `

t∑
j=i

1

xd−1
j

, (5)

where ` denotes again the number of sets that have been reduced to singletons already.

By definition, we have xj ≥ x(2j−i)
i and in particular we have xj ≥ xj−ii . Therefore expression

(5) can be bounded from above by

n

n− `

t−i∑
j=1

(
1

xd−1
i

)j
<

n

n− `

(
xd−1
i − 1

)−1
.

By the same reasoning as in Section B.5, from Lemma 16 we immediately get the following.

Corollary 17. Let i ∈ [t].
The expected number of level i failures is less than

nq(n− q)−1(xd−1
i − 1)−1 ≤ n2(n− q)−1(xd−1

i − 1)−1 .

21

C Details on the Lower Bound

C.1 Candidate Sets in the Lower Bound Context

At node v of the decision tree, the candidate set V v
i , intuitively corresponds to the possible

values of π(i). At the root node r, we have V r
i = [n] for all i. Let v be a node in the tree and

let w0, . . . , wn be its children (wi is traversed when the score i is returned). Let P v0 (resp. P v1)
be the set of positions in xv that contain 0 (resp. 1). Thus, formally, P v0 = {i | xv[i] = 0} and
P v1 = {i | xv[i] = 1}.4 The precise definition of candidate sets is as follows:

V wt
i =


V v
i ∩ P vi mod 2 if i ≤ t
V v
i ∩ P vt mod 2 if i = t+ 1
V v
i if i > t+ 1.

Note that, as was the case with the candidate sets defined in Section 2, not all values in a
candidate set could be valid. But as with the upper bound case, the candidate sets have some
very useful properties. These properties are also slightly different from the ones observed before,
due to the fact that some extra information has been announced to the query algorithm. We
reiterate the definition of an active candidate set. We say that a candidate set V v

i is active (at
v) if the following conditions are met: (i) at some ancestor node u of v, we have F (xu) = i− 1
and (ii) at every ancestor node w of u, we have F (xw) < i − 1, and (iii) i < min {n/3,maxv}.
We call V v

maxv +1 pseudo-active (at v). The following theorem can be proved using similar ideas
as in Theorem 1

Lemma 6. The candidate sets have the following properties:
(i) Two candidate sets V v

i and V v
j with i < j ≤ maxv and i 6≡ j are disjoint.

(ii) An active candidate set V v
j is disjoint from any candidate set Vi provided i < j < maxv.

(iii) The candidate set V v
i , i ≤ maxv is contained in the set V v

maxv +1 if i ≡ maxv and is
disjoint from it if i 6≡ maxv.

(iv) For two candidate sets V v
i and V v

j , i < j, if V v
i ∩ V v

j 6= ∅ then V v
i ⊂ V v

j .

Proof. Let w be the ancestor of v where the function returns score maxv.
To prove (i), observe that in w, one of V w

i and V w
j is intersected by Pw0 while the other is

intersected by Pw1 and thus they are made disjoint.
To prove (ii), we can assume i ≡ j as otherwise the result follows from the previous case.

Let u be the ancestor of v such that F (xu) = j − 1 and that in any ancestor of u, the score
returned by the function is smaller than j− 1. At u, V u

j is intersected with P uj−1 mod 2 while V v
i

is intersected with P ui mod 2. Since i ≡ j, it follows that they are again disjoint.
For (iii), the latter part follows as in (i). Consider an ancestor v′ of v and let wj be the

jth child of v′ that is also an ancestor of v. We use induction and we assume V v′
i ⊂ V v′

maxv +1.

If j < maxv, then V v′
maxv +1 = V

wj

maxv +1 which means V
wj

i ⊂ V
wj

maxv +1. If j = maxv, then

V
wj

maxv +1 = V v′
maxv +1 ∩ P v

′
maxv mod 2 and notice that in this case also V

wj

i = V v′
i ∩ P v

′
i mod 2 which

still implies V
wj

i ⊂ V wj

maxv +1.
To prove (iv), first observe that the statement is trivial if i 6≡ j. Also, if the function returns

score j − 1 at any ancestor of v, then by the same argument used in (ii) it is possible to show
that V v

i ∩ V v
j = ∅. Thus assume i ≡ j and the function never returns value j − 1. In this case,

it is easy to see that an inductive argument similar to (iii) proves that V v′
i ⊂ V v′

j for every
ancestor v′ of v.

4To prevent our notations from becoming too overloaded, here and in the remainder of the section we write
x = (x[1], . . . , x[n]) instead of x = (x1, . . . , xn)

22

Corollary 18. Every two distinct active candidate sets V v
i and V v

j are disjoint.

Lemma 19. Consider a candidate set V v
i and let i1 < · · · < ik < i be the indices of candidate

sets that are subsets of V v
i . Let σ := (σ1, · · · , σi) be a sequence without repetition from [n] and

let σ′ := (σ1, · · · , σi−1). Let nσ and nσ′ be the number of permutations in Sv that have σ and
σ′ as a prefix, respectively. If nσ > 0, then nσ′ = (|V v

i | − k)nσ.

Proof. Consider a permutation π ∈ Sv that has σ as a prefix. This implies π(i) ∈ V v
i . For an

element s ∈ V v
i , s 6= ij , 1 ≤ j ≤ k, let πs be the permutation obtained from π by placing s at

position i and placing π(i) where s used to be. Since s 6= ij , 1 ≤ j ≤ k, it follows that πs has σ′

as prefix and since s ∈ V v
i it follows that πs ∈ Sv. It is easy to see that for every permutation in

Sv that has σ as a prefix we will create |V v
i | − k different permutations that have σ′ as a prefix

and all these permutations will be distinct. Thus, nσ′ = (|V v
i | − k)nσ.

Corollary 20. Consider a candidate set V v
i and let i1 < · · · < ik < i be the indices of candidate

sets that are subsets of V v
i . Let σ′ := (σ1, · · · , σi−1) be a sequence without repetition from [n]

and let σ1 := (σ1, · · · , σi−1, s1) and σ2 := (σ1, · · · , σi−1, s2) in which s1, s2 ∈ V v
i . Let nσ1

and nσ2 be the number of permutations in Sv that have σ1 and σ2 as a prefix, respectively. If
nσ1 , nσ2 > 0, then nσ1 = nσ2.

Proof. Consider a sequence s1, · · · , si without repetition from [n] such that sj ∈ V v
j , 1 ≤ j ≤ i.

By the previous lemma Pr[Π(1) = s1 ∧ · · · ∧ Π(i − 1) = si−1 ∧ Π(i) = si] = Pr[Π(1) =
s1 ∧ · · · ∧Π(i− 1) = si−1] · (1/|V v

i |).

Corollary 21. If V v
i is active, then we have:

(i) Π(i) is independent of Π(1), · · · ,Π(i− 1).

(ii) Π(i) is uniformly distributed in V v
i .

C.2 Potential Function Analysis

The main result of this section is the following.

Lemma 7. Let v be a node in T and let iv be the random variable giving the value of F (xv)
when Π ∈ Sv and 0 otherwise. Also let w0, . . . , wn denote the children of v, where wj is the
child reached when F (xv) = j. Then, E[ϕ(wiv)− ϕ(v) | Π ∈ Sv] = O(1).

We write

E[ϕ(wiv)− ϕ(v) | Π ∈ Sv] =

n∑
a=0

Pr[F (xv) = a | Π ∈ Sv](ϕ(wa)− ϕ(v)).

Before presenting the formal analysis of this potential function, we note that we have two
main cases: F (xv) ≤ maxv and F (xv) > maxv. In the first case, the maximum score will not
increase in wa which means wa will have the same set of active candidate sets. In the second
case, the pseudo-active candidate set V v

maxv +1 will turn into an active set V wa
maxv +1 at wa and wa

will have a new pseudo-active set. While this second case looks more complicated, it is in fact
the less interesting part of the analysis since the probability of suddenly increasing the score by
α is extremely small (we will show that it is roughly O(2−Ω(α))) which subsumes any significant

23

potential increase for values of a > maxv. As discussed, we divide the above summation into
two parts: one for a ≤ maxv and another for a > maxv:

E[ϕ(wiv)− ϕ(v) | Π ∈ Sv] =
maxv∑
a=0

Pr[F (xv) = a | Π ∈ Sv](ϕ(wa)− ϕ(v)) + (6)

n/3−maxv −1∑
a=0

Pr[F (xv) = maxv + 1 + a | Π ∈ Sv](ϕ(wa)− ϕ(v)). (7)

To bound the above two summations, it is clear that we need to know how to handle
Pr[F (xv) = a|Π ∈ Sv]. In the next section, we will prove lemmas that will do this.

C.2.1 Bounding Probabilities

Let a1, . . . , a|Av | be the indices of active candidate sets at v sorted in increasing order. We
also define a|Av |+1 = maxv +1. For a candidate set V v

i , and a Boolean b ∈ {0, 1}, let V v
i (b) =

{j ∈ V v
i | xv[j] = b}. Clearly, |V v

i (0)| + |V v
i (1)| = |V v

i |. For even ai, 1 ≤ i ≤ |Av|, let εi =
|V v
i (1)|/|V v

i | and for odd i let εi = |V v
i (0)|/|V v

i |. This definition might seem strange but is
inspired by the following observation.

Lemma 22. For i ≤ |Av|, Pr[F (xv) = ai − 1|Π ∈ Sv ∧ F (xv) > ai − 2] = εi.

Proof. Note that F (xv) = ai−1 happens if and only if F (xv) > ai−2 and xv[Π(ai)] 6≡ ai. Since
V v
ai is an active candidate set, the lemma follows from Corollary 21 and the definition of εi.

Let ε′i := Pr[ai ≤ F (xv) < ai+1 − 1|Π ∈ Sv ∧ F (xv) ≥ ai]. Note that ε′i = 0 if ai+1 = ai + 1.

Lemma 23. For i ≤ |Av| we have |V wj
ai | = |V v

ai | for j < ai − 1, |V wj
ai | = εi|V v

ai | for j = ai − 1,
and |V wj

ai | = (1− εi)|V v
ai | for j > ai − 1. Also,

Pr[F (xv) = ai − 1|Π ∈ Sv] = εiΠ
i−1
j=1(1− εj)(1− ε′j), (8)

Pr[ai ≤ F (xv) < ai+1 − 1|Π ∈ Sv] = ε′i(1− εi)Πi−1
j=1(1− εj)(1− ε′j), (9)

Proof. Using Lemma 22, it is verified that

Pr[F (xv) > ai − 1|Π ∈ Sv] = Pr[F (xv) > ai − 2 ∧ F (xv) 6= ai − 1|Π ∈ Sv]
= Pr[F (xv) 6= ai − 1|F (xv) > ai − 2 ∧Π ∈ Sv] Pr[F (xv) > ai − 2|Π ∈ Sv]
= (1− εi) Pr[F (xv) > ai − 2|Π ∈ Sv].

Similarly, using the definition of ε′i we can see that

Pr[F (xv) > ai − 2|Π ∈ Sv] = Pr[F (xv) 6∈ {ai−1, . . . , ai − 2} ∧ F (xv) > ai−1 − 1|Π ∈ Sv]
= Pr[F (xv) 6∈ {ai−1, . . . , ai − 2} |F (xv) > ai−1 − 1 ∧Π ∈ Sv] Pr[F (xv) > ai−1 − 1|Π ∈ Sv]
= (1− ε′i−1) Pr[F (xv) > ai−1 − 1|Π ∈ Sv].

Using these, we get that

Pr[F (xv) > ai − 1|Π ∈ Sv] = (1− εi)Πi−1
j=1(1− εj)(1− ε′j)

and
Pr[F (xv) > ai − 2|Π ∈ Sv] = Πi−1

j=1(1− εj)(1− ε′j).
Equalities (8) and (9) follow from Lemma 19 and Lemma 22. The rest of the lemma follows
directly from the definition of εi and the candidate sets.

24

Lemma 24. Let b ∈ {0, 1} be such that b ≡ maxv and let k := |V v
maxv +1(b)|. Then,

Pr[F (xv) = maxv|Π ∈ Sv] =
k − Conv

|V v
maxv +1| − Conv

|Av |∏
i=1

(1− εi)(1− ε′i).

Proof. Conditioned on F (xv) > maxv −1, F (xv) will be equal to maxv if xv[Π(maxv +1)] = b.
By definition, the number of positions in V v

maxv +1 that satisfy this is k. However, V v
maxv +1

contains Conv candidate sets but since V v
maxv +1 can only contain a candidate set V v

i if i ≡ maxv
(by Lemma 6), it follows from Lemma 19 that Pr[F (xv) = maxv |Π ∈ Sv ∧F (xv) > maxv −1] =
(k − Conv)/(|V v

maxv +1| − Conv). The lemma then follows from the previous lemma.

Lemma 25. Let b ∈ {0, 1} be such that b ≡ maxv and let k := |V v
maxv +1(b)|. Then,

Pr[F (xv) > maxv|Π ∈ Sv] ≤
|V v

maxv +1| − k
|V v

maxv +1| − Conv

Proof. From the previous lemma we have that Pr[F (xv) = maxv |Π ∈ Sv ∧F (xv) > maxv −1] =
(k − Conv)/(|V v

maxv +1| − Conv). Thus,

Pr[F (xv) > maxv|Π ∈ Sv ∧ F (xv) > maxv − 1] =
|V v

maxv +1| − k
|V v

maxv +1| − Conv
.

Using induction, it is possible to prove that

Pr[F (xv) > maxv|Π ∈ Sv] =
|V v

maxv +1| − k
|V v

maxv +1| − Conv

|Av |∏
i=1

(1− εi)(1− ε′i)

which implies the lemma.

Remember that P v0 (resp. P v1) are the set of positions in xv that contain 0 (resp. 1).

Lemma 26. Let x0 = |P v0 | and x1 = |P v1 |. Let bi be a Boolean such that bi ≡ i. For a ≥ maxv +2

Pr[F (xv) = a | Π ∈ Sv] ≤

(
a∏

i=maxv +2

xbi − bi/2c
n− i+ 1

)(
1−

xba+1 − b(a+ 1)/2c
n− a

)
.

Proof. Notice that we have V v
i = [n] for i ≥ maxv +2 which means i − 1 is the number of

candidates sets V v
j contained in V v

i and among those bi/2c are such that i ≡ j. Consider a
particular prefix σ = (σ1, · · · , σi−1) such that there exists a permutation π ∈ Sv that has σ as
a prefix. This implies that σj ∈ P vbj . Thus, it follows that there are xbi −bi/2c elements s ∈ P vbi
such that the sequences (σ1, · · · , σi−1, s) can be the prefix of a permutation in Sv. Thus by
Corollary 20, and for i ≥ maxv +2,

Pr[F (xv) = i− 1|Π ∈ Sv ∧ F (xv) ≥ i− 1] = 1− xbi − bi/2c
n− i+ 1

and

Pr[F (xv) ≥ i|Π ∈ Sv ∧ F (xv) ≥ i− 1] =
xbi − bi/2c
n− i+ 1

.

25

Corollary 27. For maxv +1 ≤ a ≤ n/3 we have

Pr[F (xv) = a | Π ∈ Sv] = 2−Ω(a−maxv) ·
(

1−
xba+1 − b(a+ 1)/2c

n− a

)
.

Proof. Since xbi + xbi+1
= n, it follows that(

xbi − bi/2c
n− i+ 1

)(
xbi+1

− bi/2c
n− i+ 2

)
≤
(
xbi − bi/2c
n− i+ 1

)(
xbi+1

− bi/2c
n− i+ 1

)
≤ 1

2
.

Now we analyze the potential function.

C.2.2 Bounding (6)

We have,

ϕ(wa)− ϕ(v) = log
log 2n

|V wa
maxwa +1|−Conwa

log 2n
|V v

maxv +1|−Conv

+
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
. (10)

When a ≤ maxv we have, maxv = maxwa and Conv = Conwa . For a < maxv, we also have
V wa

maxv +1 = V v
maxv +1. It is clear from (10) that for ai ≤ a < ai+1−1, all the values of ϕ(wa)−ϕ(v)

will be equal. Thus,

(6) =

|Av |∑
i=1

Pr[F (xv) = ai − 1|Π ∈ Sv](ϕ(wai−1)− ϕ(v)) + (11)

|Av |∑
i=1

Pr[ai ≤ F (xv) < ai+1 − 1|Π ∈ Sv](ϕ(wai)− ϕ(v)) + (12)

Pr[F (xv) = maxv|Π ∈ Sv](ϕ(wmaxv)− ϕ(v)). (13)

Analyzing (11). We write (11) using (10) and Lemma 23(8). Using inequalities, 1−x ≤ e−x,
for 0 ≤ x ≤ 1, log(1 + x) ≤ x for x ≥ 0, and

∑
1≤i≤k yi log 1/yi ≤ Y log(k/Y) for yi ≥ 0 and

26

Y =
∑

1≤i≤k yi, we get the following:

(11) =

|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)(1− ε′j)

 i∑
j=1

log

log 2n

|V
wai−1
aj

|

log 2n
|V v

aj
|

 =

|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)(1− ε′j)

log

log 2n

|V
wai−1
ai

|

log 2n
|V v

ai
|

+

i−1∑
j=1

log

log 2n

|V
wai−1
aj

|

log 2n
|V v

aj
|

 =

|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)(1− ε′j)

log
log 2n

|V v
ai
| + log 1

εi

log 2n
|V v

ai
|

+
i−1∑
j=1

log
log 2n

|V v
aj
| + log 1

1−εj

log 2n
|V v

aj
|

 =

|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)(1− ε′j)

log

1 +
log 1

εi

log 2n
|V v

ai
|

+

i−1∑
j=1

log

1 +
log 1

1−εj

log 2n
|V v

aj
|

 ≤
|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)

log

1 +
log 1

εi

log 2n
|V v

ai
|

+
i−1∑
j=1

log

(
1 + log

1

1− εj

) ≤
|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)

log

1 +
log 1

εi

log 2n
|V v

ai
|

+

i−1∑
j=1

log
1

1− εj

 =

|Av |∑
i=1

εi log

1 +
log 1

εi

log 2n
|V v

ai
|

 i−1∏
j=1

(1− εj) + (14)

|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)

 i−1∑
j=1

log
1

1− εj

 . (15)

To bound (14), we use the fact that any two active candidate sets are disjoint. We break the

summation into smaller chunks. Observe that
∏i−1
j=1(1 − εj) ≤ e−

∑i−1
j=1 εj . Thus, let Jt, t ≥ 0,

be the set of indices such that for each i ∈ Jt we have 2t − 1 ≤
∑i−1

j=1 εj < 2t+1. Now define

Jt,k =
{
i ∈ Jt | n/2k+1 ≤ |V v

ai | ≤ n/2
k
}

, for 0 ≤ k ≤ log n and let st,k =
∑

i∈Jt,k εi. Observe

27

that by the disjointness of two active candidate sets, |Jt,k| ≤ 2k+1.

(14) =

logn∑
t=0

logn∑
k=1

∑
i∈Jt,k

εi log

1 +
log 1

εi

log 2n
|V v

ai
|

 i−1∏
j=1

(1− εj) ≤

n∑
t=0

logn∑
k=1

∑
i∈Jt,k

εi log

(
1 +

log 1
εi

k

)
e−

∑i−1
j=1 εj ≤

n∑
t=0

logn∑
k=1

∑
i∈Jt,k

εi
log 1

εi

k
e−2t+1 ≤

n∑
t=0

logn∑
k=1

st,k log
|Jt,k|
st,k

k
e−2t+1 ≤

n∑
t=0

logn∑
k=1

st,k(k + 1) + st,k log 1
st,k

k
e−2t+1 ≤

n∑
t=0

2t+2e−2t+1 +
n∑
t=0

logn∑
k=1

st,k log 1
st,k

k
e−2t+1 ≤

O(1) +

n∑
t=0

lg lgn∑
r=1

2r∑
k=2r−1

st,k log 1
st,k

2r−1
e−2t+1 .

Now define St,r =
∑

2r−1≤k<2r st,k. Remember that
∑log logn

r=1 St,r < 2t+1. Thus,

(14) ≤ O(1) +
n∑
t=0

lg lgn∑
r=1

St,r log 2r−1

St,r

2r−1
e−2t+1 =

O(1) +

n∑
t=0

lg lgn∑
r=1

St,r(r − 1) + St,r log 1
St,r

2r−1
e−2t+1 ≤

O(1) +
n∑
t=0

lg lgn∑
r=1

2t+1(r − 1)

2r−1
e−2t+1 +

n∑
t=0

lg lgn∑
r=1

1

2r−1
e−2t+1 = O(1).

To bound (15), define Jt as before and let pi =
∏i−1
j=1 1/(1− εj). Observe that the function

log(1/(1− x)) is a convex function which means if si :=
∑i−1

j=1 εj is fixed, then
∏i−1
j=1 1/(1− εj)

is minimized when εj = si/(i− 1). Thus,

pi ≥

(
1

1− si
i−1

)i−1

≥
(

1 +
si
i− 1

)i−1

≥ 1 +

(
i− 1

j

)(
si
i− 1

)j
in which j can be chosen to be any integer between 0 and i− 1. We pick j := max {bsi/8c, 1}.
Since i ≥ si, we get for i ∈ Jt,

pi ≥ 1 +

(
i−1

2

)j
jj

(
si
i− 1

)j
≥ 1 +

(
si
2j

)j
≥ 2si/8 ≥ 22t−4

.

Thus, we can write

(15) =

|Av |∑
i=1

εi
log pi
pi

=

logn∑
t=0

∑
i∈Jt

εi
log pi
pi

=

logn∑
t=0

∑
i∈Jt

O

(
εi2

t

22t−4

)
≤

logn∑
t=0

O

(
22t+1

22t−4

)
= O(1).

28

To bound (15), define Jt as before and let pi =
∏i−1
j=1 1/(1− εj). Observe that the function

log(1/(1− x)) is a convex function which means if si :=
∑i−1

j=1 εj is fixed, then
∏i−1
j=1 1/(1− εj)

is minimized when εj = si/(i− 1). Thus,

pi ≥

(
1

1− si
i−1

)i−1

≥
(

1 +
si
i− 1

)i−1

≥ 1 +

(
i− 1

j

)(
si
i− 1

)j
in which j can be chosen to be any integer between 0 and i− 1. We pick j := max {bsi/8c, 1}.
Since i ≥ si, we get for i ∈ Jt,

pi ≥ 1 +

(
i−1

2

)j
jj

(
si
i− 1

)j
≥ 1 +

(
si
2j

)j
≥ 2si/8 ≥ 22t−4

.

Thus, we can write

(15) =

|Av |∑
i=1

εi
log pi
pi

=

logn∑
t=0

∑
i∈Jt

εi
log pi
pi

=

logn∑
t=0

∑
i∈Jt

O

(
εi2

t

22t−4

)
≤

logn∑
t=0

O

(
22t+1

22t−4

)
= O(1).

Analyzing (12). The analysis of this equation is very similar to (11). We can write (12)
using (10) and (9). We also use the same technique as in analyzing (15).

(12) =

|Av |∑
i=1

ε′i(1− εi)
i−1∏
j=1

(1− εj)(1− ε′j)

 i∑
j=1

log

log 2n

|V
wai
aj
|

log 2n
|V v

aj
|

 =

|Av |∑
i=1

ε′i(1− εi)
i−1∏
j=1

(1− εj)(1− ε′j)

 i∑
j=1

log
log 2n

|V v
aj
| + log 1

1−εj

log 2n
|V v

aj
|

 =

|Av |∑
i=1

ε′i(1− εi)
i−1∏
j=1

(1− εj)(1− ε′j)

 i∑
j=1

log

1 +
log 1

1−εj

log 2n
|V v

aj
|

 ≤
|Av |∑
i=1

ε′i(1− εi)
i−1∏
j=1

(1− εj)(1− ε′j)

 i∑
j=1

log
1

1− εi

 .

Let si :=
∑i

j=1 εj , and s′i :=
∑i−1

j=1 ε
′
j . Similar to the previous case, let Jt, t ≥ 0, be

the set of indices such that for each i ∈ Jt we have 2t − 1 ≤ si + s′i ≤ 2t+1. Also define
pi =

∏i
j=1 1/(1− εj) and p′i =

∏i−1
j=1 1/(1− ε′j). Using the previous techniques we can get that

pi ≥ 2si/8 and p′i ≥ 2s
′
i/8. We get

(12) ≤
logn∑
t=0

∑
i∈Jt

ε′i
log pi
pip′i

≤
logn∑
t=0

∑
i∈Jt

ε′i
si

8 · 2si/82s
′
i/8
≤

logn∑
t=0

∑
i∈Jt

ε′i
2t+1

8 · 2(2t−1)/8
≤

logn∑
t=0

22t+2

8 · 2(2t−1)/8
= O(1).

29

Analyzing (13). Let b ∈ {0, 1} be such that b ≡ maxv and let k := |V v
maxv +1(b)|. We use

Lemma 24. Observe that we still have Conv = Conwmaxv
. Thus we have,

(13) ≤ (k − Conv)

|V v
maxv +1| − Conv

|Av |∏
i=1

(1− εi)(1− ε′i)(ϕ(wmaxv)− ϕ(v)) =

(k − Conv)

|V v
maxv +1| − Conv

|Av |∏
i=1

(1− εi)(1− ε′i)

log
log 2n

|V wmaxv
maxv +1|−Conwmaxv

log 2n
|V v

maxv +1|−Conv

+

|Av |∑
i=1

log
log 2n

|V wmaxv
i |

log 2n
|V v

i |

 ≤
(k − Conv)

|V v
maxv +1| − Conv

|Av |∏
i=1

(1− εi)(1− ε′i)

log
log 2n

k−Conv

log 2n
|V v

maxv +1|−Conv

+

|Av |∑
i=1

log

(
1 + log

1

1− εi

) ≤
(k − Conv)

|V v
maxv +1| − Conv

log
log 2n

k−Conv

log 2n
|V v

maxv +1|−Conv

+O(1) = O(1).

C.2.3 Bounding (7)

The big difference here is that the candidate set V wa
maxv +1 becomes an active candidate set (if of

course maxv +1 < n/3) at wa while V v
maxv +1 was not active at v. Because of this, we have

ϕ(wa)−ϕ(v) ≤ log log
2n

|V wa
a+1| − Conwa

+log log
2n

|V wa
maxv +1|

−log log
2n

|V v
maxv +1| − Conv

+
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
.

Thus, we get that

n/3∑
a>maxv

Pr[F (xv) = a | Π ∈ Sv](ϕ(wa)− ϕ(v)) =

n/3∑
a>maxv

Pr[F (xv) = a | Π ∈ Sv] log log
2n

|V wa
a+1| − Conwa

+ (16)

n/3∑
a>maxv

Pr[F (xv) = a | Π ∈ Sv] log

 log 2n
|V wa

maxv +1|

log 2n
|V v

maxv +1|−Conv

+ (17)

n/3∑
a>maxv

Pr[F (xv) = a | Π ∈ Sv]
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
. (18)

30

Using the previous ideas, it is easy to see that we can bound (18) as

(18) ≤
n/3∑

a>maxv

Pr[F (xv) = a | Π ∈ Sv ∧ F (xv) > maxv] · Pr[F (xv) > maxv | Π ∈ Sv]
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
≤

n/3∑
a>maxv

Pr[F (xv) = a | Π ∈ Sv ∧ F (xv) > maxv] ·
|Av |∏
i=1

(1− εi)(1− ε′i)
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
≤

|Av |∏
i=1

(1− εi)(1− ε′i)
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
≤

|Av |∏
i=1

(1− εi)(1− ε′i)
∑
j∈Av

log

(
1 + log

1

1− εj

)
≤

|Av |∏
i=1

(1− εi)
∑
j∈Av

log
1

1− εj
≤

|Av |∏
i=1

(1− εi) log

(
1∏

j∈Av
(1− εj)

)
= O(1).

To analyze (17) by Lemma 25 we know that Pr[F (xv) > maxv |Π ∈ Sv] ≤
|V v

maxv +1|−k
|V v

maxv +1|−Conv
in

which k is as defined in the lemma. Note that in this case |V wa
maxv +1| = |V v

maxv +1| − k. This
implies

(17) ≤
n∑

a>maxv

Pr[F (xv) = a | Π ∈ Sv] log

 log 2n
|V v

maxv +1|−k

log 2n
|V v

maxv +1|−Conv

 =

(
n∑

a>maxv

Pr[F (xv) = a | Π ∈ Sv]

)
log

 log 2n
|V v

maxv +1|−k

log 2n
|V v

maxv +1|−Conv

 =

Pr[F (xv) > maxv | Π ∈ Sv] log

 log 2n
|V v

maxv +1|−k

log 2n
|V v

maxv +1|−Conv

 ≤
|V v

maxv +1| − k
|V v

maxv +1| − Conv
log

 log 2n
|V v

maxv +1|−k

log 2n
|V v

maxv +1|−Conv

 = O(1).

It is left to analyze (16). Let x0 = |P v0 | and x1 = |P v1 |. Let bi be a Boolean such bi ≡ i.
Note that we have |V wmaxv +a

maxv +a+1| = xbmaxv +a = n − xbmaxv +a+1 . Using Corollary 27 we can write
(16) as follows:

(16) ≤
n/3−maxv∑

a=1

Pr[F (xv) = maxv + a | Π ∈ Sv] log log
2n

|V wmaxv +a

maxv +a+1| − Conwmaxv +a

≤

n/3−maxv∑
a=1

2−Ω(a)

(
1−

xbmaxv+a+1 − b(maxv + a+ 1)/2c
n−maxv − a

)
log log

2n

n− xbmaxv +a+1 − b(maxv + a)/2c
= O(1).

31

D Details on the Polynomial Time Feasibility Checks

We repeat Theorem 8.

Theorem 8. It is decidable in polynomial time whether a guessing history H = (xi, si)ti=1

is feasible. Furthermore, we can efficiently compute the number of consistent pairs
(z, π) ∈ {0, 1}n × Sn.

We first show how to check feasibility in polynomial time.

Proof of the first part of Theorem 8: polynomial time feasibility check. Let H = (xi, si)ti=1 be
given. Construct the sets V1, . . . , Vn as described in Theorem 1. Now construct a bipartite
graph G(V1, . . . , Vn) with node set [n] on both sides. Connect j to all nodes in Vj on the
other side. Permutations π with π(j) ∈ Vj for all j are in one-to-one correspondence to perfect
matchings in this graph. If there is no perfect matching, the history in infeasible. Otherwise,
let π be any permutation with π(j) ∈ Vj for all j. We next construct z. We use the obvious
rules:

a. If i = π(j) and j ≤ sh for some h ∈ [t] then set zi := xhi .

b. If i = π(j) and j = sh + 1 for some h ∈ [t] then set zi := 1− xhi .

c. If zi is not defined by one of the rules above, set it to an arbitrary value.

We need to show that these rules do not lead to a contradiction. Assume otherwise. There
are three ways, in which we could get into a contradiction. There is some i ∈ [n] and some
xh, x` ∈ {0, 1}n

• setting zi to opposite values by rule (a)

• setting zi to opposite values by rule (b)

• setting zi to opposite values by rules (b) applied to xh and rule (a) applied to x`.

In each case, we readily derive a contradiction. In the first case, we have j ≤ sh, j ≤ s` and
xhi 6= x`i . Thus π(j) = i 6∈ Vj by rule (1). In the second case, we have j = sh + 1 = s` + 1 and
xhi 6= x`i . Thus i 6∈ Vj by (2). In the third case, we have j = sh + 1, j ≤ s`, and xhi = x`i . Thus
i 6∈ Vj by (3).

Finally, the pair (z, π) defined in this way is clearly consistent with the history.

Next we show how to efficiently compute the number of consistent pairs. We recall Hall’s
condition for the existence of a perfect matching in a bipartite graph. A perfect matching exists
if and only if | ∪j∈J Vj | ≥ |J | for every J ⊆ [n].

Proof of the second part of Theorem 8: efficiently counting consistent pairs. According to The-
orem 1, the guessing history H can be equivalently described by a state (V1, . . . , Vs∗+1, x

∗, s∗).
How many pairs (z, π) are compatible with this state?

Once we have chosen π, there are exactly 2n−(s∗+1) different choices for z if s∗ < n and
exactly one choice if s∗ = n. The permutations can be chosen in a greedy fashion. We fix
π(1), . . . , π(n) in this order. When we choose π(i), the number of choices left is |Vi| minus the
number of π(j), j < i, lying in Vi. If Vj is disjoint from Vi, π(j) never lies in Vi and if Vj is
contained in Vi, π(j) is always contained in Vi. Thus the number of permutations is equal to∏

1≤i≤n
(|Vi| − |{j < i | Vj ⊆ Vi}|) .

It is easy to see that the greedy strategy does not violate Hall’s condition.

32

The set Vi is the candidate set of π(i). The proof of Theorem 8 explains which values in Vi
are actually possible as value for π(i). A value ` ∈ Vi is feasible if there is a perfect matching
in the graph G(V1, . . . , Vn) containing the edge (i, `). The existence of such a matching can be
decided in polynomial time; we only need to test for a perfect matching in the graph G \ {i, `}.
Hall’s condition says that there is no such perfect matching if there is a set J ⊆ [n] \ {i} such
that | ∪j∈J Vj \ {`}| < |J |. Since G contains a perfect matching (assuming a consistent history),
this implies | ∪j∈J Vj | = |J |, i.e., J is tight for Hall’s condition. We have shown: Let ` ∈ Vi.
Then ` is infeasible for π(i) if and only if there is a tight set J with i 6∈ J and ` ∈ ∪j∈JVj . Since
the Vi form a laminar family, minimal tight sets have a special form; the consist of an i and all
j such that Vj is contained in Vi. In the counting formula for the number of permutations such
i are characterized by |Vi| − |{j < i | Vj ⊆ Vi}| = 1. In this situation, the elements of Vi are
infeasible for all π(j) with j > i. We may subtract Vi from each Vj with j > i.

If Hall’s condition is tight for some J , i.e., | ∪j∈J Vj | = |J |, we can learn π|J easily. We
have Vj = [n] for j > s∗ + 1 and hence the largest index in J is at most s∗ + 1. Perturb x∗ by
flipping each bit in ∪j∈JVj exactly once. The objective values determine the permutation. We
conclude that we might as well give away π|J once Hall’s condition becomes tight for J .

33

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

