
The Query Complexity of Finding a Hidden Permutation

Peyman Afshani1, Manindra Agrawal2, Benjamin Doerr3,
Kasper Green Larsen1, Kurt Mehlhorn3, Carola Winzen3

1MADALGO, Department of Computer Science, Aarhus University, Denmark
2Indian Institute of Technology Kanpur, India

3Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract

We study the query complexity of determining a hidden permutation. More specifically,
we study the problem of learning a secret (z, π) consisting of a binary string z of length n
and a permutation π of [n]. The secret must be unveiled by asking queries x ∈ {0, 1}n, and
for each query asked, we are returned the score fz,π(x) defined as

fz,π(x) := max{i ∈ [0..n] | ∀j ≤ i : zπ(j) = xπ(j)} ;

i.e., the length of the longest common prefix of x and z with respect to π. The goal is to
minimize the number of queries asked.

Our main result are matching upper and lower bounds for this problem, both for deter-
ministic and randomized query schemes. The deterministic query complexity is Θ(n log n),
which, surprisingly, improves to Θ(n log log n) in the randomized setting.

For the randomized query complexity, both the upper and lower bound are stronger
than what can be achieved by standard arguments like the analysis of random queries or
information-theoretic considerations. Our proof of the Ω(n log log n) lower bound is based
on a potential function argument, which seems to be uncommon in the query complexity
literature. We find this potential function technique a very powerful tool in proving lower
bounds for randomized query schemes and we expect it to find applications in many other
query complexity problems.

Keywords: Query complexity; randomized algorithms.

1 Introduction

Query complexity, also referred to as decision tree complexity, is one of the most basic models of
computation. We aim at learning an unknown object (the secret) by asking queries of a certain
type. The cost of the computation is the number of queries made until the secret is unveiled.
All other computation is free. Surprisingly, for many simple and natural problems we do not
know the number of queries necessary, both if randomization is allowed or not.

In the context of Boolean functions—see [BdW02] for a survey—the goal is to evaluate a
given Boolean function f on a secret argument x by querying bits of x. For example, x could be
the adjacency matrix of a graph and f is one (zero) if the graph is connected (not connected). For
graph connectivity the deterministic query complexity is Θ(n2) and the randomized complexity
is only known to be Ω(n4/3 log1/3 n), cf. [CK07].

It is an open question since Saks’ and Wigderson’s paper [SW86] from 1986 to determine
the randomized query complexity of the recursive 3-Majority function. It asks to determine the
value of the root of a complete ternary tree of height h. The value of every internal node in the

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 87 (2012)

tree is the majority value of its three children. We have query access to the 3h leaves, which
are labeled with binary values. Recent progress include the papers by Jayram, Kumar, and
Sivakumar [JKS03] and Magniez, Nayak, Santha, and Xiao [MNSX11]. Magniez et al. provide
the current best lower and upper bounds of (5/2)h and (1.004) · 2.64946h, respectively.

Numerous related—seemingly simple looking problems—of unknown query complexities ex-
ist. In the field of property testing, it is open to date how many queries to a Boolean function
f : {0, 1}n → {0, 1} we need to determine with probability 2/3 whether f is a k-parity function
or far from being one. For non-adaptive testing sequences, Buhrman, Garćıa-Soriano, Matsliah,
and de Wolf [BGSMdW12] very recently could prove that the query complexity is Θ(k log k).
For the general, adaptive, case the best known lower bound [BBM12] is Ω(k), while the best
known upper bound is O(k log k).

Another long-standing open question is the coin weighing problem. Here we are given n coins
of two different weights and a spring scale. Our goal is to classify the coins into light and heavy
ones. We may use the spring scale to weigh arbitrary subsets of the coins. What is the smallest
number of weighings needed, in the worst-case, to classify the coins? This problem remains open
since 1963 when Erdős and Rényi [ER63] showed a a lower bound of (1 + o(1))n/ log2 n and
an upper bound of (1 + o(1))(log2 9)n/ log2 n. The upper bound was subsequently improved to
(1 + o(1))2n/ log2 n by Lindström [Lin65] and, independently, by Cantor and Mills [CM66], but
no tight bound is known to date. A number of different versions of coin weighing problems exist.
A good survey can be found in Bshouty’s paper on polynomial time query-optimal algorithms
for coin weighing problems [Bsh09].

A related open problem is the query complexity of the Mastermind game with n positions
and k = n colors. In Mastermind, the secrets and queries are strings of length n over a k-ary
alphabet. If the secret is z, a query x returns the number eq(z, x) := |{i | xi = zi}| of positions
in which x and the secret code z coincide. Although the asymptotically best upper bound of
Chvátal [Chv83] was recently improved from O(n log n) to O(n log log n), cf. [DSTW13], the
best known lower bound is the trivial linear one. This problem is open for more than 30 years.
For both the coin weighing problem of Erdős and Rényi as well as for the Mastermind problem
of Chvátal it is widely believed that the current lower bounds are not optimal.

Our Contribution In this work, we shift the focus from searching for secret bits (or bit-
strings) to hidden permutations. Apart from the classic result that Θ(n log n) comparison
queries are necessary and sufficient for sorting, we are not aware of any other query complexity
theoretic work on finding permutations.

The query problem we regard originates from theoretical work on randomized search heuris-
tics (see the end of this section), but seems to be a good first example for studying permutation
query problems. In particular, it nicely captures the aspect of order/sequentiality in that π(i)
is easier to detect than π(j) when i < j.

Let Sn denote the set of permutations of [n] := {1, . . . , n}; let [0..n] := {0, 1, . . . , n}. Our
problem is that of learning a hidden permutation π ∈ Sn together with a hidden bit-string
z ∈ {0, 1} through (as few as possible) queries of the following type. A query is again a bit-
string x ∈ {0, 1}n, as answer we receive the length of the longest common prefix of x and z in
the order of π, which we denote by

fz,π(x) := max{i ∈ [0..n] | ∀j ≤ i : zπ(j) = xπ(j)} .

We call this problem the HiddenPermutation problem.
We show the following.
(1) We exhibit a randomized strategy that finds the secret with an expected number

of O(n log logn) queries (Section 4). This improves upon the O(n log n/ log log n) bound

2

from [DW12].
The O(n log logn) bound is quite remarkable. Putting it into an information-theoretic per-

spective, this result shows that we succeed in learning an average of Ω(log n/ log log n) bits of
information in each query. This in particular means that our queries allow many different an-
swers to show up with sufficiently high probability. Hence we partially overcome the slowness
of learning one (zπ(i), π(i)) after the other in the order i = 1, . . . , n.

Our strategy is efficient; i.e., it can be implemented in polynomial time.
(2) We then show that this upper bound is asymptotically optimal (Section 5). The lower

bound is derived from a potential function argument, which, as far as we know, seems un-
common in the query complexity literature. We believe this potential function approach is
very interesting in its own right, and we expect that it may be applied to many other query
complexity problems to yield improved lower bounds.

The lower bound is particularly interesting as for many related problems (sorting, Master-
mind, and many coin weighing problems, the asymptotic query complexity or the best known
lower bound equals the information-theoretic lower bound. This is not the case here, where the
information-theoretic lower bound is linear (cf. Section 2 for a sketch). This also was the best
lower bound known so far.

(3) Interestingly, and unlike for the problems mentioned in the previous paragraph, the
deterministic query complexity of our problem is asymptotically larger than the randomized
one. In Section 3, we prove a lower bound of Ω(n log n) queries for any deterministic query
scheme, which is easily proven tight by sequentially determining (zπ(i), π(i)) for i = 1, . . . , n.

Origin of the Problem The problem we regard in this work has its origins in the field of
evolutionary algorithms. Here, the so-called LeadingOnes function

{0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : xj = 1}

is a commonly used testbed both for experimental and theoretical analyses (e.g., [Rud97]).
It turns out that many genetic and evolutionary algorithms as well as other general-purpose
randomized search heuristics used in practice query the fitness of Θ(n2) solution candidates until
they find the maximum of LeadingOnes, see, e.g., [DJW02]. Naturally, the same is true when
LeadingOnes is replaced by any function LeadingOnes ◦ σ, where σ is an automorphism of
the n-dimensional cube.

In an attempt to understand the intrinsic difficulty of a problem for general purpose search
heuristics, Droste, Jansen and Wegener [DJW06] suggested a query complexity theoretic notion
called black-box complexity, which roughly speaking (see [DJW06] for the details) is the number
of search points a black-box optimization algorithm has to evaluate to find the optimum of an
unknown optimization instance from a known problem. The connection to our work is made by
the easy observation that the black-box complexity of the class of all LeadingOnes ◦ σ func-
tions is asymptotically equal to the randomized query complexity of our HiddenPermutation
problem. For this reason, the black-box complexity result in [DW12] implies an upper bound
of O(n log n/ log log n) for the randomized query complexity of our problem.

2 Preliminaries

For all positive integers k ∈ N we define [k] := {1, . . . , k} and [0..k] := [k] ∪ {0}. By enk
we denote the kth unit vector (0, . . . , 0, 1, 0, . . . , 0) of length n. For a set I ⊆ [n] we define
enI :=

∑
i∈I e

n
i = ⊕i∈Ieni , where ⊕ denotes the bitwise exclusive-or. We say that we create y

from x by flipping I or that we create y from x by flipping the entries in position(s) I if y = x⊕enI .

3

By Sn we denote the set of all permutations of [n]. For r ∈ R≥0, let dre := min{n ∈ N0 | n ≥ r}.
and brc := max{n ∈ N0 | n ≤ r}. To increase readability, we sometimes omit the d·e signs; that
is, whenever we write r where an integer is required, we implicitly mean dre.

Let n ∈ N. For z ∈ {0, 1}n and π ∈ Sn we define

fz,π : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : zπ(j) = xπ(j)} .

z is called the target string of fz,π and π is called the target permutation. In the
HiddenPermutation problem we want to identify target string and target permutation by
asking queries xi and evaluating the answers (“scores”) si = fz,π(xi). We may stop after t
queries if there is only a single pair (z, π) ∈ {0, 1}n × Sn with si = fz,π(xi) for 1 ≤ i ≤ t.

A randomized strategy for the HiddenPermutation problem is a tree of outdegree n+1 in
which a probability distribution over {0, 1}n is associated with every node of the tree. The search
starts as the root. In any node, the query is selected according to the probability distribution
associated with the node, and the search proceeds to the child selected by the score. The
complexity of a strategy on input (z, π) is the expected number of queries required to identify
the secret, and the randomized query complexity of a strategy is the worst case over all secrets.
Deterministic strategies are the special case in which the probability distributions are one-point
distributions; i.e., a fixed query is associated with every node. The deterministic (randomized)
query complexity of HiddenPermutation is the best possible (expected) complexity.

We remark that knowing z allows us to determine π with n − 1 queries z ⊕ eni , 1 ≤ i < n.
Observe that π−1(i) equals fz,π(z ⊕ eni) + 1. Conversely, knowing the target permutation π we
can identify z in a linear number of guesses. If our query x has a score of k, all we need to do
next is to query the string x′ that is created from x by flipping the entry in position π(k + 1).
Thus, learning one part of the secret is no easier (up to O(n) questions) than learning the full.

A simple information-theoretic argument gives an Ω(n) lower bound for the deterministic
query complexity and, together with Yao’s minimax principle [Yao77], also for the randomized
complexity. The search space has size 2nn!, since the unknown secret is an element of {0, 1}n×
Sn. That is, we need to “learn” Ω(n log n) bits of information. Each score is a number between
0 and n, i.e., we learn at most O(log n) bits of information per query, and the Ω(n) bound
follows.

Let H := (xi, si)ti=1 be a vector of queries xi ∈ {0, 1}n and scores si ∈ [0..n]. We call H a
guessing history. A secret (z, π) is consistent with H if fz,π(xi) = si for all i ∈ [t]. H is feasible
if there exists a secret consistent with it.

An observation crucial in our proofs is the fact that a vector (V1, . . . , Vn) of subsets of [n],
together with a top score query (x∗, s∗), captures the total knowledge provided by a guessing
history H = (xi, si)ti=1 about the set of secrets consistent with H. We will call Vj the candidate
set for position j; Vj will contain all indices i ∈ [n] for which the following simple rules (1) to
(3) do not rule out that π(j) equals i.

Theorem 1. Let t ∈ N, and let H = (xi, si)ti=1 be a guessing history. Construct the candidate
sets V1, . . . , Vn ⊆ [n] according to the following rules:

(1) If there are h and ` with j ≤ sh ≤ s` and xhi 6= x`i , then i 6∈ Vj.
(2) If there are h and ` with s = sh = s` and xhi 6= x`i , then i 6∈ Vs+1.

(3) If there are h and ` with sh < s` and xhi = x`i , then i 6∈ Vsh+1.

(4) If i is not excluded by one of the rules above, then i ∈ Vj.
Furthermore, let s∗ := max{s1, . . . , st} and let x∗ = xj for some j with sj = s∗.

Then a pair (z, π) is consistent with H if and only if (a) fz,π(x∗) = s∗ and (b) π(j) ∈ Vj for
all j ∈ [n].

4

Proof. Let (z, π) satisfy conditions (a) and (b). We show that (z, π) is consistent with H. To
this end, let h ∈ [t], let x = xh, s = sh, and f := fz,π(x). We need to show f = s.

Assume f < s. Then zπ(f+1) 6= xπ(f+1). Since f + 1 ≤ s∗, this together with (a) implies
xπ(f+1) 6= x∗π(f+1). Rule (1) yields π(f + 1) /∈ Vf+1; a contradiction to (b).

Similarly, if we assume f > s, then xπ(s+1) = zπ(s+1). We distinguish two cases. If s < s∗,
then by condition (a) we have xπ(s+1) = x∗π(s+1). By rule (3) this implies π(s + 1) /∈ Vs+1; a

contradiction to (b).
On the other hand, if s = s∗, then xπ(s+1) = zπ(s+1) 6= x∗π(s+1) by (a). Rule (2) implies

π(s+ 1) /∈ Vπ(s+1), again contradicting (b).
Necessity is trivial.

We may also construct the sets Vj incrementally. The following update rules are direct
consequences of Theorem 1. In the beginning, let Vj := [n], 1 ≤ j ≤ n. After the first query,
record the first query as x∗ and its score as s∗. For all subsequent queries, do the following: Let
I be the set of indices in which the current query x and the current best query x∗ agree. Let s
be the objective value of x and let s∗ be the objective value of x∗.

Rule 1: If s < s∗, then Vi ← Vi ∩ I for 1 ≤ i ≤ s and Vs+1 ← Vs+1 \ I.

Rule 2: If s = s∗, then Vi ← Vi ∩ I for 1 ≤ i ≤ s∗ + 1.

Rule 3: If s > s∗, then Vi ← Vi ∩ I for 1 ≤ i ≤ s∗ and Vs∗+1 ← Vs∗+1 \ I. We further replace
s∗ ← s and x∗ ← x.

It is immediate from the update rules that the Vjs form a laminar family ; i.e., for i < j
either Vi ∩ Vj = ∅ or Vi ⊆ Vj . As a consequence of Theorem 1 we obtain a polynomial time test
for the feasibility of histories. It gives additional insight in the meaning of the candidate sets
V1, . . . , Vn.

Theorem 2. It is decidable in polynomial time whether a guessing history is feasible. Further-
more, we can efficiently compute the number of pairs consistent with it.

(sketch. A full proof is in the appendix). Let V1, . . . , Vn be as in Theorem 1. We construct a
bipartite graph G = G(V1, . . . , Vn) with node set [n] on both sides. Connect j to all elements in
Vj on the other side. Permutations π with π(j) ∈ Vj for all j are in one-to-one correspondence to
perfect matchings in G. If there is no perfect matching, the history is infeasible. Otherwise, let
π be any permutation with π(j) ∈ Vj for all j. Set zπ(i) := x∗π(i) for i ∈ [s∗], and zπ(i) := 1−x∗π(i)

for i /∈ [s∗]. The pair (z, π) is consistent with H.
For the counting problem we first observe that for any fixed consistent permutation π, the

number of strings z such that (z, π) is consistent with H equals 2n−(s∗+1) if s∗ < n, and it equals
one if s∗ = n. By Hall’s condition a perfect matching exists if and only if |

⋃
j∈J Vj | ≥ |J | for

every J ⊆ [n]. Constructing the permutations in a greedy fashion, one sees that the number of
consistent permutations is equal to

∏
1≤i≤n (|Vi| − |{j < i | Vj ⊆ Vi}|) .

The fact that the Vjs are a laminar family is crucial for the counting result. Counting the
number of perfect matching in a general bipartite graph is #P-complete.

3 Deterministic Complexity

In this section, we present simple proofs that completely settle the deterministic query com-
plexity of the HiddenPermutation problem. Specifically, we prove

Theorem 3. The deterministic query complexity of the HiddenPermutation problem with n
positions is Θ(n log n).

5

The lower bound is proved by examining the decision tree of the deterministic query scheme
and finding an input for which the number of queries asked is high. More precisely, we show that
for every deterministic strategy, there exists an input (z, π) such that after Ω(n log n) queries
the maximal score ever returned is at most n/2. This is done as follows: First consider the root
node r of the decision tree. There is one child for every possible score 0, 1, . . . , n. The crucial
observation in the following steps is that there is always one of the two children corresponding
to scores 0 and 1 for which the size of the candidate set V1 at most halves and V3, . . . , Vn do
not change when following the update rules from the preceding section. That is, for any query
asked in the first round, there is an answer (either 0 or 1) to it such that the number of possible
values of π(1) at most halves. Thus we recurse into that child on the subset of inputs consistent
with that answer. We may continue this for Ω(log n) steps, until |V1| = 2. At this point, let v be
the node reached in the decision tree and let x∗ be an arbitrary one of the queries asked which
achieved the maximal score (remember the maximal score is either 0 or 1). Now choose i′ ∈ V1

and i′′ ∈ V2 arbitrarily and consider the subset of all inputs for which i′ = π(1), i′′ = π(2),
zi′ = x∗i′ , and zi′′ = 1 − x∗i′′ . For all such inputs, the query path followed in the decision tree
must start by descending from the root to the node v. For this collection of inputs, observe
that there is one input for every assignment of values to π(3), . . . , π(n) different from i′ and i′′,
and for every assignment of 0/1 values to zπ(3), . . . , zπ(n). Hence we can recurse on this subset
of inputs starting at v ignoring V1, V2, π(1), π(2), zπ(1), and zπ(2). The setup is identical to what
we started out with at the root, with the problem size decreased by 2. We proceed this way,
forcing Ω(log n) queries for every two positions revealed, until we have returned a score of n/2
for the first time. At this point, we have forced at least n/4 · Ω(log n) = Ω(n log n) queries.

The upper bound is achieved by an algorithm that resembles binary search and iteratively
identifies π(1), . . . , π(n) and the corresponding bit values zπ(1), . . . , zπ(n): We start by querying
the all-zeros string (0, . . . , 0) and the all-ones string (1, . . . , 1). The scores determine zπ(1). By
flipping a set I containing half of the bit positions in the better (the one achieving largest score)
of the two strings, we can determine whether π(1) ∈ I or not. This allows us to find π(1) via
a binary search strategy in O(log n) queries. Once π(1) and zπ(1) are known, we iterate this
strategy on the remaining bit positions to determine π(2) and zπ(2), and so on, yielding an
O(n log n) query strategy for identifying the secret, cf. Section B.2.

4 The Randomized Strategy

We now show that the randomized query complexity is only O(n log log n). This implies that we
found a way to overcome the sequential learning process of the binary search strategy (typically
revealing a constant amount of information per query) and instead have a typical information
gain of Θ(log n/ log log n) bits per query. In the language of the candidate sets Vi, we manage to
reduce the sizes of many Vis in parallel, that is, we gain information on several π(i)s despite the
seemingly sequential way fz,π offers information. The key to this is using partial information
given by the Vi (that is, information that does not determine πi, but only restricts it) to guess
with good probability an x with fz,π(x) > s∗.

Theorem 4. The randomized query complexity of the HiddenPermutation problem with n
positions is O(n log logn).

The strategy has two parts. In the main part, we identify the positions π(1), . . . , π(q) and
the corresponding bit values zπ(1), . . . , zπ(q) for some q ∈ n − Θ(n/ log n) with O(n log logn)
queries. In the second part, we find the remaining n − q ∈ Θ(n/ log n) positions and entries
using the binary search algorithm with O(log n) queries per position. Part 1 is outlined below;
the details are in the appendix.

6

4.1 The Main Strategy

Here and in the following we denote by s∗ the current best score, and by x∗ we denote a
corresponding query; i.e., fz,π(x∗) = s∗. For brevity, we write f for fz,π.

There is a trade-off between learning more information about π by reducing the sets
V1, . . . , Vs∗+1 and increasing the score s∗. Our main task is to find the right balance between
the two. In our O(n log logn) strategy, we partition the sets V1, . . . , Vn into several levels, each
of which has a certain capacity. Depending on the status (i.e., the fill rate) of these levels, either
we try to increase s∗, or we aim at reducing the sizes of the candidate sets.

In the beginning, all candidate sets V1, . . . , Vn belong to level 0. In the first step we aim
at moving V1, . . . , Vlogn to the first level. This is done sequentially. We start by querying f(x)
and f(y), where x is arbitrary and y = x ⊕ 1n is the bitwise complement of x. By swapping
x and y if needed, we may assume f(x) = 0 < f(y). We now run a randomized binary search
for finding π(1). We choose uniformly at random a subset F1 ⊆ V1 (V1 = [n] in the beginning)
of size |F1| = |V1|/2. We query f(y′) where y′ is obtained from y by flipping the bits in F1.
If f(y′) > f(x), we set V1 ← V1 \ F1; we set V1 ← F1 otherwise. This ensures π(1) ∈ V1.
We stop this binary search once π(2) 6∈ V1 is sufficiently likely; the analysis will show that
Pr[π(2) ∈ V1] ≤ 1/ logd n (and hence |V1| ≤ n/ logd n) for some large enough constant d is a
good choice.

We now start pounding on V2. Let {x, y} = {y, y ⊕ 1[n]\V1}. If π(2) 6∈ V1, one of f(x) and
f(y) is one and the other is larger than one. Swapping x and y if necessary, we may assume
f(x) = 1 < f(y). We now use randomized binary search to reduce the size of V2 to n/ logd n.
The randomized binary search is similar to before. Initially we have V2 = [n] \ V1. At each step
we chose a subset F2 ⊆ V2 of size |V2|/2 and we create y′ from y by flipping the bits in positions
F2. If f(y′) = 1 we update V2 by F2 and we update V2 by V2 \ F2 otherwise. We stop once
|V2| ≤ n/ logd n.

At this point we have |V1|, |V2| ≤ n/ logd n and V1 ∩ V2 = ∅. We hope that π(3) /∈ V1 ∪ V2,
in which case we move set V3 from level 0 to level 1 (we comment on the case π(3) ∈ V1 ∪ V2 in
the failure section, Section 4.2).

At some point the probability that π(i) /∈ V1∪ . . .∪Vi−1 drops below a certain threshold and
we cannot ensure to make progress anymore by simply querying y⊕ ([n]\(V1∪ . . .∪Vi−1)). This
situation is reached when i = log n and hence we abandon the previously described strategy
once s∗ = log n. At this point, we move our focus from increasing the current best score s∗

to reducing the size of the candidate sets V1, . . . , Vs∗ , thus adding them to the second level.
More precisely, we reduce their sizes to at most n/ log2d n. This reduction is carried out by
subroutine2, which we describe in Section 4.3.

Once the sizes |V1|, . . . , |Vs∗ | have been reduced to at most n/ log2d n, we move our focus
back to increasing s∗. The probability that π(s∗ + 1) ∈ V1 ∪ . . . ∪ Vs∗ will now be small enough
(details below), and we proceed as before by flipping [n] \ (V1 ∪ . . .∪ Vs∗) and reducing the size
of Vs∗+1 to n/ logd n. Again we iterate this process until the first level is filled; i.e., until we
have s∗ = 2 log n. As we did with V1, . . . , Vlogn, we reduce the sizes of Vlogn+1, . . . , V2 logn to
n/ log2d n, thus adding them to the second level. We iterate this process of moving log n sets
from level 0 to level 1 and then moving them to the second level until log2 n sets have been
added to the second level. At this point the second level has reached its capacity and we proceed
by reducing the sizes of V1, . . . , Vlog2 n to at most n/ log4d n, thus adding them to the third level.

In total we have t = O(log log n) levels. For 1 ≤ i ≤ t, the ith level has a capacity of

xi := log2i−1
n sets, each of which is required to be of size at most n/xdi . Once level i has

reached its capacity, we reduce the size of the sets on the ith level to at most n/xdi+1, thus
moving them from level i to level i+ 1. When xt sets Vi, . . . , Vi+xt have been added to the last

7

level, level t, we finally reduce their sizes one. This corresponds to determining π(i+ j) for each
j ∈ [xt].

This concludes the presentation of the main ideas of the first phase. We still need to discuss
how to handle failures, how to move sets from some level i to level i + 1 (subroutine2), and
we need to compute the query complexity of our algorithm.

4.2 Failures

We say that a failure happens if we want to move some set Vj+1 from level 0 to level 1, but
either f(y) = f(y ⊕ 1[n]\{V1∪...∪Vj}) = j or f(y), f(y ⊕ 1[n]\{V1∪...∪Vj}) > j holds. In this case
we can conclude that π(j + 1) ∈ V1 ∪ . . . ∪ Vj . Therefore, we immediately abort the first level.
That is, we move all sets on the first level to the second one. As before, this is done by calls
to subroutine2 which reduce the size of the sets from at most n/ logd n to at most n/ log2d n.
We test whether we now have {f(y), f(y ⊕ 1[n]\{V1∪...∪Vj}} = {j, j + `} for some ` ≥ 1. Should
we still have π(j + 1) ∈ V1 ∪ . . . ∪ Vj , we continue by moving all level 2 sets to level 3, and so
on, until we finally have π(j + 1) 6∈ V1 ∪ . . . ∪ Vj . At this point, we proceed again by moving
sets from level 0 to level 1, starting of course with set Vj+1.

The pseudo-code summarizing phase 1 can be found in the appendix, cf. Algorithm 1.

4.3 Subroutine2

We now describe how to reduce the sizes of the up to x`−1 candidate sets from some value
≤ n/xd`−1 to the target size n/xd` of level ` with an expected number of O(1)x`−1d(log(x`) −
log(x`−1))/ log(x`−1) queries. For this reduction we introduce procedure subroutine2: It re-
duces the sizes of at most k candidate sets to a kth fraction of their original size using at most
O(k) queries (k is a parameter of the routine). We use subroutine2 with parameter k = x`−1

repeatedly to achieve the full reduction of the sizes to at most n/xd` .
subroutine2 is given a set J of at most k indices and a string y with f(y) ≥ max J . The

goal is to reduce the size of each candidate set Vj , j ∈ J , below a target size m where m ≥ |Vj |/k
for all j ∈ J . The routine works in phases of several iterations each. Let J be the set of indices
of the candidate sets that are still above the target size at the beginning of an iteration. For
each j ∈ J , we randomly choose a subset Fj ⊆ Vj of size |Vj |/k. We create a new bit string
y′ from y by flipping the entries in positions ∪j∈JFj . A condition on the sets Vj , j ∈ J , (see
Lemma 5) ensures that we have either f(y′) ≥ max J or f(y′) = j − 1 for some j ∈ J . In the
first case, i.e., if f(y′) ≥ max J , none of the sets Vj was hit, and for all j ∈ J we can remove the
subset Fj from the candidate set Vj . We call such queries “off-trials”. An off-trial reduces the
size of all sets Vj , j ∈ J , to a (1 − 1/k)th fraction of their original size. If, on the other hand,
we have f(y′) = j−1 for some j ∈ J , we can replace Vj by set Fj as π(j) ∈ Fj must hold. Since
|Fj | = |Vj |/k ≤ m by assumption, this set has now been reduced to its target size and we can
remove it from J .

We continue in this way until at least half of the indices are removed from J and at least
ck off-trials occurred, for some constant c satisfying (1− 1/k)ck ≤ 1/2. We then proceed to the
next phase. Consider any j that is still in J . The size of Vj was reduced by a factor (1− 1/k)
at least ck times. Thus its size was reduced to at most half its original size. We may thus halve
k without destroying the invariant m ≥ |Vj |/k for j ∈ J . The effect of halving k is that the
relative size of the sets Fj will be doubled for the sets Vj that still take part in the reduction
process.

The pseudo-code of subroutine2 can be found in the appendix, cf. Algorithm 4 in Sec-
tion B.3.

8

Lemma 5. Let k ∈ N and let J ⊆ [n] be a set of at most k indices with Vj ∩ Vp = ∅ for j ∈ J
and p ∈ [max J]\{j}. Let y ∈ {0, 1}n be such that f(y) ≥ max J and let m ∈ N be such that
m ≥ |Vj |/k for all j ∈ J .

In expectation it takes O(k) queries until subroutine2(k, J,m, y) has reduced the size of Vj
to at most m for each j ∈ J .

Using successive calls to subroutine2 we get the following corollary.

Corollary 6. Let k ∈ N, J , and y be as in Lemma 4. Let further d ∈ N and x ∈ R such that
maxj∈J |Vj | = n/xd. Let y ∈ R with y > x.

Using at most d(log y − log x)/ log k calls to subroutine2 we can reduce the maximal size
maxj∈J |Vj | to n/yd. The overall expected number of queries needed to achieve this reduction is
O(1)kd(log y − log x)/ log k.

4.4 Proof of Theorem 4

It remains to show that the first phase of our strategy requires at most O(n log log n) queries.
If no failure happened, the expected number of queries was bounded by

q

xt

(
xt log n

log xt
+

xt
xt−1

(
xt−1dc(log xt − log xt−1)

log xt−1

+
xt−1

xt−2

(
. . .+

x2

x1

(
x1dc(log x2 − log x1)

log x1
+ x1d log x1

))))
≤ndc

(
log n

log xt
+

log xt
log xt−1

+ . . .+
log x2

log x1
+ log x1 − t

)
, (1)

where c is the constant hidden in the O(1)-term in Lemma 5. To verify this formula, observe that
we fill the (i−1)st level xi/xi−1 times before level i has reached its capacity of xi candidate sets.
To add xi−1 candidate sets from level i− 1 to level i, we need to reduce their sizes from n/xdi−1

to n/xdi . By Corollary 6 this requires at most xi−1dc(log xi − log xi−1)/ log xi−1 queries. The
additional x1d log x1 term accounts for the queries needed to move the sets from level 0 to level
1; i.e., for the randomized binary search algorithm through which we initially reduce the sizes
of the Vis to n/xd1—requiring at most d log x1 queries per call. Finally, the term xt log n/ log xt
accounts for the final reduction of the Vis to a set containing only one single element (at this
stage we shall finally have Vi = {π(i)}). More precisely, this term is (xt(log n− d log xt)) / log xt
but we settle for upper bounding this expression by the term given in the formula.

Next we need to bound the number of queries caused by failures. We show that, on average,
not too many failures happen. More precisely, we show that the expected number of level-i
failures is at most n2/((n − q)(xd−1

i − 1)). By Corollary 6, each such level-i failure causes an
additional number of at most 1 + xidc(log xi+1 − log xi)/ log xi queries (the 1 counts for the
query through which we discover that π(s∗ + 1) ∈ V1 ∪ . . . ∪ Vs∗). Thus,

t∑
i=1

n2

(n− q)(xd−1
i − 1)

(
1 +

xidc(log xi+1 − log xi)

log xi

)
(2)

bounds the expected number of additional queries caused by failures.
We recall the settings of the xi. We have x1 = log n and xi = log2i−1

n. We further have
t ∈ Θ(log log n), so that log xt = Ω(log n). The parameter d is some constant ≥ 4. With these
parameter settings, formula (1) evaluates to

ndc

(
log n

log xt
+ 2(t− 1) + log log n− t

)
= O(n log logn)

9

and, somewhat wasteful, we can bound formula (2) from above by

n2dc

n− q

t∑
i=1

x
−(d−3)
i = O(n log n)

t−1∑
i=0

x
−(d−3)2i

1

< O(n log n)(xd−3
1 − 1)−1 = O(n) .

This shows that the overall expected number of queries sums to O(n log log n) + O(n) =
O(n log log n).

5 The Lower Bound

In this section, we prove a tight lower bound for the randomized query complexity of the
HiddenPermutation problem. The lower bound is stated in the following:

Theorem 7. The randomized query complexity of the HiddenPermutation problem with n
positions is Ω(n log log n).

To prove a lower bound for randomized query schemes, we appeal to Yao’s principle. That
is, we first define a hard distribution over the secrets and show that every deterministic query
scheme for this hard distribution needs Ω(n log logn) queries in expectation. This part of the
proof is done using a potential function argument.

Hard Distribution Let Π be a permutation drawn uniformly among all the permutations of
[n] (in this section, we use capital letters to denote random variables). Given such a permutation,
we let our target string Z be the one satisfying ZΠ(i) = (i mod 2) for i = 1, . . . , n. Since Z
is uniquely determined by the permutation Π, we will mostly ignore the role of Z in the rest
of this section. Finally, we use F (x) to denote the value of the random variable fZ,Π(x) for
x ∈ {0, 1}n. We will also use the notation a ≡ b to mean that a ≡ b mod 2.

Deterministic Query Schemes By fixing the random coins, a randomized solution with
expected t queries implies the existence of a deterministic query scheme with expected t queries
over our hard distribution. The rest of this section is devoted to lower bounding t for such a
deterministic query scheme.

A deterministic query scheme is a decision tree T in which each node v is labeled with a
string xv ∈ {0, 1}n. Each node has n + 1 children, numbered from 0 to n, and the ith child is
traversed if F (xv) = i. To guarantee correctness, no two inputs can end up in the same leaf.

For a node v in the decision tree T , we define maxv as the largest value of F seen along the
edges from the root to v. Note that maxv is not a random variable and in fact, at any node v
and for any ancestor u of v, conditioned on the event that the search path reaches v, the value
of F (xu) is equal to the index of the child of u that lies on the path to v. Finally, we define Sv
as the subset of inputs (as outlined above) that reach node v.

We use a potential function which measures how much “information” the queries asked have
revealed about Π. Our goal is to show that the expected increase in the potential function after
asking each query is small. Our potential function depends crucially on the candidate sets.
The update rules for the candidate sets are slightly more specific than the ones in Section 2
because we now have a fixed connection between the two parts of the secret. We denote the
candidate set for π(i) at node v with V v

i . At the root node r, we have V r
i = [n] for all i. Let

v be a node in the tree and let w0, . . . , wn be its children (wi is traversed when the score i is
returned). Let P v0 (resp. P v1) be the set of positions in xv that contain 0 (resp. 1). Thus,

10

formally, P v0 = {i | xv[i] = 0} and P v1 = {i | xv[i] = 1}.1 The precise definition of candidate
sets is as follows:

V
wj

i =


V v
i ∩ P vi mod 2 if i ≤ j ,
V v
i ∩ P vj mod 2 if i = j + 1 ,

V v
i if i > j + 1.

As with the upper bound case, the candidate sets have some very useful properties. These
properties are slightly different from the ones observed before, due to the fact that some extra
information has been announced to the query algorithm. We say that a candidate set V v

i is active
(at v) if the following conditions are met: (i) at some ancestor node u of v, we have F (xu) = i−1,
(ii) at every ancestor node w of u we have F (xw) < i − 1, and (iii) i < min {n/3,maxv}. We
call V v

maxv +1 pseudo-active (at v).
For intuition on the requirement i < n/3, observe from the following lemma that V v

maxv +1

contains all sets V v
i for i ≤ maxv and i ≡ maxv. At a high level, this means that the distribution

of Π(maxv +1) is not independent of Π(i) for i ≡ maxv. The bound i < n/3, however, forces
the dependence to be rather small (there are not too many such sets). This greatly helps in the
potential function analysis.

In the appendix, we show that the candidate sets satisfy the following:

Lemma 8. The candidate sets have the following properties:
(i) Two candidate sets V v

i and V v
j with i < j ≤ maxv and i 6≡ j are disjoint.

(ii) An active candidate set V v
j is disjoint from any candidate set Vi provided i < j < maxv.

(iii) The candidate set V v
i , i ≤ maxv is contained in the set V v

maxv +1 if i ≡ maxv and is
disjoint from it if i 6≡ maxv.

(iv) For two candidate sets V v
i and V v

j , i < j, if V v
i ∩ V v

j 6= ∅ then V v
i ⊂ V v

j .

5.1 Potential Function

We define the potential of an active candidate set V v
i as log log (2n/|V v

i |). This is inspired by
the upper bound: a potential increase of 1 corresponds to a candidate set advancing one level
in the upper bound context (in the beginning, a set V v

i has size n and thus its potential is 0
while at the end its potential is Θ(log log n). With each level, the quantity n divided by the
size of Vi is squared). We define the potential at a node v as

ϕ(v) = log log
2n

|V v
maxv +1| − Conv

+
∑
j∈Av

log log
2n

|V v
j |
,

in which Av is the set of indices of active candidate sets at v and Conv is the number of candidate
sets contained inside V v

maxv +1. Note that from Lemma 8, it follows that Conv = bmaxv /2c.
The intuition for including the term Conv is the same as our requirement i < n/3 in the

definition of active candidate sets, namely that once Conv approaches |V v
maxv +1|, the distribution

of Π(maxv +1) starts depending heavily on the candidate sets V v
i for i ≤ maxv and i ≡ maxv.

Thus we have in some sense determined Π(maxv +1) already when |V v
maxv +1| approaches Conv.

Therefore, we have to take this into account in the potential function since otherwise changing
V v

maxv +1 from being pseudo-active to being active could give a huge potential increase.
After some lengthy calculations, it is possible to prove the following lemma. The full proof

is presented in Appendix C. Here instead, we give only a very high level overview.

1To prevent our notations from becoming too overloaded, here and in the remainder of the section we write
x = (x[1], . . . , x[n]) instead of x = (x1, . . . , xn)

11

Lemma 9. Let v be a node in T and let iv be the random variable giving the value of F (xv)
when Π ∈ Sv and 0 otherwise. Also let w0, . . . , wn denote the children of v, where wj is the
child reached when F (xv) = j. Then, E[ϕ(wiv)− ϕ(v) | Π ∈ Sv] = O(1).

Note that we have E[ϕ(wiv)−ϕ(v) | Π ∈ Sv] =
∑n

a=0 Pr[F (xv) = a | Π ∈ Sv](ϕ(wa)−ϕ(v)).
We consider two main cases: F (xv) ≤ maxv and F (xv) > maxv. In the first case, the maximum
score will not increase in wa which means wa will have the same set of active candidate sets. In
the second case, the pseudo-active candidate set V v

maxv +1 will turn into an active set V wa
maxv +1 at

wa and wa will have a new pseudo-active set. While this second case looks more complicated,
it is in fact the less interesting part of the analysis. This is because the probability of suddenly
increasing the score by α is extremely small (we will show that it is roughly 2−Ω(α)) which
subsumes any significant potential increase for values of a > maxv.

Let a1, . . . , a|Av | be the indices of active candidate sets at v sorted in increasing order.
We also define a|Av |+1 = maxv +1. For a candidate set V v

i , and a Boolean b ∈ {0, 1}, let
V v
i (b) = {j ∈ V v

i | xv[j] = b}. Clearly, |V v
i (0)|+ |V v

i (1)| = |V v
i |. For even ai, 1 ≤ i ≤ |Av|, let

εi = |V v
i (1)|/|V v

i |,

and for odd i, let
εi = |V v

i (0)|/|V v
i |.

Thus εi is the fraction of locations in V v
i that contains values that does not match ZΠ(i). Also,

we define
ε′i := Pr[ai ≤ F (xv) < ai+1 − 1|Π ∈ Sv ∧ F (xv) ≥ ai].

Note that ε′i = 0 if ai+1 = ai + 1.
With these definitions, it is clear that we have

|V wj
ai | = (1− εi)|V v

ai | for ai ≤ j.
|V wj
ai | = εi|V v

ai | for ai = j + 1.

|V wj
ai | = |V v

ai | for ai > j + 1.

The important fact is that we can also bound other probabilities using the εis and ε′is: We can
show that (see the appendix)

Pr[F (xv) = ai − 1|Π ∈ Sv] ≤ εiΠi−1
j=1(1− εj)(1− ε′j) (3)

and

Pr[ai ≤ F (xv) < ai+1 − 1|Π ∈ Sv] ≤ ε′i(1− εi)Πi−1
j=1(1− εj)(1− ε′j).

Thus we have bounds on the changes in the size of the active candidate sets in terms of the
εis. The probability of making the various changes is also determined from the εis and ε′is and
finally the potential function is defined in terms of the sizes of these active candidate sets. Thus
proving Lemma 9 reduces to proving an inequality showing that any possible choice of the εis
and ε′is provide only little expected increase in potential.

Since the full calculations are too long to fit in this extended abstract, we will in the following
provide intuition for the correctness by giving parts of the analysis for the seemingly best choice
for the εis and simply assume all ε′is are 0; i.e., ai = i for all i ≤ maxv. Also, we ignore the
term in ϕ(v) involving Conv and consider only the case where the score returned is no larger
than maxv and maxv = n/4.

12

From an information theoretic perspective, queries reveal the most information when the
answer is uniform amongst many possibilities; i.e., if the entropy of the answer is high. Exam-
ining the probability bounds above, this corresponds to the setting where we essentially have
εi =

∏i−1
j=1(1−εj). This is roughly satisfied for the choice εi = 1/maxv = 4/n. Therefore, we will

analyze the expected potential increase for the choice εi = 4/n for all i ≤ n/4. For this choice,
the above probability bound (3) becomes (using ai = i) Pr[F (xv) = i − 1|Π ∈ Sv] ≤ Θ(1/n).
Thus the expected increase in potential provided by the cases where the score does not increase
is bounded by∑

j≤n/4

Pr[F (xv) = j | Π ∈ Sv](ϕ(wj)− ϕ(v)) ≤
∑
j≤n/4

Θ

(
1

n

)
(ϕ(wj)− ϕ(v)).

Also, we get that when a score of j is returned, we update

|V wj

i | = (1−Θ(1/n))|V v
i | for i ≤ j.

|V wj

i | = Θ(|V v
i |/n) for i = j + 1.

|V wj

i | = |V
v
i | for i > j + 1.

Examining ϕ(wj)−ϕ(v) and the changes to the candidate sets, we get that there is one candidate
set whose size decreases by a factor n/4, and there are j sets that change by a factor (1− 4/n).
Here we only consider the potential change caused by the sets changing by a factor of n/4. This
change is bounded by

∑
j≤n/4

Θ

(
1

n

)
log

(
log(n2/2|V v

j |)
log(2n/|V v

j |)

)
=
∑
j≤n/4

Θ

(
1

n

)
log

(
1 +

log(n/4)

log(2n/|V v
j |)

)
.

To continue these calculations, we use Lemma 8 to conclude that the active candidate sets
are disjoint and hence the sum of their sizes is bounded by n. We now divide the sum into
summations over indices where |V v

j | is in the range [2i : 2i+1]:

∑
j≤n/4

Θ

(
1

n

)
log

(
1 +

log(n/4)

log(2n/|V v
j |)

)
≤ Θ

(
logn−1∑
i=0

1

2i
log

(
1 +

log(n/4)

log(n/2i)

))

≤ Θ

(
logn−1∑
i=0

log(n/4)

2i log(n/2i)

)
.

The last inequality followed from log(1 + x) ≤ x for x > 0. Now the sum over the terms
where i > log logn is clearly bounded by a constant since the 2i in the denominator cancels
the log(n/4) term and we get a geometric series of this form. For i < log log n, we have
log(n/4)/ log(n/2i) = O(1) and we again have a geometric series summing to O(1).

The full proof is very similar in spirit to the above, just significantly more involved due to
the unknown values εi and ε′i. For the complete proof see Appendix C.

5.2 Potential at the End

Intuitively, if the maximum score value increases after a query, it increases, in expectation, only
by an additive constant. In fact, in Appendix C, we prove that the probability of increasing

13

the maximum score value by α after one query is 2−Ω(α). Thus, it follows from the definition
of the active candidate sets that when the score reaches n/3 we expect Ω(n) active candidate
sets. However, by Lemma 8, the active candidate sets are disjoint. This means that a fraction
of them (again at least Ω(n) of them), must be small, or equivalently, their total potential is
Ω(n log log n). In the rest of this section, we prove this intuition.

Given an input (z, π), we say an edge e in the decision tree T is increasing if e corresponds
to an increase in the maximum score and it is traversed given the input (z, π). We say that an
increasing edge is short if it corresponds to an increase of at most c in the maximum function
score (in which c is a sufficiently large constant) and we call it long otherwise. Let N be the
random variable denoting the number of increasing edges seen on input Π before reaching a
node with score greater than n/3. Let Lj be the random indicator variable taking the value 0
if the jth increasing edge is short, and taking the value equal to the amount of increase in the
score along this edge if not. If j > N , then we define Lj = 0. Also let Wj be the random variable
corresponding to the node of the decision tree where the jth increase happens. As discussed, in
Appendix C we prove that for every node v, Pr[Lj ≥ α|Wj = v] ≤ 2−Ω(α). We want to upper
bound

∑n
j=1 E[Lj] (there are always at most n increasing edges). From the above, we know

that

E[Lj] ≤ E[Lj | N ≥ j]

=
∑
v∈T

n∑
i=c+1

i · Pr[Lj = i ∧Wj = v | N ≥ j]

=
∑
v∈T

n∑
i=c+1

i · Pr[Lj = i ∧Wj = v]

=
∑
v∈T

n∑
i=c+1

i · Pr[Lj = i |Wj = v] Pr[Wj = v]

≤
∑
v∈T

n∑
i=c+1

i

2Ω(i)
Pr[Wj = v]

≤
∑
v∈T

1

2Ω(c)
Pr[Wj = v] ≤ 1

2Ω(c)
,

where the summation is taken over all nodes v in the decision tree T . The computation shows∑n
j=1 E[Lj] ≤ n/2Ω(c). By Markov’s inequality, we get that with probability at least 3/4, we

have
∑n

j=1 Lj ≤ n/2Ω(c). Thus, when the function score reaches n/3, short edges must account

for n/3− n/2Ω(c) of the increase which is at least n/6 for a large enough constant c. Since any
short edge has length at most c, there must be at least n/(6c) short edges. As discussed, this
implies existence of Ω(n) active candidate sets that have size O(1), meaning, their contribution
to the potential function is Ω(log log n) each. We have thus shown:

Lemma 10. Let ` be the random variable giving the leaf node of T that the deterministic query
scheme ends up in on input Π. We have ϕ(`) = Ω(n log logn) with probability at least 3/4.

5.3 Putting Things Together

Finally, we show how Lemma 9 and Lemma 10 combine to give our lower bound. Essentially
this boils down to showing that if the query scheme is too efficient, then the query asked at some
node of T increases the potential by ω(1) in expectation, contradicting Lemma 9. To show this

14

explicitly, define t as the random variable giving the number of queries asked on input Π. We
have E[t] = t, where t was the expected number of queries needed for the deterministic query
scheme. Also let `1, . . . , `4t be the random variables giving the first 4t nodes of T traversed on
input Π, where `1 = r is the root node and `i denotes the node traversed at the ith level of
T . If only m < 4t nodes are traversed, define `i = `m for i > m; i.e., ϕ(`i) = ϕ(`m). From
Lemma 10, Markov’s inequality and a union bound, we may now write

E[ϕ(`4t)] = E

[
ϕ(`1) +

4t−1∑
i=1

ϕ(`i+1)− ϕ(`i)

]

= E[ϕ(r)] + E

[
4t−1∑
i=1

ϕ(`i+1)− ϕ(`i)

]

=

4t−1∑
i=1

E[ϕ(`i+1)− ϕ(`i)]

= Ω(n log log n).

Hence there exists a value i∗, where 1 ≤ i∗ ≤ 4t− 1, such that

E[ϕ(`i∗+1)− ϕ(`i∗)] = Ω(n log log n/t).

But

E[ϕ(`i∗+1)− ϕ(`i∗)] =
∑

v∈Ti∗ |v non-leaf

Pr[Π ∈ Sv]E[ϕ(wiv)− ϕ(v) | Π ∈ Sv],

where Ti∗ is the set of all nodes at depth i∗ in T , w0, . . . , wn are the children of v and iv is the
random variable giving the score of F (xv) on an input Π ∈ Sv and 0 otherwise. Since the events
Π ∈ Sv and Π ∈ Su are disjoint for v 6= u, we conclude that there must exist a node v ∈ Ti∗ for
which

E[ϕ(wiv)− ϕ(v) | Π ∈ Sv] = Ω(n log log n/t).

Combined with Lemma 9 this shows that n log logn/t = O(1); i.e., t = Ω(n log logn). This
concludes the proof of Theorem 7.

References

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef, Property testing lower bounds via
communication complexity, Computational Complexity 21 (2012), 311–358.

[BdW02] Harry Buhrman and Ronald de Wolf, Complexity measures and decision tree
complexity: a survey, Theoretical Computer Science 288 (2002), 21–43.

[BGSMdW12] Harry Buhrman, David Garćıa-Soriano, Arie Matsliah, and Ronald de Wolf,
The non-adaptive query complexity of testing k-parities, CoRR abs/1209.3849
(2012), Available at http://arxiv.org/abs/1209.3849.

[Bsh09] Nader H. Bshouty, Optimal algorithms for the coin weighing problem with a
spring scale, Proc. of the 22nd Conference on Learning Theory (COLT’09), 2009.

[Chv83] Vasek Chvátal, Mastermind, Combinatorica 3 (1983), 325–329.

15

[CK07] Amit Chakrabarti and Subhash Khot, Improved lower bounds on the randomized
complexity of graph properties, Random Struct. Algorithms 30 (2007), 427–440.

[CM66] David G. Cantor and William H. Mills, Determination of a subset from certain
combinatorial properties, Canadian Journal of Mathematics 18 (1966), 42–48.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener, On the analysis of the (1+1)
evolutionary algorithm, Theoretical Computer Science 276 (2002), 51–81.

[DJW06] Stefan Droste, Thomas Jansen, and Ingo Wegener, Upper and lower bounds for
randomized search heuristics in black-box optimization, Theory of Computing
Systems 39 (2006), 525–544.

[DSTW13] Benjamin Doerr, Reto Spöhel, Henning Thomas, and Carola Winzen, Playing
Mastermind with many colors, Proc. of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’13), SIAM, 2013, To appear. Avail-
able at http://arxiv.org/abs/1207.0773.

[DW12] Benjamin Doerr and Carola Winzen, Black-box complexity: Breaking the
O(n log n) barrier of LeadingOnes, Proc. of Artificial Evolution (EA’11), Lec-
ture Notes in Computer Science, vol. 7401, Springer, 2012, To appear. Available
online at http://arxiv.org/abs/1210.6465.

[ER63] Paul Erdős and Alfréd Rényi, On two problems of information theory, Magyar
Tudományos Akadémia Matematikai Kutató Intézet Közleményei 8 (1963), 229–
243.

[JKS03] T. S. Jayram, Ravi Kumar, and D. Sivakumar, Two applications of information
complexity, Proceedings of the 35th Annual ACM Symposium on Theory of
Computing (STOC’03), ACM, 2003, pp. 673–682.

[Lin65] Bernt Lindström, On a combinatorial problem in number theory, Canadian Math-
ematical Bulletin 8 (1965), 477–490.

[MNSX11] Frédéric Magniez, Ashwin Nayak, Miklos Santha, and David Xiao, Improved
bounds for the randomized decision tree complexity of recursive majority, Proc-
cedings of the 38th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’11), Lecture Notes in Computer Science, vol. 6755, Springer,
2011, pp. 317–329.

[Rud97] Günter Rudolph, Convergence properties of evolutionary algorithms, Kovac,
1997.

[SW86] Michael E. Saks and Avi Wigderson, Probabilistic boolean decision trees and the
complexity of evaluating game trees, Proc. of the 27th Annual Symposium on
Foundations of Computer Science (FOCS’86), IEEE Computer Society, 1986,
pp. 29–38.

[Yao77] Andrew Chi-Chin Yao, Probabilistic computations: Toward a unified measure of
complexity, Proc. of Foundations of Computer Science (FOCS’77), IEEE, 1977,
pp. 222–227.

16

Appendix

A Details for Section 2

We repeat Theorem 2.

Theorem 2. It is decidable in polynomial time whether a guessing history H = (xi, si)ti=1

is feasible. Furthermore, we can efficiently compute the number of consistent pairs
(z, π) ∈ {0, 1}n × Sn.

We first show how to check feasibility in polynomial time.

of Theorem 2, Part I. We prove here the first part of Theorem 2; i.e., we show that consistency
can be checked in polynomial time.

Let H = (xi, si)ti=1 be given. Construct the sets V1, . . . , Vn as described in Theorem 1.
Now construct a bipartite graph G(V1, . . . , Vn) with node set [n] on both sides. Connect j to
all nodes in Vj on the other side. Permutations π with π(j) ∈ Vj for all j are in one-to-one
correspondence to perfect matchings in this graph. If there is no perfect matching, the history
in infeasible. Otherwise, let π be any permutation with π(j) ∈ Vj for all j. We next construct
z. We use the obvious rules:

a. If i = π(j) and j ≤ sh for some h ∈ [t] then set zi := xhi .

b. If i = π(j) and j = sh + 1 for some h ∈ [t] then set zi := 1− xhi .

c. If zi is not defined by one of the rules above, set it to an arbitrary value.

We need to show that these rules do not lead to a contradiction. Assume otherwise. There
are three ways, in which we could get into a contradiction. There is some i ∈ [n] and some
xh, x` ∈ {0, 1}n

• setting zi to opposite values by rule (a)

• setting zi to opposite values by rule (b)

• setting zi to opposite values by rules (b) applied to xh and rule (a) applied to x`.

In each case, we readily derive a contradiction. In the first case, we have j ≤ sh, j ≤ s` and
xhi 6= x`i . Thus π(j) = i 6∈ Vj by rule (1). In the second case, we have j = sh + 1 = s` + 1 and
xhi 6= x`i . Thus i 6∈ Vj by (2). In the third case, we have j = sh + 1, j ≤ s`, and xhi = x`i . Thus
i 6∈ Vj by (3).

Finally, the pair (z, π) defined in this way is clearly consistent with the history.

Next we show how to efficiently compute the number of consistent pairs. We recall Hall’s
condition for the existence of a perfect matching in a bipartite graph. A perfect matching exists
if and only if | ∪j∈J Vj | ≥ |J | for every J ⊆ [n].

of Theorem 2, Part II. We now prove the second part of Theorem 2; i.e., we show how to
efficiently count the number of consistent pairs.

According to Theorem 1, the guessing history H can be equivalently described by a state
(V1, . . . , Vs∗+1, x

∗, s∗). How many pairs (z, π) are compatible with this state?
Once we have chosen π, there are exactly 2n−(s∗+1) different choices for z if s∗ < n and

exactly one choice if s∗ = n. The permutations can be chosen in a greedy fashion. We fix
π(1), . . . , π(n) in this order. When we choose π(i), the number of choices left is |Vi| minus the

17

number of π(j), j < i, lying in Vi. If Vj is disjoint from Vi, π(j) never lies in Vi and if Vj is
contained in Vi, π(j) is always contained in Vi. Thus the number of permutations is equal to∏

1≤i≤n
(|Vi| − |{j < i | Vj ⊆ Vi}|) .

It is easy to see that the greedy strategy does not violate Hall’s condition.

The proof of Theorem 2 explains which values in Vi are actually possible as value for π(i).
A value ` ∈ Vi is feasible if there is a perfect matching in the graph G(V1, . . . , Vn) containing
the edge (i, `). The existence of such a matching can be decided in polynomial time; we only
need to test for a perfect matching in the graph G \ {i, `}. Hall’s condition says that there is
no such perfect matching if there is a set J ⊆ [n] \ {i} such that | ∪j∈J Vj \ {`}| < |J |. Since G
contains a perfect matching (assuming a consistent history), this implies | ∪j∈J Vj | = |J |; i.e.,
J is tight for Hall’s condition. We have shown: Let ` ∈ Vi. Then ` is infeasible for π(i) if and
only if there is a tight set J with i 6∈ J and ` ∈ ∪j∈JVj . Since the Vi form a laminar family,
minimal tight sets have a special form; they consist of an i and all j such that Vj is contained
in Vi. In the counting formula for the number of permutations such i are characterized by
|Vi| − |{j < i | Vj ⊆ Vi}| = 1. In this situation, the elements of Vi are infeasible for all π(j)
with j > i. We may subtract Vi from each Vj with j > i.

If Hall’s condition is tight for some J , i.e., | ∪j∈J Vj | = |J |, we can learn π|J easily. We have
Vj = [n] for j > s∗+ 1 and hence the largest index in J is at most s∗+ 1. Perturb x∗ by flipping
each bit in ∪j∈JVj exactly once. The objective values determine the permutation.

B Details on the Randomized Strategy (Section 4)

For readability purposes, we repeat the material presented in the main text. The reader only
interested in the proof details may skip Section B.1 and most parts of Section B.4.

We repeat the main theorem of this section.

Theorem 4. The randomized query complexity of the HiddenPermutation problem with n
positions is O(n log log n).

The strategy verifying this bound has two parts. In the beginning, we use Algorithm 1 to
identify the positions π(1), . . . , π(q) and the corresponding bit values zπ(1), . . . , zπ(q); for some
q ∈ n−Θ(n/ log n). As we shall see below, this requires O(n log logn) queries, cf. Theorem 6.
Once zπ(1), . . . , zπ(q) have been identified, we can find the remaining n−q ∈ Θ(n/ log n) positions
and entries using the binary search algorithm described in the introduction (details will be given
in Section B.2. This is the second phase of our algorithm. As the binary search strategy requires
at most O(log n) queries per position, the second phase contributes only a linear number of
queries—an effort that is negligible compared to the one of the first phase.

B.1 Outline of the Proof for Theorem 4

We remind the reader that the set Vi is the candidate set for π(i), 1 ≤ i ≤ n. That is, we have
j ∈ Vi if—based on the query history so far—we have not ruled out that π(i) equals j.

As noted in the main text, there is a trade-off between increasing the current best score s∗

and reducing the sizes of the candidate sets V1, . . . , Vs∗+1. The main idea behind Algorithm 1
is to alternate between the two. More precisely, we maintain a string x and an integer s with
f(x) ≥ s and have already reduced some elements from V1 to Vs. The sets Vs+1 to Vn are still
equal to [n]. Initially, s = 0 and x is arbitrary. The sets V1 to Vs are arranged into t+ 2 levels.

18

Algorithm 1: The O(n log logn) strategy for the HiddenPermutation problem with n
positions.

1 Input: Number of levels t. Capacities x1, . . . , xt ∈ N the levels 1, . . . , t. Score
q ∈ n−Θ(n/ log n) that is to be achieved in the first phase. Positive integer d ∈ N.

2 Main Procedure
3 V1, . . . , Vn ← [n] ; //Vi is the set of candidates for π(i)
4 s← 0 ; //s counts the number of successful iterations
5 Choose x ∈ {0, 1}n uniformly at random and query f(x);
6 J ← ∅;
7 while |J | < q do
8 J ′ ← Advance(t);
9 Reduce the size of the sets Vj with j ∈ J ′ to 1 calling subroutine2(xt, J

′, 1, x);
10 J ← J ∪ J ′;

11 Identify the remaining q bits from x and y := x⊕
(

[n] \ ∪sj=1Vj

)
using the binary search

algorithm subroutine1 ; //phase 2
12

13 where Advance is the following function.

12 Advance(level `) //returns a set J of up to x` indices such that |Vj | ≤ n/xd` for all j ∈ J
13 J ← ∅;
14 while |J | ≤ x` do
15 if ` = 1 then
16 Create y from x by flipping all bits in [n]\ ∪sj=1 Vj and query f(y);

17 if f(x) > s and f(y) = s then swap x and y;
18 if f(x) = s and f(y) > s then
19 s← s+ 1;

20 Vs ← subroutine1(x, y, n/xd1) ; //Reduce |Vs| to n/xd1
21 J ← J ∪ {s};
22 x← y ; //establishes f(x) ≥ s
23 else
24 break ; //failure on level 1

25 else
26 J ′ ← Advance(`− 1);
27 if J ′ 6= ∅ then
28 Reduce the size of the sets Vj with j ∈ J ′ to n/xd` using

subroutine2(x`−1, J
′, n/xd` , x);

29 J ← J ∪ J ′;
30 else
31 break ; //failure on level `

32 return J ;

Initially, all candidate sets are on level 0, and we have Vi = [n] for all i ∈ [n]. The sets in level i
have larger index than the sets in level i+1. Level t+1 contains an initial segment of candidate
sets; all candidate sets on level t + 1 are singletons; i.e., we have identified the corresponding
π(i) value. On level i, 1 ≤ i ≤ t, we can have up to xi sets. We also say that the capacity of
level i is xi. The size of any set on level i is at most n/xdi , where d ≥ 1 is some parameter to

19

be fixed later. Once xi sets have been added to the ith level, we reduce the size of each of them
to at most n/xdi+1 using subroutine2, which we describe in Section B.3. The reduced sets are
added to the (i + 1)st level. subroutine2 essentially allows us to simultaneously reduce the
sizes of k sets to a kth fraction of their original size using at most O(k) queries. Successive calls
to subroutine2 will reduce the sizes from at most n/xdi to at most n/xdi+1. After moving the
sets from level i to level i + 1, we either start filling the ith level again (in case the (i + 1)st
level has some capacity left), or we reduce the sizes of the sets on the (i+1)st level, thus adding
them to the (i+2)nd one. Once the tth level contains xt sets, we reduce the size of each of these
sets to one, again employing subroutine2, and move them to level t+ 1. Thus Vj = {π(j)} for
each set Vj on level t+ 1.

At level one (calls Advance(1)) we attempt to advance the score s. Let s∗ denote the current
value of s and let x∗ be the current bit string x. We ensure f(x∗) ≥ s∗. We want to start working
on Vs∗+1. We hope (this hope will be true with sufficiently high probability, as the analysis
shows) that π(s∗+ 1) 6∈ ∪j≤s∗Vj . We create from x∗ a new bit string y by flipping in x∗ all bits

that are known not to be the image of 1, . . . , s∗ under π. That is, we set y := x∗⊕
(

[n] \ ∪s∗j=1Vj

)
and query f(y). If f(y) = s∗ and f(x) > s∗, we swap the two strings. This step is needed to
ensure correctness of subroutine1.

If (after the potential swapping of the names) f(y) > s∗ and f(x∗) = s holds, we know that
π(s∗ + 1) ∈ [n] \ ∪s∗j=1Vj . In this case, we immediately update Vs∗+1 ← [n] \ ∪s∗j=1Vj and we

reduce the size of the set Vs∗+1 to n/xd1. This can be done by the binary search like algorithm,
subroutine1, in at most d log x1 queries. This subroutine is described in Section B.2.

If, on the other hand, a failure happens; i.e., if in line 18 f(y) = f(x∗) = s∗ or f(x∗) > s∗

holds, then we know that π(s∗ + 1) has not been flipped. Hence π(s∗ + 1) ∈ ∪s∗j=1Vj must hold.

Therefore, we must reduce the size of ∪s∗j=1Vj to “free” π(s∗ + 1). We immediately abort the

first level by reducing the size of each of the Vis currently on that level to n/xd2, thus adding
them to the second level. Should we still not make progress by flipping all bits in [n]\ ∪s∗j=1 Vj ,

we continue by reducing the size of each level-2 set to n/xd3, and so on, until we eventually have
π(s∗ + 1) /∈ ∪s∗j=1Vj , in which case we can continue with the “increase the score by one, then
reduce the size of the candidate sets”-procedure described above.

As such failures cause queries that neither help us to advance s∗ nor to reduce the sizes of
the candidate sets, it is essential to design the levels in such a way that the probability for such
failures is small. As we shall see below, we achieve this by designing the levels such that their
capacities grow exponentially. More precisely, we set xi+1 = x2

i for all i = 1, . . . , t− 1. The first
level has a capacity of x1 = log n sets. Thus, t = O(log log n) levels are sufficient if we want the
last level, level t, to have a capacity that is linear in n. Our choice of the xis also guarantees
that xi divides xi+1 and hence a call Advance(`) returns no more than x` elements (exactly x`
elements if the call ends without a failure).

Our strategy is formalized by Algorithm 1. In what follows, we first present the two subrou-
tines, subroutine1 and subroutine2. In Section B.4, we present the full proof of Theorem 4.

B.2 Subroutine 1

subroutine1 is called by the function Advance(1). Simulating a randomized binary search, it
allows us to reduce the number of potential candidates for π(i) from some value v < n to some
value ` < v in log v − log ` queries.

Lemma 11. Let x, y ∈ {0, 1}n with f(x) < f(y). Set V := {j ∈ [n] | xj 6= yj} and v := |V |.
Let ` ∈ N, ` < v. Algorithm 2 reduces the size of V to ` using at most dlog v − log `e queries.

20

Algorithm 2: The algorithm subroutine1(x, y, `) reduces the size of the set Vf(x)+1 from
v to ` in log v − log ` queries.

1 Input: Two strings x, y ∈ {0, 1}n with f(x) < f(y). An integer ` ∈ N.
2 Initialization: V ← {j ∈ [n] | xj 6= yj} ; //potential candidates for π(f(x) + 1)
3 while |V | > ` do
4 Uniformly at random select a subset F ⊆ V of size |V |/2;
5 Create y′ from y by flipping all bits in F and query f(y′);
6 if f(y′) > f(x) then V ← V \F ;
7 else V ← F ;

8 Output: Set V of size at most `.

Proof. For the correctness of the algorithm we note that, by definition, we have xπ(i) = yπ(i) =
zπ(i) for all i ∈ [f(x)]. Therefore, either we have f(y′) > f(x) in line 5 or we have f(y′) = f(x).
In the former case, the bit yπ(f(x)+1) was not flipped, and hence π(f(x) + 1) /∈ F must hold.
In the latter case the bit in position π(f(x) + 1) bit must have been flipped and we can infer
π(f(x) + 1) ∈ F .

The runtime bound is easily verified using the fact that the size of the set V halves in each
iteration.

It is now obvious how subroutine1 (with the “select uniformly at random select”-statement
in line 4 replaced by “arbitrarily select”) yields a deterministic O(n log n) query algorithm for
the HiddenPermutation problem. This is Algorithm 3.

Algorithm 3: A deterministic O(n log n) strategy for the HiddenPermutation problem.

1 Initialization: x← (0, . . . , 0), y ← (1, . . . , 1);
2 Query f(x) and f(y);
3 for i = 1, ..., n− 1 do
4 if f(y) < f(x) then rename x and y;
5 V ← subroutine1(x, y, 1) ; //thereafter V = {π(i)}
6 Update x by flipping π(i) and query f(x);

For the correctness of this algorithm, observe that after the execution of the ith for-loop of
Algorithm 3, the two strings x and y agree only in the positions π(1), . . . , π(i). Hence, either
we have f(x) = i and f(y) > i or we have f(y) = i and f(x) > i. In the latter case, x and y
will be swapped in the next execution of the for-loop.

Note also that we apply this algorithm in the second phase of Algorithm 1 for identifying
the last Θ(n/ log n) entries of z. This can be done as follows. When we leave the first phase of
Algorithm 1, we have |V1| = . . . = |Vq| = 1 and f(x) ≥ q. Create y from x by flipping all bits in
[n] \ ∪qi=1Vi and query f(y). Then jump into the for-loop of Algorithm 3. This shows how to
determine the remaining q ∈ Θ(n/ log n) bits of the target string z in at most a linear number
of additional queries.

As mentioned, we call subroutine1 also in the first level of Algorithm 1 (line 20) to reduce
the size of Vf(x)+1 to n/xd1, or, put differently, to reduce the number of candidates for π(f(x)+1)

to n/xd1. As the initial size of Vf(x)+1 is at most n, this requires at most d log x1 queries by
Lemma 11.

21

B.3 Subroutine 2

We describe the second subroutine of Algorithm 1, subroutine2. This routine is used to reduce
the sizes of the up to x`−1 candidate sets returned by a recursive call Advance(`− 1) from some
value ≤ n/xd`−1 to at most the target size of level `, which is n/xd` . As we shall see below, this
requires an expected number of O(1)x`−1d(log x`− log x`−1)/ log x`−1 queries. The pseudo-code
of subroutine2 is given in Algorithm 4. subroutine2 performs a subtask of this reduction:
It reduces the sizes of at most k candidate sets to a kth fraction of their original size using at
most O(k) queries, where k is a parameter. We use subroutine2 with parameter k = x`−1

repeatedly to achieve the full reduction.
subroutine2 is given a set J of at most k indices and a string y with f(y) ≥ max J . The

goal is to reduce the size of each candidate set Vj , j ∈ J , below a target size m where m ≥ |Vj |/k
for all j ∈ J . The routine works in phases, of several iterations each. Let J be the set of indices
of the candidate sets that are still above the target size at the beginning of an iteration. For
each j ∈ J , we randomly choose a kth fraction of the potential candidates for π(j). That is,
we randomly choose a subset Fj ⊆ Vj of size |Vj |/k. We create a new bit string y′ from y by
flipping all candidate positions ∪j∈JFj . A condition on the sets (Vj)j∈J ensures that we have
either f(y′) ≥ max J or f(y′) = j − 1 for some j ∈ J .

In the first case, i.e., if f(y′) ≥ max J , none of the sets Vj was hit, and for all j ∈ J we
can remove the subset Fj from Vj as the elements in Fj are no longer candidates for π(j). We
call such queries “off-trials”. An off-trial reduces the size of all sets Vj , j ∈ J , to a (1− 1/k)th
fraction of their original size.

If, on the other hand, we have f(y′) = j − 1 for some j ∈ J , we can replace the candidate
set Vj by the set Fj as π(j) ∈ Fj must hold. Since |Fj | = |Vj |/k ≤ m by assumption, this set
has now been reduced to its target size and we can remove it from J . We further know that for
all h ∈ J with h < j the set Vh was not hit. Thus, we can safely remove Fh from Vh, for h < j.

We continue in this way until at least half of the indices are removed from J and at least ck
off-trials occurred, for some constant c satisfying (1 − 1/k)ck ≤ 1/2. Once this is achieved, we
are done with the current phase, and we move on to the next phase. To this end, let us consider
any j that is still in J . The size of Vj was reduced by a factor (1− 1/k) at least ck times. Thus
its size was reduced to at most half its original size. We may thus halve k without destroying
the invariant m ≥ |Vj |/k for j ∈ J . The effect of halving k is that the relative size of the sets
Fj will be doubled for the sets Vj that still take part in the reduction process.

We repeat Lemma 5.

Lemma 4. Let k ∈ N, let J ⊆ [n] be a set of at most k indices with Vj ∩ Vp = ∅ for j ∈ J
and p ∈ [max J]\{j}. Let y ∈ {0, 1}n be such that f(y) ≥ max J , and let m ∈ N be such that
m ≥ |Vj |/k for all j ∈ J .
In expectation it takes O(k) queries until Algorithm 4 has reduced the size of Vj to at most m
for each j ∈ J .

Proof. Let c be some constant. We show below that—for a suitable choice of c—after an
expected number of at most ck queries both conditions in line 16 are satisfied. Assuming this
to hold, we can bound the total expected number of queries until the size of each of the Vjs has
been reduced to m by

log k∑
h=0

ck/2h < 2ck ,

as desired.

22

Algorithm 4: subroutine2(k, J,m, y). This subroutine is used in the main program to
reduce the size of at most k sets Vj , j ∈ J , to a kth fraction of their original size using
only O(k) queries.

1 Input: Positive integer k ∈ N, a set J ⊆ [n] with |J | ≤ k, target size m ∈ N with
|Vj |/k ≤ m for all j ∈ J , and a string y ∈ {0, 1}n with f(y) ≥ max J . The sets (Vj)j∈J
are pairwise disjoint. Vj , j ∈ J , is also disjoint from Vp for any p ∈ [max J] \ {j}.

2 for j ∈ J do if |Vj | ≤ m then delete j from J ; //Vj is already small enough
3 while J 6= ∅ do
4 o← 0 ; //counts the number of off-trials
5 ` = |J | ; //|Vj |/k ≤ m for all j ∈ J
6 repeat
7 for j ∈ J do Uniformly at random choose a subset Fj ⊆ Vj of size |Vj |/k;
8 Create y′ from y by flipping in y the entries in positions ∪j∈JFj and query f(y′);
9 if f(y′) ≥ max J then

10 o← o+ 1 ; //“off”-trial
11 for j ∈ J do Vj ← Vj\Fj ;
12 else
13 Vf(y′)+1 ← Ff(y′)+1 ; //set Vf(y′)+1 is hit

14 for j ∈ J do if j ≤ f(y′) then Vj ← Vj\Fj ;
15 for j ∈ J do if |Vj | ≤ m then delete j from J ;

16 until o ≥ c · k and |J | ≤ `/2 //c is chosen such that (1− 1/k)ck ≤ 1/2;
17 k ← k/2;

18 Output: Sets Vj with |Vj | ≤ m for all j ∈ J .

In each iteration of the repeat-loop we either hit an index in J and hence remove it from J
or we have an off-trial. The probability of an off-trial is at least (1−1/k)k since |J | ≤ k always.
Thus the probability of an off-trial is at least (2e)−1 and hence the condition o ≥ ck holds after
an expected number of O(k) iterations.

As long as |J | ≥ `/2, the probability of an off-trial is at most (1 − 1/k)`/2 and hence
the probability that a set is hit is at least 1 − (1 − 1/k)`/2. Since ln(1 − 1/k) ≤ −1/k we
have (1 − 1/k)`/2 = exp(`/2 ln(1 − 1/k)) ≤ exp(−`/(2k)) and hence 1 − (1 − 1/k)`/2 ≥ 1 −
exp(−`/(2k)) ≥ `/(2k). Thus the expected number of iterations to achieve `/2 hits is O(k).

If a candidate set Vj is hit in the repeat-loop, its size is reduced to |Vj |/k. By assumption,
this is bounded by m. If Vj is never hit, its size is reduced at least ck times by a factor (1−1/k).
By choice of c, this is at most half of its original size. Thus after replacing k by k/2 we still
have |Vj |/k ≤ m for j ∈ J .

Corollary 5. Let k ∈ N, J , and y be as in Lemma 4. Let further d ∈ N and x ∈ R such that
maxj∈J |Vj | = n/xd. Let y ∈ R with y > x.
Using at most d(log y − log x)/ log k calls to Algorithm 4 we can reduce the maximal size
maxj∈J |Vj | to n/yd. The overall expected number of queries needed to achieve this reduction is
O(1)kd(log y − log x)/ log k.

Proof. The successive calls can be done as follows. We first call subroutine2(k, J, n/(kxd), y).
By Lemma 4 it takes an expected number of O(k) queries until the algorithm terminates. The
sets Vj , j ∈ J , now have size at most n/(kxd). We next call subroutine2(k, J, n/(k2xd), y).
After the hth such call we are left with sets of size at most n/(khxd). For h = d(log y −

23

log x)/ log k we have kh ≥ (y/x)d. The total expected number of queries at this point is
O(1)kd(log y − log x)/ log k.

Convention: In line 28 the pseudo-code of our main strategy, Algorithm 1, we write
subroutine2(x`−1, J

′, n/xd` , x) if we appeal to subroutine2 repeatedly, until the size of each
Vj , j ∈ J ′ has been reduced to n/xd` . Similarly in line 9 we write subroutine2(xt, J

′, 1, x) to
appeal to subroutine2 repeatedly until the size Vj , j ∈ J ′ has been reduced to one.

B.4 Proof of Theorem 4

It remains to show that the first phase of Algorithm 1 takes at most O(n log log n) queries.

Theorem 6. Let q ∈ n − Θ(n/ log n). Using Algorithm 1, we can identify positions
π(1), . . . , π(q) and the corresponding entries zπ(1), . . . , zπ(q) of z in these positions using at most
O(n log log n) queries.

We prove Theorem 6. The proof of the required probabilistic statements is postponed to
Sections B.5 and B.6.

If there is no failure in any call of Advance, the expected number of queries is bounded by

q

xt

(
xt log n

log xt
+

xt
xt−1

(
xt−1dc(log xt − log xt−1)

log xt−1

+
xt−1

xt−2

(
. . .+

x2

x1

(
x1dc(log x2 − log x1)

log x1
+ x1d log x1

))))
≤ndc

(
log n

log xt
+

log xt
log xt−1

+ . . .+
log x2

log x1
+ log x1 − t

)
, (4)

where c is the constant hidden in the O(1)-term in Corollary 5. To verify this formula, observe
that each call of Advance(i) makes xi/xi−1 calls to Advance(i − 1). After each such call we
reduce the size of xi−1 candidate sets from n/xdi−1 to n/xdi . By Corollary 5, this requires at
most xi−1dc(log xi − log xi−1)/ log xi−1 queries. The additional x1d log x1 term accounts for
the queries needed to move the sets from level 0 to level 1; i.e., it accounts for the queries
caused by the calls Advance(1) through which we reduce the sizes of the Vis by the randomized
binary search algorithm, subroutine1, to n/xd1—requiring d log x1 queries per call. Finally,
the term xt log n/ log xt accounts for the final reduction of the Vis to a set containing only one
single element (at this stage we shall finally have Vi = {π(i)}). More precisely, this term is
(xt(log n− d log xt)) / log xt but we settle for upper bounding this expression by the term given
in the formula.

Next we need to bound the number of queries caused by failures. In Sections B.5 and B.6
we show that, on average, not too many failures happen. More precisely, we show that the
expected number of level-i failures is at most n2/((n− q)(xd−1

i − 1)). By Corollary 5, each such
level-i failure causes an additional number of at most 1 + xidc(log xi+1 − log xi)/ log xi queries;
the 1 counts for the failured query in line 16; i.e., for the query through which we discover that
π(s∗ + 1) ∈ V1 ∪ . . . ∪ Vs∗ . Thus, in total we get an additional number of at most

t∑
i=1

n2

(n− q)(xd−1
i − 1)

(
1 +

xidc(log xi+1 − log xi)

log xi

)
(5)

expected queries caused by failures.
We recall the settings of the xi. We set x1 := log n and we choose the xj such that xj = x2

j−1,
j = 2, . . . , t. We further require that log xt = Ω(log n), which can be achieved by choosing

24

t ∈ Θ(log log n). In what follows, we do not specify the choice of d, but note that any choice
d ≥ 4 is good enough. With this parameter setting, formula (4) evaluates to

ndc

(
log n

log xt
+ 2(t− 1) + log log n− t

)
= O(n log logn)

and, somewhat wasteful, we can bound formula (5) from above by

n2dc

n− q

t∑
i=1

x
−(d−3)
i = O(n log n)

t−1∑
i=0

x
−(d−3)2i

1 < O(n log n)(xd−3
1 − 1)−1 = O(n) ,

where the first equation is by construction of the xis, the inequality uses the fact that the
geometric sum is dominated by the first term, and the last equality stems from our choice
x1 = log n. This shows that the overall expected number of queries sums to O(n log logn) +
O(n) = O(n log logn).

Key to the failure analyses in Sections B.5 and B.6 is the following observation.

Lemma 7. Each Vj has the property that Vj \ {π(j)} is random; i.e., is a random subset of
[n] \ {π(j)} of size |Vj | − 1.

Proof. Vj is initialized to [n]; thus the claim is true initially. In subroutine1, a random subset
F of Vj is chosen and Vj is reduced to F (if π(j) ∈ F) or to Vj \F (if π(j) 6∈ F). In either case,
the claim stays true. The same reasoning applies to subroutine2.

B.5 Failures on Level One

Lemma 8. A call of Advance(1) (i.e., lines 15 to 24) requires at most x1 + x1d log x1 queries.

Proof. The two occasions where queries are made are in line 16 and in line 20. Line 16 is
executed at most x1 times, each time causing exactly one query. As shown in Lemma 11, each
call to subroutine1 in line 20 causes at most d log x1 queries. The subroutine is called at most
x1 times.

Lemma 9. Let q ∈ n−Θ(n/ log n) be the number of indices i for which we determine π(i) and
zπ(i) in the first phase.

The probability that any particular call of Advance(1) fails is at most n(n− q)−1
∑t

i=1 x
−(d−1)
i .

Proof. A failure happens if we cannot increase the score of x by flipping the bits in [n] \∪si=1Vi;
i.e., if f(y) ≤ s holds in line 16 of Algorithm 1. This is equivalent to π(s+ 1) ∈ ∪si=1Vi.

Let ` be the number of indices i ∈ [n] for which Vi is on the last level; i.e., ` := |{i ∈ [n] |
|Vi| = 1}| is the number of sets Vi which have been reduced to singletons already. Note that
these sets satisfy Vi = {π(i)}. Therefore, they cannot contain π(s + 1) and we do not need to
take them into account.

By our random construction of the Vis (cf. Lemma 7), the probability that π(s+1) ∈ ∪si=1Vi
is at most | ∪si=`+1 Vi|/(n− `) and hence bounded by

∑s
i=`+1 |Vi|/(n− `).

At any time during the run of Algorithm 1, there are at most xi sets Vj on the ith level.
By construction, the size of each such level-i set is at most nx−di . Hence, we can bound the
probability that π(s+ 1) ∈ ∪si=1Vi from above by

n

n− `

t∑
i=1

x
−(d−1)
i .

25

By the exponential growth of the values x1, . . . , xt and the fact that we call line 16 a total
number of q < n times to improve upon the current best score, from Lemma 9 we immediately
get the following.

Corollary 10. The expected number of level 1 failures is less than

qn(n− q)−1(xd−1
1 − 1)−1 ≤ n2(n− q)−1

(
xd−1

1 − 1
)−1

.

B.6 Failures at Higher Levels

Lemma 11. As in Lemma 9 let q be the number of indices i for which we determine π(i) and
zπ(i) in the first phase. Let i ∈ [t].
The probability that a particular call of Advance(i) fails (level i failure) is at most n(n −
q)−1

(
xd−1
i − 1

)−1
.

Proof. This proof is similar to the one of Lemma 9: A failure on level i occurs only if π(s+ 1) ∈
∪sj=1Vj and the size of each candidate set V1, . . . , Vs has been reduced already to at most n/xdi .
There are at most xj candidate sets on each level j ≥ i. By construction, the size of each
candidate set on level j is at most n/xdj . By Lemma 7, the probability that π(s+ 1) ∈ ∪sj=1Vj
is at most

n

n− `

t∑
j=i

1

xd−1
j

, (6)

where ` denotes again the number of sets that have been reduced to singletons already (i.e., the
number of sets on level t+ 1).

By definition we have xj ≥ x(2j−i)
i and in particular we have xj ≥ xj−ii . Therefore expression

(6) can be bounded from above by

n

n− `

t−i∑
j=1

(
1

xd−1
i

)j
<

n

n− `

(
xd−1
i − 1

)−1
.

By the same reasoning as in Section B.5, from Lemma 11 we immediately get the following.

Corollary 12. Let i ∈ [t].
The expected number of level i failures is less than

nq(n− q)−1(xd−1
i − 1)−1 ≤ n2(n− q)−1(xd−1

i − 1)−1 .

C Details on the Lower Bound, Section 5

C.1 Candidate Sets in the Lower Bound Context

At node v of the decision tree, the candidate set V v
i , intuitively corresponds to the possible

values of π(i). At the root node r, we have V r
i = [n] for all i. Let v be a node in the tree and

let w0, . . . , wn be its children (wi is traversed when the score i is returned). Let P v0 (resp. P v1)

26

be the set of positions in xv that contain 0 (resp. 1). Thus, formally, P v0 = {i | xv[i] = 0} and
P v1 = {i | xv[i] = 1}.2 The precise definition of candidate sets is as follows:

V
wj

i =


V v
i ∩ P vi mod 2 if i ≤ j
V v
i ∩ P vj mod 2 if i = j + 1

V v
i if i > j + 1.

Note that, as was the case with the candidate sets defined in Section 2, not all values in a
candidate set could be valid. But as with the upper bound case, the candidate sets have some
very useful properties. These properties are also slightly different from the ones observed before,
due to the fact that some extra information has been announced to the query algorithm. We
reiterate the definition of an active candidate set. We say that a candidate set V v

i is active (at
v) if the following conditions are met: (i) at some ancestor node u of v, we have F (xu) = i− 1
and (ii) at every ancestor node w of u, we have F (xw) < i − 1, and (iii) i < min {n/3,maxv}.
We call V v

maxv +1 pseudo-active (at v). The following theorem can be proved using similar ideas
as in Theorem 1

Lemma 8. The candidate sets have the following properties:
(i) Two candidate sets V v

i and V v
j with i < j ≤ maxv and i 6≡ j are disjoint.

(ii) An active candidate set V v
j is disjoint from any candidate set Vi provided i < j < maxv.

(iii) The candidate set V v
i , i ≤ maxv is contained in the set V v

maxv +1 if i ≡ maxv and is
disjoint from it if i 6≡ maxv.

(iv) For two candidate sets V v
i and V v

j , i < j, if V v
i ∩ V v

j 6= ∅ then V v
i ⊂ V v

j .

Proof. Let w be the ancestor of v where the function returns score maxv.
To prove (i), observe that in w, one of V w

i and V w
j is intersected by Pw0 while the other is

intersected by Pw1 and thus they are made disjoint.
To prove (ii), we can assume i ≡ j as otherwise the result follows from the previous case.

Let u be the ancestor of v such that F (xu) = j − 1 and that in any ancestor of u, the score
returned by the function is smaller than j− 1. At u, V u

j is intersected with P uj−1 mod 2 while V v
i

is intersected with P ui mod 2. Since i ≡ j, it follows that they are again disjoint.
For (iii), the latter part follows as in (i). Consider an ancestor v′ of v and let wj be the

jth child of v′ that is also an ancestor of v. We use induction and we assume V v′
i ⊂ V v′

maxv +1.

If j < maxv, then V v′
maxv +1 = V

wj

maxv +1 which means V
wj

i ⊂ V
wj

maxv +1. If j = maxv, then

V
wj

maxv +1 = V v′
maxv +1 ∩ P v

′
maxv mod 2 and notice that in this case also V

wj

i = V v′
i ∩ P v

′
i mod 2 which

still implies V
wj

i ⊂ V wj

maxv +1.
To prove (iv), first observe that the statement is trivial if i 6≡ j. Also, if the function returns

score j − 1 at any ancestor of v, then by the same argument used in (ii) it is possible to show
that V v

i ∩ V v
j = ∅. Thus assume i ≡ j and the function never returns value j − 1. In this case,

it is easy to see that an inductive argument similar to (iii) proves that V v′
i ⊂ V v′

j for every
ancestor v′ of v.

Corollary 13. Every two distinct active candidate sets V v
i and V v

j are disjoint.

Lemma 14. Consider a candidate set V v
i and let i1 < · · · < ik < i be the indices of candidate

sets that are subsets of V v
i . Let σ := (σ1, · · · , σi) be a sequence without repetition from [n] and

let σ′ := (σ1, · · · , σi−1). Let nσ and nσ′ be the number of permutations in Sv that have σ and
σ′ as a prefix, respectively. If nσ > 0, then nσ′ = (|V v

i | − k)nσ.

2To prevent our notations from becoming too overloaded, here and in the remainder of the section we write
x = (x[1], . . . , x[n]) instead of x = (x1, . . . , xn)

27

Proof. Consider a permutation π ∈ Sv that has σ as a prefix. This implies π(i) ∈ V v
i . For an

element s ∈ V v
i , s 6= ij , 1 ≤ j ≤ k, let πs be the permutation obtained from π by placing s at

position i and placing π(i) where s used to be. Since s 6= ij , 1 ≤ j ≤ k, it follows that πs has σ′

as prefix and since s ∈ V v
i it follows that πs ∈ Sv. It is easy to see that for every permutation in

Sv that has σ as a prefix we will create |V v
i | − k different permutations that have σ′ as a prefix

and all these permutations will be distinct. Thus, nσ′ = (|V v
i | − k)nσ.

Corollary 15. Consider a candidate set V v
i and let i1 < · · · < ik < i be the indices of candidate

sets that are subsets of V v
i . Let σ′ := (σ1, · · · , σi−1) be a sequence without repetition from [n]

and let σ1 := (σ1, · · · , σi−1, s1) and σ2 := (σ1, · · · , σi−1, s2) in which s1, s2 ∈ V v
i . Let nσ1

and nσ2 be the number of permutations in Sv that have σ1 and σ2 as a prefix, respectively. If
nσ1 , nσ2 > 0, then nσ1 = nσ2.

Proof. Consider a sequence s1, · · · , si without repetition from [n] such that sj ∈ V v
j , 1 ≤ j ≤ i.

By the previous lemma Pr[Π(1) = s1 ∧ · · · ∧ Π(i − 1) = si−1 ∧ Π(i) = si] = Pr[Π(1) =
s1 ∧ · · · ∧Π(i− 1) = si−1] · (1/|V v

i |).

Corollary 16. If V v
i is active, then we have:

(i) Π(i) is independent of Π(1), · · · ,Π(i− 1).

(ii) Π(i) is uniformly distributed in V v
i .

C.2 Potential Function Analysis

The main result of this section is the following.

Lemma 9. Let v be a node in T and let iv be the random variable giving the value of F (xv)
when Π ∈ Sv and 0 otherwise. Also let w0, . . . , wn denote the children of v, where wj is the
child reached when F (xv) = j. Then, E[ϕ(wiv)− ϕ(v) | Π ∈ Sv] = O(1).

We write

E[ϕ(wiv)− ϕ(v) | Π ∈ Sv] =
n∑
a=0

Pr[F (xv) = a | Π ∈ Sv](ϕ(wa)− ϕ(v)).

Before presenting the formal analysis of this potential function, we note that we have two
main cases: F (xv) ≤ maxv and F (xv) > maxv. In the first case, the maximum score will not
increase in wa which means wa will have the same set of active candidate sets. In the second
case, the pseudo-active candidate set V v

maxv +1 will turn into an active set V wa
maxv +1 at wa and wa

will have a new pseudo-active set. While this second case looks more complicated, it is in fact
the less interesting part of the analysis since the probability of suddenly increasing the score by
α is extremely small (we will show that it is roughly O(2−Ω(α))) which subsumes any significant
potential increase for values of a > maxv. As discussed, we divide the above summation into
two parts: one for a ≤ maxv and another for a > maxv:

E[ϕ(wiv)− ϕ(v) | Π ∈ Sv] =
maxv∑
a=0

Pr[F (xv) = a | Π ∈ Sv](ϕ(wa)− ϕ(v)) + (7)

n/3−maxv∑
a=1

Pr[F (xv) = maxv + a | Π ∈ Sv](ϕ(wa)− ϕ(v)). (8)

To bound the above two summations, it is clear that we need to handle Pr[F (xv) = a|Π ∈ Sv].
In the next section, we will prove lemmas that will do this.

28

C.2.1 Bounding Probabilities

Let a1, . . . , a|Av | be the indices of active candidate sets at v sorted in increasing order. We
also define a|Av |+1 = maxv +1. For a candidate set V v

i , and a Boolean b ∈ {0, 1}, let V v
i (b) =

{j ∈ V v
i | xv[j] = b}. Clearly, |V v

i (0)| + |V v
i (1)| = |V v

i |. For even ai, 1 ≤ i ≤ |Av|, let εi =
|V v
i (1)|/|V v

i | and for odd i let εi = |V v
i (0)|/|V v

i |. This definition might seem strange but is
inspired by the following observation.

Lemma 17. For i ≤ |Av|, Pr[F (xv) = ai − 1|Π ∈ Sv ∧ F (xv) > ai − 2] = εi.

Proof. Note that F (xv) = ai−1 happens if and only if F (xv) > ai−2 and xv[Π(ai)] 6≡ ai. Since
V v
ai is an active candidate set, the lemma follows from Corollary 16 and the definition of εi.

Let ε′i := Pr[ai ≤ F (xv) < ai+1 − 1|Π ∈ Sv ∧ F (xv) ≥ ai]. Note that ε′i = 0 if ai+1 = ai + 1.

Lemma 18. For i ≤ |Av| we have |V wj
ai | = |V v

ai | for j < ai − 1, |V wj
ai | = εi|V v

ai | for j = ai − 1,
and |V wj

ai | = (1− εi)|V v
ai | for j > ai − 1. Also,

Pr[F (xv) = ai − 1|Π ∈ Sv] = εiΠ
i−1
j=1(1− εj)(1− ε′j), (9)

Pr[ai ≤ F (xv) < ai+1 − 1|Π ∈ Sv] = ε′i(1− εi)Πi−1
j=1(1− εj)(1− ε′j), (10)

Proof. Using Lemma 17, it is verified that

Pr[F (xv) > ai − 1|Π ∈ Sv] = Pr[F (xv) > ai − 2 ∧ F (xv) 6= ai − 1|Π ∈ Sv]
= Pr[F (xv) 6= ai − 1|F (xv) > ai − 2 ∧Π ∈ Sv]·

Pr[F (xv) > ai − 2|Π ∈ Sv] = (1− εi) Pr[F (xv) > ai − 2|Π ∈ Sv].

Similarly, using the definition of ε′i we can see that

Pr[F (xv) > ai − 2|Π ∈ Sv]
= Pr[F (xv) 6∈ {ai−1, . . . , ai − 2} ∧ F (xv) > ai−1 − 1|Π ∈ Sv]
= Pr[F (xv) 6∈ {ai−1, . . . , ai − 2} |F (xv) > ai−1 − 1 ∧Π ∈ Sv] Pr[F (xv) > ai−1 − 1|Π ∈ Sv]
= (1− ε′i−1) Pr[F (xv) > ai−1 − 1|Π ∈ Sv].

Using these, we get that

Pr[F (xv) > ai − 1|Π ∈ Sv] = (1− εi)Πi−1
j=1(1− εj)(1− ε′j)

and
Pr[F (xv) > ai − 2|Π ∈ Sv] = Πi−1

j=1(1− εj)(1− ε′j).

Equalities (9) and (10) follow from combining these bounds with Lemma 17. The rest of the
lemma follows directly from the definition of εi and the candidate sets.

Lemma 19. Let b ∈ {0, 1} be such that b ≡ maxv and let k := |V v
maxv +1(b)|. Then,

Pr[F (xv) = maxv|Π ∈ Sv] =
k − Conv

|V v
maxv +1| − Conv

|Av |∏
i=1

(1− εi)(1− ε′i).

Proof. Conditioned on F (xv) > maxv −1, F (xv) will be equal to maxv if xv[Π(maxv +1)] = b.
By definition, the number of positions in V v

maxv +1 that satisfy this is k. However, V v
maxv +1

contains Conv candidate sets but since V v
maxv +1 can only contain a candidate set V v

i if i ≡ maxv
(by Lemma 8), it follows from Lemma 14 that Pr[F (xv) = maxv |Π ∈ Sv ∧F (xv) > maxv −1] =
(k − Conv)/(|V v

maxv +1| − Conv). The lemma then follows from the previous lemma.

29

Lemma 20. Let b ∈ {0, 1} be such that b ≡ maxv and let k := |V v
maxv +1(b)|. Then,

Pr[F (xv) > maxv|Π ∈ Sv] ≤
|V v

maxv +1| − k
|V v

maxv +1| − Conv
.

Proof. From the previous lemma we have that Pr[F (xv) = maxv |Π ∈ Sv ∧F (xv) > maxv −1] =
(k − Conv)/(|V v

maxv +1| − Conv). Thus,

Pr[F (xv) > maxv|Π ∈ Sv ∧ F (xv) > maxv − 1] =
|V v

maxv +1| − k
|V v

maxv +1| − Conv
.

Using induction, it is possible to prove that

Pr[F (xv) > maxv|Π ∈ Sv]
|V v

maxv +1| − k
|V v

maxv +1| − Conv

|Av |∏
i=1

(1− εi)(1− ε′i),

which implies the lemma.

Remember that P v0 (resp. P v1) are the set of positions in xv that contain 0 (resp. 1).

Lemma 21. Let x0 = |P v0 | and x1 = |P v1 |. Let bi be a Boolean such that bi ≡ i. For a ≥ maxv +2

Pr[F (xv) = a | Π ∈ Sv] ≤

(
a∏

i=maxv +2

xbi − bi/2c
n− i+ 1

)(
1−

xba+1 − b(a+ 1)/2c
n− a

)
.

Proof. Notice that we have V v
i = [n] for i ≥ maxv +2 which means i − 1 is the number of

candidates sets V v
j contained in V v

i and among those bi/2c are such that i ≡ j. Consider a
particular prefix σ = (σ1, · · · , σi−1) such that there exists a permutation π ∈ Sv that has σ as
a prefix. This implies that σj ∈ P vbj . Thus, it follows that there are xbi −bi/2c elements s ∈ P vbi
such that the sequences (σ1, · · · , σi−1, s) can be the prefix of a permutation in Sv. Thus by
Corollary 15, and for i ≥ maxv +2,

Pr[F (xv) = i− 1|Π ∈ Sv ∧ F (xv) ≥ i− 1] = 1− xbi − bi/2c
n− i+ 1

and

Pr[F (xv) ≥ i|Π ∈ Sv ∧ F (xv) ≥ i− 1] =
xbi − bi/2c
n− i+ 1

.

Corollary 22. For maxv +1 ≤ a ≤ n/3 we have

Pr[F (xv) = a | Π ∈ Sv] = 2−Ω(a−maxv) ·
(

1−
xba+1 − b(a+ 1)/2c

n− a

)
.

Proof. Since xbi + xbi+1
= n, it follows that(

xbi − bi/2c
n− i+ 1

)(
xbi+1

− bi/2c
n− i+ 2

)
≤
(
xbi − bi/2c
n− i+ 1

)(
xbi+1

− bi/2c
n− i+ 1

)
≤ 1

2
.

Now we analyze the potential function.

30

C.2.2 Bounding (7)

We have,

ϕ(wa)− ϕ(v) = log
log 2n

|V wa
maxwa +1|−Conwa

log 2n
|V v

maxv +1|−Conv

+
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
. (11)

When a ≤ maxv we have, maxv = maxwa and Conv = Conwa . For a < maxv, we also have
V wa

maxv +1 = V v
maxv +1. It is clear from (11) that for ai ≤ a < ai+1−1, all the values of ϕ(wa)−ϕ(v)

will be equal. Thus,

(7) =

|Av |∑
i=1

Pr[F (xv) = ai − 1|Π ∈ Sv](ϕ(wai−1)− ϕ(v)) + (12)

|Av |∑
i=1

Pr[ai ≤ F (xv) < ai+1 − 1|Π ∈ Sv](ϕ(wai)− ϕ(v)) + (13)

Pr[F (xv) = maxv|Π ∈ Sv](ϕ(wmaxv)− ϕ(v)). (14)

Analyzing (12) We write (12) using (11) and Lemma 18(9). Using inequalities, 1−x ≤ e−x,
for 0 ≤ x ≤ 1, log(1 + x) ≤ x for x ≥ 0, and

∑
1≤i≤k yi log 1/yi ≤ Y log(k/Y) for yi ≥ 0 and

Y =
∑

1≤i≤k yi, we get the following:

(12) =

|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)(1− ε′j)

 i∑
j=1

log

log 2n

|V
wai−1
aj

|

log 2n
|V v

aj
|

 =

|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)(1− ε′j)

log

log 2n

|V
wai−1
ai

|

log 2n
|V v

ai
|

+

i−1∑
j=1

log

log 2n

|V
wai−1
aj

|

log 2n
|V v

aj
|

 =

|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)(1− ε′j)

log
log 2n

|V v
ai
| + log 1

εi

log 2n
|V v

ai
|

+

i−1∑
j=1

log
log 2n

|V v
aj
| + log 1

1−εj

log 2n
|V v

aj
|

 =

|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)(1− ε′j)

log

1 +
log 1

εi

log 2n
|V v

ai
|

+
i−1∑
j=1

log

1 +
log 1

1−εj

log 2n
|V v

aj
|

 ≤
|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)

log

1 +
log 1

εi

log 2n
|V v

ai
|

+
i−1∑
j=1

log

(
1 + log

1

1− εj

) ≤
|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)

log

1 +
log 1

εi

log 2n
|V v

ai
|

+
i−1∑
j=1

log
1

1− εj

 =

|Av |∑
i=1

εi log

1 +
log 1

εi

log 2n
|V v

ai
|

 i−1∏
j=1

(1− εj) + (15)

|Av |∑
i=1

εi

i−1∏
j=1

(1− εj)

 i−1∑
j=1

log
1

1− εj

 . (16)

31

To bound (15), we use the fact that any two active candidate sets are disjoint. We break the

summation into smaller chunks. Observe that
∏i−1
j=1(1 − εj) ≤ e−

∑i−1
j=1 εj . Thus, let Jt, t ≥ 0,

be the set of indices such that for each i ∈ Jt we have 2t − 1 ≤
∑i−1

j=1 εj < 2t+1. Now define

Jt,k =
{
i ∈ Jt | n/2k+1 ≤ |V v

ai | ≤ n/2
k
}

, for 0 ≤ k ≤ log n and let st,k =
∑

i∈Jt,k εi. Observe

that by the disjointness of two active candidate sets, |Jt,k| ≤ 2k+1.

(15) =

logn∑
t=0

logn∑
k=1

∑
i∈Jt,k

εi log

1 +
log 1

εi

log 2n
|V v

ai
|

 i−1∏
j=1

(1− εj) ≤

n∑
t=0

logn∑
k=1

∑
i∈Jt,k

εi log

(
1 +

log 1
εi

k

)
e−

∑i−1
j=1 εj ≤

n∑
t=0

logn∑
k=1

∑
i∈Jt,k

εi
log 1

εi

k
e−2t+1 ≤

n∑
t=0

logn∑
k=1

st,k log
|Jt,k|
st,k

k
e−2t+1 ≤

n∑
t=0

logn∑
k=1

st,k(k + 1) + st,k log 1
st,k

k
e−2t+1 ≤

n∑
t=0

2t+2e−2t+1 +
n∑
t=0

logn∑
k=1

st,k log 1
st,k

k
e−2t+1 ≤

O(1) +

n∑
t=0

log logn∑
r=1

2r∑
k=2r−1

st,k log 1
st,k

2r−1
e−2t+1 .

Now define St,r =
∑

2r−1≤k<2r st,k. Remember that
∑log logn

r=1 St,r < 2t+1. Thus,

(15) ≤ O(1) +
n∑
t=0

log logn∑
r=1

St,r log 2r−1

St,r

2r−1
e−2t+1 =

O(1) +

n∑
t=0

log logn∑
r=1

St,r(r − 1) + St,r log 1
St,r

2r−1
e−2t+1 ≤

O(1) +
n∑
t=0

log logn∑
r=1

2t+1(r − 1)

2r−1
e−2t+1 +

n∑
t=0

log logn∑
r=1

1

2r−1
e−2t+1 = O(1).

To bound (16), define Jt as before and let pi =
∏i−1
j=1 1/(1− εj). Observe that the function

log(1/(1− x)) is a convex function which means if si :=
∑i−1

j=1 εj is fixed, then
∏i−1
j=1 1/(1− εj)

is minimized when εj = si/(i− 1). Thus,

pi ≥

(
1

1− si
i−1

)i−1

≥
(

1 +
si
i− 1

)i−1

≥ 1 +

(
i− 1

j

)(
si
i− 1

)j
in which j can be chosen to be any integer between 0 and i− 1. We pick j := max {bsi/8c, 1}.
Since i ≥ si, we get for i ∈ Jt,

pi ≥ 1 +

(
i−1

2

)j
jj

(
si
i− 1

)j
≥ 1 +

(
si
2j

)j
≥ 2si/8 ≥ 22t−4

.

Thus, we can write

(16) =

|Av |∑
i=1

εi
log pi
pi

=

logn∑
t=0

∑
i∈Jt

εi
log pi
pi

=

logn∑
t=0

∑
i∈Jt

O

(
εi2

t

22t−4

)
≤

logn∑
t=0

O

(
22t+1

22t−4

)
= O(1).

32

To bound (16), define Jt as before and let pi =
∏i−1
j=1 1/(1− εj). Observe that the function

log(1/(1− x)) is a convex function which means if si :=
∑i−1

j=1 εj is fixed, then
∏i−1
j=1 1/(1− εj)

is minimized when εj = si/(i− 1). Thus,

pi ≥

(
1

1− si
i−1

)i−1

≥
(

1 +
si
i− 1

)i−1

≥ 1 +

(
i− 1

j

)(
si
i− 1

)j
in which j can be chosen to be any integer between 0 and i− 1. We pick j := max {bsi/8c, 1}.
Since i ≥ si, we get for i ∈ Jt,

pi ≥ 1 +

(
i−1

2

)j
jj

(
si
i− 1

)j
≥ 1 +

(
si
2j

)j
≥ 2si/8 ≥ 22t−4

.

Thus, we can write

(16) =

|Av |∑
i=1

εi
log pi
pi

=

logn∑
t=0

∑
i∈Jt

εi
log pi
pi

=

logn∑
t=0

∑
i∈Jt

O

(
εi2

t

22t−4

)
≤

logn∑
t=0

O

(
22t+1

22t−4

)
= O(1).

Analyzing (13) The analysis of this equation is very similar to (12). We can write (13) using
(11) and (10). We also use the same technique as in analyzing (16).

(13) =

|Av |∑
i=1

ε′i(1− εi)
i−1∏
j=1

(1− εj)(1− ε′j)

 i∑
j=1

log

log 2n

|V
wai
aj
|

log 2n
|V v

aj
|

 =

|Av |∑
i=1

ε′i(1− εi)
i−1∏
j=1

(1− εj)(1− ε′j)

 i∑
j=1

log
log 2n

|V v
aj
| + log 1

1−εj

log 2n
|V v

aj
|

 =

|Av |∑
i=1

ε′i(1− εi)
i−1∏
j=1

(1− εj)(1− ε′j)

 i∑
j=1

log

1 +
log 1

1−εj

log 2n
|V v

aj
|

 ≤
|Av |∑
i=1

ε′i(1− εi)
i−1∏
j=1

(1− εj)(1− ε′j)

 i∑
j=1

log
1

1− εi

 .

Let si :=
∑i

j=1 εj , and s′i :=
∑i−1

j=1 ε
′
j . Similar to the previous case, let Jt, t ≥ 0, be

the set of indices such that for each i ∈ Jt we have 2t − 1 ≤ si + s′i ≤ 2t+1. Also define
pi =

∏i
j=1 1/(1− εj) and p′i =

∏i−1
j=1 1/(1− ε′j). Using the previous techniques we can get that

pi ≥ 2si/8 and p′i ≥ 2s
′
i/8. We get

(13) ≤
logn∑
t=0

∑
i∈Jt

ε′i
log pi
pip′i

≤
logn∑
t=0

∑
i∈Jt

ε′i
si

8 · 2si/82s
′
i/8
≤

logn∑
t=0

∑
i∈Jt

ε′i
2t+1

8 · 2(2t−1)/8
≤

logn∑
t=0

22t+2

8 · 2(2t−1)/8
= O(1).

33

Analyzing (14) Let b ∈ {0, 1} be such that b ≡ maxv and let k := |V v
maxv +1(b)|. We use

Lemma 19. Observe that we still have Conv = Conwmaxv
. Thus we have,

(14) ≤ (k − Conv)

|V v
maxv +1| − Conv

|Av |∏
i=1

(1− εi)(1− ε′i)(ϕ(wmaxv)− ϕ(v)) =

(k − Conv)

|V v
maxv +1| − Conv

|Av |∏
i=1

(1− εi)(1− ε′i)

log
log 2n

|V wmaxv
maxv +1|−Conwmaxv

log 2n
|V v

maxv +1|−Conv

+

|Av |∑
i=1

log
log 2n

|V wmaxv
i |

log 2n
|V v

i |

 ≤
(k − Conv)

|V v
maxv +1| − Conv

|Av |∏
i=1

(1− εi)(1− ε′i)

log
log 2n

k−Conv

log 2n
|V v

maxv +1|−Conv

+

|Av |∑
i=1

log

(
1 + log

1

1− εi

) ≤
(k − Conv)

|V v
maxv +1| − Conv

log
log 2n

k−Conv

log 2n
|V v

maxv +1|−Conv

+O(1) = O(1).

C.2.3 Bounding (8)

The big difference here is that the candidate set V wa
maxv +1 becomes an active candidate set (if of

course maxv +1 < n/3) at wa while V v
maxv +1 was not active at v. Because of this, we have

ϕ(wa)−ϕ(v) ≤ log log
2n

|V wa
a+1| − Conwa

+log log
2n

|V wa
maxv +1|

−log log
2n

|V v
maxv +1| − Conv

+
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
.

Thus, we get that

n/3∑
a>maxv

Pr[F (xv) = a | Π ∈ Sv](ϕ(wa)− ϕ(v)) =

n/3∑
a>maxv

Pr[F (xv) = a | Π ∈ Sv] log log
2n

|V wa
a+1| − Conwa

+ (17)

n/3∑
a>maxv

Pr[F (xv) = a | Π ∈ Sv] log

 log 2n
|V wa

maxv +1|

log 2n
|V v

maxv +1|−Conv

+ (18)

n/3∑
a>maxv

Pr[F (xv) = a | Π ∈ Sv]
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
. (19)

34

Using the previous ideas, it is easy to see that we can bound (19) as

(19) ≤
n/3∑

a>maxv

Pr[F (xv) = a | Π ∈ Sv ∧ F (xv) > maxv] · Pr[F (xv) > maxv | Π ∈ Sv]
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
≤

n/3∑
a>maxv

Pr[F (xv) = a | Π ∈ Sv ∧ F (xv) > maxv] ·
|Av |∏
i=1

(1− εi)(1− ε′i)
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
≤

|Av |∏
i=1

(1− εi)(1− ε′i)
∑
j∈Av

log
log 2n

|V wa
j |

log 2n
|V v

j |
≤

|Av |∏
i=1

(1− εi)(1− ε′i)
∑
j∈Av

log

(
1 + log

1

1− εj

)
≤

|Av |∏
i=1

(1− εi)
∑
j∈Av

log
1

1− εj
≤

|Av |∏
i=1

(1− εi) log

(
1∏

j∈Av
(1− εj)

)
= O(1).

To analyze (18) by Lemma 20 we know that Pr[F (xv) > maxv |Π ∈ Sv] ≤
|V v

maxv +1|−k
|V v

maxv +1|−Conv
in

which k is as defined in the lemma. Note that in this case |V wa
maxv +1| = |V v

maxv +1| − k. This
implies

(18) ≤
n∑

a>maxv

Pr[F (xv) = a | Π ∈ Sv] log

 log 2n
|V v

maxv +1|−k

log 2n
|V v

maxv +1|−Conv

 =

(
n∑

a>maxv

Pr[F (xv) = a | Π ∈ Sv]

)
log

 log 2n
|V v

maxv +1|−k

log 2n
|V v

maxv +1|−Conv

 =

Pr[F (xv) > maxv | Π ∈ Sv] log

 log 2n
|V v

maxv +1|−k

log 2n
|V v

maxv +1|−Conv

 ≤
|V v

maxv +1| − k
|V v

maxv +1| − Conv
log

 log 2n
|V v

maxv +1|−k

log 2n
|V v

maxv +1|−Conv

 = O(1).

It is left to analyze (17). Let x0 = |P v0 | and x1 = |P v1 |. Let bi be a Boolean such bi ≡ i.
Note that we have |V wmaxv +a

maxv +a+1| = xbmaxv +a = n − xbmaxv +a+1 . Using Corollary 22 we can write

35

(17) as follows:

(17) ≤
n/3−maxv∑

a=1

Pr[F (xv) = maxv + a | Π ∈ Sv] log log
2n

|V wmaxv +a

maxv +a+1| − Conwmaxv +a

≤
n/3−maxv∑

a=1

2−Ω(a)
(

1−
xbmaxv+a+1 − b(maxv + a+ 1)/2c

n−maxv − a

)
log log

2n

n− xbmaxv +a+1 − b(maxv + a)/2c

= O(1).

36

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

