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Abstract

We study the covering complexity of constraint satisfaction problems (CSPs). The
covering number of a CSP instance C, denoted ν(C), is the smallest number of assign-
ments to the variables, such that each constraint is satisfied by at least one of the
assignments. This covering notion describes situations in which we must satisfy all the
constraints, and are willing to use more than one assignment to do so. At the same
time, we want to minimize the number of assignments.

We study the covering problem for different constraint predicates. We first observe
that if the predicate contains an odd predicate, then it is covered by any assignment
and its negation. In particular, 3CNF and 3LIN, that are hard in the max-CSP sense,
are easy to cover. However, the covering problem is hard for predicates that do not
contain an odd predicate:

1. For the 4LIN predicate, it is NP-hard to decide if a given instance C has ν (C) ≤ 2

or ν (C) ≥ ω (1).

2. (a) We propose a framework of covering dictatorship tests. We design and analyze
such a dictatorship test for every predicate that supports a pairwise independent
distribution.
(b) We introduce a covering unique games conjecture, and use it to convert the
covering dictatorship tests into conditional hardness results.

3. Finally, we study a hypothesis about the hardness of covering random instances
that is similar to Feige’s R3SAT hypothesis. We show the following somewhat
surprising implication: If our hypothesis holds for dense enough instances, then it
is hard to color an O (1)-colorable hypergraph with a polynomial number of colors.
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1 Introduction

We study the covering complexity of constraint satisfaction problems (CSPs). Let φ be a
predicate, and let C be a φ-CSP instance, which is a set of φ-constraints over n boolean
variables and their negations. The covering number of C, denoted ν(C), is the smallest
number of assignments to the variables that “covers” all of the constraints, i.e., such that
each constraint is satisfied by at least one of the assignments. We denote by cover-φ the
problem of finding the covering number of a given φ-CSP instance.

The notion of cover-CSPs differs from the standard notion of max-CSPs, as they each
operate under a different restriction and try optimize a different aspect of the problem given
the restriction: The notion of max-CSPs is relevant when we restrict ourselves to a single
assignment and want to maximize the fraction of satisfied constraints. In contrast, the notion
of a covering number is of interest when we must satisfy all or nearly all of the constraints,
and are willing to use more than one assignment to do so. Our goal is then to minimize the
number of needed solutions.

One example of a situation described by the covering number is the dinner party problem:
You are having some friends over for dinner, and each one has different dietary constraints.
You want everyone to have at least something to eat, and at the same time would like to
cook as few dishes as possible. Another example is when designing a system of health care
centers, each offering different services, that will be accessible and will meet the needs of all
patients.

Finding the exact covering number is NP-hard for many interesting predicates φ. There-
fore, we study the hardness of approximating this value, namely minimizing the number of
solutions that together cover all of the constraints. Formally, we define the following gap
problem:
gap-cover-φc,s problem: Let c < s ∈ N. Given a φ-CSP instance C, decide between

• Yes case: ν (C) ≤ c.

• No case: ν (C) ≥ s.

As is done for the max-CSP case, we study the covering problem for different predicates φ,
and seek a characterization of predicates that are covering-hard to approximate. It turns
out that the set of predicates which are covering hard to approximate is very different from
the set of predicates that are hard to approximate in the max-CSP sense. In fact we show
that the sets are (in a sense) incomparable.

Covering and Coloring. Covering CSPs can be viewed as a generalization of graph (or
hypergraph) coloring problems. A coloring problem is given by a system of not-equal (or
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not-all-equal) constraints on a set of vertices. It has already been observed by [7] that a
graph (hypergraph) is 2c colorable iff there are c assignments to the variables that cover
all constraints. Our new notion of covering CSPs extends that of coloring as follows. It is
natural to allow an algorithm “more” colors when attempting to legally color a graph, yet, in
contrast, it is usually meaningless to allow “more” alphabet symbols for satisfying a φ-CSP
for a general predicate φ. The covering formulation gives a natural way in which “more
colors” can be used in satisfying a φ-CSP for any φ.

We mention that the paper [7] introduces the related notion of “covering PCPs” and
proves hardness of approximate hypergraph coloring by analyzing the hardness of covering
the not-all-equal predicate. Interestingly, our work reveals that understanding the hardness
of covering the not-all-equal predicate is central for any covering-CSP problem.

1.1 Our Results

We first observe that odd predicates φ (i.e., predicates φ : {±1}t → {±1} for which ∀x :

φ (x) = −φ (−x)) are easy to cover: Any pair of an assignment a and its negation −a will
cover the entire instance, since always either a or −a causes φ to be true. Moreover, let O
be the set of predicates φ containing an odd predicate, all the predicates φ ∈ O are easy.
Formally, we define O as follows (as is customary, we view a (−1) = (−1)1 value as “true”):

O =
{
φ : {±1}t → {±1}

∣∣∀x ∈ {±1}t : φ (x) = −1 orφ (−x) = −1
}
.

Observation. Let φ ∈ O, and let C be a φ-CSP instance. Then ν(C) ≤ 2.

In particular, 3CNF and 3LIN which are both very hard to approximate in the max-CSP
sense, are easy in the covering sense.

1.1.1 Covering Hardness of 4LIN

In contrast to 3LIN, we show that the predicate φ = 4LIN, that only accepts inputs with an
odd number of 1s, is NP-hard. Formally, for 4LIN : {±1}4 → {±1}, 4LIN (x1, x2, x3, x4) =

x1x2x3x4, we show:

Theorem 1. gap-cover-4LIN2,k is NP-hard for every k ∈ N.
Furthermore, for sufficiently small ϵ > 0, the following holds: In the yes case the instance
is coverable by two assignments, each of which (seperatly) satisfies 1 − ϵ fraction of the
constraints. In the no case, no k assignments cover more than 1− 1

2k
+20

√
ϵ fraction of the

constraints.
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Observe that the problem gap-cover-4LIN1,k is easy for every k, as we can run a Gaussian
elimination process to check whether there exists a single assignment that satisfies all the
constraints.

We mention that our result can be viewed as a strengthening of Håstad’s hardness re-
sult [8] for linear predicates with even arity≥ 4, since in the yes case there is a solution that
satisfies 1 − ϵ fraction of the constraints (actually, there are at least two such solutions).
Furthermore, observe that k random assignments are expected to satisfy 1 − 1

2k
fraction of

the constraints, thus the no case shows that no k assignments can cover significantly more
constraints than random k assignments.

Our proof of Theorem 1 relies on a dictatorship test whose analysis extends the analysis
of [7] of the hardness of covering the 4-not-all-equal predicate, using the language of the
invariance principle developed by [15, 14, 16, 17].

1.1.2 Characterization of Covering-Hard Predicates

We conjecture that for every φ ̸∈ O the cover-φ problem is hard to approximate, and are able
to partially prove this conjecture. To do so, we offer a φ-based covering dictatorship test.
We then suggest a covering conjecture that corresponds to the unique games conjecture, and
show how to use the dictatorship test to obtain conditional hardness of covering results.

Covering dictatorship test for a general predicate φ

We develop a general framework for covering dictatorship tests using a given predicate φ.
The completeness and soundness criteria are different in the covering world:

• In the yes case, two dictators perfectly cover the test’s constraints.

• In the no case, any regular set of functions F = {f1, . . . , fk} fails to cover all of the test’s
constraints. F is called regular if for any K ⊆ [k] the product function fK =

∏
ℓ∈K fℓ

is far from a dictatorial function (i.e., all its influences are low). We mention that this
involved soundness condition is inherent, see Section 1.2.2.

Following Austrin and Mossel [2] we prove

Theorem 2. Let φ ̸∈ O, and assume that there exists a balanced, pairwise independent
distribution on the support of φ. Then there exists a φ-based covering-dictatorship test with
completeness 2 and soundness k, for every k ∈ N.

We remark that every predicate φ ̸∈ O that does not have degree-1 and degree-2 terms
in its Fourier expansion, satisfies the condition of the theorem.
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Covering unique games hardness for a general predicate φ

We suggest the following covering conjecture that corresponds to the unique games conjec-
ture:

Conjecture 3 (Covering Unique Games). There exists c ∈ N such that for every suffi-
ciently small δ > 0 there exists R ∈ N such that the following holds. Given a bipartite label
cover instance LC with permutation constraints over label set [R] and vertex set U × V , it is
NP-hard to decide between:

• Yes case: There exist c assignments such that for every vertex u ∈ U , at least one of
the assignments satisfies all the edges touching u.

• No case: OPT (LC) ≤ δ. I.e., every assignment satisfies at most δ fraction of the
edge constraints.

We mention that Khot and Regev [12] consider a similar conjecture in the max-CSP
setting: In the yes case they require a single assignment that for 1 − δ fraction of the ver-
tices u ∈ U , satisfies all the edges touching u. They show that their conjecture is equivalent
to the unique games conjecture. See further discussion regarding the formulation of our
covering conjecture in Section 7.1.

Our conjecture is clearly false with c = 1, but as far as we know may be true with even
c = 2. The conjecture is incomparable to the unique games conjecture (our completeness
does not require any single assignment to satisfy a large fraction of edges). However it clearly
implies the unique games conjecture with completeness 1

c
(instead of 1− ϵ).

As usual, we say that a problem P is covering unique games hard, if it is hard assuming
Conjecture 3.

Theorem 4. Let φ ̸∈ O, and assume that there exists a balanced, pairwise independent
distribution on the support of φ. Let c be the completeness constant from the covering unique
games conjecture. Then gap-cover-φ2c,k is covering unique games-hard for every k ∈ N.

1.1.3 Hardness of Approximate Coloring and Covering Random CSP Instances

We now return to the problem of approximate coloring: Given an O(1)-colorable graph (or
hypergraph), what is the smallest number of colors needed to color it in polynomial time?
This is a notorious open question with an exponential gap between known upper [9, 3, 1] and
lower [7, 10, 4] bounds. One might hope that viewing this classical problem in the broader
context of covering-CSPs may shed new light on it.
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We show some progress in this direction, if one is willing to assume hardness of covering
random CSP instances.

In a seminal paper, Feige [5] hypothesizes that no polynomial time algorithm is able to
distinguish between a random 3SAT and a satisfiable one, and shows that this implies various
hardness of approximation results. However, since a 3SAT instance is always coverable by
2 assignments, it seems impossible to derive a hardness of coloring results from Feige’s
hypothesis.

We formulate an analogous hypothesis about the hardness of distinguishing between ran-
dom and 2-coverable 4LIN-CSP instances. We prove that if our hypothesis holds with suffi-
cient density, it implies hardness of approximate hypergraph coloring to within polynomial
factors. For discussion of our hypothesis see Section 8.1.

Hypothesis 5 (Covering 4LIN Hypothesis, with density parameter ∆). There is
no polynomial time algorithm that outputs typical for most 4LIN-CSP instances with n

variables and m = ∆ · n clauses, and never outputs typical for a 2-coverable 4LIN-CSP
instance.

We point out that our NP-hardness result (Theorem 1) implies that none of the currently
known algorithmic techniques can refute this hypothesis. Furthermore, the best known
algorithms can only refute instances with density at least ∆ ≥ n0.5 [6].

Theorem 6. If Hypothesis 5 holds with density parameter ∆ = nδ for some positive δ >
0, then it is hard to decide if a 4-uniform hypergraph is 4-colorable or requires at least a
polynomial number of colors.

In Section 8 we formulate a (weaker) hypothesis for covering a general predicate φ, and
show that it has the same implication.

1.2 Technique

We face two main challenges: The first is achieving perfect covering completeness (being
able to cover all the constraints vs. covering 1 − ϵ of them). We introduce a technique of
“duplicating” the label cover instance and design an appropriate correlated-noise dictatorship
test. The basic technique is explained below, variations of it are used in the first two parts
of the work. The second challenge is in handling several assignments at once when proving
the soundness property. This involves solving several different problems, some of which are
very roughly described below. We next present a very informal discussion of our efforts.
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1.2.1 Achieving perfect completeness

Hardness of approximation results for CSPs are usually obtained through a dictatorship test
for a given function f : {±1}R → {±1}. A typical dictatorship test involves selecting a few
points in {±1}R and then querying the function f on slight perturbations of these points.
The perturbation usually involves flipping the value of each coordinate independently with
small probability ϵ. While the perturbation is very effective in killing the large Fourier
coefficients of f , it also “ruins” the perfect completeness, causing even a perfect dictator to
be accepted with probability 1− ϵ.

To overcome this problem we offer the new notion of a duplicated label cover instance:
Given a label cover instance, each constraint πv,u : [R] → [R] will be extended to the
“duplicated” constraint πv,u : [2R] → [2R] by

∀j ∈ [R] , πv,u(j +R) = πv,u(j) +R.

This notion of a duplicated label cover will be central in our work. Observe that if L : V →
[R] satisfies the constraints in the original label cover, then both L and L + R satisfy the
constraints in the duplicated label cover. This allows us to design a dictatorship test with
enough random noise to eliminate the large Fourier coefficients, without hurting the perfect
completeness. The idea is that independently for each pair of coordinates j, j+R, noise will
be applied to at most one of the two coordinates.

1.2.2 Dealing with several proofs

When proving covering soundness in a dictatorship test we have to analyze the test’s behavior
on several functions at once, which means an involved rejection probability expression. This
expression is basically the product of the expressions for the individual functions.

One complication arises from the fact that the test might be completely covered even if
none of the functions are “dictatorial”. For example, suppose that f is a random function and
f ′ = f ·xj. Then always either f(x)f(y)f(z)f(−xyz) = −1 or f ′(x)f ′(y)f ′(z)f ′(−xyz) = −1.
This means that the natural 4LIN test will always pass while both f and f ′ are completely
random functions. The reason this happens is because f · f ′ is a dictatorship, forcing our
analysis to consider all possible products of the given functions.

This brings about another complication, which is that even if all given functions are
“folded”, or balanced, their product does not have to be. This means that the empty Fourier
coefficient may be large, which complicates the analysis.
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Covering hardness of 4LIN. Both of the above problems were faced by [7] when analyzing
the covering soundness of the NAE4 predicate. The technique of [7] does carry over (with
some adaptation originating from our correlated noise) to proving covering soundness for the
4LIN predicate. Indeed, we use a test very similar to theirs (this test was originally suggested
by Håstad [8]). However, we analyze the test in the more recent framework of the invariance
principle developed by [15, 14]. This technique follows our intuition of the problem better,
and is less “tailor-made” for specific predicates (indeed, in the second part of the work we
use the invariance principle to show a more general result).

We mention that we cannot use the invariance principle directly, and that the usage of
the invariance principle to obtain NP-hardness results (as opposed to conditional results) is
challenging. Similar difficulties were recently faced by [16, 17], and we indeed use parts of
their analysis.

Covering dictatorship test for a general predicate φ. Our starting point for analyzing
a general predicate φ is the work of [2], who considered any predicate φ that contains a
pairwise independent distribution in its support. Their test uses independent noise, has a
simpler rejection expression, and also assumes folding.

To analyze our test we rely on the following observation: every predicate φ /∈ O is
contained in a shifted NAE predicate (see Claim 2.2). Equipped with this observation, we
bound the rejection term by exploiting the symmetry of the Fourier expansion of NAE,
extending a ‘pairing’ trick from [7]. We mention that we cannot simply reduce the covering
soundness of NAE4 to that of φ, as the distribution used by our dictatorship test must be
supported on φ for maintaining completeness. Still, as it turns out, the key for analyzing
the rejection term for a general predicate φ /∈ O is analyzing the same term for NAE.

Covering unique games hardness for a general predicate φ. Having developed a
dictatorship test, the “straightforward” path, following [11], is to analyze it for a function f
that is the average of the long-code functions fv : {±1}R → {±1} for all neighbors v of
a given u. An influential coordinate for f implies a consistent influential coordinate for
many fv’s.

In our case, however, since we have k proofs, we also have k expected functions f1, . . . , fk
for the same vertex u. If these k functions cover the dictatorship test we can only deduce
that there is a product of f1, . . . , fk that has an influential coordinate. Constructing a good
assignment for the label cover instance becomes non-trivial. To solve this we must analyze
the dictatorship test in the more general multi-function setting.
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1.3 Future Work

This work is a first step in studying the covering complexity of CSPs, and there are many
interesting directions to pursue. Aside from the obvious directions of proving more NP-
hardness results, we mention a couple of directions:

Quantitative results. Our NP-hardness result for 4LIN implies hardness of covering a
2-coverable instance with about Ω(log log log n) assignments. For the special case of col-
oring, better quantitative results are known, corresponding to a gap between O (1) and
Ω(log log n) [10]. On the other hand, the best algorithms require O(log n) assignments cor-
responding to a polynomial number of colors. Our question is: Is there any predicate φ
for which one can prove NP-hardness with a gap of O (1) and Ω(log n)? In fact, any gap
between O(1) and ω(log log n) would be interesting.

More general characterization. What is the complexity of covering predicates φ /∈ O
that do not support a pairwise independent distribution?

Covering unique games conjecture. What can be said about the covering unique
games conjecture? Can it be related to other conjectures such as Khot’s d-to-1 conjecture?

Reductions between covering problems. Can one devise ‘direct’ reductions between
covering problems? For example, does cover-NAE reduce to cover-φ for some other predi-
cate φ? Gadget reductions simply fail in this context, and it would be interesting to find
alternatives.

1.4 Organization

We begin in Section 2 with preliminaries and definitions. The covering hardness of 4LIN is
proved in Sections 3-4. The characterization of covering-hard predicates can be found in
Sections 5-7, where Sections 5-6 are devoted to the covering dictatorship test, and Section 7
is devoted to the covering unique games hardness result. Finally, the relations between
random CSP instances and hardness of approximate coloring are discussed in Section 8.
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2 Definitions and Preliminaries

2.1 Covering Problems

Let X = {x1, ..., xn} be a set of n boolean variables, each taking a value in {±1}. As is
customary, we view a (−1) = (−1)1 value as “true”, and a 1 = (−1)0 value as “false” (e.g.,
1 ∧ (−1) = 1). Let φ : {±1}t → {±1} be a predicate. A φ-constraint over X is an equation
of the form φ (σ1xi1 , . . . , σtxit) = b, where i1, . . . , it ∈ [n] and b, σ1, . . . , σt ∈ {±1}. A φ-CSP
instance C is a set of φ-constraints over X.

Let L ⊆ {±1}n be a set of assignments for X. We say that L covers the instance C if for
every constraint in C, there exists an assignment in L that satisfies it. The covering number
of C, denoted ν(C), is the smallest number of assignments for X such that each constraint
is satisfied by at least one of the assignments. We denote by cover-φ the problem of finding
the covering number of a given CSP. The gap problem is define as follows

Problem 2.1 (gap-cover-φ). Let c < s ∈ N, and let φ be a predicate. Given a φ-CSP
instance C, decide between

• Yes case: ν (C) ≤ c. I.e., there exists a set of at most c assignments that covers C.

• No case: ν (C) ≥ s. I.e., no set of at most s assignments covers C.

2.1.1 Containment in NAE

The following claim shows that the support of any predicated φ /∈ O is contained in the
support of NAE, upto a “sign”. The claim will be very useful to us, as it allows us to move
from a general predicate φ to the specific predicate NAE. Recall −1 denotes acceptance:

Claim 2.2. For every φ /∈ O, φ : {±1}t → {±1}, there is a “sign” σ = (σ1, . . . , σt) ∈ {±1}t

such that ∀x ∈ {±1}t : φ (σ1x1, . . . , σtxt) ≥ NAEt (x1, . . . , xt) .

The claim easily follows from the fact that for a predicate φ /∈ O there exists an assign-
ment a and its negation −a that are both rejected by φ. Thus, by taking σ = a we get that
φ (σ1x1, . . . , σtxt) rejects both the assignment 1t and (−1)t, and thus its support is contained
in the support of NAEt.

2.2 Label Cover

A bipartite label cover instance is a tuple LC = (U, V,E,R1, R2,Π). Here U and V are the
two vertex sets of a bipartite graph, and E is the set of edges between U and V . R1 and
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R2 satisfy R1 ≤ R2 ∈ N. [R1] is the set of labels for vertices in U , and [R2] is the set of
labels for vertices in V . Π is a collection of “projections”, one for each edge in E. That is,
Π = {πv,u : [R2] → [R1]}(u,v)∈E.

Let L be an assignment for the vertices in U ×V , that assigns to each vertex in U a label
from [R1], and to each vertex in V a label from [R2]. Let (u, v) ∈ E be an edge. We say
that L satisfies the edge (u, v) if πv,u (L (v)) = L (u). The value of a label cover instance
LC, denoted OPT (LC), is the maximal fraction of satisfied edges over all assignments L. It
is well know that it is NP-hard to approximate the value of a given label cover instance.

2.2.1 Smooth Label Cover

A smooth label cover instance is a label cover instance that satisfies the following: Let v ∈ V .
In expectation over neighbors u of v, every large set of assignments for v induces a large
set of assignments for u. In other words, for a sufficiently large A ⊆ [R2], it holds that

Eu∈Γ(v) |πv,u (A)| is large.
The following lemma gives a construction of a smooth label cover instance given a 3SAT

formula. The lemma is implied by Theorem 2.2 and Lemma 2.3 of [13] (we use their con-
struction with T =

⌈
1
ϵ4

⌉
and u = r).

Lemma 2.3. Let ϵ > 0 be a sufficiently small constant and let r ∈ N be a sufficiently large
constant. There exists an efficient transformation that maps an instance ψ of 3SAT to an
instance LCϵ,r = (U, V,E,R1, R2,Π) of bipartite label cover such that

• Completeness: If ψ is satisfiable then OPT (LCϵ,r) = 1.

• Soundness: If ψ is unsatisfiable then OPT (LCϵ,r) < cr0, where c0 ∈ (0, 1) is an
absolute constant.

• Smoothness: For every vertex v ∈ V and any subset of labels A ⊆ [R2] satisfying
|A| ≥ 1

ϵ3
, it holds that

Pr
u∈Γ(v)

[
|πv,u (A)| ≥

1

ϵ2

]
≥ 1− 2ϵ.

2.2.2 Label Cover with Permutation Constraints

Of particular interest to us are bipartite label cover instances with permutation constraints.
Namely, where R1 = R2 = R ∈ N (that is, the sets of labels for U and V are the same), and
Π = {πv,u : [R] → [R]}(u,v)∈E is a collection of permutations.
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2.2.3 Duplicated Label Cover

We define the new notion of a duplicated label cover instance, which will play a main role in
our proofs. We assume to be given a bipartite label cover instance LC ′ = (U, V,E,R1, R2,Π

′)

with Π′ =
{
π′
v,u : [R2] → [R1]

}
(u,v)∈E. The duplicated-LC ′ instance is a new bipartite label

cover instance LC = (U, V,E,R1, 2R2,Π), where Π = {πv,u : [2R2] → [R1]}(u,v)∈E, and for
every (u, v) ∈ E the projection πv,u is given by:

j ∈ [R2] : πv,u (j) = πv,u (j +R2) = π′
v,u (j) .

In other words, to construct the duplicated instance, we double V ’s labels set. The new
labels added are of the form j + R2 for j ∈ [R2], and each new label j + R2 “behaves” like
the original label j.

When given a bipartite label cover instance LC ′ = (U, V,E,R,R,Π′) with permutation
constraints Π′ =

{
π′
v,u : [R] → [R]

}
(u,v)∈E, we define the unique games duplicated-LC′ to

be the new bipartite label cover instance LC = (U, V,E, 2R, 2R,Π) with permutation con-
straints, where Π = {πv,u : [2R] → [2R]}(u,v)∈E, and for every (u, v) ∈ E the permutation πv,u
is given by:

j ∈ [R] : πv,u (j) = π′
v,u (j) , πv,u (j +R) = π′

v,u (j) +R.

2.3 Fourier Analysis

It is well knows that every function f : {±1}n → R can be uniquely expressed as a multilinear
polynomial (called the Fourier expansion of f), that is given by

f (x) =
∑
S⊆[n]

f̂ (S)χS (x) ,

where for every S ⊆ [n] it holds that f̂ (S) ∈ R, and χS is the function χS : {±1}n → {±1}
given by χS (x) =

∏
i∈S xi.

2.3.1 Influences

Let f : {±1}n → R be a function, and let i ∈ [n] be a coordinate. The influence of
coordinate i on the function f is

Infi (f) =
∑
S: i∈S

f̂2 (S) .
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Let d ∈ N. The d-low-degree influence of coordinate i on f is

Inf≤d
i (f) =

∑
S: i∈S
|S|≤d

f̂ 2 (S) .

The influence Infi (f) measures how much the function f depends on its ith variable, while
the low-degree influence Inf≤d

i (f) measures this for the low degree part of f . An important
property of low-degree influences is that the number of coordinates with a large low-degree
influence must be small. In particular, we have the following claim:

Claim 2.4. Let d ∈ N, τ > 0, and f : {±1}n → [−1, 1]. It holds that∣∣∣{i ∈ [n]
∣∣∣Inf≤d

i (f) ≥ τ
}∣∣∣ ≤ d

τ
.

2.3.2 The Bonami-Beckner Operator

We recall the Bonami-Beckner operator (noise operator) acting on boolean functions:

Definition 2.5. Let γ ∈ [0, 1]. The Bonami-Beckner operator Tγ is a linear operator map-
ping functions f : {±1}n → R to functions Tγf : {±1}n → R via

Tγf (x) = E
y
[f (xy)] ,

where in the expectation y is formed as follows: For every i ∈ [n] (independently), we set
yi = −1 with probability 1

2
− γ

2
, and set yi = 1 with probability 1

2
+ γ

2
(yi has a bias of γ

towards 1).

The operator Tγ can alternatively be defined by the following formula:

Claim 2.6. For γ ∈ [0, 1], and a function f : {±1}n → R, it holds that

Tγf (x) =
∑
S⊆[n]

γ|S|f̂ (S)χS (x) .

2.4 Correlated Probability Spaces

We say that
(∏

i∈[t] Ωi, µ
)

is a finite correlated probability space if µ is a distribution on the
finite product set

∏
i∈[t]Ωi. Of a particular interest to us is the case where the correlated

space is defined by a measure that is balanced and pairwise independent.
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Definition 2.7 (Balanceness). Let
(∏

i∈[t]Ωi, µ
)

be a finite correlated probability space.
We say that µ is balanced if, for any i ∈ [t] and ω ∈ Ωi, it holds that

Pr
w∼µ

[wi = ω] =
1

|Ωi|
.

Definition 2.8 (Pairwise Independence). Let
(∏

i∈[t] Ωi, µ
)

be a finite correlated proba-
bility space. We say that µ is pairwise independent if, for any i ̸= i′ ∈ [t] and ω ∈ Ωi, ω

′ ∈ Ωi′ ,
it holds that

Pr
w∼µ

[wi = ω ∧ wi′ = ω′] = Pr
w∼µ

[wi = ω] · Pr
w∼µ

[wi′ = ω′] .

We next recall the definition of correlation for correlated probability spaces, introduced
by Mossel [14].

Definition 2.9 (Correlation). Let (Ω×Ψ, µ) be a finite correlated probability space. De-
fine the correlation between Ω and Ψ with respect to µ to be

ρ (Ω,Ψ;µ) = max
f :Ω→R
g:Ψ→R

{
E

(x,y)∼µ
[f (x) g (y)]

∣∣E [f ] = E [g] = 0,E
[
f2
]
≤ 1,E

[
g2
]
≤ 1

}
,

where the expectations of f and f2 are taken under µ’s marginal on Ω, and the expectations
of g and g2 are taken under µ’s marginal on Ψ.

Definition 2.10 (Correlation). Let
(∏

i∈[t]Ωi, µ
)

be a finite correlated probability space.
Define the correlation between Ω1, . . . ,Ωt with respect to µ to be

ρ (Ω1, . . . ,Ωt;µ) = max
i∈[t]

ρ
Ωi,

∏
i′∈[t]\{i}

Ωi′ ;µ

 .

3 Covering Hardness of 4LIN

In this section we prove Theorem 1. For convenience we restate the theorem:

Theorem. gap-cover-4LIN2,k is NP-hard for every k ∈ N.
Furthermore, for sufficiently small ϵ > 0, the following holds: In the yes case the instance
is coverable by two assignments, each of which (seperatly) satisfies 1 − ϵ fraction of the
constraints. In the no case, no k assignments cover more than 1− 1

2k
+20

√
ϵ fraction of the

constraints.
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3.1 PCP Verifier (Proof of Theorem 1)

As usual, we prove Theorem 1 by reduction from label cover. Specifically, we assume to be
given a bipartite label cover instance LC ′ = LC ′

ϵ,r constructed from a 3SAT formula by the
transformation described in Lemma 2.3, and construct a PCP verifier that checks proofs for
LC ′ by only performing 4LIN tests.

Let LC ′ = (U, V,E,R1, R2,Π
′), Π′ =

{
π′
v,u : [R2] → [R1]

}
(u,v)∈E, be the given instance,

and let LC = (U, V,E,R1, 2R2,Π), Π = {πv,u : [2R2] → [R1]}(u,v)∈E, be the duplicated-LC ′

instance (see Section 2.2.3). A proof P for LC ′ consists of a collection of truth tables of
boolean functions, one for each vertex v ∈ V . Formally, P = (fv)v∈V where fv : {±1}2R2 →
{±1}. The function fv is, supposedly, the long code encoding of the label assigned to v by
a satisfying assignment for LC.

Our verifier’s algorithm for checking the proof P is found in Figure 1. The distributions

Hϵ,u,v,v′ on
(
{±1}2R2

)4
used by the verifier are specified in Section 3.2.2.

Algorithm 1 VerPϵ

• Randomly select an edge (u, v) ∈R E and a neighbor v′ ∈R Γ (u) ⊆ V .

• Generate a tuple (x, y, z, w) ∈
(
{±1}2R2

)4
from the distribution Hϵ,u,v,v′ .

• Accept iff f (x) f (y) g (z) g (w) = −1,
where f and g are the functions in P associated with vertices v and v′ (respectively).

Let ϵ ∈
(
0, 1

2

)
, k ∈ N, and let P = {P1, ..., Pk} be a set of any k proofs. Define Rej

(
VerPϵ

)
to be the indicator random variable for the rejection of the set of proofs P by Verϵ. That
is, Rej

(
VerPϵ

)
is 1 if none of the proofs in P satisfies the test selected by Verϵ, and 0 if P

contains a proof that satisfies the test.
We show that the verifier satisfies the following completeness and soundness conditions:

Lemma 3.1. Ver satisfies the following properties:

• Completeness: Let ϵ ∈
(
0, 1

2

)
and r ∈ N. If OPT

(
LC ′

ϵ,r

)
= 1, then there exist two

proofs, P and Q, such that

Pr
[
Rej

(
Ver{P,Q}

ϵ

)]
= 0.

That is, if there is a satisfying assignment for LC′
ϵ,r, then there are 2 proofs that together

cover all the tests performed by Verϵ.
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Furthermore, each of the proofs P and Q is accepted by Verϵ with probability 1− ϵ.

• Soundness: For any sufficiently small ϵ ∈
(
0, 1

2

)
and sufficiently large r ∈ N, there

exist constants δ > 0 and ξ > 0 that only depend on ϵ (e.g., δ = 20
√
ϵ and ξ = ϵ14),

such that for any k ∈ N, the following holds: If there exists a set of proofs P of size at
most k such that

Pr
[
Rej

(
VerPϵ

)]
<

1

2k
− δ.

Then OPT
(
LC ′

ϵ,r

)
> ξ.

In particular, if OPT
(
LC ′

ϵ,r

)
≤ ξ, then there is no constant number of proofs that

together cover all the tests performed by Verϵ.

Note that the soundness property of Lemma 3.1 is tight in the sense that k random proofs
are expected to cover all but 1

2k
fraction of the tests performed by the verifier. We show that

no k proofs can do significantly better than k random proofs.
The proof of the completeness part of Lemma 3.1 can be found in Section 3.3, and the

proof of soundness part can be found in Section 4. Theorem 1 follows easily from the last
lemma:

Proof of Theorem 1 Let c0 be the absolute constant from Lemma 2.3, let ϵ > 0 be suffi-
ciently small, and let k ∈ N be any constant. By taking a sufficiently large r = r (ϵ) such
that cr0 ≤ ξ = ξ (ϵ), we get the following. Consider the 4LIN-CSP instance induced by the
verifier when given a bipartite label cover instance LC ′

ϵ,r constructed by Lemma 2.3:

• If LC′
ϵ,r was obtained from a satisfiable formula ψ, then OPT

(
LC ′

ϵ,r

)
= 1, and using

the completeness property of the verifier, the required coverage by two assignments
exists.

• If LC ′
ϵ,r was obtained from an unsatisfiable formula ψ, then OPT

(
LC ′

ϵ,r

)
< cr0 ≤ ξ, and

using the soundness property of the verifier, no k proofs can cover more than 1− 1
2k
+δ

fraction of the constraints.

�

3.2 Distributions

Consider the duplicated label cover instance LC. Fix vertices u ∈ U , v, v′ ∈ Γ (u) ⊆ V , and
let i ∈ [R1]. Let X i,Y i = {±1}π

−1
v,u(i) and let Z i,W i = {±1}π

−1
v′,u(i). For every i ∈ [R1] we

will have a distribution Hi
ϵ,u,v,v′ on Ωi

u,v,v′ = X i ×Y i ×Z i ×W i. We think of this space as a
correlated space in the sense of Mossel [14], written

(
Ωi

u,v,v′ ;Hi
ϵ,u,v,v′

)
.
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We define Hϵ,u,v,v′ to be the product distribution Hϵ,u,v,v′ =
⊗R1

i=1 Hi
ϵ,u,v,v′ over the domain

Ωu,v,v′ =

R1∏
i=1

(
X i × Y i ×Z i ×W i

) ∼= ( R1∏
i=1

X i

)
×

(
R1∏
i=1

Y i

)
×

(
R1∏
i=1

Z i

)
×

(
R1∏
i=1

W i

)
. (1)

Again, we think of this space as a correlated space (Ωu,v,v′ ;Hϵ,u,v,v′).

3.2.1 Our Noise Distribution N

In order to define the distributions Hi
ϵ,u,v,v′ , we use the following noise distribution. The

distribution Nϵ (D) generates a 2D-bits string x, such that every coordinate is 1 (noisy)
with probability ϵ, but for every j ∈ [D] it is never the case that both xj and xj+D are 1.

Definition 3.2. Let ϵ ∈
[
0, 1

2

]
and D ∈ N. The distribution Nϵ (D) generates x =

(x1, . . . , x2D) ∈ {±1}2D as follows: For every j ∈ [D] independently,

• With probability 1− 2ϵ set xj = xj+D = −1.

• With probability ϵ set xj = −1 and xj+D = 1.

• With probability ϵ set xj = 1 and xj+D = −1.

The following claim bounds the noise expectation, and will be useful in the soundness
analysis.

Claim 3.3. Let ϵ ∈
(
0, 1

2

)
, D ∈ N and S ⊆ [2D]. It holds that

0 < E
x∼Nϵ(D)

[χS (−x)] ≤ (1− 2ϵ)|S| .

Definition 3.4. Let ϵ ∈
(
0, 1

2

)
. The noise operator Nϵ is a linear operator mapping functions

f : {±1}2n → R to functions Nϵf : {±1}2n → R via

(Nϵf) (x) = E
y∼N 1

2− ϵ
2
(n)

[f (−xy)] .

We note that if a string y ∈ {±1}2n is selected according to N 1
2
− ϵ

2
then for every i ∈ [n]

(though not independently), it holds that −yi = −1 with probability 1
2
− ϵ

2
, and −yi = 1

with probability 1
2
+ ϵ

2
(−yi has a bias of ϵ towards 1).

Claim 3.5. For ϵ ∈
(
0, 1

2

)
and a function f : {±1}2n → R, it holds that

Nϵf (x) =
∑

S⊆[2n]

cS f̂ (S)χS (x) ,
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where 0 < cS ≤ ϵ|S|.

The proof of Claims 3.3 and 3.5 can be found in Section 3.4.

3.2.2 The Verifier’s Distribution H

Next we define the distribution Hϵ,u,v,v′ to be used by the verifier: ForD ∈ N and a ∈ {±1} we
denote aD = a, . . . , a︸ ︷︷ ︸

D times

(the concatenation of a with itself D times). When given D1, D2 ∈ N,

we denote X = Y = {±1}2D1 and Z = W = {±1}2D2 .

Definition 3.6. Let ϵ ∈
[
0, 1

2

]
and D1, D2 ∈ N. The distribution Hϵ (D1, D2) generates

(x1, . . . , x2D1 , y1, . . . , y2D1 , z1, . . . , z2D2 , w1, . . . , w2D2) ∈ X × Y × Z ×W

as follows:

• Select the bits x1, . . . , x2D1 , z1, . . . , z2D2 , as well as the auxiliary bit a, independently
and uniformly at random.

• Select the auxiliary bits y′1, . . . , y′2D1
according to the distribution Nϵ (D1).

Select the auxiliary bits w′
1, . . . , w

′
2D2

according to the distribution Nϵ (D2).
(the bits x1, . . . , x2D1 , z1, . . . , z2D2 , a, y

′
1, . . . , y

′
D1
, w′

1, . . . , w
′
D2

are all independent).

• Set y = −x
(
a2D1 ∧ y′

)
and w = −z

((
−a2D2

)
∧ w′). That is, for j ∈ [2D1] set yj =

−xj
(
a ∧ y′j

)
, and for j ∈ [2D2] set wj = −zj

(
(−a) ∧ w′

j

)
.

For i ∈ [R1] we define Hi
ϵ,u,v,v′ = Hϵ (di,u,v, di,u,v′) where di,u,v =

∣∣π−1
v,u (i)

∣∣ and di,u,v′ =∣∣π−1
v′,u (i)

∣∣. Observe that Hi
ϵ,u,v,v′ can be thought of as simply a distribution on

(
{±1}di,v,u

)2
×(

{±1}di,u,v′
)2

. As mentioned above, the verifier’s distribution is Hϵ,u,v,v′ =
⊕R1

i=1 Hi
ϵ,u,v,v′ .

3.2.3 The Invariant Distribution I

Bounding the expectation of functions under the distribution Hϵ (D1, D2) turns out to be the
key difficulty in the soundness analysis. The main reason is that there is a perfect correlation
between X × Y and Z ×W : Given a draw (x, y, z, w) from Hϵ (D1, D2), one can guess the
auxiliary bit a using only the pair (x, y) or using only the pair (z, w).

Our goal is to use the invariance principle to drive this correlation down to 0. To do that
we pass to a distribution Iϵ (D1, D2) that has the same “1-wise” and “2-wise” correlations as
Hϵ (D1, D2), but has no correlation between X × Y and Z ×W .
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Definition 3.7. Let ϵ ∈
[
0, 1

2

]
and D1, D2 ∈ N. The distribution Iϵ (D1, D2) generates

(x1, . . . , xD1 , y1, . . . , yD1 , z1, . . . , zD2 , w1, . . . , wD2) ∈ X × Y × Z ×W

as follows:

• Select the auxiliary bits a1 and a2 independently and uniformly at random.

• Select the bits x1, . . . , x2D1 , z1, . . . , z2D2 , y
′
1, . . . , y

′
2D1

, w′
1, . . . , w

′
2D2

as in Hϵ (D1, D2).
(all bits are selected independently of a1 and a2).

• Set y = −x
(
a2D1
1 ∧ y′

)
and w = −z

(
a2D2
2 ∧ w′). That is, for j ∈ [2D1] set yj =

−xj
(
a1 ∧ y′j

)
, and for j ∈ [2D2] set wj = −zj

(
a2 ∧ w′

j

)
.

As before, for i ∈ [R1] we define I i
ϵ,u,v,v′ = Iϵ (di,u,v, di,u,v′) and Iϵ,u,v,v′ =

⊕R1

i=1 I i
ϵ,u,v,v′ .

3.3 4LIN Completeness

In this section we prove the completeness property of Lemma 3.1. That is, we show that if
there exists a satisfying assignment for LC ′, then there exist two proofs that together cover
the tests of Ver.

Proof of Lemma 3.1 (Completeness) Let L be a satisfying assignment for LC ′. We
construct the two proofs P = {f v

1 }v∈V and Q = {f v
2 }v∈V for Ver using the assignments

L and L + R2 (respectively). That is, f v
1 , f

v
2 : {±1}2R2 → {±1} satisfy f v

1 = χL(v) and
f v
2 = χL(v)+R2 .

Assume that the verifier selects the vertices u ∈ U and v, v′ ∈ V . Denote i = L (u),
j = L (v) and j′ = L (v′). Recall that since L is a satisfying assignment it holds that
πv,u (j) = πv′,u (j

′) = i. Let (x, y, z, w) be a possible draw from the distribution Hϵ,u,v,v′ ,
drawn with Hi

ϵ,u,v,v′ using the auxiliary bit ai. Note that the tuple (x, y, z, w) induces a test
“f (x) f (y) g (z) g (w) = −1”. For ℓ ∈ {1, 2}, denote fℓ = f v

ℓ and gℓ = f v′

ℓ . Observe that:

• If ai = 1: Then fℓ (x) ̸= fℓ (y) (for example, f1 (x) = xj ̸= −xj
(
ai ∧ y′j

)
= yj = f1 (y)).

If additionally w′
j′ = −1 then g1 (z) = g1 (w), and if additionally w′

j′+R2
= −1 then

g2 (z) = g2 (w).

• If ai = −1: Then gℓ (z) ̸= gℓ (w) (for example, g1 (z) = zj′ ̸= −zj′
(
(−ai) ∧ w′

j′

)
=

wj′ = g1 (w)). If additionally y′j = −1 then f1 (x) = f1 (y), and if additionally y′j+R2
=

−1 then f2 (x) = f2 (y).
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The above implies that P satisfies the test (x, y, z, w), unless (ai = 1 and w′
j′ = 1) or (ai = −1

and y′j = 1). Similarly, Q satisfies the test (x, y, z, w), unless (ai = 1 and w′
j′+R2

= 1) or
(ai = −1 and y′j+R2

= 1). We conclude that each of the proofs P and Q is accepted with
probability 1− ϵ.

We now show that at least one of the proofs P and Q satisfies the test (x, y, z, w). We
assume that P does not satisfy the test and show that Q does. Assume without loss of
generality that ai = 1. Since P does not satisfy the test it must hold that w′

j′ = 1. But since
w′ is selected according to the distribution Nϵ (R2), it cannot be the case that both w′

j′ and
w′

j′+R2
are 1, thus w′

j′+R2
= −1. Since ai = 1, this implies g2 (z) = g2 (w) and f2 (x) ̸= f2 (y).

We conclude that Q satisfies the test (x, y, z, w) and the assertion follows. �

3.4 Fourier Expansion of Noise (Proof of Claims 3.3 and 3.5)

In this section we prove Claims 3.3 and 3.5. We first prove Claim 3.3. Namely, we show that
for every ϵ ∈

(
0, 1

2

)
, D ∈ N and S ⊆ [2D] it holds that

0 < E
x∼Nϵ(D)

[χS (−x)] ≤ (1− 2ϵ)|S| .

We denote N = Nϵ (D). The proof uses the following definitions: For S ⊆ [2D], let

p (S) = {j ∈ [D] |j, j +D ∈ S} ,

s (S) = S\ (p (S) ∪ (p (S) +D)) .

Here p stands for “pairs”, and s stands for “singles”.

Proof of Claim 3.3 It holds that

E
x∼N

[χS (−x)] = E
x∼N

[∏
j∈S

(−xj)

]
= E

x∼N

 ∏
j∈p(S)

(−xj) · (−xj+D) ·
∏

j∈s(S)

(−xj)

 .
Since for every j ̸= j′ ∈ [D] it holds that the pair of bits {xj, xj+D} is selected independently
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of the pair {xj′ , xj′+D}, the last term can be written as∏
j∈p(S)

E
x∼N

[xj · xj+D] ·
∏

j∈s(S)
E

x∼N
[−xj]

=
∏

j∈p(S)

[
(1− 2ϵ) · (−1)2 + 2ϵ · (−1) · 1

]
·
∏

j∈s(S)

[− ((1− ϵ) (−1) + ϵ · 1)]

=
∏

j∈p(S)

(1− 4ϵ) ·
∏

j∈s(S)

(1− 2ϵ)

= (1− 4ϵ)|p(S)| (1− 2ϵ)|s(S)|

Clearly, Ex∼N [χS (−x)] > 0. On the other hand, observe that 1 − 4ϵ ≤ (1− 2ϵ)2 and
that 2 |p (S)|+ |s (S)| = |S|. We conclude that

E
x∼N

[χS (−x)] ≤ (1− 2ϵ)2|p(S)|+|s(S)| ≤ (1− 2ϵ)|S| .

�

We now prove Claim 3.5. That is, we show that Nϵf (x) =
∑

S⊆[2n] cS f̂ (S)χS (x) for
some constants 0 < cS ≤ ϵ|S|.

Proof of Claim 3.5 For S ⊆ [2n], let

cs = E
y∼N 1

2− ϵ
2
(n)

[χS (−y)] .

Using the Fourier expansion of f we can write

Nϵf (x) = E
y∼N 1

2− ϵ
2
(n)

[f (−xy)]

= E
y∼N 1

2− ϵ
2
(n)

 ∑
S⊆[2n]

f̂ (S) · χS (−xy)


= E

y∼N 1
2− ϵ

2
(n)

 ∑
S⊆[2n]

f̂ (S) · χS (x) · χS (−y)


=

∑
S⊆[2n]

f̂ (S) · χS (x) · E
y∼N 1

2− ϵ
2
(n)

[χS (−y)]

=
∑

S⊆[2n]

cS f̂ (S)χS (x) ,
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Using Claim 3.3, it holds that

0 < cs = E
y∼N 1

2− ϵ
2
(n)

[χS (−y)] ≤
(
1− 2

(
1

2
− ϵ

2

))|S|

= ϵ|S|.

�

4 4LIN Soundness

In this section we prove the soundness property of Lemma 3.1. That is, we show that if there
exists a small set of proofs that cover almost all the tests performed by Ver, then OPT (LC′)

is high.
For the rest of the proof we fix a sufficiently small ϵ ∈

(
0, 1

2

)
and k, r ∈ N, and denote

Ver = Verϵ. We use the values γ = ϵ4, τ = ϵ, δ = 20
√
ϵ and ξ = ϵ14. For simplicity of

notation, from now on we denote H = Hϵ,u,v,v′ and I = Iϵ,u,v,v′ (unless stated otherwise).
When we write Eu,v,v′ , we mean that the expectation should be taken over the random
selection of vertices u, v, v′ by the verifier.

The main ingredient in the soundness proof is the following Lemma 4.2. The lemma shows
that the expectation Eu,v,v′ EH [f (x) f (y) g (z) g (w)] cannot be too small, unless there is a
coordinate i ∈ [R1] such that its pre-image by πv,u is influential for f , and its pre-image by
πv′,u is influential for g. Informally, this means that the encodings of v and v′ “agree” on a
label for u. In order to state Lemma 4.2, we follow the lines of [17], and define a following
notion of an influence of a set of coordinates on a function f :

Definition 4.1. For a function f : {±1}n → R and a subset S ⊆ [n], the influence of S
on f is

Inf ∗
S (f) =

∑
R⊆[n]
R∩S ̸=ϕ

f̂ 2 (R) .

We note that this definition is non-standard, expect for the case where S = {i} is a
singleton. In this case, Inf ∗

{i} (f) = Infi (f).

Lemma 4.2. Let P be a proof for Ver, and let f and g be the functions in P associated
with vertices v and v′ (respectively). Assume that with probability 1 − ϵ5 over the selection
of vertices u, v, v′ by Ver it holds that

JointInfu,v,v′ ≡
∑
i∈[R1]

Inf ∗
π−1
v,u(i)

(T1−γf) · Inf ∗
π−1
v′,u(i)

(T1−γg) ≤ τ.
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Then

E
u,v,v′

E
H
[f (x) f (y) g (z) g (w)] ≥ −δ.

Lemma 4.2 is proved in Section 4.1. Next, we prove the soundness property of Lemma 3.1
given Lemma 4.2.

Proof of Lemma 3.1 (Soundness) Assume that there exists a set proofs P = {P1, . . . , Pk}
for which Rej = Pr

[
Rej

(
VerP

)]
< 1

2k
− δ. We wish to show that OPT (LC ′) > ξ.

As usual, we first arithmetize the probability that P passes the test. For v, v′ ∈ V and
ℓ ∈ [k], let f ℓ and gℓ be the functions in Pℓ associated with vertices v and v′ (respectively).
For a subset K ⊆ [k], let

fK =
∏
ℓ∈K

fℓ.

The function fϕ is the all 1’s function, i.e., for every x ∈ {±1}R2 it holds that fϕ (x) = 1.
We remark that we cannot use the “standard” folding technique in this proof as even if the
functions f1, . . . , fk are all folded (i.e., odd), the function fK may not be (e.g., if K = {1, 2}
then fK (−x) = f1 (−x) f2 (−x) = (−f1 (x)) · (−f2 (x)) = fK (x)).

It holds that

Rej = E
u,v,v′

E
H

∏
ℓ∈[k]

1

2
(f ℓ (x) f ℓ (y) gℓ (z) gℓ (w) + 1)


=

1

2k
E

u,v,v′
E
H

∑
K⊆[k]

fK (x) fK (y) gK (z) gK (w)


=

1

2k

∑
K⊆[k]

E
u,v,v′

E
H
[fK (x) fK (y) gK (z) gK (w)] .

Let us write
TermK = E

u,v,v′
E
H
[fK (x) fK (y) gK (z) gK (w)] ,

and get that

Rej =
1

2k

∑
K⊆[k]

TermK .

For K = ϕ it holds that Termϕ = 1. Therefore, if it was the case that for every K ̸= ϕ it
holds that TermK ≥ −δ then

Rej =
1

2k

Termϕ +
∑

ϕ̸=K⊆[k]

TermK

 ≥ 1

2k
(
1 +

(
2k − 1

)
(−δ)

)
>

1

2k
− δ.
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Since we assume Rej < 1
2k

− δ, there must exist ϕ ̸= K ⊆ [k] such that TermK < −δ. We
abuse notation, omit the sub-K, and write f and g instead of fK and gK (respectively).
Using the new notations, we have

E
u,v,v′

E
H
[f (x) f (y) g (z) g (w)] < −δ.

Using Lemma 4.2, with probability at least ϵ5 over the selection of vertices u, v, v′ by the
verifier, it holds that JointInfu,v,v′ > τ .

Obtaining a good labeling. We next construct a good labeling for the duplicated label
cover instance LC. Since every assignment for LC naturally induces an assignment for LC ′

with the same value, the claim of the lemma follows.
Consider the following labeling L for LC: To label v ∈ V we select a set S ⊆ [2R2] with

probability f̂ 2 (S), and set L (v) to a random element of S (or an arbitrary label if S = ϕ).
To label u ∈ U we randomly select a neighbor v′ ∈R Γ (u), and set L (u) to πv′,u (L (v′)).

We next show that our strategy for assigning labels satisfies a constant ξ fraction of the
constraints of LC. Let v ∈ V , and let A ⊆ [2R2] be a subset. We use the following argument
of [17] to lower bound the probability that L (v) is in A: It is easy to prove that for every
r ∈ R+ and γ ∈ [0, 1] it holds that r ≥ γ (1− γ)

1
r . Using this fact and Claim 2.6, it holds

that

Pr [L (v) ∈ A] ≥
∑

S⊆[2R2]
S∩A̸=ϕ

f̂2 (S) · |S ∩ A|
|S|

≥
∑

S⊆[2R2]
S∩A ̸=ϕ

f̂ 2 (S) · γ (1− γ)
|S|

|S∩A|

≥ γ
∑

S⊆[2R2]
S∩A ̸=ϕ

f̂ 2 (S) · (1− γ)|S| ≥ γ
∑

S⊆[2R2]
S∩A̸=ϕ

(
T̂1−γf

)2
(S) = γInf ∗

A (T1−γf) .
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Let (u, v) ∈ E be an edge of LC. The edge (u, v) is satisfied by L with probability

Pr
L′s choices

[πv,u (L (v)) = L (u)]

= E
v′∈Γ(u)

∑
i∈[R1]

Pr
[
L (v) ∈ π−1

v,u (i) ∧ L (v′) ∈ π−1
v′,u (i)

]
= E

v′∈Γ(u)

∑
i∈[R1]

Pr
[
L (v) ∈ π−1

v,u (i)
]
· Pr

[
L (v′) ∈ π−1

v′,u (i)
]

≥ γ2 E
v′∈Γ(u)

∑
i∈[R1]

Inf ∗
π−1
v,u(i)

(T1−γf) · Inf ∗
π−1
v′,u(i)

(T1−γg)


= γ2 E

v′∈Γ(u)
[JointInfu,v,v′ ] .

Recall that with probability at least ϵ5 over the selection of vertices u, v, v′ by the verifier,
it holds that JointInfu,v,v′ > τ . We get that the probability that a random edge of LC is
satisfied by L is

E
(u,v)∈E

[
Pr

L′s choices

[
π′
v,u (L (v)) = L (u)

]]
≥ γ2 · E

(u,v)∈E
E

v′∈Γ(u)
[JointInfu,v,v′ ] =

γ2 · E
u,v,v′∼Ver

[JointInfu,v,v′ ] > γ2ϵ5τ = ϵ14 = ξ.

�

4.1 Existence of a Joint Influential Coordinate (Proof of Lemma 4.2)

In this section we prove Lemma 4.2. Denote

Au,v,v′ = E
H
[f (x) f (y) g (z) g (w)]− E

H
[T1−γf (x)T1−γf (y)T1−γg (z)T1−γg (w)] ,

Bu,v,v′ = E
H
[T1−γf (x)T1−γf (y)T1−γg (z)T1−γg (w)]−

E
I
[T1−γf (x)T1−γf (y)T1−γg (z)T1−γg (w)] ,

Cu,v,v′ = E
I
[T1−γf (x)T1−γf (y)T1−γg (z)T1−γg (w)] .

Observe that

E
u,v,v′

E
H
[f (x) f (y) g (z) g (w)] = E

u,v,v′
E
H
[Au,v,v′ +Bu,v,v′ + Cu,v,v′ ]

≥ −
∣∣∣∣ E
u,v,v′

[Au,v,v′ ]

∣∣∣∣− ∣∣∣∣ E
u,v,v′

[Bu,v,v′ ]

∣∣∣∣+ E
u,v,v′

[Cu,v,v′ ] .
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To bound Eu,v,v′ EH [f (x) f (y) g (z) g (w)] we use the following three lemmas and claim. The
lemmas bound each of Au,v,v′ , Bu,v,v′ and Cu,v,v′ separately.

Lemma 4.3. |Eu,v,v′ [Au,v,v′ ]| ≤ 12
√
ϵ.

Lemma 4.4. For every u ∈ U and v, v′ ∈ Γ (u), it holds that |Bu,v,v′| ≤ JointInfu,v,v′ .

Lemma 4.5. Eu,v,v′ [Cu,v,v′ ] ≥ 0.

Claim 4.6. Let u ∈ U , v ∈ Γ (u), and let f : {±1}2R2 → {±1} be any function. For
γ ∈ (0, 1), it holds that ∑

i∈[R1]

Inf ∗
π−1
v,u(i)

(T1−γf) ≤
1

γ
.

Lemma 4.3 is proved in Section 4.3, and Lemma 4.4 is proved in Section 4.4. The proof
of Lemma 4.5, as well as the proof of Claim 4.6 can be found at the end of this subsection.
We turn to prove Lemma 4.2 using the above lemmas and claim.

Proof of Lemma 4.2 Recall that we assume that with probability 1− ϵ5 over the selection
of vertices u, v, v′ by the verifier, it holds that JointInfu,v,v′ ≤ τ. For every function f :

{±1}n → [−1, 1] and every S ⊆ [n] it holds that 0 ≤ Inf ∗
S (f) ≤

∑
R⊆[n] f̂

2 (R) ≤ 1.
Therefore, using Claim 4.6, for every u, v, v′, it is the case that

0 ≤ JointInfu,v,v′ =
∑
i∈[R1]

Inf ∗
π−1
v,u(i)

(T1−γf) · Inf ∗
π−1
v′,u(i)

(T1−γg)

≤
∑
i∈[R1]

Inf ∗
π−1
v,u(i)

(T1−γf) ≤
1

γ
.

Using Lemma 4.4 (recall that we set γ = ϵ4 and τ = ϵ), we get∣∣∣∣ E
u,v,v′

[Bu,v,v′ ]

∣∣∣∣ ≤ E
u,v,v′

[JointInfu,v,v′ ] ≤
(
1− ϵ5

)
· τ + ϵ5 · 1

γ

< τ + ϵ5 · 1
γ
= ϵ+ ϵ5 · ϵ−4 = 2ϵ.

Now, using Lemmas 4.3 and 4.5 we get that

E
u,v,v′

E
H
[f (x) f (y) g (z) g (w)] ≥ −

∣∣∣∣ E
u,v,v′

[Au,v,v′ ]

∣∣∣∣− ∣∣∣∣ E
u,v,v′

[Bu,v,v′ ]

∣∣∣∣+ E
u,v,v′

[Cu,v,v′ ]

≥ −12
√
ϵ− 2ϵ+ 0 ≥ −20

√
ϵ = −δ.

�
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Proof of Lemma 4.5 Observe that for a tuple (x, y, z, w) drawn from I it holds that the
pairs (x, y) and (z, w) are selected independently and from the same distribution. Therefore,

E [Cu,v,v′ ] = E
u,v,v′

[
E
I
[T1−γf (x)T1−γf (y)T1−γg (z)T1−γg (w)]

]
= E

u,v,v′

[
E
I
[T1−γf (x)T1−γf (y)] · E

I
[T1−γg (z)T1−γg (w)]

]
= E

u

[
E

v∈Γ(u)

[
E
I
[T1−γf (x)T1−γf (y)]

]
· E
v′∈Γ(u)

[
E
I
[T1−γg (z)T1−γg (w)]

]]
= E

u

[(
E

v∈Γ(u)

[
E
I
[T1−γf (x)T1−γf (y)]

])2
]

≥ 0.

�

Proof of Claim 4.6 Recall that for every r ∈ R+ and γ ∈ (0, 1) it holds that r ≥
γ (1− γ)

1
r . Therefore it also holds that 1

r
≥ γ (1− γ)r ≥ γ (1− γ)2r, implying 1

γ
≥ r ·

(1− γ)2r. Using this last inequality and Claim 2.6, we get∑
i∈[R1]

Inf ∗
π−1
v,u(i)

(T1−γf) =

∑
i∈[R1]

∑
R⊆[2R2]

R∩π−1
v,u(i)̸=ϕ

̂(T1−γf)
2

(R) =
∑
i∈[R1]

∑
R⊆[2R2]
i∈πv,u(R)

̂(T1−γf)
2

(R) =

∑
R⊆[2R2]

 ∑
i∈πv,u(R)

̂(T1−γf)
2

(R)

 =
∑

R⊆[2R2]

|πv,u (R)| ̂(T1−γf)
2

(R) ≤

∑
R⊆[2R2]

|R| · (1− γ)2|R| · f̂ 2 (R) ≤ 1

γ

∑
R⊆[2R2]

f̂2 (R) ≤ 1

γ
.

�

4.2 Correlation Under H

In this section we prove that the spaces X , Y , Z, W are not completely correlated under H.
Formally, we prove:

Lemma 4.7. Let ϵ ∈
(
0, 1

2

)
and D1, D2 ∈ N. It holds that

ρ (X ,Y,Z,W ;Hϵ (D1, D2)) ≤
√
1− ϵ.
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The proof of Lemma 4.7 uses the following definition and lemma by Mossel [14].

Definition 4.8 (Markov Operator, Mossel [14], Definition 2.1). Let (Ω×Ψ, µ) be a
finite correlated probability space. The conditional expectation operator, or Markov operator,
associated with the space, denoted U , maps functions g : Ψ → R to functions Ug : Ω → R
by

(Ug) (x) = E
(X,Y )∼µ

[g (Y ) |X = x ] .

Lemma 4.9 (Mossel [14], Lemma 2.8). Let (Ω×Ψ, µ) be a finite correlated probability
space. Let g : Ψ → R be such that E(x,y)∼µ [g (y)] = 0 and E(x,y)∼µ [g

2 (y)] ≤ 1. Then,
among all the functions f : Ω → R satisfying E(x,y)∼µ [f

2 (x)] ≤ 1, the maximal value of∣∣E(x,y)∼µ [f (x) g (y)]
∣∣ is given by∣∣∣∣ E

(x,y)∼µ
[f (x) g (y)]

∣∣∣∣ =√ E
(x,y)∼µ

[
(Ug (x))2

]
.

We are now ready to prove Lemma 4.7.

Proof of Lemma 4.7 For the sake of this proof we denote H = Hϵ (D1, D2). We show that
the correlation between X × Y × Z and W under H is not perfect, specifically that

ρ (X × Y × Z,W ;H) ≤
√
1− ϵ.

Since the marginal of H on any product of three out of the four spaces X , Y , Z, W (e.g.,
X × Z ×W) is the same (up-to the order of the coordinates), the claim of the lemma follows.

Denote A = {±1}. We first note that H naturally induces a distribution H′ on 5-tuple
(a, x, y, z, w) ∈ A×X × Y × Z ×W (a is a bit, while x, y are 2D1-bits strings and z, w are
2D2-bits strings). The distribution H′ is obtained by adding the auxiliary bit a used by H
to the 4-tuple (x, y, z, w) drawn.

Denote

F =
{
f : A×X × Y × Z → R

∣∣E [f ] = 0,E
[
f2
]
≤ 1

}
,

F ′ = {f ∈ F | f (a, x, y, z) only depends on x, y, z} ,

G =
{
g : W → R

∣∣E [g] = 0,E
[
g2
]
≤ 1

}
.

For f ∈ F and g ∈ G we define

Ef,g = E
H′
[f (a, x, y, z) g (w)] .
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We observe that

ρ (A×X × Y × Z,W ;H′) = max
f∈F ,g∈G

{Ef,g} ≥ max
f∈F ′,g∈G

{Ef,g} = ρ (X × Y × Z,W ;H) .

We next bound ρ (A×X × Y × Z,W ;H′). Let f ∈ F and g ∈ G. Let U be the Markov
operator associated with the correlated probability space ((A×X × Y × Z)×W ,H′), map-
ping functions on the latter space W , to functions on the former space A×X × Y × Z.
Using Lemma 4.9, it holds that

E2
f,g =

(
E
H′
[f (a, x, y, z) g (w)]

)2

≤ E
H′

[
(Ug (a, x, y, z))2

]
. (2)

Below, we use the notation (a, x, y, z, w′, w) ∼ H′ to indicate that the 5-tuple (a, x, y, z, w)
was selected according to H′ using the auxiliary string w′. Recall that H′ selects w′ ac-
cording to the distribution Nϵ (D2) and independently of a, x, y, z, and then sets w =

−z
((
−a2D2

)
∧ w′). In addition, observe that

(N1−2ϵg) (z) = E
w′∼Nϵ(D2)

[g (−zw′)] .

Fix a tuple (a, x, y, z, ·) in the support of H′. We next bound the term Ug (a, x, y, z). We
consider the following two cases:

• If a = 1:

Ug (1, x, y, z) = E
(A,X,Y,Z,W )∼H′

[g (W ) | (A,X, Y, Z) = (1, x, y, z)]

= E
(A,X,Y,Z,W ′,W )∼H′

[
g
(
−z
((
−12D2

)
∧W ′)) | (A,X, Y, Z) = (1, x, y, z)

]
= E

W ′∼Nϵ(D2)
[g (−z ·W ′)]

= N1−2ϵg (z) .

• If a = −1:

Ug (−1, x, y, z) = E
(A,X,Y,Z,W )∼H′

[g (W ) | (A,X, Y, Z) = (−1, x, y, z)]

= E
(A,X,Y,Z,W ′,W )∼H′

[
g
(
−z
(
12D2 ∧W ′)) | (A,X, Y, Z) = (−1, x, y, z)

]
= g (−z) .

Recall that ĝ (ϕ) = E [g] = 0, and ∥g∥22 = E [g2] ≤ 1 (the marginal of H on W is uniform).
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We next bound ∥N1−2ϵg∥22 using Claim 3.5 and Parseval’s Theorem:

∥N1−2ϵg∥22 ≤
∑

S⊆[2D2]

(
N̂1−2ϵg (S)

)2
≤

∑
S⊆[2D2]

ĝ2 (S) (1− 2ϵ)2|S| =
∑

S⊆[2D2]
S ̸=ϕ

ĝ2 (S) (1− 2ϵ)2|S|

≤ (1− 2ϵ)2
∑

S⊆[2D2]

ĝ2 (S) = (1− 2ϵ)2 ∥g∥22 ≤ (1− 2ϵ)2 ≤ 1− 2ϵ.

We are now able to bound E2
f,g. Let U be the uniform distribution over 2D2 bits. Using

Equation 2 we have

E2
f,g ≤ E

H′

[
(Ug (a, x, y, z))2

]
= E

H′

[
1 + a

2
· (Ug (1, x, y, z))2 + 1− a

2
· (Ug (−1, x, y, z))2

]
=

1

2
E

z∼U

[
(N1−2ϵg (z))

2]+ 1

2
E

z∼U

[
(g (−z))2

]
≤ 1

2
∥N1−2ϵg∥22 +

1

2
∥g∥22 ≤

1

2
(1− 2ϵ) +

1

2
= 1− ϵ.

Therefore
ρ (X × Y × Z,W ;H) ≤

√
1− ϵ.

�

4.3 Applying the Bonami-Beckner Operator

In this section we prove Lemma 4.3. That is, we show that for every selection of vertices
u, v, v′ by the verifier, it holds that∣∣∣∣ E

u,v,v′

[
E
H
[f (x) f (y) g (z) g (w)]− E

H
[T1−γf (x)T1−γf (y)T1−γg (z)T1−γg (w)]

]∣∣∣∣ ≤ 12
√
ϵ.

The lemma is in the spirit of Lemma 6.2 in [14]. Unfortunately we cannot invoke that
lemma as a black box because the Bonami-Beckner operators T1−γ differ: in both our cases
the operator has the form T⊗R1 ; but the T ’s themselves differ. In our case T itself is an
operator on a product space of some d ∈ N coordinates, and it randomizes each coordinate
(independently) with probability γ; whereas in [14], T is an operator that leaves the input
as is, or rerandomizes completely with probability γ.

A similar reason caused [16] to reprove a version of this Lemma 6.2 (they also had a
second reason - the correlation between their spaces is perfect, at least according to the
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definition of [14]). We cannot use their proof either since it is tailored to their distribution
and it uses the d-to-1 conjecture. We mention that we overcome the need of the d-to-1
conjecture by using the smoothness property of our label cover.

The proof of Lemma 4.3 follows the lines of [16], and inserts the Bonami-Beckner opera-
tors one by one. The proof also assumes knowledge of the Efron-Stein decomposition. Given
a string x and a subset of indices S, let xS = (xi)i∈S (the bits of x that are in the set S).

Theorem 4.10 (Efron-Stein decomposition). Let (Ω1, µ1) , . . . , (Ωn, µn) be n finite prob-
ability spaces, and let (Ω, µ) =

∏
i∈[n] (Ωi, µi). Every function f : Ω → R admits the following

unique decomposition (called the Efron-Stein decomposition):

f (x) =
∑
S⊆[n]

fS (xS) ,

where the functions fS satisfy

• The function fS depends only on xS.

• For every S * S ′, and every xS′ ∈ {±1}S
′
, it holds that

E
X∼µ

[fS (XS) |XS′ = xS′ ] = 0.

Lemma 4.3 is implied by the following lemma:

Lemma 4.11. Each of the following four terms is bounded by 3
√
ϵ∣∣∣∣ E

u,v,v′

[
E
H
[f (x) f (y) g (z) g (w)]− E

H
[f (x) f (y) g (z)T1−γg (w)]

]∣∣∣∣ ,∣∣∣∣ E
u,v,v′

[
E
H
[f (x) f (y) g (z)T1−γg (w)]− E

H
[f (x) f (y)T1−γg (z)T1−γg (w)]

]∣∣∣∣ ,∣∣∣∣ E
u,v,v′

[
E
H
[f (x) f (y)T1−γg (z)T1−γg (w)]− E

H
[f (x)T1−γf (y)T1−γg (z)T1−γg (w)]

]∣∣∣∣ ,∣∣∣∣ E
u,v,v′

[
E
H
[f (x)T1−γf (y)T1−γg (z)T1−γg (w)]− E

H
[T1−γf (x)T1−γf (y)T1−γg (z)T1−γg (w)]

]∣∣∣∣ .
Proof We show that the first of the four terms is bounded by 3

√
ϵ. For u ∈ U and v, v′ ∈

Γ (u) , denote

∆u,v,v′ =

∣∣∣∣EH [f (x) f (y) g (z) g (w)]− E
H
[f (x) f (y) g (z)T1−γg (w)]

∣∣∣∣ ,
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where f and g are the functions associated with vertices v and v′ (respectively). We wish to
bound |Eu,v,v′ [∆u,v,v′ ]|.

Fix u ∈ U and v, v′ ∈ Γ (u). We start by bounding ∆u,v,v′ . Recall from Section 3.2 that H
is a distribution on the space

∏R1

i=1 (X i × Y i ×Z i ×W i) (Equation 1). Denote

Ω =

R1∏
i=1

(
X i × Y i ×Z i

) ∼= ( R1∏
i=1

X i

)
×

(
R1∏
i=1

Y i

)
×

(
R1∏
i=1

Z i

)
∼=
(
{±1}2R2

)3
,

and

Ψ =

R1∏
i=1

W i ∼= {±1}2R2 .

Again, let us denote by U the Markov operator for the correlated probability space
(Ω×Ψ,H), mapping functions on Ψ to functions on Ω. It holds that

∆u,v,v′ =

∣∣∣∣EH [f (x) f (y) g (z) · ((id− T1−γ) g) (w)]

∣∣∣∣
=

∣∣∣∣ E
(x,y,z,·)∼H

[
f (x) f (y) g (z) · E

(X,Y,Z,W )∼H
[((id− T1−γ) g) (W ) |(X,Y, Z) = (x, y, z) ]

]∣∣∣∣
=

∣∣∣∣EH [f (x) f (y) g (z) · (U ((id− T1−γ) g)) (x, y, z)]

∣∣∣∣ .
We now consider the quantity inside the last expectation to be a product of two functions

on Ω, namely
F (x, y, z) = f (x) f (y) g (z)

and
G (x, y, z) = (U ((id− T1−γ) g)) (x, y, z) .

We take the Efron-Stein decomposition of these two functions with respect to the marginal
of the (product) distribution H on the space Ω: F (x, y, z) =

∑
S⊆[R1]

FS (x, y, z) and
G (x, y, z) =

∑
S⊆[R1]

GS (x, y, z). Then, by the orthogonality of the Efron-Stein decom-
position and Cauchy-Schwarz, we get

∆u,v,v′ =

∣∣∣∣∣∣
∑

S⊆[R1]

E
H
[FS (x, y, z)GS (x, y, z)]

∣∣∣∣∣∣ ≤
√ ∑

S⊆[R1]

∥FS∥22
√ ∑

S⊆[R1]

∥GS∥22,

where the 2-norms are with respect to H’s marginal on Ω. By orthogonality again, the
quantity

∑
S⊆[R1]

∥FS∥22 is just ∥F∥22, which is exactly 1 because F ’s range is {±1}. Hence,
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we have
∆2

u,v,v′ ≤
∑

S⊆[R1]

∥GS∥22 . (3)

As Mossel shows in Proposition 2.11 of [14], the Markov operator U commutes with
taking the Efron-Stein decomposition. Therefore, if we set G′ = (id− T1−γ) g then G = UG′

and GS = (UG′)S = U (G′
S). Note that when we consider G′

S, the Efron-Stein decomposition
is with respect to H’s marginal distribution on Ψ, i.e., the uniform distribution. It is also
easy to check that this Efron-Stein decomposition of g has

gS =
∑

R⊆[2R2]
πv′,u(R)=S

ĝ (R)χR.

It follows that applying the Bonami-Beckner operator T1−γ to g also commutes with taking
the Efron-Stein decomposition. Hence we have

GS = U (G′
S) = U ((id− T1−γ) gS) .

Using Equation 3, this implies

∆2
u,v,v′ ≤

∑
S⊆[R1]

∥U ((id− T1−γ) gS)∥22 . (4)

Proposition 2.13 of Mossel [14] shows that the correlation of a product of correlated
probability spaces is equal to the maximum correlation among the individual correlated
spaces. Hence, using Lemma 4.7, we get

ρ (Ω,Ψ;H) ≤
√
1− ϵ.

Using Mossel’s Proposition 2.12 we conclude that for each S ⊆ [R1],

∥U ((id− T1−γ) gS)∥22 ≤
(√

1− ϵ
)2|S| ∥(id− T1−γ) gS∥22

= (1− ϵ)|S|
∑

R⊆[2R2]
πv′,u(R)=S

(
1− (1− γ)2|R|

)
ĝ2 (R) , (5)

where the 2-norm in the first term is with respect to H’s marginal on Ω, and the 2-norm in
the second term is with respect to H’s marginal on Ψ (i.e., the uniform distribution).
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For S ⊆ [R1], u ∈ U and v′ ∈ Γ (u) we define:

TermS,v′,u =
∑

R⊆[2R2]
πv′,u(R)=S

(
1− (1− γ)2|R|

)
ĝ2 (R) ,

T ermsmall
S,v′,u =

∑
R⊆[2R2]

|R|≤ 2
ϵ3

, πv′,u(R)=S

(
1− (1− γ)2|R|

)
ĝ2 (R) ,

T ermlarge
S,v′,u =

∑
R⊆[2R2]

|R|> 2
ϵ3

, πv′,u(R)=S

(
1− (1− γ)2|R|

)
ĝ2 (R) .

Observe that for every u and v′ it holds that

0 ≤
∑

S⊆[R1]

TermS,v′,u ≤
∑

S⊆[R1]

∑
R⊆[2R2]

πv′,u(R)=S

ĝ2 (R) =
∑

R⊆[2R2]

ĝ2 (R) = 1.

We now turn to bound |Eu,v,v′ [∆u,v,v′ ]| . Due to convexity and Equations 4 and 5, it holds
that(

E
u,v,v′

[∆u,v,v′ ]

)2

≤ E
u,v,v′

[
∆2

u,v,v′

]
≤

E
u,v,v′

 ∑
S⊆[R1]

(1− ϵ)|S|
∑

R⊆[2R2]
πv′,u(R)=S

(
1− (1− γ)2|R|

)
ĝ2 (R)

 ≤

E
u,v,v′

 ∑
S⊆[R1]

|S|≥ 1
ϵ2

(1− ϵ)|S| TermS,v′,u

+ E
u,v,v′

 ∑
S⊆[R1]

|S|< 1
ϵ2

Termsmall
S,v′,u

+ E
u,v,v′

 ∑
S⊆[R1]

|S|< 1
ϵ2

Termlarge
S,v′,u

 .
We bound each of the last three expectations separately.

Bounding the First Expectation: Roughly speaking, in this term the sets S are large,
thus (1− ϵ)|S| is small, and so is the expectation. Formally, for every u and v′ it holds that

∑
S⊆[R1]

|S|≥ 1
ϵ2

(1− ϵ)|S| TermS,v′,u ≤ (1− ϵ)
1
ϵ2

∑
S⊆[R1]

|S|≥ 1
ϵ2

TermS,v′,u ≤
(
(1− ϵ)

1
ϵ

) 1
ϵ · 1 ≤ ϵ.
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Bounding the Second Expectation: Roughly speaking, in this term the sets R are
small, thus

(
1− (1− γ)2|R|

)
is small, and so is the expectation. Formally, for every u and

v′ it holds that∑
S⊆[R1]

|S|< 1
ϵ2

Termsmall
S,v′,u =

∑
S⊆[R1]

|S|< 1
ϵ2

∑
R⊆[2R2]

|R|≤ 2
ϵ3

, πv′,u(R)=S

(
1− (1− γ)2|R|

)
ĝ2 (R)

≤
(
1− (1− γ)

4
ϵ3

) ∑
R⊆[2R2]

ĝ2 (R) ≤
(
1− (1− γ)

4
ϵ3

)
· 1

≤ 1−
(
1− 4

ϵ3
γ

)
=

4

ϵ3
· ϵ4 = 4ϵ.

(Recall that for every a ∈ R+ it holds that (1− γ)a ≥ 1− aγ by the generalized Bernoulli’s
inequality).

Bounding the Third Expectation: Roughly speaking, in this term the sets R are large,
but their images S = πv′,u (R) are small. Due to the smoothness property, this case is rare.

Formally, fix v′ ∈ V , and let R ⊆ [2R2] be such that |R| > 2
ϵ3

. We partition R into
two disjoint sets, R′ = {j ∈ [R2] |j ∈ R} and R′′ = {j ∈ [R2] |j +R2 ∈ R}. Note that either
|R′| > 1

ϵ3
or |R′′| > 1

ϵ3
, and assume without loss of generality that |R′′| > 1

ϵ3
. Using the

smoothness property promised by Lemma 2.3, it holds that

Pr
u∈Γ(v′)

[
|πv′,u (R)| <

1

ϵ2

]
≤ Pr

u∈Γ(v′)

[
|π′

v′,u (R
′′)| < 1

ϵ2

]
≤ 2ϵ.
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Therefore,

E
u∈Γ(v′)

 ∑
S⊆[R1]

|S|< 1
ϵ2

[
Termlarge

S,v′,u

] = E
u∈Γ(v′)

 ∑
S⊆[R1]

|S|< 1
ϵ2

∑
R⊆[2R2]

||R|> 2
ϵ3

, πv′,u(R)=S

(
1− (1− γ)2|R|

)
ĝ2 (R)



≤ E
u∈Γ(v′)

 ∑
R⊆[2R2]

|R|> 2
ϵ3

, |πv′,u(R)|< 1
ϵ2

ĝ2 (R)


≤

∑
R⊆[2R2]

|R|> 2
ϵ3

(
ĝ2 (R) · Pr

u∈Γ(v′)

[
|πv′,u (R)| <

1

ϵ2

])

≤ 2ϵ
∑

R⊆[2R2]

ĝ2 (R) = 2ϵ.

The last three bounds imply

E
u,v,v′

[∆u,v,v′ ] ≤
√
ϵ+ 4ϵ+ 2ϵ < 3

√
ϵ.

This concludes the proof that the first term is bounded by 3
√
ϵ.

One can show that the other three terms are bounded by 3
√
ϵ in a similar way. For

example, in order to show that the second term is bounded by 3
√
ϵ we do the following:

First, we interchange the roles of w and z. The proof still goes through as the marginal
of H on (x, y, z) is the same as its marginal on (x, y, w). Second, we use F (x, y, w) =

f (x) f (y)T1−γg (w), which still has ∥F∥22 ≤ 1, since T1−γg is bounded in [−1, 1]. �

4.4 Applying the Invariance Principle (Proof of Lemma 4.4)

In this section we prove Lemma 4.4. That is, we show that for every selection of vertices
u, v, v′ by the verifier, it holds that∣∣∣∣EH [T1−γf (x)T1−γf (y)T1−γg (z)T1−γg (w)]− E

I
[T1−γf (x)T1−γf (y)T1−γg (z)T1−γg (w)]

∣∣∣∣
≤ JointInfu,v,v′ =

∑
i∈[R1]

Inf ∗
π−1
v,u(i)

(T1−γf) · Inf ∗
π−1
v′,u(i)

(T1−γg) ,

where f and g are the functions associated with vertices v and v′ (respectively).
Again, for simplicity of notation we write H = Hϵ,u,v,v′ , Hi = Hi

ϵ,u,v,v′ , I = Iϵ,u,v,v′ and
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I i = I i
ϵ,u,v,v′ . The proof inductively changes the distribution from H = H1 ⊗ . . . ⊗ HR1

to I = I1 ⊗ . . . ⊗ IR1 , one component at a time. For i ∈ [R1] and a pair of functions
f, g : {±1}2R2 → {±1}, define

∆i (f, g) =

∣∣∣∣∣∣ E
(
⊗i−1

t=1 It)⊗(
⊗R1

t=i Ht)
[f (x) f (y) g (z) g (w)]− E

(
⊗i

t=1 It)⊗(
⊗R1

t=i+1 Ht)
[f (x) f (y) g (z) g (w)]

∣∣∣∣∣∣ .
Observe that in order to prove Lemma 4.4 it suffices to show that for every selection of
vertices u, v, v′ it holds that∑

i∈[R1]

∆i (T1−γf, T1−γg) ≤
∑
i∈[R1]

Inf ∗
π−1
v,u(i)

(T1−γf) · Inf ∗
π−1
v′,u(i)

(T1−γg) .

Therefore, Lemma 4.4 is implied by the following Lemma 4.12:

Lemma 4.12. Let u ∈ U , v, v′ ∈ Γ (u), i ∈ [R1] and let f, g : {±1}2R2 → {±1} be any pair
of functions. It holds that

∆i (f, g) ≤ Inf ∗
π−1
v,u(i)

(f) · Inf ∗
π−1
v′,u(i)

(g) .

The rest of this subsection is devoted to proving Lemma 4.12. The proof of Lemma 4.12
uses the following definitions: Let f : {±1}n → R, x ∈ {±1}n and A =

{
a1, . . . , a|A|

}
⊆ [n].

We define xA = (xi)i∈A and x−A = (xi)i∈[n]\A. We break the Fourier expansion of f according
to its dependence on the bits xA:

f (x) =
∑
R⊆[n]

f̂ (R)χR (x) =
∑
S⊆A

 ∑
R⊆[n]
R∩A=S

f̂ (R)χR (xA, x−A)


=

∑
S⊆A

χS (xA)

 ∑
R⊆[n]
R∩A=S

f̂ (R)χR\S (x−A)

 ,

where in the last term χS : {±1}A → {±1} and χR\S : {±1}[n]\A → {±1}.
For any two subsets S ⊆ A ⊆ [n] we define the function fS,A : {±1}[n]\A → R by

fS,A (x−A) =
∑
R⊆[n]
R∩A=S

f̂ (R)χR\S (x−A) . (6)
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Note that
∥fS,A∥22 =

∑
R⊆[n]
R∩A=S

f̂ 2 (R) . (7)

Using the functions fS,A, we get the following decomposition:

f (x) = f (xA, x−A) =
∑
S⊆A

fS,A (x−A)χS (xA) . (8)

Observe that fS,A (x−A) can be viewed as the Fourier coefficient associated with the set S,
where f (x) = f (xA, x−A) is viewed as a function of xA, and where x−A is fixed.

The proof of Lemma 4.12 also uses the following Lemma 4.13, proved in Section 4.4.1.

Lemma 4.13. Let ϵ ∈
(
0, 1

2

)
and D1, D2 ∈ N. For ϕ ̸= S ⊆ [2D1] and ϕ ̸= T ⊆ [2D2], there

exist constants cT,S ∈ R, |cS,T | < 1, such that the following holds:
For every four functions f : X → R, g : Y → R, h : Z → R, k : W → R, it holds that

E
Hϵ(D1,D2)

[f (x) g (y)h (z) k (w)]− E
Iϵ(D1,D2)

[f (x) g (y)h (z) k (w)] =∑
S⊆[2D1],T⊆[2D2]

S,T ̸=ϕ

cS,T f̂ (S) ĝ (S) ĥ (T ) k̂ (T ) .

We are now ready to prove Lemma 4.12.

Proof of Lemma 4.12 To avoid notational complication, we prove the claim just for the
case i = 1. We write H′ =

⊗R1

t=2Ht, A = π−1
v,u (1) ⊆ [2R2] and B = π−1

v′,u (1) ⊆ [2R2]. It holds
that

∆1 (f, g) ≤
∣∣∣∣EH′

[
E
H1

[f (xA, x−A) f (yA, y−A) g (zB, z−B) g (wB, w−B)]

− E
I1
[f (xA, x−A) f (yA, y−A) g (zB, z−B) g (wB, w−B)]

]∣∣∣∣ .
Note that a draw from H′ is a tuple (x−A, y−A, z−B, w−B). Using the decomposition of
Equation 8,

f (xA, x−A) =
∑
S⊆A

fS,A (x−A)χS (xA) ,
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and Lemma 4.13 (note that |cS,T | < 1), it holds that

∆1 (f, g) ≤

∣∣∣∣∣∣∣∣EH′

 ∑
S⊆A,T⊆B
S,T ̸=ϕ

cS,T [fS,A (x−A) fS,A (y−A) gT,B (z−B) gT,B (w−B)]


∣∣∣∣∣∣∣∣

≤
∑

S⊆A,T⊆B
S,T ̸=ϕ

∣∣∣∣EH′
[fS,A (x−A) fS,A (y−A) gT,B (z−B) gT,B (w−B)]

∣∣∣∣ . (9)

Observe that x−A is independent of z−A. Furthermore, observe that y−A = x−Ay
′′
−A and

w−B = z−Bw
′′
−B, for some y′′−A and w′′

−B that are independent of both x−A and z−B. We
consider the Fourier expansions of fS,A and gT,B using Equation 6:

fS,A (x−A) =
∑

R⊆[2R2]
R∩A=S

f̂ (R)χR\S (x−A)

gT,B (x−B) =
∑

Q⊆[2R2]
Q∩B=T

f̂ (Q)χQ\T (x−B) .

For sets R,R′ ⊆ [2R2] \A and Q,Q′ ⊆ [2R2] \B, we denote

CR,R′,Q,Q′ = f̂S,A (R) f̂S,A (R′) ĝT,B (Q) ĝT,B (Q′) .

By substituting in Equation 9 the functions fS,A and gT,B by their Fourier expansions, we
get

∆1 (f, g)

≤
∑

S⊆A,T⊆B
S,T ̸=ϕ

∣∣∣∣∣∣∣∣EH′

 ∑
R,R′⊆[2R2]\A
Q,Q′⊆[2R2]\B

CR,R′,Q,Q′ · χR (x−A)χR′ (y−A)χQ (z−B)χQ′ (w−B)


∣∣∣∣∣∣∣∣

=
∑

S⊆A,T⊆B
S,T ̸=ϕ

∣∣∣∣∣∣∣∣EH′

 ∑
R,R′⊆[2R2]\A
Q,Q′⊆[2R2]\B

CR,R′,Q,Q′ · χR△R′ (x−A)χQ△Q′ (z−B)χR′
(
y′′−A

)
χQ′

(
w′′

−B

)
∣∣∣∣∣∣∣∣

=
∑

S⊆A,T⊆B
S,T ̸=ϕ

∣∣∣∣∣∣∣∣
∑

R,R′⊆[2R2]\A
Q,Q′⊆[2R2]\B

CR,R′,Q,Q′ · E
H′
[χR△R′ (x−A)] E

H′
[χQ△Q′ (z−B)] E

H′

[
χR′

(
y′′−A

)
χQ′

(
w′′

−B

)]∣∣∣∣∣∣∣∣ .

39



Since x−A and z−A are chosen uniformly at random (the marginals of H′ are uniform), the
term inside the inner sum is 0 unless R = R′ and Q = Q′. Since

∣∣EH′
[
χR

(
y′′−A

)
χQ

(
w′′

−B

)]∣∣ ≤
1, we get

∆1 (f, g) ≤
∑

S⊆A,T⊆B
S,T ̸=ϕ

∑
R⊆[2R2]\A
Q⊆[2R2]\B

f̂S,A
2
(R) ĝT,B

2 (Q)

=
∑

S⊆A,T⊆B
S,T ̸=ϕ

 ∑
R⊆[2R2]\A

f̂S,A
2
(R)

 ∑
Q⊆[2R2]\B

ĝT,B
2 (Q)


=

∑
S⊆A,T⊆B
S,T ̸=ϕ

∥fS,A∥22 ∥gT,B∥
2
2

=

∑
S⊆A
S ̸=ϕ

∥fS,A∥22


∑

T⊆B
T ̸=ϕ

∥gT,B∥22

 .

Observe that using Equation 7 and Definition 4.1, it holds that∑
S⊆A
S ̸=ϕ

∥fS,A∥22 =
∑
S⊆A
S ̸=ϕ

∑
R⊆[2R2]
R∩A=S

f̂ 2 (R) =
∑

R⊆[2R2]
R∩A̸=ϕ

f̂2 (R) = Inf ∗
A (f) .

Similarly,
∑

T⊆B
T ̸=ϕ

∥gT,B∥22 = Inf ∗
B (g), and the assertion follows. �

4.4.1 Applying Invariance Principle to a Single Coordinate (Proof of Lemma 4.13)

In this section we prove Lemma 4.13. Fix ϵ ∈
(
0, 1

2

)
and D1, D2 ∈ N. For the sake of this

subsection we denote I = Iϵ (D1, D2), H = Hϵ (D1, D2), and

NS = E
x∼Nϵ(D1)

[χS (−x)] ,

NT = E
x∼Nϵ(D2)

[χT (−x)] ,

EH,S,R,T,Q = E
H
[χS (x)χR (y)χT (z)χQ (w)] ,

EI,S,R,T,Q = E
I
[χS (x)χR (y)χT (z)χQ (w)] .

The proof of Lemma 4.13 uses the following two claims:

Claim 4.14. For S,R ⊆ [2D1] and T,Q ⊆ [2D2] it holds that:

• If S ̸= R or T ̸= Q then EH,S,R,T,Q = 0
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• If S = R and T = Q then EH,S,R,T,Q = 1
2

(
(−1)|S|NT + (−1)|T |NS

)
.

Claim 4.15. For S,R ⊆ [2D1] and T,Q ⊆ [2D2] it holds that:

• If S ̸= R or T ̸= Q then EI,S,R,T,Q = 0.

• If S = R and T = Q then EI,S,R,T,Q = 1
4

(
(−1)|S| +NS

)(
(−1)|T | +NT

)
.

The proofs of Lemmas 4.14 and 4.15 are deferred to the end of this subsection. We are
now ready to prove Lemma 4.13.

Proof of Lemma 4.13 For S ⊆ [2D1] and T ⊆ [2D2] we define cS,T ∈ R to be

cS,T = −1

4

(
(−1)|S| −NS

)(
(−1)|T | −NT

)
.

Observe that for S ̸= ϕ and T ̸= ϕ it holds that |cS,T | < 1, as Claim 3.3 shows that
0 < NS ≤ (1− 2ϵ)|S| and 0 < NT ≤ (1− 2ϵ)|T |. Also, if S = ϕ or T = ϕ then NS = NT = 1

and cS,T = 0.
It is easy to see that

E
H
[f (x) g (y)h (z) k (w)]− E

I
[f (x) g (y)h (z) k (w)] =∑

S,R⊆[2D1]
T,Q⊆[2D2]

f̂ (S) ĝ (R) ĥ (T ) k̂ (Q) (EH,S,R,T,Q − EI,S,R,T,Q) .

Using Claims 4.14 and 4.15, the inner term EH,S,R,T,Q − EI,S,R,T,Q is 0 unless S = R and
T = Q. If S = R and T = Q then the following easy calculation shows that EH,S,R,T,Q −
EI,S,R,T,Q = cT,Q:

EH,S,R,T,Q − EI,S,R,T,Q

=
1

2

(
(−1)|S| ·NT + (−1)|T | ·NS

)
− 1

4

(
(−1)|S| +NS

)(
(−1)|T | +NT

)
=

1

4

(
2 · (−1)|S| ·NT + 2 · (−1)|T | ·NS −

(
(−1)|S|+|T | + (−1)|S|NT + (−1)|T |NS +NSNT

))
= −1

4

(
(−1)|S|+|T | − (−1)|S|NT − (−1)|T |NS +NSNT

)
= −1

4

(
(−1)|S| −NS

)(
(−1)|T | −NT

)
= cT,Q

�
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Proof of Claim 4.14 Recall if (x, y, z, w) was drawn from H then y = −x
(
a2D1 ∧ y′

)
and

w = −z
((
−a2D2

)
∧ w′), where x, z, a, y′, w′ are all independent. Therefore

EH,S,R,T,Q = E
H
[χS (x)χR (y)χT (z)χQ (w)]

= E
H

[
χS (x)χR

(
−x
(
a2D1 ∧ y′

))
χT (z)χQ

(
−z
((
−a2D2

)
∧ w′))]

= E
H

[
χS△R (x)χR

(
−
(
a2D1 ∧ y′

))
χT△Q (z)χQ

(
−
((
−a2D2

)
∧ w′))]

= E
H
[χS△R (x)] · E

H
[χT△Q (z)] · E

H

[
χR

(
−
(
a2D1 ∧ y′

))
χQ

(
−
((
−a2D2

)
∧ w′))] .

Since the marginals of H are uniform on both the X and Z spaces, it holds that the last
term is 0 unless S = R and T = Q. When S = R and T = Q it holds that

EH,S,R,T,Q = E
H

[
χS

(
−
(
a2D1 ∧ y′

))
χT

(
−
((
−a2D2

)
∧ w′))]

= E
H

[
1 + a

2
· χS

(
(−1)2D1

)
· χT (−w′) +

1− a

2
· χS (−y′) · χT

(
(−1)2D2

)]
=

1

2

(
(−1)|S| · E

w′∼Nϵ(D2)
[χT (−w′)] + (−1)|T | · E

y′∼Nϵ(D1)
[χS (−y′)]

)
=

1

2

(
(−1)|S| ·NT + (−1)|T | ·NS

)
.

�

Proof of Claim 4.15 Recall if (x, y, z, w) was drawn from I then y = −x
(
a2D1
1 ∧ y′

)
and

w = −z
(
a2D2
2 ∧ w′), when x, z, a1, a2, y′, w′ are all independent. Therefore

EI,S,R,T,Q = E
I
[χS (x)χR (y)χT (z)χQ (w)]

= E
I

[
χS (x)χR

(
−x
(
a2D1
1 ∧ y′

))
χT (z)χQ

(
−z
(
a2D2
2 ∧ w′))]

= E
I

[
χS△R (x)χR

(
−
(
a2D1
1 ∧ y′

))
χT△Q (z)χQ

(
−
(
a2D2
2 ∧ w′))]

= E
I
[χS△R (x)] · E

I
[χT△Q (z)] · E

I

[
χR

(
−
(
a2D1
1 ∧ y′

))]
· E
I

[
χQ

(
−
(
a2D2
2 ∧ w′))] .

Since the marginals of I are uniform on both the X and Z spaces, it holds that the last
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term is 0 unless S = R and T = Q. When S = R and T = Q it holds that

EI,S,R,T,Q = E
I

[
χS

(
−
(
a2D1
1 ∧ y′

))]
E
I

[
χT

(
−
(
a2D2
2 ∧ w′))]

= E
I

[
1 + a1

2
· χS

(
(−1)2D1

)
+

1− a1
2

· χS (−y′)
]
·

E
I

[
1 + a2

2
· χT

(
(−1)2D2

)
+

1− a2
2

· χT (−w′)

]
=

1

2

(
(−1)|S| + E

y′∼Nϵ(D1)
[χS (−y′)]

)
· 1
2

(
(−1)|T | + E

w′∼Nϵ(D2)
[χS (−w′)]

)
=

1

4

(
(−1)|S| +NS

)(
(−1)|T | +NT

)
.

�

5 Covering Dictatorship Test for General Predicates

In this section we develop a general framework for covering dictatorship tests using a given
predicate φ, for a large subset of the predicates φ /∈ O. In particular, in Section 5.1 we prove
Theorem 2. In Section 5.2 we prove a more general version of Theorem 2 (see Lemma 5.6),
offering a dictatorship test in the multi-function setting. The general version is used in Sec-
tion 7 to obtained a conditional characterization of covering hard predicates. For convenience
we restate Theorem 2:

Theorem. Let φ ̸∈ O, and assume that there exists a balanced, pairwise independent dis-
tribution on the support of φ. Then there exists a φ-based covering-dictatorship test with
completeness 2 and soundness k, for every k ∈ N.

5.1 Single Function Dictatorship Test

In this subsection we assume that φ and η are as in Theorem 2, and construct a φ-based
covering dictatorship test DICT1, using the distribution η. The test assumes to have an
oracle access to the function f : {±1}2n → {±1} being tested.

Roughly speaking, we show that our dictatorship test satisfies the following properties:
There exist two dictatorships f and g that together cover all the tests made by DICT1.
However, any constant number of functions whose every product is “far” from a dictatorship
do not cover all the tests made by DICT1. In other words, if a constant number of functions
cover all the tests, then there is a subset of these functions whose product is “close” to a
dictatorship.
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5.1.1 The Test

Our dictatorship test uses the distribution Dϵ,η that is specified next. Let us first define the
following noisy version of η:

Definition 5.1. Let ϵ ∈ [0, 1], let η be a distribution over {±1}t, and let U be the uniform
distribution over {±1}t. Define the distribution η′ϵ generating y ∈ {±1}t as follows:

∀y : η′ϵ (y) = (1− ϵ) η (y) + ϵ · U (y) .

That is, in order to draw a t-bits string y from η′ϵ: With probability 1 − ϵ draw y from η,
and with probability ϵ draw a random y.

Definition 5.2. Let ϵ ∈ [0, 1], and let η be a distribution over {±1}t. Define the distribu-
tion Dϵ,η generating w = (y, z) ∈

(
{±1}t

)2
as follows:

∀ (y, z) : Dϵ,η (y, z) =
1

2
η (y) η′ϵ (z) +

1

2
η′ϵ (y) η (z) .

That is, in order to draw a pair (y, z) of t-bits strings from Dϵ,η: With probability 1
2

draw y

from η and z from η′ϵ, and with probability 1
2

draw y from η′ϵ and z from η.

Our dictatorship test is found in Figure 2. For a string si, we use the notation si,j to
indicate the jth coordinate of si.

Algorithm 2 DICT1fϵ

• Select w1 = (y1, z1) , . . . , wn = (yn, zn) ∈
(
{±1}t

)2
according to the distribution Dϵ,η.

• For i ∈ [t], let xi = y1,i, . . . , yn,i, z1,i, . . . , zn,i ∈ {±1}2n.

• Accept iff φ (f (x1) , . . . , f (xt)) = −1.

It will be convenient for us to view the dictatorship test in a matrix notation. For a
matrix M , we denote by Mi the ith row of M , and by M j the jth column of M . Consider
the following 2n × t matrix M : The first n rows of the matrix are y1, . . . , yn, that is M1 =

y1, . . . ,Mn = yn. The following n rows are z1, . . . , zn, that is Mn+1 = z1, . . . ,M2n = zn. Note
that the t columns of the obtained matrix are x1, . . . , xt, that is M1 = x1, . . . ,M

t = xt.

5.1.2 Definitions

In order to analyze the dictatorship test we need the following definitions: Let ϵ ∈ (0, 1),
k ∈ N and let F = {f1, . . . , fk} be a set of functions fℓ : {±1}2n → {±1}.
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We denote by Rej
(
DICT1Fϵ

)
the indicator random variable for the rejection of the set P

by DICT1ϵ. That is, Rej
(
DICT1Fϵ

)
is 1 if none of the functions fℓ in F passes the test

selected by DICT1, and 0 if there exists a function fℓ in F that passes the test.
For K ⊆ [k], we define the product function fK : {±1}2n → {±1} by

fK =
∏
ℓ∈K

fℓ.

The function fϕ is the all 1’s functions, i.e., for every x ∈ {±1}2n it holds that fϕ (x) = 1.
We say that a function is regular if none of its coordinates has high influence:

Definition 5.3 (Regularity). Let d ∈ N, τ ∈ [0, 1], and let f : {±1}n → {±1} be a
function. We say that f is (d, τ)-regular, if

max
j∈[n]

{
Inf≤d

j (f)
}
≤ τ.

Let F = {f1, . . . , fk} be a set of functions fℓ : {±1}n → {±1}. We say that F is (d, τ)-regular
if for every subset K ⊆ [k] it holds that fK is (d, τ)-regular.

5.1.3 Test Analysis

We are now ready to state our result regarding DICT1. The following lemma clearly implies
Theorem 2.

Lemma 5.4. Let φ : {±1}t → {±1} be a predicate satisfying φ /∈ O. Assume that there
exists a balanced, pairwise independent distribution η on the support of φ.
Then, DICT1 satisfies the following properties:

• Completeness: For any ϵ ∈ (0, 1) the following holds. Let j ∈ [n] and let f, g :

{±1}2n → {±1} be the two dictatorships f = χj and g = χj+n. Then

Pr
[
Rej

(
DICT1{f,g}ϵ

)]
= 0.

In particular, there exist two dictatorships that cover all the tests performed by DICT1.
Furthermore, each of the functions f and g is accepted by DICT1ϵ with probability 1− ϵ

2
.

• Soundness: For any ϵ ∈ (0, 1) and k ∈ N, there exist constants d ∈ N and τ > 0 that
only depend on ϵ, t and k, such that the following holds. Let F = {f1, . . . , fk} be a set
of functions fℓ : {±1}2n → {±1}. Assume that F is (d, τ)-regular. Then

Pr
[
Rej

(
DICT1Fϵ

)]
>

1

210kt
.
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In particular, if a set of a constant number of functions covers all the tests performed
by DICT1, then the set is not (d, τ)-regular.

5.2 General Dictatorship Test

In this section we offer a more general covering dictatorship test. Instead of getting oracle
access to a single function f : {±1}2n → {±1}, the general dictatorship test gets access to
a family of functions F = {f 1, . . . , f r}, r ≥ t ∈ N, f : {±1}2n → {±1}. Intuitively, the test
aims at checking whether all the functions f 1, . . . , f r are the same dictatorship.

The general dictatorship test is used in Section 7. Roughly speaking, the f 1, . . . , f r

functions considered by Section 7 are the long code encodings of the r ≫ t neighbors v1, . . . , vr
of a single vertex u in a label cover instance.

5.2.1 The Test

Our general dictatorship test DICT is found in Figure 3. It is easy to see that if F contains r
copies of the same function f , i.e., f1 = · · · = f r = f , then DICTF

ϵ operates the same as
DICT1fϵ .

Algorithm 3 DICT
F={f1,...,fr}
ϵ

• Select w1 = (y1, z1) , . . . , wn = (yn, zn) ∈
(
{±1}t

)2
according to the distribution Dϵ,η.

• For i ∈ [t], let xi = y1,i, . . . , yn,i, z1,i, . . . , zn,i ∈ {±1}2n.

• Select a random set of t different indices I = {i1, . . . , it} ⊆ [r]
(selection with no repetitions).

• Accept iff φ (f i1 (x1) , . . . , f
it (xt)) = −1.

5.2.2 Definitions

In order to analyze the dictatorship test we need the following definitions: Let ϵ ∈ (0, 1),
k, r ∈ N, and let F be a set of sets of functions F = {F1, . . . , Fk}, Fℓ = {f 1

ℓ , . . . , f
r
ℓ },

f i
ℓ : {±1}2n → {±1}.

We denote by Rej
(
DICTF

ϵ

)
the indicator random variable for the rejection of the set F

by DICT. That is, Rej
(
DICTF

ϵ

)
is 1 if none of the sets Fℓ in F passes the test selected

by DICT, and 0 if there exists a set Fℓ in F that passes the test.
We define the cross influence of a pair of function as follows:
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Definition 5.5 (Cross Influence). Let d ∈ N, and let f, g : {±1}n → {±1} be a pair of
function. We denote by XInfd (f, g) the d-cross influence of f and g:

XInfd (f, g) = max
j∈[n]

{
min

{
Inf≤d

j (g) , Inf≤d
j (f)

}}
.

For i ∈ [r] and K ⊆ [k] we define the product function f i
K : {±1}2n → {±1} by

f i
K =

∏
ℓ∈K

f i
K .

The function f i
ϕ is the all 1’s functions, i.e., for every x ∈ {±1}2n it holds that f i

ϕ (x) = 1.

Let d ∈ N and τ ∈ [0, 1]. Let (i, i′) ∈ [r]2, i ̸= i′, be a pair of indices. We say that (i, i′)

is (d, τ,F)-cross regular, if for every two sets K,K ′ ⊆ [k] it holds that

XInfd

(
f i
K , f

i′

K′

)
≤ τ.

Let I ⊆ [r] be a set of indices. We say I is (d, τ,F)-cross regular if every pair (i, i′) ∈ I2,
i ̸= i′, is (d, τ,F)-cross regular.

5.2.3 Test Analysis

We are now ready to state our result regarding DICT:

Lemma 5.6. Let φ : {±1}t → {±1} be a predicate satisfying φ /∈ O. Assume that there
exists a balanced, pairwise independent distribution η on the support of φ.
Then, DICT satisfies the following properties:

• Completeness: For any ϵ ∈ (0, 1) the following holds. Let j ∈ [n] and let f i, gi :

{±1}2n → {±1}, i ∈ [r], be the following functions

f1 = · · · = f r = χj, g1 = · · · = gr = χj+n.

Let F = {f 1, . . . , f r} and G = {g1, . . . , gr}. Then

Pr
[
Rej

(
DICT{F,G}

ϵ

)]
= 0.

Furthermore, each of the sets F and G is accepted by DICTϵ with probability 1− ϵ
2
.

• Soundness: For any ϵ ∈ (0, 1) and k ∈ N, there exist r, d ∈ N and τ > 0 that only
depend on ϵ, t, and k, such that the following holds. Let F be a set of sets of functions
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F = {F1, . . . , Fk}, Fℓ = {f1
ℓ , . . . , f

r
ℓ }, f i

ℓ : {±1}2n → {±1}. Let α = 1
210kt

, and assume
that at least 1 − α fraction of the t-elements sets I ⊆ [r] are (d, τ,F)-cross regular.
Then

Pr
[
Rej

(
DICTF

ϵ

)]
>

1

210kt
.

It is easy to see that Lemma 5.4 is a special case of Lemma 5.6. Thus, we will only prove
Lemma 5.6. The proof of the completeness part of Lemma 5.6 can be found in Section 5.3,
and the proof of soundness part can be found in Section 6. For the rest of the text we fix t,
ϵ, φ and η. We omit the ϵ and η sub-indices and write DICT = DICTϵ, η′ = η′ϵ and D = Dϵ,η.

5.3 Completeness

In this section we prove the completeness property of Lemma 5.6.

Proof of Lemma 5.6 (Completeness) Recall the matrix M defined at the end of Sub-
section 5.1.1, after the algorithm DICT1. For i ∈ [t], it holds that xi is the ith column of M .
For j ∈ [n] it holds that yj is the jth row of M , and zj is row number j+n of M . Also recall
that there exists j ∈ [n] such that for every i ∈ [r] it holds that f i = χj and gi = χj+n.

When running DICTF we compare the following value to −1:

φ
(
f i1 (x1) , . . . , f

it (xt)
)
= φ (χj (x1) , . . . , χj (xt)) = φ (Mj,1, . . . ,Mj,t) = φ (Mj) = φ (yj) .

When running DICTG we compare the following value to −1:

φ
(
gi1 (x1) , . . . , g

it (xt)
)

= φ (χj+n (x1) , . . . , χj+n (xt))

= φ (Mj+n,1, . . . ,Mj+n,t) = φ (Mj+n) = φ (zj)

Recall that (yj, zj) was drawn from D. Thus, either yj or zj was drawn from η, implying
that at least one of them is in support of φ. Hence, either φ (yj) = −1 or φ (zj) = −1, and
at least one of F and G is accepted by DICT.

Moreover, observe that F is only rejected by DICT if yj is not in the support of φ. This
can only happen if D samples yi using η′, and η′ samples yi using the uniform distribution
(instead of using η). The probability of this event is ϵ

2
. Therefore, F (and similarly also G)

is accepted with probability at least 1− ϵ
2
. �

6 Dictatorship Test Soundness

In this section we prove the soundness property of Lemma 5.6.
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6.1 Properties of D

We prove that the distribution D satisfies several properties that will turn useful for the
soundness proof in Section 6.2. Observe that one can identify (y, z) ∈

(
{±1}t

)2
with w ∈(

{±1}2
)t

given by ∀i ∈ [t] : wi = (yi, zi). For the rest of the section we view D as a
distribution on w ∈

(
{±1}2

)t
instead of (y, z) ∈

(
{±1}t

)2
(unless otherwise stated). That

is, we view the generated w as a t-symbols string where every symbol is a pair of bits.

Claim 6.1. D is balanced.

Proof Recall that we assume that η is balanced. The distribution η′ is a sum of the two
balanced distributions, η and the uniform distribution, therefore η′ is also balanced.

Let i ∈ [t] and (ω, ω′) ∈ {±1}2. We denote wi = (yi, zi) ∈ {±1}2, and get

Pr
w∼D

[wi = (ω, ω′)] =
1

2
Pr

(y,z)∼η×η′
[yi = ω ∧ zi = ω′] +

1

2
Pr

(y,z)∼η′×η
[yi = ω ∧ zi = ω′]

=
1

2
Pr
y∼η

[yi = ω] · Pr
z∼η′

[zi = ω′] +
1

2
Pr
y∼η′

[yi = ω] · Pr
z∼η

[zi = ω′]

=

(
1

2

)3

+

(
1

2

)3

=
1

4
=

1∣∣{±1}2
∣∣ .

�

Claim 6.2. D is pairwise independent.

Proof Recall that we assume that η is pairwise independent. The distribution η′ is a sum
of the two pairwise independent distributions, η and the uniform distribution, therefore η′

is also pairwise independent.
Let i, i′ ∈ [t] and (ω, ω′) , (σ, σ′) ∈ {±1}2. We denote wi = (yi, zi) , wi′ = (yi′ , zi′) ∈ {±1}2,

and get

Pr
w∼D

[wi = (ω, ω′) ∧ wi′ = (σ, σ′)]

=
1

2
Pr

(y,z)∼η×η′

[
(yi = ω ∧ yi′ = σ)

∧
(zi = ω′ ∧ zi′ = σ′)

]
+

1

2
Pr

(y,z)∼η′×η

[
(yi = ω ∧ yi′ = σ)

∧
(zi = ω′ ∧ zi′ = σ′)

]
=

1

2
Pr
y∼η

[yi = ω ∧ yi′ = σ] · Pr
z∼η′

[zi = ω′ ∧ zi′ = σ′] +

1

2
Pr
y∼η′

[yi = ω ∧ yi′ = σ] · Pr
z∼η

[zi = ω′ ∧ zi′ = σ′]
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Since η and η′ are both pairwise independent and balanced, the last term is

=
1

2
Pr
y∼η

[yi = ω] · Pr
y∼η

[yi′ = σ] · Pr
z∼η′

[zi = ω′] · Pr
z∼η′

[zi′ = σ′] +

1

2
Pr
y∼η′

[yi = ω] · Pr
y∼η′

[yi′ = σ] · Pr
z∼η

[zi = ω′] · Pr
z∼η

[zi′ = σ′]

=

(
1

2

)5

+

(
1

2

)5

=
1

16
.

Since D is balanced, it holds that

Pr
w∼D

[wi = (ω, ω′)] · Pr
w∼D

[wi′ = (σ, σ′)] =
1

4
· 1
4
=

1

16
,

and the assertion follows. �

The following lemma shows that the probability space
(
{±1}2

)t
is not completely corre-

lated under D.

Lemma 6.3. ρ
(
{±1}2 ,

(
{±1}2

)t−1
;D
)
= ρ < 1, where ρ is a constant that only depends

on t and ϵ.

The proof of Lemma 6.3 uses the following lemma by Mossel [14], that gives a criteria
under which a probability space is not completely correlated.

Lemma 6.4 (Mossel [14], Lemma 2.9). Let (Ω×Ψ, µ) be a finite correlated probability
space, such that the probability of the smallest atom in Ω×Ψ is at least γ > 0. That is, for
every (a, b) ∈ Ω×Ψ in the support of µ, it holds that µ (a, b) ≥ γ.

Define the bipartite graph G = (Ω,Ψ, E) where (a, b) ∈ Ω × Ψ satisfies (a, b) ∈ E if
µ (a, b) > 0. Then, if G is connected then ρ (Ω,Ψ;µ) ≤ 1− γ2

2
.

Proof of Lemma 6.3 Let Ψ be the support of the marginal distribution of D on
(
{±1}2

)t−1
,

and denote Ω = {±1}2 (the support of the marginal distribution of D on {±1}2 is {±1}2

itself, as D is balanced). We show that ρ (Ω,Ψ;D) = ρ′ < 1 (ρ′ is a constant that only
depends on t and ϵ) by applying Lemma 6.4.

Consider the bipartite graph G = (Ω,Ψ, E) where (a, b) ∈ Ω × Ψ satisfies (a, b) ∈ E if
D (a, b) > 0. Our goal is to show that G is connected.

Let a ∈ Ω and b ∈ Ψ. Denote a = (ya, za) and b = (y′b, z
′
b) where ya, za ∈ {±1} and

y′b, z
′
b ∈ {±1}t−1. Since η is balanced, ya agrees with a word y in the support of η, and za

agrees with word in the support of η. In addition, observe that there exists w′ = (y′, z′) ∈(
{±1}t

)2
in the support of D that agrees with b. By the way D was constructed, either y′
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or z′ was selected according to η. Therefore, either y′b agrees with a word y′ on the support
of η, or z′b agrees with a word z′ on the support of η.

Assume without loss of generality that y′b agrees with the word y′ on the support of η,
and denote by y′a ∈ {±1} the bit that “completes” y′b to y′ (i.e., y′ = y′a ◦ y′b). Recall that
there exists a word y ∈ {±1}t in the support of η that agrees with ya, and let yb ∈ {±1}t−1

be the string that “completes” ya to y (i.e., y = ya ◦ yb).
Let c ∈ Ω and d ∈ Ψ be two vertices in G. Denote c = (yc, zc) and d = (yd, zd) where

yd, zd ∈ {±1} and yd, zd ∈ {±1}t−1. Let y = yc ◦ yd and z = zc ◦ zd. Recall that there is an
edge between c and d in G if w = (y, z) is in the support of D. In other words, if either y
or z are in the support of η.

The following is a path in G connecting a and b:

a = (ya, za) → b′ = (yb, yb) → a′ = (y′a, ya) → b = (y′b, z
′
b) .

The edge a → b′ exists as the concatenation of the first components of vertices a, b′ is
ya ◦ yb = y, which is in the support of η. The edge b′ → a′ exists as the concatenation of
the second components of vertices a′, b′ is ya ◦ yb = y, which is in the support of η. The edge
a′ → b exists as the concatenation of the first components of vertices a′, b is y′a ◦ y′b = y′,
which is in the support of η. �

6.2 Soundness

In this section we prove the soundness property of Lemma 5.6. The proof uses the following
invariance principle theorem, which is an easy corollary of Theorem 6.6 and Lemma 6.9 of
Mossel [14], obtained using the triangle inequality.

Theorem 6.5 (Invariance Principle). Let
(∏t

i=1 Ωi, µ
)

and
(∏t

i=1 Ωi, µ
′) be two a finite

correlated probability spaces. Assume that µ and µ′ have the same marginal distribution on
each coordinate. Furthermore, assume that both satisfy the following properties:
For µ∗ ∈ {µ, µ′},

• µ∗ is pairwise independent.

• ∀i ∈ [t] , ω ∈ Ωi : Prw∼µ∗ [wi = ω] > 0.

• ρ (Ω1, . . . ,Ωt;µ
∗) < 1.

Then, for every δ > 0 there exist d ∈ N and τ > 0 such that the following holds for all n ∈ N:
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Let t ∈ N, and let f1, . . . , ft, fi : Ωn
i → [−1, 1], be t functions satisfying

∀i ̸= i′ ∈ [t] : XInfd (fi, fi′) ≤ τ.

Then, ∣∣∣∣∣∣
∏
i∈[t]

E
w1,...,wn∼µ

[fi (w1,i, . . . , wn,i)]−
∏
i∈[t]

E
w1,...,wn∼µ′

[fi (w1,i, . . . , wn,i)]

∣∣∣∣∣∣ ≤ δ.

We are now ready to prove the soundness property of Lemma 5.6:

Proof of Lemma 5.6 (Soundness) Fix ϵ ∈ (0, 1) and k ∈ N, and let r, d ∈ N and τ > 0

be the constants determined below. Let F be a set of sets of functions F = {F1, . . . , Fk},
Fℓ = {f 1

ℓ , . . . , f
r
ℓ }, f i

ℓ : {±1}2n → {±1}. We assume that at least 1 − α fraction of the
t-elements sets I ⊆ [r] are (d, τ,F)-cross regular. We want to show that

Rej = Pr
[
Rej

(
DICTF)] > 1

210kt
.

Arithmetizing the rejection probability by moving from φ to NAE. We assume
without loss of generality that the support of φ is contained in the support of NAEt, i.e.,
∀x ∈ {±1}t : φ (x) ≥ NAEt (x). Claim 2.2 shows that this is correct “upto a sign”, i.e., there
always exists a sign σ = (σ1, . . . , σt) ∈ {±1}t such that φ (σ1x1, . . . , σtxt) ≥ NAEt (x1, . . . , xt).
Define the predicate φ∗ by φ∗ (x1, . . . , xt) ≡ φ (σ1x1, . . . , σtxt). Observe that when construct-
ing a φ-based dictatorship test, we have the liberality of negating any of the variables before
applying φ. In particular, we are free to apply φ∗ instead of φ. For this reason, we only
need to deal with dictatorship tests based on predicates that are contained in NAE.

Since we assume ∀x ∈ {±1}t : φ (x) ≥ NAEt (x), we get

Rej = E
i1<...<it∈[r]
w1,...,wn∼D

∏
ℓ∈[k]

1

2

(
φ
(
f i1
ℓ (x1) , . . . , f

it
ℓ (xt)

)
+ 1
)

≥ E
i1<...<it∈[r]
w1,...,wn∼D

 1

2k

∏
ℓ∈[k]

(
NAEt

(
f i1
ℓ (x1) , . . . , f

it
ℓ (xt)

)
+ 1
) .
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A calculation shows that the Fourier expansion of the NAE predicate is

∀x ∈ {±1}t : NAEt (x) =
1

2t−2

 ∑
S⊆[t]

|S| even

χS (x)

− 1.

Therefore,

Rej ≥ E
i1<...<it∈[r]
w1,...,wn∼D

 1

2k(t−1)

∏
ℓ∈[k]

 ∑
S⊆[t]

|S| even

χS

(
f i1
ℓ (x1) , . . . , f

it
ℓ (xt)

)
 . (10)

We identify a subset A ⊆ [m], m ∈ N , with a vector B ∈ {0, 1}m in the natural way:
For every i ∈ [m] it holds that Bi = 1 iff i ∈ A. Let A1, . . . , At ⊆ [m] be t sets, and let
B1, . . . , Bt ∈ {0, 1}m be the associated vectors. We denote by A1 ⊕ . . . ⊕ At ⊆ [m] the set
associated with the vector B1 + . . .+Bt, where the addition is vector addition modulo 2. In
other words, A1⊕ . . .⊕At contains the elements in [m] that appear in an odd number of the
sets A1, . . . , At.

Consider the term on the right hand side of Equation 10. Each of the monomial in the
expectation is a product of k terms of the form χSℓ

(
f i1
ℓ (x1) , . . . , f

it
ℓ (xt)

)
, where ℓ ∈ [k], and

Sℓ ⊆ [t] is of even size. Therefore, each monomial can be specified by k sets S1, . . . Sk ⊆ [t].
Consider the set of t×k matrices K with entries in {0, 1} that satisfy the following property:
The rows of K sum up to 0k (vector addition modulo 2), i.e., K1 + . . .+Kt = 0k. We claim
that there is a one-to-one mapping between this set of matrices and the set of monomials:

• Given a matrix K, view its k columns as k sets S1, . . . Sk. Since the rows sum up to 0k,
each of the columns sums up to 0, and thus each of the sets Sℓ is of even size.

• Given k sets S1, . . . Sk of even size, construct the matrixK whose columns are S1, . . . Sk.
Since each column contains an even number of 1’s, each column sums up to 0, and thus
the rows sum up to 0k.

Conclude that

Rej ≥ E
i1<...<it∈[r]

 1

2k(t−1)

∑
K1,...,Kt⊆[k]
K1⊕...⊕Kt=ϕ

E
w1,...,wn∼D

[
f i1
K1

(x1) · . . . · f it
Kt

(xt)
] . (11)
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Applying the invariance principle. We next apply the invariance principle (Theo-
rem 6.5) and pass from the distribution D to the uniform distribution U ′ on

(
{±1}2

)t
.

We first claim that the probability spaces
((

{±1}2
)t
,D
)

and
((

{±1}2
)t
,U ′
)

satisfy the
conditions of Theorem 6.5:

• Claim 6.1 shows that D is balanced, thus D and U ′ have the same marginal distribution
on each coordinate.

• Clearly, U ′ satisfies the requirements of Theorem 6.5. Claims 6.2 and 6.1, and Lemma
6.3 show that D also satisfies the requirements of Theorem 6.5.

Let d ∈ N and τ > 0 be the constants promised by Theorem 6.5 for the probability
spaces

((
{±1}2

)t
,D
)

and
((

{±1}2
)t
,U ′
)

and the constant δ = 1
210kt

. We assume that
for at least 1 − α fraction of the t-elements sets I ⊆ [r] are (d, τ,F)-cross regular. We
claim that for such sets I we can use the invariance principle to move from the term

Ew1,...,wn∼D
[
f i1
K1

(x1) · . . . · f it
Kt

(xt)
]

to the term Ew1,...,wn∼U ′
[
f i1
K1

(x1) · . . . · f it
Kt

(xt)
]

with lit-
tle loss. The reason is that for every t subsets K1, . . . , Kt ⊆ [k], and any two functions
f ̸= g ∈

{
f i1
K1
, . . . , f it

Kt

}
, it holds that XInfd {f, g} ≤ τ .

Since the term in the outer expectation of Equation 11 is bounded in [0, 1] (it is a rejection
probability), after applying the invariance principle we get

Rej ≥ E
i1<...<it∈[r]

 1

2k(t−1)

∑
K1,...,Kt⊆[k]
K1⊕...⊕Kt=ϕ

(
E

w1,...,wn∼U ′

[
f i1
K1

(x1) · . . . · f it
Kt

(xt)
]
− δ

)− α.

Denote by U is the uniform distribution on {±1}2n, and get

Rej ≥ E
i1<...<it∈[r]

 1

2k(t−1)

∑
K1,...,Kt⊆[k]
K1⊕...⊕Kt=ϕ

E
x1,...,xt∼U

[
f i1
K1

(x1) · . . . · f it
Kt

(xt)
]− (δ + α) .

Now assume that the t indices i1, . . . , it ∈R [r] were selected independently (with repeti-
tions). Then, for a large enough constant r (a function of k and t), the probability that an
index was selected twice (∃s ̸= s′ ∈ [t] : is = is′), is at most β = 1

210kt
. Denote γ = δ+α+β,

and get

Rej ≥ E
i1,...,it∈[r]
x1,...,xt∼U

 1

2k(t−1)

∑
K1,...,Kt⊆[k]
K1⊕...⊕Kt=ϕ

f i1
K1

(x1) · . . . · f it
Kt

(xt)

− γ
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Increasing t to power of 2 and moving to expected functions. Let t′ = 2s
′ (s′ ∈ N)

be the smallest power of 2 that is larger or equals to t. Observe that for every x ∈ {±1}t

and x′ ∈ {±1}t
′
that agree on the first t bits, it holds that NAEt (x) ≥ NAEt′ (x

′). Observe
that the term in the last expectation is the expansion of the term

1

2k

∏
ℓ∈[k]

(
NAEt

(
f i1
ℓ (x1) , . . . , f

it
ℓ (xt)

)
+ 1
)

describing the reject probability of a set of k proofs by the NAEt predicate. By replacing t
by t′, the term only decreases. Hence,

Rej ≥ E
i1,...,it′∈[r]
x1,...,xt′∼U

 1

2k(t′−1)

∑
K1,...,Kt′⊆[k]
K1⊕...⊕Kt′=ϕ

f i1
K1

(x1) · . . . · f
it′
Kt′

(xt′)

− γ.

For K ⊆ [k], define the expected function fK : {±1}2n → [−1, 1] by

fK (x) = E
i∈[r]

[
f i
K (x)

]
.

Since the indices i1, . . . , it′ ∈ [r] are selected independently, it holds that

Rej ≥ E
x1,...,xt′∼U

 1

2k(t′−1)

∑
K1,...,Kt′⊆[k]
K1⊕...⊕Kt′=ϕ

E
i1∈[r]

[
f i1
K1

(x1)
]
· . . . · E

it′∈[r]

[
f
it′
Kt′

(xt′)
]− γ

=
1

2k(t′−1) E
x1,...,xt′∼U

 ∑
K1,...,Kt′⊆[k]
K1⊕...⊕Kt′=ϕ

fK1 (x1) · . . . · fKt′ (xt′)

− γ.

Applying an extension of the pairing technique of [7]. To analyze the last term, we
use a generalization of the “pairing” technique of [7]. For K ⊆ [k] and i ≤ i′ ∈ [t′] define the
sum function GK

i,i′ :
(
{±1}2n

)i′−i+1 → [−1, 1] by

GK
i,i′ (xi, . . . , xi′) =

∑
Ki,...,Ki′⊆[k]
Ki⊕...⊕Ki′=K

fKi
(xi) · . . . · fKi′ (xi′) .
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For s ∈ {0, . . . , s′} (that is, 2s ≤ 2s
′
= t′), denote

Terms = E
x1,...,x2s∼U

[
Gϕ

1,2s (x1, . . . , x2s)
]
.

Using this new notation, our goal is to bound

Rej ≥ 1

2k(t′−1)
· Terms′ − γ. (12)

Let us bound Terms for s ≥ 1:

Terms =

E
x1,...,x2s∼U

[
Gϕ

1,2s (x1, . . . , xss)
]
=

E
x1,...,x2s∼U

∑
K⊆[k]

GK
1,2s−1 (x1, . . . , x2s−1)GK

2s−1+1,2s (x2s−1+1, . . . , x2s)

 =

∑
K⊆[k]

E
x1,...,x2s−1∼U

[
GK

1,2s−1 (x1, . . . , x2s−1)
]
· E
x2s−1+1,...,x2s∼U

[
GK

2s−1+1,2s (x2s−1+1, . . . , x2s)
]
.

Observe that GK
1,2s−1 and GK

2s−1+1,2s are the same function on 2s−1 input strings, and that
x1, . . . , x2s−1 are distributed the same as x2s−1+1, . . . , x2s (specifically, both are uniformly
distributed). Therefore,

Terms =
∑
K⊆[k]

(
E

x1,...,x2s−1∼U

[
GK

1,2s−1 (x1, . . . , x2s−1)
])2

≥
(

E
x1,...,x2s−1∼U

[
Gϕ

1,2s−1 (x1, . . . , x2s−1)
])2

= Term2
s−1.

By using the last equation recursively, we get

Terms′ ≥ Term2
s′−1 ≥ · · · ≥ Term2s

′

0 =

(
E

x1∼U

[
Gϕ

1,1 (x1)
])t′

=

(
E

x1∼U
[fϕ (x1)]

)t′

= 1.

Using Equation 12 (recall that we use δ, α, β = 1
210kt

and γ = δ + α+ β), we get

Rej ≥ 1

2k(t′−1)
· 1− γ ≥ 1

22kt
− 3 · 1

210kt
≥ 1

210kt
.

�

56



7 Characterization of Covering-Hard Predicates

In this section we prove covering unique games hardness for a large subset of the predicates
φ /∈ O. Formally, we prove Theorem 4 under Conjecture 3. For convenience we restate the
conjecture and theorem:

Conjecture (Covering Unique Games). There exists c ∈ N such that for every suffi-
ciently small δ > 0 there exists R ∈ N such that the following holds. Given a bipartite label
cover instance LC with permutation constraints over label set [R] and vertex set U × V , it is
NP-hard to decide between:

• Yes case: There exist c assignments such that for every vertex u ∈ U , at least one of
the assignments satisfies all the edges touching u.

• No case: OPT (LC) ≤ δ.

Theorem. Let φ ̸∈ O, and assume that there exists a balanced, pairwise independent dis-
tribution on the support of φ. Let c be the completeness constant from the covering unique
games conjecture. Then gap-cover-φ2c,k is covering unique games-hard for every k ∈ N.

7.1 Discussion of our Covering Unique Games Conjecture

We would like to follow the lines of [2] and get a conditional hardness result using our dic-
tatorship test. It appears impossible to derive a hardness-of-covering result by combining a
dictatorship test with the unique games conjecture because of its inherent imperfect com-
pleteness. Additionally, the 2-to-1 conjecture, that does have perfect completeness, does not
seem to be nicely suited for transferring a dictatorship test to hardness in a generic way.
Thus, we devise our own (covering) variant of the unique games conjecture.

A natural attempt at formulating the covering conjecture would be to require in the yes
case the existence of c assignments that together cover all the edges of the given label cover
instance, where c is some absolute constant. Unfortunately, we were only able to derive a
hardness result using a stronger version of the conjecture. Specifically, in the yes case we
require the existence of c assignments such that for every vertex u ∈ U , at least one of
the assignments satisfies all the edges touching u. We mention that Khot and Regev [12]
show that a similar conjecture in the max-CSP setting is equivalent to the unique games
conjecture:

Conjecture 7.1 (Unique Games [12]). For every sufficiently small δ > 0 there exists R ∈
N such that the following holds. Given a bipartite label cover instance LC with permutation
constraints over label set [R] and vertex set U × V , it is NP-hard to decide between:
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• Yes case: There exists an assignment that for 1 − δ fraction of the vertices u ∈ U ,
satisfies all the edges touching u.

• No case: OPT (LC) ≤ δ.

Our conjecture is clearly false with c = 1, but as far as we know may be true with even
c = 2. The conjecture is incomparable to the unique games conjecture (our completeness
does not require any single assignment to satisfy a large fraction of edges). However it clearly
implies the unique games conjecture with completeness 1

c
(instead of 1− ϵ).

7.2 PCP Verifier (Proof of Theorem 4)

As usual, we prove Theorem 4 by reduction from the covering unique games conjecture
(Conjecture 3). Specifically, we assume to be given a bipartite label cover instance LC ′ with
permutation constraints, and construct a PCP verifier that checks proofs for LC ′ by only
performing φ-tests.

Let LC ′ = (U, V,E,R,R,Π′), Π′ =
{
π′
v,u : [R] → [R]

}
(u,v)∈E, be the given instance,

and let LC = (U, V,E, 2R, 2R,Π), Π = {πv,u : [2R] → [2R]}(u,v)∈E, be the unique games
duplicated-LC′ instance (see Section 2.2.3). A proof P for LC ′ consists of a collection of
truth tables of boolean functions, one for each vertex v ∈ V . Formally, P = (fv)v∈V where
fv : {±1}2R → {±1}. The function fv is, supposedly, the long code encoding of the label
assigned to v by a satisfying assignment for LC.

Our verifier’s algorithm for checking the proof P is found in Figure 4. The algorithm uses
the following definition. For a function f : {±1}2R → {±1} and a permutation π : [2R] →
[2R] we define the function fπ : {±1}2R → {±1} by

fπ (x) = f
(
xπ(1), . . . , xπ(2R)

)
.

Algorithm 4 VerPϵ

• Randomly select a vertex u ∈R U .

• Run DICTF
ϵ for F = {f vπv,u}v∈Γ(u),

where f v is the function in P associated with vertex v.

As before, we define Rej
(
VerPϵ

)
to be the indicator random variable for the rejection of

the set of proofs P = {P1, ..., Pk} by Verϵ. Theorem 4 is an easy corollary of the following
lemma:
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Lemma 7.2. Let c ∈ N be the constant promised by the covering unique games conjecture
(Conjecture 3). Let φ : {±1}t → {±1} be a predicate satisfying φ /∈ O. Assume that there
exists a balanced, pairwise independent distribution η on the support of φ. Then, Ver satisfies
the following properties:

• Completeness: Assume that there exist c assignments such that for every vertex
u ∈ U , at least one of the assignments satisfies all the edges touching u. Then, there
exists a set P of at most 2c proofs such that

Pr
[
Rej

(
VerPϵ

)]
= 0.

In particular, if c assignments cover all the edges of LC ′ (in the above sense), then
there are 2c proofs that together cover all the tests performed by Verϵ.

• Soundness: For a sufficiently small ϵ > 0 and k ∈ N, there exists a constant ξ > 0

that only depends on ϵ, t and k, such that the following holds: Assume that there exists
a set P of at most k proofs such that

Pr
[
Rej

(
VerPϵ

)]
<

1

2 · 210kt
.

Then, OPT (LC′) > ξ.
In particular, if OPT (LC′) ≤ ξ, then there is no constant number of proofs that together
cover all the tests performed by Verϵ.

Proof of Lemma 7.2 (Completeness) Let L1, . . . , Lc : U ∪ V → [R] be the c promised
assignments for LC ′. Specifically, for every u ∈ U there exists an assignment Lℓ, ℓ ∈ [c], that
satisfies all the edges touching u.

For each ℓ ∈ [c], we construct the two proofs Pℓ = {f v
ℓ }v∈V and Qℓ = {gvℓ }v∈V for Ver

using the assignments Lℓ and Lℓ+R (respectively). That is, f v
ℓ , g

v
ℓ : {±1}2R → {±1} satisfy

f v
ℓ = χLℓ(v) and gvℓ = χLℓ(v)+R. We denote P = {Pℓ, Qℓ}ℓ∈[c]. We next show that VerP always

accepts.
Fix a vertex u ∈ U , and assume that u was selected during the execution of Ver. Let Lℓ,

ℓ ∈ [c], be an assignment that satisfies all the edges touching u. When running Ver{Pℓ,Qℓ},
the verifier runs DICT{Fℓ,u,Gℓ,u} for the sets Fℓ,u = {f v

ℓ πv,u}v∈Γ(u) and Gℓ,u = {gvℓπv,u}v∈Γ(u).
For every v ∈ Γ (u) it holds that

f v
ℓ πv,u = χLℓ(v)πv,u = χπv,u(Lℓ(v)) = χLℓ(u),
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and
gvℓπv,u = χLℓ(v)+Rπv,u = χπv,u(Lℓ(v)+R) = χLℓ(u)+R.

Using the completeness property of Lemma 5.6, DICT{Fℓ,u,Gℓ,u} always accepts. This implies
that Ver{Pℓ,Qℓ} accepts whenever u is chosen. Therefore, VerP = Ver{Pℓ,Qℓ}ℓ∈[c] always accepts,
and the assertion follows. �

Proof of Lemma 7.2 (Soundness) Let k ∈ N and let P be a set k proofs P = {P1, . . . , Pk},
Pℓ = {f v

ℓ }v∈V , f v
ℓ : {±1}2R → {±1}, for which Pr

[
Rej

(
VerP

)]
< 1

2·210kt . We wish to show
that OPT (LC ′) > ξ, for some constant ξ that only depends on ϵ, t and k.

For simplicity of exposition we assume that LC ′ (and therefore also LC) is U -regular, that
is ∀u, u′ ∈ U : |Γ (u)| = |Γ (u′)| = r and that r is sufficiently large (as required by soundness
property of Lemma 5.6).

Fix a vertex u ∈ U , and let v1, . . . , vr ∈ Γ (u) be its r neighbors. For i ∈ [r] and ℓ ∈ [k],
denote gviℓ = f vi

ℓ πvi,u. Let F u
ℓ = {gv1ℓ , . . . , g

vr
ℓ } and Fu = {F u

1 , . . . , F
u
k }. It holds that

Pr
[
Rej

(
VerP

)]
= E

u∈U

[
Pr
[
Rej

(
DICTFu)]]

.

Since Pr
[
Rej

(
VerP

)]
< 1

2·210kt there exists a subset U ′ ⊆ U , |U ′| ≥ 1
2
|U |, such that

for every u ∈ U ′ it holds that Pr
[
Rej

(
DICTFu)] ≤ 1

210kt
. We call the vertices in U ′ good

vertices.
Fix a good vertex u ∈ U ′. Using the soundness property of Lemma 5.6, for some d ∈ N

and τ > 0 (functions of ϵ, t and k), it holds that at least α = 1
210kt

fraction of the t-elements
sets I ⊆ [r] are not (d, τ,Fu)-cross regular. Meaning that there exists a pair (i, i′) ∈ I2,
i ̸= i′, that is not (d, τ,Fu)-cross regular. We say that such a pair is cross influential for I
with respect to Fu. We call a pair cross influential with respect to Fu, if it cross influential
with respect to Fu for at least one set I.

Denote by XInfPairsu ⊆ [r]2 the set of cross influential pairs with respect to Fu.
Formally,

XInfPairsu =
{
(i, i′) ∈ [r]2 |∃K,K ′ ⊆ [k] : XInfd

(
gviK , g

vi′
K′

)
≥ τ

}
.

We claim that the set XInfPairsu contains at least α
t2

fractions of the pairs in [r]2. The
following is a way of choosing a random pair (i, i′) ∈ [r]2: First select a t-elements set I ⊆ [r],
then select a random pair (i, i′) ∈ I2. The selected set I has a cross influential pair with
probability is at least α. Each of the pairs in I is selected with probability 1

t2
. Thus, the

selected pair is cross influential with probability at least α
t2

.
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Obtaining a good labeling. We next construct a good labeling for the duplicated label
cover instance LC. Since every assignment for LC naturally induces an assignment for LC ′

with at least the same value, the claim of the lemma follows.
Consider the following labeling L for LC: The set of candidate assignments for vertex

v ∈ V is given by

C (v) =
{
j ∈ [2R] | ∃K ⊆ [k] : Inf≤d

j (f v
K) ≥ τ

}
.

Note that, using Claim 2.4, |C (v)| ≤ d
τ
· 2k. Define a labeling L by picking, for each v ∈ V

a label L (v) uniformly at random from C (v) (or an arbitrary label if C (v) is empty). For
u ∈ U , randomly select v′ ∈R Γ (u) and set L (u) to πv′,u (L (v′)).

Let (u, v) be an edge of LC, where u ∈ U ′ is good. The probability that the edge (u, v)

is satisfied by L is

Pr [L (u) = πv,u (L (v))] = Pr [πv′,u (L (v′)) = πv,u (L (v))] .

Recall that with probability at least α
t2

it holds that (v, v′) is a cross influential pair with
respect to Fu, i.e., v = vi, v′ = vi′ , and (i, i′) ∈ XInfPairsu. Therefore, with probability
at least α

t2
, it holds that πv′,u (C (v′)) ∩ πv,u (C (v)) ̸= ϕ. Conclude that the edge (u, v) is

satisfied with probability at least α
t2
· 1
|C(v)||C(v′)| ≥

α
t2

(
τ

d·2k
)2.

Since we assume that LC is U -regular, and since |U ′| ≥ 1
2
|U |, it holds that 1

2
of the edges

(u, v) have u ∈ U ′. Therefore, a random edge of LC is satisfied by L with probability at least
1
2
· α
t2
·
(

τ
d·2k
)2 ≥ τ2

d2·220kt = ξ. �

8 Hardness of Approximate Coloring and Covering Ran-

dom CSP Instances

An outstanding open question is to approximate the number of colors required to color a
given O (1)-colorable graph or hypergraph. While it is known to be hard to color a O (1)-
colorable hypergraph with a polylogarithmic number of colors, the best known algorithm
requires a polynomial number of colors. Thus, there is an exponential gap between the best
lower and upper bounds. In the covering language this is almost1 equivalent to the question
of approximating the covering number of an O (1)-coverable NAE instance. We next study
this question in relation to the hardness of random CSP instances.

1It is not exactly equivalent since the NAE formulation allows negations of variables whereas the coloring
formulation does not.
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In a seminal paper, Feige [5] studies the relation between hardness of random instances
of 3SAT and the hardness of approximation problems, including some notorious problems
for which neither algorithms nor hardness are known. In that paper he states a hypothesis
about no polynomial time algorithm being able to distinguish between a random 3SAT and
a satisfiable one. More accurately,

Hypothesis 8.1 (Feige’s Hypothesis 1 [5]). There is no polynomial time algorithm that
outputs typical for most 3CNF-CSP instances with n variables and m = ∆ · n clauses, and
never outputs typical on a satisfiable instance; even when ∆ is an arbitrarily large constant
independent of n.

We formulate an analogous hypothesis about the hardness of distinguishing between
random and 2-coverable 4LIN-CSP instances (Hypothesis 8.2, which is a restatement of Hy-
pothesis 5), and a weaker hypothesis about φ-CSP instances for some predicate φ (Hypothe-
sis 8.3). We prove that both of these hypotheses imply the hardness of approximate coloring
of hypergraphs. We show a direct connection between the density ∆ in the hypothesis and
the inapproximability factor in the result. When our 4LIN hypothesis is pushed to extreme,
it implies hardness of approximate coloring to within polynomial factors.

Hypothesis 8.2 (Covering 4LIN Hypothesis, with density parameter ∆). There is
no polynomial time algorithm that outputs typical for most 4LIN-CSP instances with n

variables and m = ∆ · n clauses, and never outputs typical for a 2-coverable instance.

The following hypothesis is about a general predicate and is weaker than the former
hypothesis since it is implied by it.

Hypothesis 8.3 (Covering φ Hypothesis, with density parameter ∆). There are some
universal constants t, c ∈ N and a predicate φ : {±1}t → {±1} such that no polynomial time
algorithm outputs typical for most φ-CSP instances with n variables and m = ∆·n clauses,
and never outputs typical for a c-coverable φ-CSP instance.

Our main theorem of this section is Theorem 8.4 (generalized restatement of Theorem 6):

Theorem 8.4. If Hypothesis 8.3 holds with parameters c, t and density ∆ such that c≪ log∆

then it is hard to distinguish if a given t-uniform hypergraph is 2c-colorable or ∆Ω(1) colorable.
In particular, Hypothesis 8.2 with density parameter ∆ = nδ for some positive δ > 0

implies that it is hard to decide if a 4-uniform hypergraph is 4-colorable or requires at least
a polynomial number of colors.

We first show that the covering number of a random φ-CSP is proportional to its log-
density, as long as φ /∈ O. (Recall that for any φ ∈ O, the covering number of any φ-CSP
is at most 2).
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Claim 8.5. Let φ /∈ O and let C be a random instance of φ-CSP, with n variables and
m = ∆ · n constraints. Then ν (C) ≥ Ω (log∆), except with probability exponentially small
in n.

Proof Let us first assume that φ is the NAE predicate on t variables and that all occurrences
of φ are unsigned, i.e., without negations of variables. Fix an CSP instance C, and let
L1, . . . , Lk ∈ {±1}n be any set of k ∈ N assignments for C. It is not hard to see that there
must be a subset S ⊆ [n], such that each assignment Lℓ, ℓ ∈ [k], is constant on S (either all
1s or all −1s), and such that |S| ≥ n · 2−k. The reason is that each of the assignments Lℓ

partitions the n variables into two sets: Variables that are assigned the value 1, and variable
that are assigned the value −1.

If the given instance C has a constraint fully contained in S then L1, . . . , Lk do not cover
it. The probability that a randomly chosen constraint is contained in a set of size n · 2−k is
2−kt where t is the arity of the constraint. The probability that out of m constraints of C
none landed inside S is (

1− 2−kt
)m ≈ exp

(
−m
2kt

)
,

and if we multiply this by the number 2kn of possibilities to choose k assignments and using
a union bound we get

Pr
I
[ν (I) ≤ k] ≤ exp

(
−m
2kt

)
· 2kn = exp

(
−n ·

(
∆

2kt
− k

))
.

Clearly if ∆ > 22kt then ∆
2kt

− k > 1 which causes the above probability to be exponentially
small. In our case t is fixed, and so this proves that ν (C) ≥ Ω (log∆) with high probability.

It remains to justify the assumption that φ is the NAE predicate. This simply follows
from the fact that for every φ /∈ O there is some signed-NAE predicate that contains it,
see Claim 2.2. The unsigned assumption means that we’ve proven that even covering the
unsigned part of the instance is already hard, assuming that there are many unsigned con-
straints. But this is indeed the case as the number of unsigned constraints is expected to be
m · 2−t. �

The proof of Theorem 8.4 now follows.

Proof of Theorem 8.4 Assume Hypothesis 8.3 with density parameter ∆, and let c, t ∈ N
and φ : {±1}t → {±1} be such that no algorithm can decide if a given φ-CSP instance C is
random or whether ν (C) ≤ c. We can assume that φ /∈ O otherwise the hypothesis is clearly
false since ν (C) ≤ 2 for all φ-CSP instances C.
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We reduce the problem of deciding if a given φ-CSP instance is random or has covering
number at most c, to the problem of deciding if a given hypergraph has chromatic number
at least ∆Ω(1) or at most 2c.

Let C be a given φ-CSP instance. By Claim 2.2 there is some sign σ = (σ1, . . . , σt) ∈
{±1}t such that the support of φ (σ1x1, . . . , σtxt) is contained in the support of NAE (x1, . . . , xt).
Let C ′ ⊆ C be the sub-instance of C consisting only of the clauses that occur with the sign σ.
In other words, recall that each clause is obtained by applying φ to t literals. We denote
by C ′ the subset of C containing clauses of the form φ (σ1xi1 , . . . , σixit), where i1, . . . , it ∈ [n].
If C is a random φ-CSP instance, C ′ is expected to have density 2−t in C.

We construct a t-uniform hypergraph H over the vertex set [n] by turning each variable
into a vertex and each constraint in C ′ into a hyperedge. We prove that if ν (C) = c then H
is 2c-colorable, and if C is random, then when viewing H as a NAE-CSP instance it holds
that ν (H) ≥ Ω (log∆) with high probability.

Suppose ν (C) ≤ c, and let L1, . . . , Lc : [n] → {±1} be c covering assignments. We can
color the vertices of this hypergraph by 2c colors by assigning each vertex v ∈ [n] the color
(L1 (v) , . . . , Lc (v)) ∈ {±1}c. No hyperedge {v1, . . . , vt} ∈ H is monochromatic since that
would mean that

∀i ∈ [c] , Li (v1) = · · · = Li (vt) .

But this means that all c assignments violate the NAE constraint on {v1, . . . , vt}, and there-
fore also violate the φ constraint (with sign σ) on {v1, . . . , vt}.

If, on the other hand, C is a random instance, then H is just a random hypergraph, and
by Claim 8.5 its covering number is at least Ω (log∆). �

8.1 Discussion of our Hypotheses

Our hypothesis 8.3 differs from Feige’s on two counts. First, the choice of predicate in our
hypothesis is not a 3CNF. Our hypothesis would clearly be false for 3CNF simply because it is
in O and easily coverable by two assignments. It seems to us that there is nothing particularly
special about 3CNF and that Feige’s hypothesis, if true, should be true with many other
predicates, including ones that are not in O. Unfortunately, there are virtually2 no direct
reductions between random instances of one predicate to another. If Feige’s hypothesis were
to hold for any predicate φ /∈ O it would immediately imply our hypothesis for the same ∆,
and with c = 1.

Whether or not these hypotheses are true for higher values of ∆ is less clear. Feige only
relies on arbitrarily large constants ∆, and does hypothesize about larger-density formulas.

2Excluding ’trivial’ cases in which one predicate is contained in another predicate.
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The current state-of-the-art algorithms are able to refute random 3CNF formulas only if the
density is at least ∆ ≥ n0.5 [6], so even the strongest form of our Hypothesis 8.2 is consistent
with the current knowledge.

Finally, we note that our NP-hardness result for approximating the cover number of
4LIN (Theorem 1) can be taken as some evidence supporting our hypotheses. First, if our
hypothesis were true then one would expect such an NP-hardness result to hold. Second,
this shows at the very least that if P ̸= NP we don’t expect any of the known algorithmic
techniques (essentially, SDPs) to refute the hypotheses.
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