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Abstract

The Sensitivity Conjecture, posed in 1994, states that the fundamental measures known
as the sensitivity and block sensitivity of a Boolean function f , s(f) and bs(f) respec-
tively, are polynomially related. It is known that bs(f) is polynomially related to important
measures in computer science including the decision-tree depth, polynomial degree, and
parallel RAM computation time of f , but little is known how the sensitivity compares; the
separation between s(f) and bs(f) is at least quadratic and at most exponential. We ana-
lyze a promising variant by Aaronson that implies the Sensitivity Conjecture, stating that
for all two-colorings of the d-dimensional lattice Zd, d and the sensitivity s(C) are poly-
nomially related, where s(C) is the maximum number of differently-colored neighbors of
a point. We construct a coloring with the largest known separation between d and s(C), in
which d = O(s(C)2), and demonstrate that it is optimal for a large class of colorings. We
also give a reverse reduction from the Lattice Variant to the Sensitivity Conjecture, and
using this prove the first non-constant lower bound on s(C). These results indicate that
the Lattice Variant can help further the limited progress on the Sensitivity Conjecture.

1 Introduction
We consider the following problem of two-coloring the d-dimensional lattice Zd. The sen-
sitivity of a point in a two-coloring of Zd is the number of differently-colored neighbors of
that point, and the sensitivity of the coloring is the maximum sensitivity of all points on the
lattice. We say that a coloring is non-trivial if the origin is colored red and there is at least
one blue point on each axis. The conjecture is that for any non-trivial coloring, the number
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of dimensions is always at most some polynomial of the sensitivity. While this problem is of
mathematical interest in itself, Aaronson showed that it implies the Sensitivity Conjecture.

The Sensitivity Conjecture was first posed in 1994 by Nisan and Szegedy. The sensitivity of
a Boolean function is the number of bits in the input that, when flipped individually, change the
output of the function. The block sensitivity is analogous, except that it is the largest number
of disjoint subsets of bits such that flipping all the bits in a subset changes the output. The
Sensitivity Conjecture states that the sensitivity and block sensitivity of a Boolean function are
polynomially related–each is at most a polynomial function of the other. In other words, the
conjecture is that the separation between sensitivity and block sensitivity cannot be too large.
Nisan and Szegedy further conjectured that block sensitivity is at most a quadratic function of
sensitivity, and the largest separation known to date is quadratic. The best known upper bound
on the separation, however, is exponential.

The block sensitivity of a function f is known to be polynomially related to other impor-
tant measures in computer science, such as the decision-tree complexity, certificate complexity,
polynomial degree, and quantum oracle complexity of f . Nisan [6] originally introduced block
sensitivity to find the time needed to compute a boolean function on a parallel random access
machine (PRAM), and used block sensitivity to show that the PRAM complexity is polynomi-
ally related to the decision tree complexity. The Sensitivity Conjecture, if true, would imply
that the natural notion of sensitivity is related to this plethora of other measures, and would
make it easier to show that new measures are polynomially related to block sensitivity.

In Section 2, we set up Aaronson’s Lattice Variant as well as the Sensitivity Conjecture, and
summarize previous progress. In Section 3, we construct a non-trivial coloring with a quadratic
separation between the sensitivity and the number of dimensions, the largest known. In Section
4, we extend Aaronson’s reduction of the Sensitivity Conjecture to the Lattice Variant by
providing a reduction in the other direction, mapping every coloring to a Boolean function. In
Section 5, we use the reverse reduction to establish the first non-constant lower bound on the
sensitivity of non-trivial colorings in terms of the min-width of the coloring. Finally in Section
6, we show that our coloring from Section 3 achieves the optimal separation for the class of
repeated colorings, and describe a result by Palvolgyi that the coloring is optimal for all sliced
colorings.

2 Preliminaries and Previous Work

2.1 The Lattice Variant
Consider a two-coloring of the d-dimensional lattice Zd, which is the set of all points x in d
dimensions such that x has all integer coordinates. Every point on the lattice is colored either
red or blue.
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Definition. A two-coloring C of a d-dimensional lattice satisfies the non-triviality condition
if the origin is colored red and there exists at least one blue point on each of the d axes. We
call such a coloring a non-trivial coloring.

For ease of notation, a non-trivial coloring is assumed to be in d dimensions.
Let a neighbor of a point x in a coloring be a point x′ also on the lattice such that |x′−x| =

1. In other words, the neighbors of x are the points which are 1 away from x in a direction
along an axis.

Definition. The sensitivity of a point x in a coloring C, denoted s(C, x), is the number of
neighbors of x which are colored differently from x. The sensitivity of a coloring C, denoted
s(C), is the maximum of s(C, x) over all x.

Remark. The non-triviality condition guarantees that for colorings C with s(C) < d, there are
an infinite number of red and blue points. This is because for any red point with sensitivity
less than d, there must be another red point in one of the positive x1, . . . , xd directions, so one
can move arbitrarily far away from the origin. The same holds for blue points.

Conjecture 1. (Aaronson [1]) There exist constants c and k such that for all non-trivial col-
orings C,

d ≤ c · s(C)k.

We now present a slightly modified version of the sensitivity of a coloring, which we show
is almost equivalent to the original definition.

Definition. The axis-sensitivity of a point x in a coloring C, denoted r(C, x), is the number
of axes from x along which there lies a differently-colored neighbor. (Note that if there is a
differently-colored neighbor both north and south of a point, it counts as one towards r(C, x)
and as two towards s(C, x).) We let r(C) be the maximum over all points x of r(C, x).

It is clear that for all colorings C, s(C) ≤ r(C) ≤ 2s(C), since there are between one and
two differently-colored neighbors on each axis counting towards r(C).

Furthermore, we show that any non-trivial coloring with r(C) = n can be transformed into
a non-trivial coloring C ′ with s(C ′) = n. Consider the coloring C ′ constructed by replacing
each point in the coloring C with a hypercube of 2d points all having the same color. So
every point (x1, . . . , xn) is replaced with the points of the form (y1, . . . , yn), where for all i,
2xi − 1 ≤ yi ≤ 2xi. In this case for all points x, r(C ′, x) = s(C ′, x), since there is at most
one neighbor along each axis from x. Also r(C ′, x) = r(C, x), so s(C ′, x) = r(C, x) and
s(C ′) = r(C).

This transformation conveniently allows us to use r(C) instead of s(C).

Furthermore, the sensitivity of a coloring can be broken up into the red sensitivity and the
blue sensitivity.
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Definition. Let the red sensitivity of a coloring C, denoted sR(C) or sR, be the maximum
axis-sensitivity of all red points in C. Let the blue sensitivity, sB, similarly be the maximum
axis-sensitivity of all blue points.

Figure 1: A 3-dimensional coloring with r(C) = 2. Origin is in the lower-left-back corner,
and figure is tessellated throughout space.

It can be shown easily that 2 is the smallest value for the sensitivity of 3-dimensional
colorings, and sensitivity 2 is achieved in Figure 1.

2.2 The Sensitivity Conjecture
An input x is always assumed to be a string of length n with bits x1, . . . , xn. For an input x, let
xi be the string with the ith bit flipped and all other bits intact. Furthermore, if B is a subset
of {1, 2, . . . , n}, we let xB denote the string x with bits i ∈ B flipped.

We also refer to the all-zeroes input of a Boolean function as ~0.

Definition. Let f : {0, 1}n → {0, 1} be a Boolean function. The sensitivity of f on x, denoted
s(f, x), is the number of i, 1 ≤ i ≤ n, such that f(x) 6= f(xi). The sensitivity of f , denoted
s(f), is the maximum over all inputs x of s(f, x).

For a subset B of {1, 2, . . . , d}, B is a sensitive block if f(xB) 6= f(x).

Definition. The block sensitivity of a Boolean function f on x, denoted bs(f, x), is the max-
imum number of disjoint sensitive blocks. The block sensitivity of f , denoted bs(f), is the
maximum over all inputs x of bs(f, x).
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Example. Consider the following function that checks if the input bits are sorted, which has
value 1 on the inputs 0000, 0001, 0011, 0111, 1000, 1100, 1110, or 1111 and 0 on the other
inputs. The sensitivity of this function is 2, which is achieved on the input 0000 among others.
The block sensitivity of this function is 3, however, which is achieved on the input (0)(1)(00)
with sensitive blocks indicated in parentheses.

The Sensitivity Conjecture is now the following:

Conjecture 2. (Nisan and Szegedy [7]) There exist constants c and k such that for all Boolean
functions f , bs(f) ≤ c · s(f)k.

Aaronson’s reduction shows that for every Boolean function f , there exists a non-trivial
coloring in bs(f) dimensions with s(C) ≤ s(f), and so the Lattice Variant implies the Sensi-
tivity Conjecture.

2.2.1 Kenyon and Kutin’s Bound

A minimal block is a sensitive block B such that no proper subset of B is sensitive. The
sensitive blocks can always be chosen to be minimal without altering the block sensitivity.
We observe that the size of a minimal block B of a function f is at most s(f). If the block
sensitivity is maximized on input x and B is a minimal block, then the input xB is sensitive on
every bit in B.

We now define l-block sensitivity, which provides an intermediate notion between sensi-
tivity and block sensitivity.

Definition. The l-block sensitivity of f on input x, denoted bsl(f, x), is the maximum num-
ber of disjoint sensitive blocks of size at most l. The l-block sensitivity of f , bsl(f), is the
maximum of bsl(f, x) over all x.

Note that for a function f on n input bits, bs1(f) = s(f) and, since all blocks can be made
minimal, bss(f)(f) = bs(f). Thus the l-block sensitivity lies between the two.

Using l-block sensitivity, Kenyon and Kutin [5] provide an exponential upper bound on
block sensitivity in terms of sensitivity.

Theorem 1. (Kenyon and Kutin [5])

bsl(f) ≤ cls(f)l,

where

cl =
(1 + 1

l−1)l−1

(l − 1)!
<

e

(l − 1)!
.

Since bs(f) = bss(f)(f), it follows that bs(f) < es(f)+1

√
s(f)
2π

by Stirling’s formula.
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2.2.2 Optimal Function Constructions

We also introduce the 0-sensitivity and 1-sensitivity of a function, which are analogous to the
red and blue sensitivity of a coloring.

Definition. The 1-sensitivity, s1(f), of a Boolean function f is maxx:f(x)=1 s(f, x). Similarly,
the 0-sensitivity, s0(f), is maxx:f(x)=0 s(f, x).

Rubinstein [8] constructed a function f on n input bits such that bs(f) = 1
2
s(f)2 in 1995.

Virza [10] slightly improved on the separation by constructing a function f with bs(f) =
1
2
s(f)2 + s(f) in 2011. Ambainis and Sun [2] recently showed that there is a function f such

that bs(f) = 2
3
s(f)2 − 1

2
s(f).

Rubinstein’s function is as follows. For a fixed n, let g(x) be a Boolean function on n
variables where n is even. We let g(x) = 1 if there exists a j, 1 ≤ j ≤ n

2
, such that x2j−1 =

x2j = 1 and xi = 0 for all i 6= 2j − 1, 2j. Define a function f on n2 variables to be the OR
function of n copies of g; in other words, f(x) = 1 iff there is a string y = xikxik+1...xi(k+1)−1
such that g(y) = 1. Then bs0(f) = 1

2
n2 and s0(f) = n, so bs(f) = 1

2
s(f)2.

Ambainis and Sun defined the following class of functions: functions f which are the OR
of some number of copies of a function g with s0(g) = 1. This class of functions includes
Rubinstein’s function, as well as their own function. They showed that their function achieves
the optimal separation of all functions up to a linear factor in this class.

Theorem 2. (Ambainis and Sun [2]) The largest possible separation between s(f) and bs(f)
in the class of functions defined above is bs(f) = 2

3
s(f)2 +O(s(f)).

3 Coloring on the Lattice
We provide a coloring which achieves the largest known separation between the sensitivity
and the number of dimensions, namely d = 2r(C)2 − r(C). Our coloring has its blue points
defined by slices. A slice is a hyperplane with one non-zero coordinate, coordinates which are
fixed to be 0, and other free coordinates.

Definition. A slice is a set of points in Zd satisfying the following property. Given some subset
X of {1, 2, . . . , d}, a y in {1, 2, . . . , d} not in X , and a constant c 6= 0, a point x is in the set
iff xy = c and for all i ∈ X , xi = 0.

Theorem 3. There exists a non-trivial coloring C with d = 2r(C)2 − r(C).
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{1,1} {1,2} {1,3} {1,4} {1,5} {2,1} {2,2} {2,3} {2,4} {2,5} {3,1} {3,2} {3,3} {3,4} {3,5}

3 0 0 * * * * * * * * * * * *
* 3 0 0 * * * * * * * * * * *
* * 3 0 0 * * * * * * * * * *
0 * * 3 0 * * * * * * * * * *
0 0 * * 3 * * * * * * * * * *
* * * * * 3 0 0 * * * * * * *
* * * * * * 3 0 0 * * * * * *
* * * * * * * 3 0 0 * * * * *
* * * * * 0 * * 3 0 * * * * *
* * * * * 0 0 * * 3 * * * * *
* * * * * * * * * * 3 0 0 * *
* * * * * * * * * * * 3 0 0 *
* * * * * * * * * * * * 3 0 0
* * * * * * * * * * 0 * * 3 0
* * * * * * * * * * 0 0 * * 3

Table 1: A table defining each of the 15 slices in the coloring for d = 15 and r(C) = 3, where
each row is a slice. Asterisks represent coordinates which can take on any value.

Proof. Extending a coloring by Palvolgyi [1], we construct the following (2n−1)n-dimensional
slices, each divided into n groups of 2n − 1 coordinates each. (n is an integer which we will
show is equal to r(C).) We define the (2n − 1)n coordinates {i, j}, where 1 ≤ i ≤ n
and 1 ≤ j ≤ 2n − 1. Let the slice S{a,b} consist of points x such that x{a,b} = 3 and
x{a,b+1}, . . . , x{a,b+n−1} = 0, where subscripts j of x{i,j} are evaluated modulo 2n − 1; the
remaining coordinates can take on any value. An illustration for the case n = 3 is shown in
Table 1.

We now define the coloring where a point x is colored blue if it is in a slice S{i,j} for some
i and j, and red otherwise. This coloring satisfies the non-triviality condition. The origin is
colored red since it is not in any slice. For any coordinate {a, b}, the slice S{a,b} contains the
point y defined by y{a,b} = 3 and y{i,j} = 0 for all (i, j) 6= (a, b). This point y is on the axis in
the {a, b} direction and is blue.

The blue sensitivity of this coloring is n since, for any blue point x in a slice S{i,j}, only
changing one of the n coordinates x{i,j}, x{i,j+1}, . . . , x{i,j+n−1} yields an adjacent red point.
Furthermore, the red sensitivity is also n. For a point x and a slice S{i,j}, if x is adjacent
to S{i,j} then 2 ≤ x{i,j} ≤ 4 and −1 ≤ x{i,j+1}, . . . , x{i,j+n−1} ≤ 1. So for a point p and an
integer a (1 ≤ a ≤ n), x can be adjacent to at most one slice of the form S{a,j} because it cannot
simultaneously satisfy two of these constraints, which are strings of n coordinates, in its 2n−1
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coordinates. Ranging over all a, it follows that a red point y can be adjacent to at most n slices.
Furthermore, a red point can be adjacent to at most one point per slice and the red sensitivity
is at most n. Therefore the coloring in fact has r(C) = n, and d = 2r(C)2 − r(C).

4 Equivalence Between Boolean and Lattice Problems
We describe Aaronson’s reduction of the Sensitivity Conjecture to the Lattice Variant, which
uses the fact that for every function f , there exists a coloring C with s(C) ≤ s(f) and d =
bs(f). We then show a reduction in the opposite direction, from a non-trivial coloring in d
dimensions to a Boolean function f , where bs(f) ≥ d and s(f) is at most s(C) times the
min-width of the lattice.

Definition. The min-width of a non-trivial coloring C is the minimum integer k such that there
is a blue point within k units of the origin for all of the d axes.

Theorem 4. (Aaronson [4]) Given a Boolean function f and blocks B1, B2, · · · , Bd, there
exists a non-trivial coloring C in d = bs(f) dimensions with s(C) ≤ s(f).

Proof. Let the sizes of B1, B2, · · · , Bd be b1, b2, . . . , bd respectively, i.e. |Bi| = bi for all i.
We will demonstrate a coloring of the infinite lattice which is periodic and repeats with every
2(b1 + 1)× 2(b2 + 1)× . . .× 2(bd + 1) hypercube.

Without loss of generality, let ~0 be an input on which the block sensitivity is maximized,
and let f(0) = 0. (If not one can replace variables ai with āi.) Now for all i, assign an order to
the input bits in Bi.

First we define the coloring for all points m = (m1, . . . ,md) where for all i, 0 ≤ mi ≤ bi.
Construct the function input x where for all i, the first mi bits in block Bi are 1, and all other
bits in Bi are 0. If f(x) = 0, then we color the point m red, and otherwise we color it blue.
Since the origin corresponds to the input~0 and f(~0) = 0, the origin is colored red. Furthermore
for all i the point (0, . . . , 0, bi, 0, . . . , 0), where bi is in the ith coordinate, corresponds to ~0Bi

(the input where bits in Bi equal 1 and all other bits are 0) and f(~0Bi) = 1, so the point is
colored blue. Thus the coloring satisfies the non-triviality condition.

We now define a general lattice point x = (x1, x2, . . . , xd) in the following way. For all i,
we compute the following quantities zi and yi from xi. Let zi = xi (mod 2(bi+1)). If zi > bi,
let yi = 2bi + 1 − zi. If zi ≤ bi, let yi = zi. Color x the same color as y = (y1, y2, . . . , yn)
(y is in the range of points whose color was previously defined). This alternately tiles the
original (b1 +1)× (b2 +1) · · ·× (bn+1) hypercube and its mirror image throughout the plane.
The sensitivity of a point x, where the corresponding yi satisfy 0 < yi < bi, is at most s(f).
This is because moving from x to one of its neighbors corresponds to flipping a unique bit of
the function f , and the color of the neighboring point is different iff the output of the adjacent
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function input flips. The sensitivity of a point x on the border of a hypercube (yi = 0 or yi = bi
for some i) is also at most s(f). The neighbors of x which are in a different hypercube are all
the same color as x by the fact that the neighboring hypercubes are mirror images. Neighbors
of x within the hypercube also correspond to flipping a bit of f and so the sensitivity of x is at
most s(f) as well. Therefore, s(C) is at most s(f).

Theorem 5. Given a non-trivial coloring C with min-width k, there exists a Boolean function
f such that bs(f) ≥ d and s(f) ≤ k · s(C).

Proof. There exists a blue point on each axis by the non-triviality property. Without loss of
generality, let there be at least one blue point on the positive i axis for all i, or else the coloring
can be reflected about the ith axis. Let bi be the smallest positive integer such that the point
(0, . . . , 0, bi, 0, . . . , 0) is blue, where bi is in the ith coordinate. We define a function f on
n = Σd

i=1bi bits as follows. Divide the bits into blocks B1, B2, . . . , Bd, where |Bi| = bi for all
i. For a function input y = (y1, y2, . . . , yn), let zi be the number of 1’s in block Bi for all i.
Letting y correspond to the lattice point (z1, z2, . . . , zd), we define f(y) = 0 if (z1, z2, . . . , zd)
is red and f(y) = 1 if it is blue. Note that f is somewhat symmetric in that the bits in any one
block can be permuted without changing the output.

Each of the blocks is sensitive on the function input ~0. This is because flipping the bits in
block Bi corresponds to the blue point (0, . . . , 0, bi, 0 . . . , 0) where bi is the ith coordinate, and
so f(yBi) = 1. Consequently, bs(f) ≥ d.

For any point x = (x1, x2, . . . , xn) let X ⊆ {1, 2, . . . , d} be the set of axes from x along
which there lies a differently-colored neighbor of x. Moving one unit along the ith axis from
x, either in the positive or negative direction, corresponds to changing one of the bits in Bi of
the corresponding function input. Since |X| is at most s(C) and |bi| is at most the min-width
k, the sensitivity of f on the corresponding input is at most∑

i∈X

bi ≤ s(C) · k.

5 Lower Bound on the Lattice
We prove a lower bound on the sensitivity of all non-trivial colorings in terms of the min-width
of the coloring and the number of dimensions.

Theorem 6. For a non-trivial coloring of min-width k and s(C) = s,

s ≥ α · d
1
k ,
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where α = 1
e2

.

Proof. The min-width k is a positive integer. If k = 1, then there is a blue point 1 unit away
from the origin on every axis. So the sensitivity of the origin, which is red, is at least d and
s ≥ 1

e2
· d as desired.

Assume that k > 1. A coloring with min-width k and sensitivity s can be reduced to
a function f with bs(f) ≥ d and s(f) ≤ ks by Theorem 5. Because the sensitive blocks
in f have size at most k, we see that bsk(f) ≥ d as well (bsk(f) is the k-block sensitivity
defined in Section 2.2.1). Thus applying Kenyon and Kutin’s [5] result in Theorem 1 that
bsk(f) ≤ ck · s(f)k yields d ≤ bsk(f) ≤ ck(ks)

k. Solving for s shows that

s ≥ 1

k

(
d

ck

) 1
k

.

Furthermore, since ck < e
(k−1)! , we get that

s ≥ 1

k

(
d(k − 1)!

e

) 1
k

.

We now show that 1
k

(
d(k−1)!

e

) 1
k ≥ α·d 1

k . Since e ≥ (1+ 1
x
)x for all positive x and ek ≥ ke,

we get that (
1

eα

)k
= ek ≥ ke ≥ k(1 +

1

k − 1
)k−1.

Manipulation shows that (k − 1)k−1 ≥ kkekαk and
(
k−1
e

)k−1 ≥ kkeαk. Applying Stirling’s
formula, which says that k! ≥

(
k
e

)k for all k, shows that (k − 1)! ≥ kkeαk. This yields that

1
k
( (k−1)!

e
) ≥ αk, and finally 1

k

(
(k−1)!
e

) 1
k ≥ α. So

s ≥ 1

k

(
d(k − 1)!

e

) 1
k

≥ αd
1
k

as desired.

6 Optimality of Our Coloring
We show the coloring described in Section 3 achieves the greatest possible separation for
the class of repeated colorings. We also describe a result by Palvolgyi which shows that
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d ≤ 2r(C)2 − r(C) for all sliced colorings. Since our coloring from Section 3 is both a
repeated and sliced coloring, this coloring obtains the optimal separation between d and r(C)
in both classes.

6.1 Repeated colorings
A repeated coloring is a coloring which is the n-fold Cartesian product of a coloring with
sR = 1 (the red sensitivity). The class of repeated colorings is analogous to the class of
Boolean functions analyzed by Ambainis and Sun [2]. Using a lemma by Palvolgyi et al. that
d ≤ 2sB − 1 for colorings with sR = 1, we show that d ≤ sR(2sB − 1) ≤ 2r(C)2 − r(C) for
all repeated colorings.

Let C be a coloring in nk dimensions. We define the nk coordinates {i, j}, where 1 ≤
i ≤ n and 1 ≤ j ≤ k. For a point x with coordinates x{i,j}, let xi be the k-tuple consisting of
coordinates x{i,j} for all 1 ≤ j ≤ k.

Definition. C is a repeated coloring in nk dimensions if there exists a non-trivial coloring C ′

in k dimensions such that:

1. sR(C ′) = 1

2. A point x is colored blue in C iff there exists an i, 1 ≤ i ≤ n, such that xi is blue in C ′.

We assume that all repeated colorings C are in d = nk dimensions, with a corresponding
C ′ in k dimensions.

Remark. Our coloring from Section 3 is a repeated coloring. The coloring is a Cartesian
product of n − 1 copies of a coloring C ′ in n dimensions. Furthermore sR(C ′) = 1. The
n-dimensional coloring C ′ consists of all slices of the form S{1,j} (with all but the first n
coordinates deleted) and as shown in Theorem 3, a red point can only be adjacent to at most
one slice of the form S{a,j} for an integer a.

Lemma 1. For all repeated colorings C in nk dimensions, we have sR(C) = n.

Proof. Consider a red point x in C. For all i, r(C ′, xi) ≤ 1. Since x is blue in C if xi is blue
in C ′ for some i, there is at most one coordinate in each xi which contributes to the sensitivity
of x. Therefore r(C, x) ≤ n, and sR(C) ≤ n.

Furthermore, sR(C) ≥ n. Let y be a red point in C ′ with r(C ′, y) = 1, and let z be the
concatenation of n copies of y. The sensitivity of z is n, so sR(C) = n.

Lemma 2. For all repeated colorings C, we have sB(C) = sB(C ′).
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Proof. Consider a blue point x in C. If more than one xi is blue in C ′ then sB(C) = 0, since
changing one coordinate of x will not change all the blue xi to red. So, the sensitivity of x is
maximized when exactly one xi is blue in C ′, and in this case r(C, x) = r(C ′, xi). Therefore
sB(C) = sB(C ′).

Theorem 7. For all repeated colorings C, we have d ≤ sR(C) · (2sB(C)− 1).

Proof. We use a lemma by Palvolgyi et al. [1] that for all non-trivial colorings with sR = 1,
d ≤ 2sB − 1. By this lemma, k ≤ 2sB(C ′) − 1. Applying Lemma 2, we get that k ≤
2sB(C)− 1. Furthermore, kn ≤ n · (2sB(C)− 1) and by Lemma 1, we get that

d ≤ sR(C) · (2sB(C)− 1).

Since sR and sB are at most r(C), we obtain that d ≤ 2r(C)2 − r(C) as desired.

Therefore, our coloring achieves the largest possible separation of all repeated colorings,
since it satisfies d = 2r(C)2 − r(C).

6.2 Sliced colorings
Definition. A non-trivial coloring C in d dimensions is a sliced coloring if the set of blue
points is the union of exactly d slices with non-zero coordinate (the coordinate in a slice which
is fixed to be a non-zero constant) at least 3.

C is made up of d slices, and by the non-triviality condition, one slice must intersect each
axis. So the d slices each have their non-zero coordinates in a different dimension, since a slice
intersects the ith axis iff its non-zero coordinate is in the ith dimension. Let the slice with its
non-zero coordinate in the ith dimension be Si.

Remark. The coloring described in Section 3 is a sliced coloring.

Lemma 3. (Palvolgyi [1]) The red sensitivity of a sliced coloring C is at least the maximum
number of slices which intersect at one point.

Proof. Let n be the maximum number of slices which intersect. Suppose that n slices labelled
Sk1 , . . . , Skn intersect at some point x (so Ski has its non-zero coordinate in the kith coordi-
nate). Define the point x′, where x′ki = xki + 1 for all i from 1 to n, and x′j = xj for all j not
equal to ki for some i. Then x′ is red and has sensitivity n, since decreasing any coordinate x′ki
yields a blue point, so sR ≥ n.

Theorem 8. (Turan) A graph induced on n vertices with average degree at most k has an
independent set of size at least n

k+1
.
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Theorem 9. (Palvolgyi [1]) For all non-trivial sliced colorings C, d ≤ sR(2sB − 1).

Proof. For all Si, 1 ≤ i ≤ d, let Bi be the set of coordinates which are fixed to be 0 in the
slice.

We note that there can be at most sB fixed coordinates of a slice including the non-zero
coordinate, since changing a fixed coordinate contributes to the sensitivity of a blue point in
the slice. So |Bi| ≤ sB − 1.

Consider the following directed graph G on d vertices, labelled 1 through d. Draw a di-
rected edge from i to j iff i ∈ Bj . Since i 6∈ Bi, there are no loops in the graph. There is a
directed edge from i to j iff Si and Sj don’t intersect. This is because if there is an edge from
i to j then the ith coordinate is non-zero in Si and 0 in Sj , and conversely if there is no edge
then the slices intersect at the point (0, . . . , 0, c, 0, . . . , 0), where c is the non-zero coordinate
of Si in the ith coordinate.

We claim that the maximum size of an independent set in this graph is sR. Assume to the
contrary that there is an independent set of size sR + 1. For any i and j in the independent set,
Bi and Bj intersect. If two slices intersect and a third slice intersects both of them, then all
three slices mutually intersect. The sR + 1 slices corresponding to vertices in the independent
set all pairwise intersect, and so they all mutually intersect. This is a contradiction of Lemma
3 that at most sR slices can mutually intersect at a point.

We now show that d ≤ sR(2sB − 1) by applying Turan’s theorem. Consider the corre-
sponding undirected graph, G′, of G. Note that outdegree of a vertex in G is at most sB − 1
since |Bi| ≤ sB − 1, and thus the degree of a vertex in G′ is at most 2sB − 2. Clearly the
average degree is at most 2sB − 2, and so by Turan’s theorem there is an independent set of
size at least d

2sB−1 . However, the size of an independent set can be at most sR, so sR ≥ d
2sB−1

and d ≤ sR(2sB − 1).

Corollary 1. For all non-trivial sliced colorings C, it holds that d ≤ 2r(C)2 − r(C).

Therefore, our coloring achieves the maximum separation in the class of sliced colorings,
as well as in the class of repeated colorings. In order to construct a coloring with a larger
separation, one would need to resort to considerably different methods and obtain a function
outside of both of these classes.
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