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Abstract. The problem of determining whether several finite automata
accept a word in common is closely related to the well-studied member-
ship problem in transformation monoids. We raise the issue of limiting
the number of final states in the automata intersection problem. For au-
tomata with two final states, we show the problem to be ⊕L-complete
or NP-complete according to whether a nontrivial monoid other than a
direct product of cyclic groups of order 2 is allowed in the automata.
We further consider idempotent commutative automata and (abelian,
mainly) group automata with one, two or three final states over a sin-
gleton or larger alphabet, elucidating the complexity of the intersection
nonemptiness and related problems in each case.

1 Introduction

Let [m] denote {1, 2, ...,m} and let PS be the point-spread problem for transfor-
mation monoids, which we define as follows:

Input: m > 0, g1, . . . , gk : [m]→ [m] and S1, . . . , Sm ⊆ [m].
Question: ∃g ∈ 〈g1, . . . , gk〉 such that ig ∈ Si for every i ∈ [m]?

Here 〈g1, . . . , gk〉 denotes the monoid obtained by closing the set {idm, g1, . . . , gk}
under function composition and ig denotes the image of i under g.

The PS problem generalizes many problems found in the literature. For ex-
ample, it generalizes the (transformation monoid) membership problem [Koz77]
Memb, the pointset transporter problem [LM88] and the set transporter prob-
lem [LM88]. Moreover, it largely amounts to none other than the finite automata
nonemptiness intersection problem, AutoInt, defined as follows:

Input: finite automata A1, . . . , Ak on a common alphabet Σ.
Question: ∃w ∈ Σ∗ accepted by Ai for every i ∈ [k]?
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As we note in Proposition 2.1, PSb, i.e., PS in which some of the Si can be
restricted to have size at most b, has the same complexity as AutoIntb, i.e.,
AutoInt in which the automata have at most b final states, and this holds as
well when the monoid in the PS instances and the transition monoids of the
automata in the AutoInt instances are drawn from a fixed monoid variety X. We
view PS as mildly more fundamental because it involves a single monoid.

Memb and AutoInt were shown to be PSPACE-complete by Kozen [Koz77].
Shortly afterwards, the connection with the graph isomorphism problem led to
an in-depth investigation of permutation group problems. In particular, Memb

was shown to belong to P for groups [FHL80], then to NC3 for abelian groups
[MC87,Mul87], to NC for nilpotent groups [LM88], solvable groups [LM88],
groups with bounded non-abelian composition factors [Luk86], and finally all
groups [BLS87]. A similar complexity classification of Memb for group-free (or
aperiodic) monoids owes to [Koz77,Bea88a,BMT92], who show that Memb for
any fixed aperiodic monoid variety is either in AC0, in P, in NP, or in PSPACE
(and complete for that class with very few exceptions).

On the other hand, AutoInt has received less attention. This is (or might be)
due to the fact that AutoInt is equivalent to Memb when both are intractable,
but appears harder than Memb when Memb is efficiently solvable. For example,
Beaudry [Bea88b] shows that AutoInt is NP-complete for abelian groups and for
idempotent commutative monoids. Beaudry points out that those two cases are
examples where AutoInt seems strictly harder than Memb (whose complexity is
NC3 for abelian groups and AC0 for idempotent commutative monoids). More-
over, early results from [Gal76] show that AutoInt is NP-complete even when Σ
is a singleton.

Nevertheless, interesting results concerning AutoInt are known. For example,
the case where k is bounded by a function in the input length was studied in
[LR92]. When k ≤ g(n), it is proved that the problem is NSPACE(g(n) log n)-
complete under log-space reductions. This arguably provided the first natural
complete problems for NSPACE(logc n). Moreover, it was proved by Karakostas,
Lipton and Viglas that improving the best algorithms known solving AutoInt for
a constant number of automata would imply NL 6= P [KLV03].

More recently, the intersection problem was also studied for regular expres-
sions without binary + operators [Bal02], instead of finite automata. It is shown
to be PSPACE-complete for expressions of star height 2 and NP-complete for
star height (at most) 1. Finally, the parameterized complexity of a variant of the
problem, where Σc is considered instead of Σ∗, was examined in [War01]. Differ-
ent parameterizations of c, k and the size of the automata yield FPT, NP, W[1],
W[2] and W[t] complexities. More results on AutoInt are surveyed in [HK11].

1.1 Our Contribution

We propose PS as the right algebraic formulation of AutoInt. We observe that PS
generalizes known problems and we identify PS variants that are both efficiently
solvable and interesting. We obtain these variants by restricting the transition
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monoids of the automata or the number of generators (alphabet size), or by
limiting the size of the Si s (number of final states) to less than 3.

We then mainly investigate monoids that are abelian groups, but we also
consider groups, commutative monoids and idempotent monoids. In the case of
abelian groups, we need to revisit the equivalences with AGM (abelian permuta-
tion group membership) and LCON (feasibility of linear congruences with tiny
moduli) [MC87], which have further been investigated recently in the context of
log-space counting classes [AV10]. Focussing on the cases involving one or two
final states complements Beaudry’s hardness proofs for the intersection prob-
lem [Bea88b], which require at least three final states. Table 1 summarizes our
classification of the complexities of PS(Abelian groups), or equivalently AutoInt

for automata whose transformation monoids are abelian groups.

Table 1. The point-spread and the automata intersection problems for abelian groups.

Max size of some Si ; max # of final states

1 2 3+

Single generator ; |Σ| = 1 L-complete L-complete NP-complete

Elementary 2-groups ⊕L-complete ⊕L-complete NP-complete [Bea88b]

Elementary p-groups ModpL-complete NP-complete NP-complete [Bea88b]

All abelian groups NC3, FLModL/poly NP-complete NP-complete [Bea88b]

We show that the first line in Table 1 in fact applies as well to nonabelian
or nongroup automata over Σ = {a}, and to a class of abelian group automata
which we will call tight abelian group automata. To the best of our knowledge,
Table 1 yields the first efficiently solvable variants of AutoInt. Moreover, it pro-
vides characterizations of ModpL and thus allows the study of (some) log-space
counting classes in terms of automata.

For nonabelian groups and monoids in general, essentially drawing from the
literature yields

– AutoInt(Groups) is NP-complete (Proposition 3.2)
– AutoInt1(Groups) ∈ NC (Proposition 3.2)
– AutoInt1(Idempotent and commutative monoids) ∈ AC0 (Theorem 4.2).

More strikingly, the two NP-complete entries in the middle column of Table 1
follow from a more general result3 proved here as Theorem 3.15: if X is any
monoid pseudovariety not contained in the 2-elementary abelian groups, then
AutoInt2(X) is NP-hard. This implies that

– AutoInt2(X) is NP-complete for any non-group pseudovariety X, hence
– AutoInt2(Idempotent and commutative monoids) is NP-complete.

3 The present paper serves as an extended version of [BM12], with detailed proofs,
and it expands on [BM12] by the new Theorem 3.15, largely settling the questions
left open in [BM12] concerning automata with two final states.
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Finally, we introduce a generalization of AutoInt by adding ∪-clauses. More
formally, the problem is to determine whether ∩ki=1 ∪

k′

j=1 Language(Ai,j) 6= ∅.
When k′ = 2 and each automaton possesses one final state, this generalizes
the original version of the problem with two final states. In the case of unary
languages, we are able to show this variant to be NL-complete and thus suggest
this definition to be the right generalization, in-between two and three final
states, to avoid complexity blow-ups for some restrictions of AutoInt.

Section 2 presents our notation, defines the relevant problems and relates PS
and AutoInt to some algebraic problems. Section 3 is devoted to the analysis of
the complexity of PS and AutoInt for abelian group automata subject to multiple
restrictions. A short Section 4 contains observations about the complexity of PS
and AutoInt in commutative and idempotent monoids. Section 5 concludes and
mentions open problems.

2 Preliminaries

2.1 Complexity Theory

We define NCk (resp. ACk) as the class of languages accepted by families of
bounded (resp. unbounded) fan-in Boolean circuits of polynomial size and depth
O(logk n). We let NC = ∪kNC

k. For NCk (resp. AC0), we consider log space
(DLOGTIME) uniform circuit families.

A function f is in GapL iff f is log-space many-one reducible to comput-
ing the determinant of an integer matrix [AO96]. A language S is in ModkL
[BDHM92] iff there exists f ∈ #L such that x ∈ S ⇔ f(x) 6≡ 0 (mod k). A
language S is in ModL [AV10] iff there exists f ∈ GapL, g ∈ FL such that
for all strings x, g(x) = 0p

e

for some prime p and e ∈ N, and x ∈ S ⇔
f(x) ≡ 0 (mod |g(x)|). For every prime power pe, ModpeL ⊆ ModL ⊆ NC2,

and FLModL = FLGapL [AV10].
We use the notation ≤m (resp. ≤T ) for many-one (resp. Turing) reductions.

We use ≤log for log-space reductions, ≤NC1 for NC1 reductions and ≤m
AC0 for

AC0 reductions. Equivalences are defined analogously and denoted by ≡. See
[MC87] for more details.

2.2 Basic Definitions and Notation

An automaton refers to a deterministic complete finite automaton. Formally, it is
a tuple (Ω,Σ, δ, α, F ) whereΩ is the set of states,Σ is an alphabet, δ : Ω×Σ → Ω
is the transition function, α ∈ Ω is the initial state and F ⊆ Ω is the set
of final states (accepting states). The language of an automaton A is denoted
Language(A). The number of occurrences of σ in a word w is denoted by |w|σ.
Throughout the paper, the automata defining a problem instance always share
an alphabet Σ and we denote its size |Σ| by s.

The transition monoid M(A) of an automaton A is the monoid 〈{Tσ : σ ∈
Σ}〉 where Tσ(γ) = δ(γ, σ). For w = w1 · · ·wℓ, Tw = Twℓ

◦· · ·◦Tw1
so for example
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Tσ1σ2
(γ) = Tσ2

(Tσ1
(γ)). WhenM(A) is a group, and thus a permutation group

on Ω, every letter σ ∈ Σ has an order ord(σ) that may be defined by the order
of Tσ inM(A). However, we prefer considering the automaton A′ obtained from
removing the states not accessible from the initial state of A. Therefore, we
define ord(σ) as the order of Tσ in the transitive permutation groupM(A′). For
an automaton A, we say that A is an (abelian) group automaton if its transition
monoid is an (abelian) group.

An abelian group automaton A will be said to be a tight abelian group au-
tomaton if {v ∈ Zord(σ1) × · · · × Zord(σs) : σv1

1 · · ·σ
vs
s ∈ Language(A)} contains

only one element. We note that when Σ = {a}, such automata are directed
cycles of size ord(a), and thus accept only one word of size less than ord(a).
Another family fulfilling this criterion is the set of automata obtained by taking
the cartesian product of unary automata working on distinct letters.

Automata are encoded by their transition monoid. We assume any reasonable
encoding of monoids, described in terms of their generators, that allows basic
operations like composing two transformations and determining the image of a
point under a transformation in AC0.

Let p be a prime. A finite group is a p-group iff its order is a power of p. An
abelian group is an abelian elementary p-group iff every non trivial element has
order p. A finite group is nilpotent iff it is the direct product of p-groups. [Zas99]

We use lcm for the least common multiple, gcd for the greatest common
divisor, n for the input length, and Zq for the integers mod q. We say that an
integer q is tiny if its value is smaller than the input length (i.e. |q| ≤ n).

2.3 Problems

We define and list the problems mentioned in this paper for ease of reference.
Here X is any family of finite monoids, such as all commutative monoids, or all
abelian groups, or all groups. In this paper, X will always be a pseudovariety of
monoids, i.e., a family of finite monoids closed under finite direct products and
under taking homomorphic images of submonoids; see [BMT92] for an argument
that such families are a rich and natural choice.

We will not exploit consequences of X being a pseudovariety, except for the
following obvious fact: if X is not contained in the least pseudovariety containing
the cyclic group C2, then X either contains a cyclic group Cq for q > 2 or an
aperiodic monoid (i.e., a monoid that contains no nontrivial group).

PSb(X) (Point-spread problem)

Input : m > 0, g1, . . . , gk : [m] → [m] such that 〈g1, . . . , gk〉 ∈ X,
and S1, . . . , Sm ⊆ [m], such that |Si| ≤ b or |Si| = m for
every i ∈ [m].

Question: ∃g ∈ 〈g1, . . . , gk〉 such that ig ∈ Si for every i ∈ [m]?

AutoIntb(X) (Automata nonemptiness intersection problem)
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Input : finite automata A1, . . . , Ak on a common alphabet Σ, such
thatM(Ai) ∈ X and Ai has at most b final states for every
i ∈ [k].

Question: ∃w ∈ Σ∗ accepted by Ai for every i ∈ [k]?

Memb(X) (Membership problem)

Input : m > 0, g1, . . . , gk : [m] → [m] such that 〈g1, . . . , gk〉 ∈ X,
and g : [m]→ [m].

Question: g ∈ 〈g1, . . . , gk〉?

PT(X) (Pointset transporter)

Input : m > 0, g1, . . . , gk : [m] → [m] such that 〈g1, . . . , gk〉 ∈ X,
and b1, . . . , br ∈ [m] for some r ≤ m.

Question: ∃g ∈ 〈g1, . . . , gk〉 such that ig = bi for every i ∈ [r]?

ST(X) (Set transporter)

Input : m > 0, g1, . . . , gk : [m] → [m] such that 〈g1, . . . , gk〉 ∈ X,
r ≤ m and B ⊆ [m].

Question: ∃g ∈ 〈g1, . . . , gk〉 such that {1g, 2g, . . . , rg} ⊆ B?

LCON (Linear congruences)

Input : B ∈ Z
k×l, b ∈ Z

k, and an integer q presented as a list of its
tiny factors pe11 , . . . , perr .

Question: ∃x ∈ Z
l satisfying Bx ≡ b (mod q)?

LCONNULL (Linear congruences “nullspace”)

Input: B ∈ Z
k×l, and an integer q presented as a list of its tiny

factors pe11 , . . . , perr .

Problem: compute a generating set for the Z-module {x ∈ Z
l : Bx ≡

0 (mod q)}.

PS(X) and AutoInt(X) refer to PSb(X) and AutoIntb(X) with no bound
placed on b. Moreover, we refer to b as the number of final states, even in the
context of PS. When the modulus q is fixed to a constant, we use the notation
LCONq and LCONNULLq.

The point-spread problem relates to other problems as follows.

Proposition 2.1. AutoIntb(X) ≡m
AC0 PSb(X) for any finite monoid variety X.

Proof. AutoIntb(X) ≤m
AC0 PSb(X):

Let A1, . . . , Ak be the given automata where Ai = (Ωi, Σ, δi, αi, Fi) for every
i ∈ [k]. Suppose Ωi and Ωj are disjoint for every i 6= j and let Ω = Ω1∪· · ·∪Ωk.

For each σ ∈ Σ, let gσ be the transformation action of the letter σ on Ω. For
each γ ∈ Ω, let

Sγ =

{

Fi if γ is the initial state of Ai,

Ω if γ is any other state of Ai.
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Let αi be the initial state of Ai, then there is a word w accepted by every
automaton iff αi

gw ∈ Fi for every i ∈ [k] iff gw maps every initial state to a final
state. To complete the reduction, one must notice that |Sγ | is either equal to
|Ω| or bounded by b. Moreover, 〈{gσ : σ ∈ Σ}〉 ∈ X since it is a submonoid of
M(A1)× · · · ×M(Ak).

PSb(X) ≤m
AC0 AutoIntb(X): For every i ∈ [m], let Ai = ([m], {g1, . . . , gk}, δ,

i, Si) where δ : [m] × {g1, . . . , gk} → [m] maps (j, gℓ) to jgℓ for every j ∈ [m],
ℓ ∈ [k]. When Si = [m], we do not build any automaton since it would accept
Σ∗. We note that there exists g ∈ 〈g1, . . . , gk〉 such that ig ∈ Si for every i ∈ [m]
iff g is accepted by every automaton. Moreover, every automaton has at most b
final states andM(Ai) ∈ X. ⊓⊔

Proposition 2.2. Memb(X) ≤m
AC0 PT(X) ≡m

AC0 PS1(X) and ST(X) ≤m
AC0

PS(X).

Proof. We use the same generators for every reduction. For Memb(X) ≤m
AC0

PT(X), we let bi = ig for every i ∈ [m] where g is the given test transformation.
For PT(X) ≤m

AC0 PS1(X), we let Si = {bi} for every i ∈ [r] and Si = [m]
otherwise. For PS1(X) ≤m

AC0 PT(X), if |Si| = 1, we let bi be the unique element
of Si. To be consistent with the definition, the points should be reordered such
that the points transported come first. Finally, for ST(X) ≤m

AC0 PS(X), we let
Si = B for every i ∈ [r], and Si = [m] for every i such that r < i ≤ m. ⊓⊔

Proposition 2.3. If Memb(X) ∈ NP (PSPACE) then PS(X) ∈ NP (PSPACE).

Proof. We guess a transformation g such that ig ∈ Si for i ∈ [m]. From there, we
run the NP (PSPACE) machine for Memb(X) to test whether g ∈ 〈g1, . . . , gk〉.
For the PSPACE result, we use PSPACE = NPSPACE [Sav70]. ⊓⊔

3 Groups and Abelian Groups

We first recall a slick reduction. Let PointStab(Groups) be the problem in which,
given the same input as in problem PT(Groups), we must compute a generating
set for the pointwise stabilizer of {b1, . . . , br} in 〈g1, . . . , gk〉, i.e., the subgroup
formed of all h ∈ 〈g1, . . . , gk〉 such that bhi = bi for 1 ≤ i ≤ r.

Proposition 3.1. [Luk90] PT(Groups) ≤T
AC0 PointStab(Groups).

Proof. We sketch the proof [Luk90, p. 27] for completeness. Let g1, . . . , gk be
permutations of [m] and b1, . . . , br ∈ [m]. Assuming with no loss of generality
that some gi is the identity permutation, let

G = 〈{(gs, gt) : 1 ≤ s, t ≤ k}〉 ∼= 〈g1, . . . , gk〉 × 〈g1, . . . , gk〉

act on [m]× [m] as (i, j)(gs,gt) = (igs , jgt). Now define x as the permutation that
merely flips each pair (i, j), i.e., (i, j)x = (j, i) for every (i, j) ∈ [m] × [m]. We
prove that the pointwise stabilizer H of {(1, b1), (2, b2), . . . , (r, br)} in

〈{(gs, gt) : 1 ≤ s, t ≤ k} ∪ {x}〉 = 〈G ∪ {x}〉
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is not contained in G iff some g ∈ 〈g1, . . . , gk〉 maps i to bi for 1 ≤ i ≤ r.
We first note that any y ∈ 〈G ∪ {x}〉 is of the form

y = (g1, h1)x(g2, h2) · · ·x(gn, hn).

Moreover, if y 6∈ G then it must have an odd number of occurences of x since for
even number of occurences, we have (i, j)y = (ig1h2g3···hn , jh1g2h3···gn) and thus
y may be rewritten as an element of G.
⇒) If H 6⊆ G, then there exists y ∈ H such that y 6∈ G. Moreover y =

(g1, h1)x(g2, h2) · · ·x(gn, hn) where x appears an odd number of times. Therefore
yx ∈ G and (i, bi)

yx = (i, bi)
x = (bi, i) for 1 ≤ i ≤ r.

⇐) Suppose there exists g ∈ 〈g1, . . . , gk〉 such that ig = bi for 1 ≤ i ≤ r. We

have (g, g−1)x ∈ H since (i, bi)
(g,g−1)x = (bi, i)

x = (i, bi). Moreover, (g, g−1)x 6∈
G since the opposite would imply that x ∈ G which is impossible.

Given this lemma, we compute generators for H by using the pointwise sta-
bilizer oracle gate, and we detect whether H is larger than G by testing whether
any generator of H flips a pair (i, j) ∈ [m]× [m]. ⊓⊔

By the massive work of [BLS87], PointStab(Groups) ∈ NC. Combined with
Propositions 3.1, 2.2 and 2.3, and with the forthcoming Theorem 3.23, this yields:

Proposition 3.2. PS1(Groups) ∈ NC and PS(Groups) are NP-complete under
≤m

AC0 reducibility.

We will see later that PS2(Groups) is NP-complete. It is shown in [LM88] that
PT(Nilpotent groups) ∈ NC, so that PS1(Nilpotent groups) ∈ NC by Proposi-
tion 2.2. This implies that both problems belong to NC for abelian groups.

The rest of our investigation of PS in the group case is devoted to abelian
groups. We first refine the above NC upper bound for PS1(Abelian groups) to
NC3, namely the same complexity as Memb(Abelian groups). To achieve this, we
give some definitions and lemmata to show that AutoInt1(Abelian groups) ≤T

NC1

LCONNULL.

Definition 3.3. Let A = (Ω,Σ, δ, α, F ) be an abelian group automaton. We
define ΦA as the following set:

ΦA =
{

v ∈ Z
s
q : Tσ

v1
1

···σvs
s
∈ Gα

}

,

where q = lcm(ord(σ1), . . . , ord(σs)) and Σ = {σ1, . . . , σs}.

In other words, ΦA is the set of vectors (v1, . . . , vs) ∈ Z
s
q such that reading

σv1

1 · · ·σ
vs
s from the initial state α leads back to α. Since the language accepted by

A is commutative and the order of each letter divides q, the set ΦA characterizes
Language(A).

Lemma 3.4. Let A = (Ω,Σ, δ, α, F ) be an abelian group automaton, then ΦA

is a sub Zq-module of Zs
q where q = lcm(ord(σ1), . . . , ord(σs)).
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Definition 3.5. Let A = (Ω,Σ, δ, α, F ) be an abelian group automaton. Let q =
lcm(ord(σ1), . . . , ord(σs)). We define the monoid homomorphism φA : Σ∗ → Z

s
q

as:

φA(w) = (|w|σ1
mod q, . . . , |w|σs

mod q).

This homomorphism is alternatively the Parikh image with each component
taken modulo q for a well chosen q ∈ N

+.

Lemma 3.6. Let A = (Ω,Σ, δ, α, F ) be an abelian group automaton, β ∈ Ω,
0 ≤ i ≤ s and b1, . . . , bi ∈ N. It is possible to verify whether there exists a
word w ∈ Σ∗ such that Tw(α) = β and |wσj

| = bj for every 1 ≤ j ≤ i in
logarithmic space. Moreover, if such a word exists then it is possible to compute
one in logarithmic space.

Proof. We first note that A may be considered as an undirected graph. Indeed,
since M(A) is a group, traversing an arc labeled by σ in reverse direction is
equivalent to applying T−1

σ . Therefore, for every arc (transition) from γ to γ′

labeled by σ, we add the arc (γ′, γ) labeled by σ−1. Since M(A) is abelian,
we may suppose, without loss of generality, that σ1, . . . , σi are read first. Let
α′ = Tw′(α) where w′ = σb1

1 · · ·σ
bi
i and remove every transition associated to

σ1, . . . , σi. It now suffices to find a path from α′ to β in the graph to build a
word w such that Tw(α) = β. Since finding a path in an undirected graph is in
FL [Rei05], we can find such word in logarithmic space. ⊓⊔

Lemma 3.7. Let A = (Ω,Σ, δ, α, F ) be an abelian group automaton. A gener-
ating set U for ΦA such that |U | ≤ ord(σ1)+ . . .+ord(σs)+ |Σ| can be computed
in logarithmic space.

Proof. We give the following algorithm:

for i← 1 to |Σ| do

for j ← 0 to ord(σi)− 1 do

compute w (if any) such that Tw(α) = α,

|wσr
| = 0 for every 1 ≤ r < i, and |wσi

| = j

output φA(w)

output v such that vi = ord(σi) and vr = 0 for every r 6= i

We first note that the algorithm computes at most ord(σ1)+ . . .+ord(σs)+ |Σ|
vectors. Moreover, the word w computed at line 4 is computable in logarithmic
space by Lemma 3.6.

We now show that 〈U〉 = ΦA. Let v ∈ ΦA. We prove by induction on s,
that there exists u1, . . . , us ∈ 〈U〉 such that ui,j = 0 for every 1 ≤ j < i

and ui,i = vi −
∑i−1

j=1 uj,i. Before doing so, we notice that the validity of this
affirmation implies v = u1 + . . .+ us, and thus v ∈ 〈U〉.
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We observe that there exists x < q such that v1 = (v1 mod ord(σ1)) +
x · ord(σ1). Let u′

1 ∈ U be such that u′
1,1 = v1 mod ord(σ1), and let u1 =

u′
1 + (x · ord(σ1), 0, . . . , 0). Therefore u1 ∈ 〈U〉 and u1,1 = v1. We notice that

there exists v′ ∈ ΦA such that v′1 = v1 mod ord(σ1), since the vector obtained
by modifying the first component of v by the value v1 mod ord(σ1) is in ΦA.
Therefore, line 4 will necessarily generate such a vector u′

1.
Suppose the hypothesis holds for u1, . . . , ui−1. Let v

′ = v− (u1+ . . .+ui−1),

then v′ ∈ ΦA. Moreover v′j = 0 for every i ≤ j < i and v′i = vi −
∑i−1

j=1 uj,i. Let
u′
i ∈ U be such that u′

i,j = 0 for every j < i and u′
i,i = v′i mod ord(σi), then

let ui = u′
1 + (0, . . . , y · ord(σi), . . . , 0). Let ui = u′

1 + y(0, . . . , ord(σi), . . . , 0).
Therefore ui ∈ 〈U〉 and ui,i = v′i for some y < q. As stated in the base case, line
4 will generate such a vector u′

i. ⊓⊔

Definition 3.8. Let V be a submodule of Zs
q, then

V ⊥ = {u ∈ Z
s
q : ∀v ∈ V v · u = 0},

where · is the usual dot product (i.e. u · v = (u1v1 + . . .+ usvs) mod q).

Proposition 3.9 ([Luo09], see [Blo12] for explicit details). Let V be a
submodule of Zs

q, then (V ⊥)⊥ = V .

Lemma 3.10. Let x, x′ ∈ N
s and let U = {u1, . . . , u|U |} be a generating set of

Φ⊥
A. Let q = lcm(ord(σ1), . . . , ord(σs)) and let B be the matrix such that its ith

row is ui. We have

Bx ≡ Bx′ (mod q)⇔ Tw(α) = Tw′(α)

where w = σx1

1 · · ·σ
xs
s and w′ = σ

x′
1

1 · · ·σ
x′
s

s .

Proof. ⇒) Let v = φA(w) and v′ = φA(w
′), then B(v − v′) ≡ Bv − Bv′ ≡

0 (mod q) and therefore v− v′ ∈ Φ⊥⊥
A . By Lemma 3.9, we have v− v′ ∈ ΦA, and

therefore v + ΦA = v′ + ΦA. Thus, there exists v′′ ∈ ΦA such that v = v′ + v′′

and

Tw(α) = Tσ
x1
1

···σxs
s
(α) (By definition of w)

≡ T
σ
|w|σ1

mod q

1
···σ

|w|σs mod q
s

(α) (ord(σi) | q)

= Tσ
v1
1

···σvs
s
(α) (By definition of v)

= T
σ
v′
1
+v′′

1
mod q

1
···σ

v′
s+v′′

s mod q
s

(α) (v = v′ + v′′)

≡ T
σ
v′
1
+v′′

1
1

···σ
v′
s+v′′

s
s

(α) (ord(σi) | q)

≡ T
(σ

v′
1

1
···σ

v′
s

s )·(σ
v′′
1

1
···σ

v′′
s

s )
(α) (M(A) is abelian)

≡ T
σ
v′
1

1
···σ

v′
s

s

(α) (v′′ ∈ ΦA)

≡ Tw′(α) (Symmetric to lines 1–3).

We conclude that Tw(α) = Tw′(α).
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⇐) Since Tw(α) = Tw′(α), then TwTw′
−1 ∈ Gα. Let u ∈ Σ∗ be such that

Tu = Tw′
−1, then φA(wu) ∈ ΦA. Since φA is a homomorphism, we have φA(w)+

φA(u) ∈ ΦA. By Lemma 3.9 we have ΦA = (ΦA)
⊥⊥ and therefore

BφA(w) +BφA(u) ≡ B(φA(w) + φA(u)) ≡ 0 (mod q),

and thus,
BφA(w) ≡ B(−φA(u)) (mod q).

We conclude that Bx ≡ Bx′ (mod q) since x ≡ φA(w) (mod q) and x′ ≡
φA(w

′) ≡ −φA(u) (mod q). ⊓⊔

We may now proceed to a classification of the complexity of AutoInt for
abelian groups.

Theorem 3.11. AutoInt1(Abelian groups) ≤T
NC1 LCONNULL.

Proof. Let A1, . . . , Ak be the given automata and let αi, βi be respectively their
initial and final states. We build a system of linear congruences for each au-
tomaton. We first compute a generating set for ΦAi

. By Lemma 3.7, this can
be achieved in logarithmic space. Given this set, we can derive a generating set
Ui of Φ⊥

Ai
by calling the oracle for LCONNULL. Let wi ∈ Σ∗ be a word such

that Twi
(αi) = βi. By Lemma 3.6, such a word can be computed in logarithmic

space. Let Bi be the matrix such that each line is a distinct vector from Ui,
and let bi = BiφAi

(wi). By Lemma 3.10, Bix ≡ bi (mod qi) iff w = σx1

1 · · ·σ
xs
s

is accepted by automaton Ai where qi = lcm(ord(σ1), . . . , ord(σs)). Therefore,
there exists a solution x ∈ Z

s, for every i ∈ [k], to

Bix ≡ bi (mod qi) (∗)

if and only if a word w is accepted by every automaton. Thus, we reduce the
instance of the intersection problem to this instance of LCON:







B1 q1 · · · 0
...

...
. . .

...
Bk 0 · · · qk



























x1

...
xs

y1
...
yk





















≡







b1
...
bk






(mod lcm(q1, . . . , qk))

which is equivalent to system (∗). We note that lcm(q1, . . . , qk) can be large, but
its factors are tiny since q1, . . . , qk are tiny. Moreover, it is important to note
that LCON reduces to LCONNULL which is hard for NL (and L) [MC87] under
≤T

NC1 reducibility. Therefore, it is possible to compute this reduction with a NC1

circuit. Indeed, log-space computations may be carried by calls to the oracle for
LCONNULL and the output may be reduced to an LCONNULL instance. ⊓⊔

Since LCONNULL ∈ NC3 [MC87] and LCONNULL ∈ FLModL/poly [AV10],
we obtain the following corollaries.
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Corollary 3.12. AutoInt1(Abelian groups) is in NC3 and FLModL/poly.

By Proposition 2.2, Memb(Abelian groups) ≤m
AC0 AutoInt1(Abelian groups).

Since Memb(Abelian groups) ∈ NC3 [MC87], we obtain a rather tight bound.
We now restrict our abelian groups to elementary abelian p-groups. This

allows a characterization of the complexity class ModpL (denoted ⊕L when p =
2) by the intersection problem, and thus in terms of automata.

Theorem 3.13. AutoInt1(Elementary abelian p-groups) is ModpL-complete un-
der ≤m

log reducibility.

Proof. Every element of a p-group is either of order 1 or p, therefore we have
lcm(ordi(σ1), . . . , ordi(σs)) ∈ {1, p}. Thus, the reduction built in the proof of
Theorem 3.11 yields a reduction to LCONNULLp. Moreover this reduction can
be made log-space without any significant modification. Indeed, every compu-
tation made in the proof can be achieved in logarithmic space and the NC1

reduction from LCON to LCONNULL of [MC87] may be converted to a log-
space reduction as noted in [AV10]. Therefore, AutoInt1(Elementary abelian p-
groups) ≤T

log LCONNULLp. Since LCONNULLp ∈ ModpL [BDHM92] and

ModpL = ModpL
ModpL (FModpL = FLModpL) [HRV00],

we obtain AutoInt1(Elementary abelian p-groups) ∈ ModpL. Similarly, a log-
space reduction from LCONp is easily obtained by mapping each equation to an
automaton. Since LCONp is complete for ModpL [BDHM92], it completes the
proof. ⊓⊔

We now give the first result of this paper concerning the intersection prob-
lem with each automaton having at most two final states. When the transition
monoids are restricted to elementary abelian 2-groups, we are able to reduce
AutoInt2 to LCON2. Therefore, in this case, the problem with two final states
per automaton is not harder than with one final state.

Theorem 3.14. AutoInt2(Elementary abelian 2-groups) is ⊕L-complete under
≤m

log reducibility.

Proof. We modify the proof of Proposition 3.11. Let αi be the initial state and
βi, β

′
i the two final states of automaton Ai. We use Proposition 3.11 notation;

Ui is a generating set for Φ⊥
Ai
; wi, w

′
i ∈ Σ∗ are words such that αwi

i = βi and

α
w′

i

i = β′
i; Bi is the matrix such that each line is a distinct vector from Ui;

bi = BiφAi
(wi), and b′i = BiφAi

(w′
i).

By Lemma 3.10, there exists a solution x ∈ Z
s to

(Bix ≡ bi (mod 2)) ∨ (Bix ≡ b′i (mod 2)) ∀i ∈ [k]

if and only if a word is accepted by every automaton.
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We build this system without the ∨-clauses by introducing variables zi, z
′
i:





















0 1 1 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . 1 1
B1 b1 b′1 · · · 0 0
...

...
...
. . .

...
...

Bk 0 0 · · · bk b′k







































x
z1
z′1
...
zk
z′k



















≡





















1
...
1
0
...
0





















(mod 2) .

We note that this system is equivalent to

Bix+ zibi + z′ib
′
i ≡ 0 (mod 2) ∀i ∈ [k],

with constraints zi+z′i ≡ 1 (mod 2) for every i ∈ [k]. Since −zibi ≡ zibi (mod 2)
and −z′ib

′
i ≡ z′ib

′
i (mod 2), this system is equivalent to

Bix ≡ zibi + z′ib
′
i (mod 2) ∀i ∈ [k].

Constraints zi + z′i ≡ 1 (mod 2) force the selection of either bi or b
′
i. Thus, this

system of linear congruences is an instance of LCON2 which possesses a solution
iff there exists a word accepted by every automaton. ⊓⊔

In [BM12], we were only able to resolve the complexity of AutoInt2 (for general
alphabets) in the case of elementary abelian 2-groups. This triggered many open
questions concerning AutoInt2. Here we settle all those questions. In particular,
as anticipated, the complexity jumps when we go from AutoInt2(Elementary
abelian 2-groups) to AutoInt2(Elementary abelian 3-groups). But much to our
surprise, the jump is all the way from ⊕L-completeness to NP-hardness. And in
fact, the jump occurs regardless of how we leave the elementary abelian 2-groups:

Theorem 3.15. Let X be a monoid pseudovariety not contained in the variety
of 2-elementary abelian groups, then AutoInt2(X) is hard for NP under ≤m

AC0

reducibility.

Proof. We have mentioned in Section 2.3 that ifX is not contained in the monoid
pseudovariety of the 2-elementary abelian groups, then either X contains an
aperiodic monoid, or it contains a cyclic group Zp for p > 2. In both cases here
we reduce CIRCUIT–SAT to AutoInt(X).

Given a circuit, we let Σ be the set of gates of this circuit. In our construction
the number of occurrences of the letter σ in a word accepted by all automata
will represent the truth value of the gate. We will add automata that check the
soundness of the representation, and that check that the output gate according
to this representation is assigned the value true. Hence a word will be accepted
by all the automata iff there is a valid assignment of truth values to the gates of
the circuit that sets the output gate to true.

Suppose that X contains a cyclic group Zp for p > 2. We assume that the
circuit only consists of ∧ and ¬ gates. In this case a letter σ should occur in the
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word 0 or 1 times modulo p, where 0 corresponds to false and 1 to true. For each
σ ∈ Σ we build an automaton with two final states that verifies whether each
letter σ occurs either 0 or 1 times modulo p. Taking the intersection of these
automata yields a representation of the valid assignments to the circuit gates.

We build extra automata to validate the computations of the circuit. For each
negation gate σ with input gate σ′, we build an automaton accepting words w
such that |w|σ+|w|σ′ ≡ 1 (mod p). For each ∧ gate with input gates σ′ and σ′′, we
build an automaton accepting words w such that (|w|σ′ + |w|σ′′ − 2 · |w|σ) mod p
∈ {0, 1}. In the case p > 3 this suffices to check the correct evaluation of the ∧
gate (see Table 2). If p = 3, we need to add an extra automaton accepting words
w such that (|w|σ′ + |w|σ′′ − |w|σ) mod p ∈ {0, 1} since 1 ≡ −2. As shown in
Table 2, these formulas are satisfied iff the assignment agrees with the ∧ gate.

We build one last automaton accepting words w such that |w|σ ≡ 1 (mod p)
where σ is the output gate. It remains to notice that the transformation monoid
of each automaton is a cyclic group Zp and is therefore in X.

Table 2. Formulas for ∧ gates. The middle column shows that when p > 3, an automa-
ton Zp with accepting states 0 and 1 captures precisely the legal truth value triples
that describe the operation of an ∧ gate if the automaton moves one step forward upon
reading σ′, one step forward upon reading σ′′ and two steps backward upon reading σ.
When p = 3, an automaton corresponding to the rightmost column is required as well,
because −2 and +1 are not distinguished by the automaton from the middle column.

σ′σ′′σ σ′ ∧ σ′′ = σ σ′ + σ′′ − 2σ σ′ + σ′′ − σ
p > 3 and p = 3 p=3

000 1 0 0

001 0 -2 -1
010 1 1 1

011 0 -1 0
100 1 1 1

101 0 -1 0
110 0 2 2
111 1 0 1

Assume X contains an aperiodic monoid. Then V must contain U1, i.e., the
monoid {0, 1} under multiplication. This holds because X is closed under taking
submonoids. Indeed, consider any nontrivial aperiodic submonoid M then M
contains a nontrivial idempotent e, i.e., verifying e2 = e 6= 1. The monoid {e, 1}
is isomorphic to U1.

Here we assume that the circuit only consists of ∨ and ¬ gates. For a word
w ∈ Σ∗ and a gate σ ∈ Σ, we consider |w|σ = 0 (resp. |w|σ > 0) as a 0 (resp. 1)
assignment.

For each negation gate σ with input gate σ′, we build an automaton ac-
cepting words w such that |w|σ′ = 0 ⇔ |w|σ > 0. For each ∨ gate with
input gates σ′ and σ′′, we build an automaton accepting words w such that
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(|w|σ′ > 0 ∨ |w|σ′′ > 0)⇔ |w|σ > 0. These constructions are illustrated in Fig-
ure 1.

It remains to build one last automaton accepting words w such that |w|σ > 0
where σ is the output gate. The automata built are such that their transition
monoid is either U1 or U1 × U1. Since V is closed under finite direct products,
this completes the proof.

Fig. 1. Automata for ¬ and ∨ gates

0, 0 0, 1

1, 0 1, 1

σ′

σ

σ′

σ

Σ \ {σ} Σ

Σ \ {σ, σ′} Σ \ {σ′}

0, 0 0, 1

1, 0 1, 1

σ′, σ′′

σ

σ′, σ′′

σ

Σ \ {σ} Σ

Σ \ {σ, σ′, σ′′} Σ \ {σ′, σ′′}

⊓⊔

Corollary 3.16. AutoInt2(Elementary abelian p-groups) for p ≥ 3, AutoInt2(Abe-
lian groups), AutoInt2(Groups) are NP-complete under ≤m

AC0 reducibility.

We may now study the case where Σ consists of a single letter a. Instead
of directly considering unary automata, we study the more general case of tight
abelian group automata. Before proceeding, we note that the intersection prob-
lem over unary languages in general is not harder than for abelian group au-
tomata over a unary alphabet

Indeed, an automaton over a singleton alphabet consists of a tail and a cycle.
Words accepted by the tail of an automaton may be tested first on the whole
collection. If none is accepted, the associated final states are removed and an
equivalent cyclic automaton is built.

We first consider a generalization of AutoInt, denoted AutoInt(∪k
′

), that con-
sists of determining whether ∩ki=1∪

k′

j=1Language(Ai,j) 6= ∅. We examine the case

of AutoInt1(∪
2) that generalizes AutoInt2, and show it is NL-complete for unary

and tight abelian group automata.
We will use the following generalization of the Chinese remainder theorem:
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Lemma 3.17. [Knu81, see p. 277 ex. 3] Let a1, . . . , ak ∈ N and q1, . . . , qk ∈
N. There exists x ∈ N such that x ≡ ai (mod qi) for every i ∈ [k] iff ai ≡
aj (mod gcd(qi, qj)) for every i, j ∈ [k].

Theorem 3.18. AutoInt1(
⋃2

Tight abelian group automata) ≤m
log 2–SAT.

Proof. Let A[i, 0] and A[i, 1] be the two automata of the ith ∪-clause. Let v[i, x]
be the unique vector of V [i, x] = {v ∈ Zordi,x(σ1)×· · ·×Zordi,x(σs) : σv1

1 · · ·σ
vs
s ∈

Language(A[i, x])} which is computable in log-space. We first note that A[i, x]
accepts exactly words w ∈ Σ∗ such that |w|σj

≡ v[i, x]j (mod ordi,x(σj)) for
every j ∈ [s], by definition of V [i, x]. Therefore, distinct letters are independent
and we may find a word accepted by every automaton by verifying restrictions
locally on σ1, . . . , σs. Thus, we have the following equivalences:

∃w such that w ∈
k
⋂

i=1

1
⋃

x=0

Language(A[i, x])

⇔ ∃w ∃x ∈ {0, 1}k such that w ∈
k
⋂

i=1

Language(A[i, xi])

⇔ ∃w ∃x ∈ {0, 1}k such that

k
∧

i=1

s
∧

j=1

|w|σj
≡ v[i, xi]j (mod ordi,xi

(σj))

⇔ ∃w ∃x ∈ {0, 1}k such that
s
∧

j=1

(

k
∧

i=1

|w|σj
≡ v[i, xi]j (mod ordi,xi

(σj))

)

⇔ ∃x ∈ {0, 1}k such that
s
∧

j=1

(

k
∧

i=1

k
∧

i′=1

Ci,i′,j(x)

)

,

where

Ci,i′,j(x) =
(

v[i, xi]j ≡ v[i′, xi′ ]j (mod gcd(ordi,xi
(σj), ordi′,xi′

(σj)))
)

.

The last equivalence is a consequence of Lemma 3.17. Therefore, there is a word
accepted by every automaton iff this last Boolean expression is satisfiable. For
every i, i′ ∈ [k], j ∈ [s], the truth table of Ci,i′,j may be computed by evaluating
the four congruences. Since Ci,i′,j depends only on two variables, it is always
possible to obtain a 2-CNF. Moreover, the congruences are computable in loga-
rithmic space since the numbers implied are tiny. ⊓⊔

Theorem 3.19. 2–SAT ≤m
NC1 AutoInt1(

⋃2
Abelian groups with |Σ| = 1).

Proof. Let C(x) be the Boolean expression
∧k

i=1 Ci(x) over x1, . . . , xm where
Ci(x) = (xri ⊕ bi)∨ (xti ⊕ b′i) and bi, b

′
i ∈ {0, 1} indicate whether negation must

be taken or not.
It is possible to represent an assignment with an integer, assuming it is con-

gruent to 0 or 1 mod the m first primes p1, . . . , pm. The remainder of such an
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integer mod pi represents the value of the ith variable. Let

Ej = {w ∈ {a}
∗ : |w| ≡ 0 (mod pj) ∨ |w| ≡ 1 (mod pj)} ,

Xi = {w ∈ {a}
∗ : |w| ≡ ¬bi (mod pri) ∨ |w| ≡ ¬b

′
i (mod pti)} .

The language E1 ∩ · · · ∩ Em represents valid assignments and Xi represents
assignments satisfying Ci (but may contain invalid assignments, i.e. not congru-
ent to 0 or 1). The language Ej (resp. Xi) is recognized by the union of two
cyclic automata of size pj (resp. size pri and pti). It remains to point out that
(E1 ∩ · · · ∩ Em) ∩ (X1 ∩ · · · ∩Xk) 6= ∅ iff C is satisfiable. ⊓⊔

Corollary 3.20. AutoInt1(
⋃2

Tight abelian group automata) and AutoInt1(
⋃2

Abelian groups with |Σ| = 1) are NL-complete under ≤m
NC1reducibility.

Recall, that 2–⊕SAT is defined similarly to 2–SAT but with ⊕ operators
instead of ∨. It is L-complete under NC1 reducibility by [MC87] and [JLL76].

Theorem 3.21. AutoInt2(Tight abelian group automata) ≤m
log 2–⊕SAT.

Proof. We first note that an automaton with two final states may be replaced
with the union of two copies of the same automaton, each having one final state.
Thus, we may use the proof of Theorem 3.18. However, it remains to show that
it is possible to build an expression in 2-⊕CNF (instead of 2-CNF).

To achieve this, we first note that each letter σj has the same order in A[i, 0]
and A[i, 1] (according to Theorem 3.18 notation). We denote this common or-
der by ordi(σj). Therefore, there is a word accepted by every automaton iff
∧s

j=1

∧k
i=1

∧k
i′=1 Ci,i′,j(x) is satisfiable, where

Ci,i′,j(x) = (v[i, xi]j ≡ v[i′, xi′ ]j (mod gcd(ordi(σj), ordi′(σj)))) .

The truth table of Ci,i′,j may be computed as before by evaluating the four
congruences. However, in this case, the modulus is independent of x. Thus, it
can be shown that if three of these congruences are true, then all four are.
Therefore, Ci,i′,j can be written solely with the operators ⊕ and ∧ as illustrated
in Table 3. ⊓⊔

Table 3. Possible expressions for Ci,i′,j

True congruences Possible expressions

0 0

1 (xi,j ∧ xi′,j), (¬xi,j ∧ xi′,j), (xi,j ∧ ¬xi′,j), (¬xi,j ∧ ¬xi′,j)

2 xi,j ,¬xi,j , xi′,j ,¬xi′,j , (xi,j ⊕ xi′,j), (¬xi,j ⊕ xi′,j)

4 1
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Corollary 3.22. AutoInt2(Tight abelian group automata) and AutoInt2(Abelian
groups with |Σ| = 1) are L-complete under ≤m

NC1reducibility.

To complete the classification of the intersection problem over unary lan-
guages, we argue that it is NP-complete for three final states. A reduction from
Monotone 1–in–3 3–SAT [GJ79] may be obtained in a similar fashion to The-
orem 3.19. For each clause (x1 ∨ x2 ∨ x3) we build an automaton with p1p2p3
states (and three final states) accepting words w ∈ {a}∗ such that

(|w| mod p1, |w| mod p2, |w| mod p3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Theorem 3.23. AutoInt3(Tight abelian group automata) and AutoInt3(Abelian
groups with |Σ| = 1) are NP-complete under ≤m

AC0reducibility.

4 Some Observations on Commutative and Idempotent

Monoids

Here we briefly examine the PS problem for monoids (instead of groups). Re-
call that a monoid is idempotent iff x2 = x holds for every element x. We
first notice that both PS(Idempotent monoids) and PS(Commutative monoids)
are NP-complete. This follows from Propositions 2.2 and 2.3, since their Memb

counterparts are NP-complete [Bea88a,Bea88b,BMT92].

Proposition 4.1 ([Bea88a,Bea88b,BMT92]). PS(Idempotent monoids) and
PS(Commutative monoids) are NP-complete under ≤m

AC0reducibility, even for
one final state.

The point-spread problem becomes efficiently solvable when restricted to the
variety J1 of idempotent commutative monoids.

Theorem 4.2. PS1(J1) ∈ AC0.

Proof. We use the technique of [BMT92], for solving Memb(J1), based on the
so-called maximal alphabet of a transformation. However, we have to be careful
since we are dealing with a partially defined transformation. LetG = {g1, . . . , gk}
and let bi be the unique element of Si. Let A = {g ∈ G : bi

g = bi ∀i ∈ [r]} and
a =

∏

g∈A g. Suppose there exists f ∈ 〈G〉 such that if = bi for every i ∈ [r].

We first notice that iaf = if for every i ∈ [r]. Indeed, iaf = ifa = bai = bi = if .

Moreover, we have hj ∈ A for any hj appearing in f = h1 · · ·hl, since b
hj

i =
ifhj = if = bi for every i ∈ [r]. Thus, iaf = ia(h1···hl) = ia for every i ∈ [r].
Therefore ia = iaf = if = bi for every i ∈ [r]. We conclude that there exists
f ∈ 〈G〉 such that if = bi for every i ∈ [r] iff ia = bi for every i ∈ [r]. This last
test can be carried out easily. ⊓⊔

Since J1 is not contained in the variety of 2-elementary abelian groups, we
obtain the following proposition from Theorem 3.15 and Proposition 4.1.

Proposition 4.3. PS2(J1) and PS3(J1) are NP-complete under ≤m
AC0reducibi-

lity.
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5 Conclusion and Further Work

This paper raises the issue of limiting the number of accepting states in the
automata intersection nonemptiness problem. Limiting that number to fewer
than 3 seemed of particular interest because exactly 3 was known to yield NP-
completeness in such simple cases as when the automata involved are direct
products of cyclic groups of order 2 [Bea88b].

To within the usual hypotheses concerning complexity classes, we completely
resolve the complexity of the problem when the number of final states is at most
two: the problem is then ⊕L-complete or NP-complete, depending on whether no
nontrivial monoid other then a direct product of cyclic groups of order 2 occurs.
We find interesting, for example, that intersecting two-final-state automata that
are direct products of cyclic groups of order 3 is already NP-complete, rather
than Mod3L-complete as we might have expected.

When the number of final states is one, the complexity of the intersection
problem naturally bears a close relationship with the complexity of the mem-
bership problem in transformation monoids. The membership problem indeed
≤m

AC0 -reduces to the intersection problem (Proposition 2.2) and we show that
the case of elementary abelian p-groups is ModpL-complete, while the cases of
groups and commutative idempotent monoids respectively belong to NC and
to AC0. More generally (Proposition 2.3), any pseudovariety for which mem-
bership is NP-complete (resp. PSPACE-complete) has a NP-complete (resp.
PSPACE-complete) one-final-state intersection problem. A wealth of such cases
are known [BMT92], implying, for example, NP-completeness for aperiodic com-
mutative monoids of threshold two and aperiodic monoids of threshold one, and
implying PSPACE-completeness for all aperiodic monoids. We leave open the
question of one final state for aperiodic automata whose membership problem
lies in the P-complete and NP-hard regions of [BMT92, Fig. 1].

Finally, by restricting the alphabet and relaxing the problem definition, we
have identified NL-complete instances of the intersection problem. Here we leave
open the questions of the complexity of PS1(

⋃2
Elementary abelian 2-groups)

and of AutoInt2 when |Σ| is a constant (e.g. Σ = {0, 1}).
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