
A Note On the Hierarchy of One-way

Data-Independent Multi-Head Finite Automata

Pavol Ďurǐs 1

Department of Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University
Mlynská dolina

842 48 Bratislava
Slovakia

Abstract In this paper we deal with one-way multi-head data-independent
finite automata. A k-head finite automaton A is data-independent, if the
position of every head i after step t in the computation on an input w is a
function that depends only on the length of the input w, on i and on t (i.e.
the trajectories of heads must be the same on the inputs of the same length).
It is known that k(k + 1)/2 + 4 heads are better than k for one-way k-head
data-independent finite automata. We improve here this result by showing
that 2k + 2 heads are better than

√
2k heads for such automata.

Keywords: computational power, one-way multihead automata, data-independent
automata

1This work was supported by Slovak Grant Agency for Science (VEGA) under contract
#1/0726/09 ”Algorithmics and Complexity Aspects of Information Processing”.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 92 (2012)

1 Introduction

In [1], [2], Holzer investigates data-independent multi-head finite automata.
A k-head finite automaton A is data-independent, if the position of every
head i after step t in the computation on an input w is a function fA(|w|, i, t)
(i.e. the trajectories of heads must be the same on the inputs of the same
length). One can show for one-way as well as for two-way data-independent
k-head finite automata, that determinism is as powerful as nondeterminism
for such automata [2], [1], since the only nondeterminism left in the k-head
nondeterministic data-independent finite automata is the way in which the
next state is chosen. It is also known that k + 1 heads are more powerful
than k for two-way data-independent finite automata [3]. This result follows
from an analogical result for deterministic two-way k-head finite automata
that holds for unary languages [4]; one has to realize that each deterministic
two-way k-head finite automaton behaves on unary inputs as a deterministic
data-independent two-way k-head finite automaton.

Surprisingly, it is unknown how strict is the one-way k-head hierarchy for
data-independent finite automata. In [3] it is shown that k(k+1)/2+4 heads
are better than k for one-way k-head data-independent finite automata. We
improve here this result by showing that 2k +2 heads are better than b√2kc
heads for such automata.

Note that it is also known that k + 1 heads are more powerful than k for
one-way k-head finite automata [5].

More results on multi-head data-independent finite automata can be
found in [3], and [1], where also some results on such nonuniform automata
are presented.

2 Preliminaries

By |S| we denote cardinality of a set S and by |x| we denote the length of a
string x.

A k-head finite automaton A is data-independent, if the position of every
head i after step t in the computation on an input w is a function fA(|w|, i, t)
(i.e. the trajectories of heads must be the same on the inputs of the same
length).

For k ≥ 1 let k-DiDFA denote deterministic data-independent finite au-

1

tomaton with k one-way input heads. We assume that the input is augmented
with two endmarkers $ (one at the beginning and the second one at the end
of the input), and each head scans the left endmarker at the beginning of the
computation.

Let A be a k-DiDFA. A configuration of A is (k+1)-tuple (p1, p2, . . . , pk, q),
where pi is the position of the i-th head from the left-end of the input tape,
and q denotes the current state.

By L(k-DiDFA) we denote the family of languages accepted by k-DiDFAs.

3 Results

Yao and Rivest show in [5] that for every k ≥ 1 there is a language Rk that
can be recognized by a one-way (k + 1)-head deterministic finite automaton,
but it cannot be recognized by any one-way k-head nondeterministic finite
automaton. Being inspired by this result, Holzer, Kutrib and Malcher show
the following result in [3].

Theorem 1 [3]. Let k ≥ 2. Then L(k-DiDFA)⊂ L((k(k+1)/2+4)-DiDFA).

Here we improve this result by showing that 2k +2 heads are better than
b√2kc heads for one-way data-independent finite automata. To do so, we
need to define a language Lk for every k ≥ 1.

Before defining Lk, let us consider the following simple example with the
four strings w0, w1, w2 and w3: Let w1 = 100111010, w2 = 001011101 and
w3 = 111010001, and let

w0 =




100111010
001011101
111010001


 .

To encode w0 with 3 tracks, formally, we can use an alphabet with 23 = 8
symbols; hence, |w0| = 9 = |w1| = |w2| = |w3| . In such a case, we say that
the i-th track of w0 is wi for i = 1, 2, 3. We generalize this idea to define Lk

as follows.
For each integer k ≥ 1, let Σk be an alphabet with |Σk| = 2k2

and
Σk ∩ {0, 1} = Ø, and let Lk be the language (over the alphabet Σk ∪ {0, 1})
containing all strings w of the form w = w0w1w2 . . . wk2 , where |w0| = |wi|

2

and wi ∈ {0, 1}∗ for i = 1, 2, . . . , k2, w0 ∈ Σ∗
k and the i-th track of w0 is wi

for i = 1, 2, . . . , k2.

Theorem 2. Let k ≥ 1. Then Lk ∈ L((2k + 2)-DiDFA)

Proof. Lk can be accepted by a (2k+2)-DiDFA B, that recognizes the inputs
in phases starting by a preparing phase, which is followed by k comparing
phases.

During the preparing phase, the (2k +2)th head of B traverses the whole
input w by the maximal speed, (i.e. it moves to the right at every step).
This phase ends, when this head enters the right endmarker. This head also
checks whether |w| = (1+k2)m for some nonnegative integer m. If not, then
B reject the input. Now assume that |w| = (1 + k2)m for some m, and let
w = w0w1 . . . wk2 , where |wi| = m for each i. In such a case, the preparing
phase takes (1 + k2)m + 1 steps. Moreover, the first k heads are distributed
so that the first, the second, the third,..., the kth head enters w1, wk+1,
w2k+1,..., w(k−1)k+1, respectively, at the end of this phase. Such distribution
can be performed, if the ith head (1 ≤ i ≤ k) crosses (i− 1)k + 1 tape cells
during every 1 + k2 steps, and hence, it crosses the prefix w0w1 . . . w(i−1)k

during (1 + k2)m + 1 steps of this phase. By some technical reasons, the
(2k + 1)th head moves by the same way as the first one during this phase.

During the first comparing phase, the (2k + 1)th head crosses the whole
suffix w1w2 . . . wk2 by the maximal speed, and this phase ends, when this
head enters the right endmarker. This phase takes k2m steps. Moreover, the
ith head (1 ≤ i ≤ k) traverses the string w(i−1)k+1 and the (k + 1)th head
traverses w0 by the same speed crossing exactly one tape cell during every
k2 steps. Hence, each head moving by such speed crosses only one wl during
this phase. This enables B to compare the string w(i−1)k+1 (traversed by
the ith head) with the corresponding track of w0 (traversed by the (k + 1)th
head) for each i with 1 ≤ i ≤ k.

The jth comparing phase, (2 ≤ j ≤ k), is very similar to the first com-
paring phase with the exception that the (2k + 1)th and the (k + 1)th head
are replaced by the (k + j − 1)th and by the (k + j)th head, respectively.
Note that, the ith head (1 ≤ i ≤ k) traverses w(i−1)k+j and the (k + j)th
head traverses w0 during this phase. 2

Theorem 3. Let k ≥ 1. Then Lk 6∈ L(l-DiDFA), if

(
l
2

)
< k2.

3

Our proof imitates Yao and Riverst’s proof that a certain language can-
not be accepted by any one-way k-head finite automaton [5]. Using some
counting arguments and the assumption that our automaton, (that should
recognize Lk), has only l heads, where l(l − 1)/2 < k2, we will show that
there are two different strings w̄ = z1δ̄

s
0z2δ̄

s
rz3 and w̃ = z1δ̃

s
0z2δ̃

s
rz3 in Lk with

the same pattern of behavior of heads during the corresponding accepting
computations. Moreover, δ̄s

0 and δ̄s
r (and δ̃s

0 and δ̃s
r) are never scanned simul-

taneously during the corresponding accepting computations. This will enable
us to show that the mixed string ŵ = z1δ̄

s
0z2δ̃

s
rz3, which is not in Lk, will be

accepted. (Note that our proof does not use the fact that our automaton is
data-independent one, and hence, we have that Lk cannot be recognized by
any one-way l-head finite automaton with l(l − 1)/2 < k2.)

Proof. Assume to the contrary that there is a l-DiDFA A accepting Lk,
where (

l
2

)
< k2. (1)

Let

d =

(
l
2

)
k2 + 1. (2)

Let Q be set of states of A. Choose n so that the following inequality
holds.

(|Q|((k2 + 1)dn + 2)l)2l+3 < 2n/(k2d). (3)

Let Ln
k be the language containing all the strings of the length (k2 + 1)dn

from Lk. Clearly, each string w in Ln
k can be written in the form w =

w0w1w2 . . . wk2 , where each wi = δ1
i δ

2
i δ

3
i . . . δd

i for some δj
i ’s, and |δj

i | = n for
every i = 0, 1, 2, . . . , k2 and j = 1, 2, 3, . . . , d.

Let w be any string from Ln
k with the corresponding substrings δj

i ’s as
above, and let u and v be any two heads of A and let (i, j) be any ordered
pair of two integers with 1 ≤ i ≤ k2 and 1 ≤ j ≤ d. We will say that the
ordered pair (u, v) of heads of A covers the ordered pair (i, j) of integers in
the computation of A on w, if there is a time step t of that computation at
which the head u scans the string δj

0 and at which the head v scans the string
δj
i . (For convenience we use the notion pair instead of ordered pair in the

rest of this proof.)
Now our aim is to prove the following lemma.

4

Lemma 1. For each w in Ln
k there is a pair (p, q) of integers (with 1 ≤ p ≤ k2

and 1 ≤ q ≤ d) which is not covered by any pair of heads in the computation
of A on w, (i.e. the substrings δq

0 and δq
p of w are never scanned simultaneously

during the computation of A on w).

Proof. Let w be any string from Ln
k with the corresponding substrings wi’s

and δj
i ’s as above. Let (u, v) be any pair of heads of A and let hu,v denote the

number of pairs of integers (i, j) covered by the pair (u, v) in the computation
of A on w.

Firstly, we will show that hu,v ≤ d + k2, (i.e. the pair (u, v) of heads can
cover at most d + k2 pairs (i, j) of integers in the computation of A on w).
For every i = 1, 2, 3, . . . , k2, let Bi be the set of integers j with 1 ≤ j ≤ d
such that (u, v) covers (i, j) in the computation of A on w. One can easily
observe that

hu,v =
k2∑

i=1

|Bi|. (4)

Now assume that Bm 6= Ø and Bm′ 6= Ø for some m,m′ with 1 ≤ m < m′ ≤
k2, and assume that j ∈ Bm and j′ ∈ Bm′ for some j, j′ with 1 ≤ j, j′ ≤ d.
This means that there are time steps t and t′ of the computation of A on w
such that the head u scans δj

0 and the head v scans δj
m at the time t, and

similarly, the head u scans δj′
0 and the head v scans δj′

m′ at the time t′. Since
1 ≤ m < m′ ≤ k2 (see the assumption above), we can write w in the form

w = w0x1δ
j
mx2δ

j′
m′x3 for some strings x1, x2, x3. Moreover, v is the one-way

head, and therefore v cannot enter δj′
m′ before leaving δj

m. Thus, t < t′. This

means that j ≤ j′, since otherwise w0 would be of the form w0 = y1δ
j′
0 y2δ

j
0y3

for some strings y1, y2, y3, but it would contradict the fact above that the
one-way head u scans δj

0 at the time t and u scans δj′
0 at the time t′, where

t < t′. The fact j ≤ j′ shown above yields that

max Bm ≤ min Bm′ for 1 ≤ m < m′ ≤ k2 with Bm 6= Ø 6= Bm′ . (5)

For every i = 1, 2, 3, . . . , k2, let Di be set obtained from Bi by deleting the
maximal element from Bi, if Bi 6= Ø, and Di := Ø, if Bi = Ø. Clearly,

|Bi| ≤ |Di|+ 1 for every i = 1, 2, 3, . . . , k2. (6)

5

By (5) and by the construction of Di’s above, we have that

Dm ∩Dm′ = Ø for 1 ≤ m < m′ ≤ k2. (7)

By (4), (6), (7), and by the fact that Di ⊆ Bi ⊆ {1, 2, 3, . . . , d}, for i =
1, 2, . . . , k2, (see above), we have that

hu,v =
k2∑

i=1

|Bi| ≤
k2∑

i=1

|Di|+ k2 = |
k2⋃

i=1

Di|+ k2 ≤ d + k2. (8)

Now we are ready to find the desired pair (p, q) of integers for w as follows.
Let tu [let tv] be the time step of the computation of A on w at which the
head u [the head v] enters the substring w1 of w. If tu < tv, then there is
no time step of the computation of A on w, at which u scans some δj

0 with
1 ≤ j ≤ d (i.e. u scans the substring w0) and at which v scans some δj

i

with 1 ≤ i ≤ k2 (i.e. v scans the substring w1w2 . . . wk2), since both heads
u and v scan $w0 before time tu, u scans the substring w1w2 . . . wk2$ and v
scans $w0 during the time interval < tu, tv − 1 >, and both heads u and v
scan the substring w1w2 . . . wk2$ from the time tv. It means that hu,v = 0,
if tu < tv. Similarly, hv,u = 0, if tu > tv, and hu,v = hv,u = 0, if tu = tv.
Moreover, hu,v = 0, if u = v, since the same head cannot scan the substring
w0 and also the substring w1w2 . . . wk2 at the same time. These results yield

that the number of hu,v’s with hu,v > 0 is at most

(
l
2

)
. Consequently, the

number of all pairs (i, j) of integers covered by all pairs of heads of A in the

computation of A on w is at most

(
l
2

)
(d + k2), see (8). But the number

of all (i, j)’s with 1 ≤ i ≤ k2 and 1 ≤ j ≤ d is

k2d >

(
l
2

)
(d + k2), (9)

by (1) and (2). Thus, (9) guarantees the existence of the desired pair (p, q)
of integers, which is not covered by any pair of heads in the computation of
A on w. 2

Now our aim is to find the strings w̄ and w̃ mentioned above in the idea
of the proof. We use some counting arguments to find them. Then we derive

6

a contradiction by showing that a mixed string ŵ 6∈ Lk, constructed from w̄
and w̃, will be accepted by A.

For each pair of integers (p, q) with 1 ≤ p ≤ k2 and 1 ≤ q ≤ d, let Sp,q

be the set of all strings in Ln
k such that the pair (p, q) is not covered by any

pair of heads in the corresponding computations of A on these strings. Since
the number of such pairs (p, q) is k2d, since |Ln

k | = 2k2dn, (each wi with i ≥ 1
can be chosen arbitrarily and w0 is determined by w1, w2, . . . , wk2), and since
each w in Ln

k belongs to some Sp,q, (by Lemma 1), then there is a pair (r, s)
of integers with

2k2dn/(k2d) = |Ln
k |/(k2d) ≤ |Sr,s|. (10)

Let w be any string in Sr,s with the corresponding substrings δj
j ’s as above.

Consider the sequence of configurations in the accepting computation of A
on w:

C0 ` C1 ` · · · ` Ct.
An occurrence of Ci is said to be important for w, it at this step any head

enters δs
0 or δs

r . Let Ci1 , Ci2 , . . . , Cig be the sequence of all configurations in
the sequence above, that are important for w, let Ci0 = C0 and let Cig+1

be the accepting configuration in the sequence above. We will say that the
sequence Ci0 , Ci1 , Ci2 , . . . , Cig , Cig+1 is a profile of w. Since each head of A
can enter δs

0 [can enter δs
r] during the computation of A on w at most one

time, then we have g ≤ 2l. Thus the number of all different profiles of all
strings in Sr,s is at most (|Q|((k2 + 1)dn + 2)l)2l+3 and by (3), it is less than
2n/(k2d).

Let w be any string in Sr,s, where w = w0w1 . . . wk2 , wi = δ1
i δ

2
i . . . δd

i and
|δj

i | = n for i = 0, 1, 2, . . . , k2 and j = 1, 2, . . . , d. Let the (r, s) deletion
of the string w be the string obtained from w by deleting δs

0 and δs
r from

it. Thus each string w in Sr,s can be written in the form w = z1δ
s
0z2δ

s
rz3,

where z1z2z3 is the corresponding (r, s) deletion of w. The number of distinct
(r, s) deletions of all strings in Ln

k is 2(k2d−1)n, since each δj
i with i ≥ 1 (with

the exception for δs
r) can be chosen arbitrarily and each δj

0 with j 6= s is
determined by the substrings δj

1, δ
j
2, . . . , δ

j
k2 being chosen arbitrarily. Sine

Sr,s ⊆ Ln
k , then the number of distinct (r, s) deletions of all strings in Sr,s is

at most 2(k2d−1)n.
By (10), by the fact that the number of all different profiles of all strings

in Sr,s is less than 2n/(k2d) (see above), and by the fact that the number of
distinct (r, s) deletions of all strings in Sr,s is at most 2(k2d−1)n, (see above), we

7

have that there are two different strings w̄ = z1δ̄
s
0z2δ̄

s
rz3 and w̃ = z1δ̃

s
0z2δ̃

s
rz3 in

Sr,s (for some z1, z2, z3, δ̄
s
0, δ̄

s
r , δ̃

s
0, δ̃

s
r) with the same (r, s) deletion z1z2z3 and

with the same profile Ci0 , Ci1 , . . . , Cig+1 (for some g and some configurations

Ci0 , Ci1 , . . . , Cig , Cig+1). One can easily observe, that δ̄s
0 6= δ̃s

0 and δ̄s
r 6= δ̃s

r ,
since w̄ 6= w̃, w̄, w̃ ∈ Sr,s ⊆ Ln

k ⊆ Lk, and since w̄, w̃ have the same (r, s)
deletion z1z2z3. Hence, ŵ = z1δ̄

s
0z2δ̃

s
rz3 6∈ Lk.

We derive a contradiction by showing that A must accept ŵ. To do so
we will prove that there is a computation of A on ŵ from Cij , Cij+1

for every
j = 0, 1, 2, . . . , g. Let us consider the following two cases.

Case 1. No head scans δ̄s
0 when A is in Cij on the input w̄. Clearly, no

head scans δ̃s
0 when A is in Cij on the input w̃, since w̄ and w̃ are identical

strings with exception for the corresponding substrings δ̄s
0 6= δ̃s

0 and δ̄s
r 6= δ̃s

r

of the same length n. Since Ci1 , Ci2 , . . . , Cig are all the configurations that
are important for w̃ (recall that the sequence Ci0 , Ci1 , . . . , Cig+1 is the profile

of w̃, see above), and since no head scans δ̃s
0 when A is in Cij on the input

w̃ (see above), then no head enters δ̃s
0, and hence, no head scans δ̃s

0 during
the computation of A on w̃ from Cij to Cij+1

(with possible exception for
the configuration Cij+1

). It means that there is a computation of A on ŵ
from Cij to Cij+1

during which A behaves exactly as it does on w̃, since w̃
and ŵ are identical strings with exception for the corresponding unscanned
substrings δ̃s

0 and δ̄s
0 of the same length n.

Case 2. No head scans δ̄s
r when A is in Cij on the input w̄. The proof in

this case is similar to the proof in the Case 1, but somewhat simpler, since
we do not consider the string w̃ at all. Note that the roles of δ̃s

0 and δ̄s
0 play

δ̄s
r and δ̃s

r in this case.

Since δ̄s
0 and δ̄s

r are never scanned simultaneously during the computation
of A on w̄ (see the selection of r and s above), then the assumption of the
Case 1 or the assumption of the Case 2 is satisfied for every i = 0, 1, . . . , g.
This completes the proof of the Theorem 3. 2

Theorem 2, Theorem 3 and the inequality

(
b√2kc

2

)
< k2

yield the following result.

Corollary 1. Let k ≥ 1. Then L((b(√2kc)-DiDFA) ⊂ L((2k + 2)-DiDFA).

8

References

[1] Holzer, M.: Multi-head finite automata: data-independent versus data-
dependent computations, Theoretical Computer Science, 286(2002), 97-
116.

[2] Holzer, M.: Data-independent versus data-dependent computations on
multi-head automata, Doctoral Thesis, Universität Tübingen, 1998.

[3] Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite au-
tomata: Origins and directions, Theoretical Computer Science, 412(2011),
83-96.

[4] Monien, B.: Two-way multihead automata over a one-letter alphabet,
RAIRO Inform. Théor., 14(1980), 67-82.

[5] Yao, A. C., Rivest, R.: k+1 heads are better than k, Journal of the ACM,
25(2), (1978), 337-340.

9

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

