
Testing Permanent Oracles – Revisited

Sanjeev Arora∗ Arnab Bhattacharyya† Rajsekar Manokaran∗ Sushant Sachdeva∗

Abstract

Suppose we are given an oracle that claims to approximate the permanent for most matrices
X, where X is chosen from the Gaussian ensemble (the matrix entries are i.i.d. univariate
complex Gaussians). Can we test that the oracle satisfies this claim? This paper gives a
polynomial-time algorithm for the task.

The oracle-testing problem is of interest because a recent paper of Aaronson and Arkhipov
showed that if there is a polynomial-time algorithm for simulating boson-boson interactions in
quantum mechanics, then an approximation oracle for the permanent (of the type described
above) exists in BPPNP. Since computing the permanent of even 0/1 matrices is #P-complete,
this seems to demonstrate more computational power in quantum mechanics than Shor’s factor-
ing algorithm does. However, unlike factoring, which is in NP, it was unclear previously how to
test the correctness of an approximation oracle for the permanent, and this is the contribution
of the paper.

The technical difficulty overcome here is that univariate polynomial self-correction, which
underlies similar oracle-testing algorithms for permanent over finite fields —and whose discovery
led to a revolution in complexity theory—does not seem to generalize to complex (or even,
real) numbers. We believe that this tester will motivate further progress on understanding the
permanent of Gaussian matrices.

1 Introduction

The permanent of an n-by-n matrix X = (xi,j) is defined as

Per(X) =
∑

π

n∏

i=1

xi,π(i),

where π ranges over all permutations from [n] to [n]. A recent paper of Aaronson and Arkhipov
[AA11] (henceforth referred to as AA) introduced a surprising connection between quantum com-
puting and the complexity of computing the permanent (which is well-known to be #P-complete
to compute in the worst case [Val79]). They define and study a formal model of quantum compu-
tation with non-interacting bosons in which n bosons pass through a “circuit” consisting of optical
elements. Each boson starts out in one of m different phases and, at the end of the experiment,

∗Princeton University, Computer Science Department and Center for Computational Intractability. This
work is supported by the NSF grants CCF-0832797 and CCF-1117309. Email: {arora,rajsekar,sachdeva}
@cs.princeton.edu.

†Princeton University, Computer Science Department and Center for Computational Intractability. This work is
supported by NSF Grants CCF-0832797, 0830673, and 0528414. Email: arnabb@cs.princeton.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 94 (2012)

the system is in a superposition of the basis states—one for each possible partition of the n bosons
into m phases.

AA proceed to show that if there is an efficient classical randomized algorithm A that simulates
the experiment, in the sense of being able to output random samples from the final distribution
(up to a small error in total variation distance) of the Bosonic states at the end of the experiment,
then there is a way to design an approximation algorithm B in BPPNP for the permanent problem
for an interesting family of random matrices. The random matrices are drawn from the Gaussian
ensemble—each entry is an independent standard Gaussian complex number—and the algorithm
computes an additive approximation, in the sense that,

|B(X)− Per(X)|2 6 δ2n! , (1)

for at least a fraction 1 − η of the input matrices X. (Note that the variance of Per(X) is n! for
Gaussian ensembles, so this approximation is nontrivial.) The running time of B is poly(n, 1/δ, 1/η)

with access to an oracle in NPA. In other words, B ∈ BPPNP
A

for η, δ = Ω(1/poly(n)) (refer to
Problem 2 and Theorem 3 in [AA11]). The authors go on to conjecture that obtaining an additive
approximation as in eq. (1) is #P-hard (this follows from Conjectures 5 and 6, and Theorem 7 in
[AA11]). If true, this conjecture has surprising implications for the computational power of quantum
systems. By contrast, the crown jewel of quantum computing, Shor’s algorithm [Sho94], implies
that the ability to simulate quantum systems would allow us to factor integers in polynomial time,
but factoring (as well as other problems known to be in BQP) is not even known to be NP-Hard.

As evidence for their conjecture, Arkhipov and Aaronson point to related facts about the per-
manent problem for matrices over integers and finite fields. It is known that that if there is a
constant factor approximation algorithm for computing Per(X) where X is an arbitrary matrix of
integers, then one can solve #P problems in polynomial time. Thus, approximation on all inputs
seems difficult1. Likewise, starting with a paper of Lipton, researchers have studied the complex-
ity of computing the permanent (exactly) for many matrices. For example, given an algorithm
that computes the permanent exactly for 1/poly(n) fraction of all matrices X over a finite field
GF (p) (where p is a sufficiently large prime), one can use self-correction procedures for univariate
polynomials [GLR+91, GS92, CPS99] to again obtain efficient randomized algorithms for #P-hard
problems.

Thus, either restriction —approximation on all matrices, or the ability to compute exactly on
a significant fraction of matrices— individually results in a #P-hard problem. What makes the
AA conjecture interesting is that it involves the conjunction of the two restrictions: the oracle in
question approximates the value of the permanent for most matrices.

The focus of the current paper is the following question: given an additive approximation oracle
for permanents of Gaussian matrices (B in eq. (1) above), how can we test that the oracle is
correct? We want a tester that accepts with high probability when B satisfies the condition in
eq. (1) and rejects with high probability when B does not approximate well on a substantial fraction
of inputs. Note that the testing problem is a non-issue for previous quantum algorithms such as
Shor’s algorithm, since the correctness of a factoring algorithm is easy to test.

The testing question has been studied for the permanent problem over finite fields. Given an
oracle that supposedly computes Per(·) for even, say, 3/4th of the matrices over GF (p), one can verify
this claim using self-correction for polynomials over finite fields and the downward self-reducibility

1Note that approximating the permanent is known to be feasible for the special case of non-negative real matrices
[Bro86, JS89, JSV04].

2

of Per(·), as described below in more detail in Section 1.1. (In fact, if the oracle satisfies the claim,
then one can compute Per(·) on all matrices with high probability.) However, as noted in AA, these
techniques that work over finite fields fail badly over the complex numbers. The authors in AA also
seem to suggest that techniques analogous to self-correction and downward self-reducibility can be
generalized to complex numbers in some way, but this remains open.

In this paper, we solve the testing problem using downward self-reducibility alone. Perhaps
this gives some weak evidence for the truth of the AA conjecture. Note that since we lack self-
correction techniques, we do not get an oracle at the end that computes the permanent for all
matrices as in the finite field case. Incidentally, an argument similar to the one presented in this
paper works in the finite field case also, giving an alternate tester for the permanent that does not
use self-correction of polynomials over finite fields.

1.1 Related Work

As mentioned above, testing an oracle for the permanent over finite fields has been extensively
studied. The approach, basically arising from [LFKN92], uses self-correction of polynomials over
finite fields and downward self-reducibility of the permanent. Let us revisit the argument.

Suppose we are given a sequence of oracles {Ok}k , where for each k, Ok allegedly computes
the permanent for a 9/10 fraction of all k-by-k matrices over the field. The argument proceeds by
first applying a self-correction procedure for low-degree polynomials (see [GS92]), noting that the
permanent is a k-degree multilinear polynomial in the k2 entries of the matrix, treated as variables.

The correction procedure, on input X, queries Ok at poly(n) points, and outputs the correct
value of Per(X) with 1 − exp(−n) probability (over the coin tosses of the procedure). Thus, the
procedure acts as a proxy for the oracle, providing {O⋆

k}k which can now be tested for mutual
consistency using the downward self-reducibility of the permanent:

Per(X) =
∑

jx1,j · Per(Xj). (2)

Here, Xj is the submatrix formed by removing the first row and jth column. Finally, since O1 can
be verified by direct computation, this procedure tests and accepts sequences where Ok computes
the permanent of a fraction 9/10 of all k × k matrices; while rejecting sequences of oracles where
for some k, Ok(X) 6= Perk(X) on more than, say a fraction 3/10, of the inputs.

A natural attempt to port this argument to real/complex gaussian matrices runs into fatal
issues with the self-correction procedures: since the oracles are only required to approximate the
value of the permanent, a polynomial interpolation procedure incurs an exponential (in the degree)
blow-up in the error at the point of interest (see [AK03]). In our work, we circumvent polynomial
interpolation and only deal with self-reducibility, noting that eq. (2) expresses the permanent as a
linear function of permanent of smaller matrices.

1.2 Overview of the Tester

We work with the following notion of quality of an oracle, naturally inspired by the AA conjecture:
the approximation guarantee achieved by the oracle on all but a small fraction of the inputs.

Definition 1.1. For an integer n, an oracle On : C
n×n → C, is said to be (δ, η)-good, if, an

n × n matrix X sampled from the Gaussian ensemble satisfies |On(X)− Pern(X)|2 6 δ2n! , with
probability at least 1− η over the sample.

3

Note that since the tester is required to be efficient, we (necessarily) allow even good oracles
to answer arbitrarily on a small fraction of inputs, because the tester will not encounter these
bad inputs with high probability. As an aside, there is also the issue of additive vs multiplicative
approximation, which AA conjecture have similar complexity. In this paper, we stick with additive
approximation as defined above.

Our main result is stated informally below (see Theorem 3.1 for a precise statement).

Theorem 1.2 (Main theorem – informal). There exists an algorithm A that, given a positive integer
n, an error parameter2 δ > 1/poly(n), and access to oracles {Ok}16k6n such that Ok : Ck2 → C, has
the following behavior:

– If for every k 6 n, the oracle Ok is (δ, 1/poly(n))-good, then A accepts with probability at least
1− 1/poly(n).

– If there exists a k 6 n such that the oracle Ok is not even (poly(n) · δ, 1/poly(n))-good, then A
rejects with probability at least 1− 1/poly(n).

– The query complexity as well as the time complexity of A is poly(n/δ).

We conduct the test in n stages, one stage for each submatrix size. Let k 6 n denote a fixed
stage, and let X ∈ C

k2 . Now, using downward self-reducibility (eq. (2)), we have,

|Ok(X)− Perk(X)| 6
∣
∣
∣Ok(X)−∑

jxjOk−1(Xj)
∣
∣
∣

︸ ︷︷ ︸

(A)

+
∣
∣
∣
∑

jxj [Ok−1(Xj)− Perk−1(Xj)]
∣
∣
∣

︸ ︷︷ ︸

(B)

. (3)

Recall that Xj is the submatrix formed by removing the first row and jth column (often referred
to as a minor).

We bound term (A) above, by checking if Ok is a linear function in the variables along the
first row (xj in above), when the rest of the entries of the matrix are fixed; the coefficients of
the linear function are determined by querying Ok−1 on the k minors along the first row. The
tolerance needed in the test is estimated as follows: a good collection of oracles estimates Perk−1

up to δ
√

(k − 1)!, and Perk up to δ
√
k! additive error. Further, since the expression is identically

zero for the permanent function, we have:

(A) 6 |Ok(X)− Perk(X)|+
∣
∣
∣
∑

jxj (Ok−1(Xj)− Perk−1(Xk))
∣
∣
∣

6 δ
√
k! +

∣
∣
∣
∑

jxjδ
√

(k − 1)!
∣
∣
∣ 6 δ

√
k! · (1 +O(

√

log n)),

where the last inequality follows from standard Gaussian tail bounds.
We test this by simply querying the oracles for random X and the minors obtained thereof and

checking if the downward self-reducibility condition is approximately met.
The second term, term (B), is linear in the error Ok−1 makes on the minors, say εk−1

√

(k − 1)!
on each minor. A naive argument as above says term (B) is at most εk−1

√
k! · Θ(

√
logn). From

this and eq. (3), the error in Ok is at most a Θ(
√
logn) factor times the error in Ok−1. However,

this bound is too weak to conclude anything useful about On.

2All of the poly(·) are fixed polynomials, hidden for clarity

4

We overcome this issue by measuring the error in a root-mean-square (RMS or ℓ2) sense as
follows:

err2(Ok) =

√

E
X
[Ok(X)− Perk(X)]2 = ‖Ok − Perk‖2.

Now,

‖Ok − Perk‖2 6 ‖Ok −
∑

jxjOk−1(Xj)‖2 +
√

E
[
∑

jxj(Ok−1 − Perk−1)
]2
.

The first term is still δ
√
k! · O(

√
log n) assuming the linearity test passes. Since each xi is an

independent standard Gaussian, the second term is at most
√
k · err2(Ok−1) = εk−1 ·

√
k!. Then,

err2(Ok) 6 (δ
√
log n+εk−1) ·

√
k!, and thus err2(On) is at most poly(n)δ

√
n! as we set out to prove!

The caveat however is that err2 as defined cannot be bounded precisely because we necessarily
need to discount a small fraction of the inputs: the oracles could be returning arbitrary values on
a small fraction, outside the purview of any efficient tester. We deal with this by using a more
sophisticated RMS error that discounts an η-fraction of the input:

err2,η(Ok) = inf
S:µ(S)6η

√

E
X
[1s(Ok(X)− Perk(X))]2,

where 1S denotes the indicator function of the set S. We then use a tail inequality on the permanent
based on its fourth moment to carry through the inductive argument set up above. This requires a
Tail Test on the oracles to check that the oracles have a tail similar to the permanent. Our analysis
shows that the Linearity and Tail test we design are sufficient and efficient, proving Theorem 1.2.

Organization. In the next section, we set up the notation. Section 3 describes the test we design
and follows it up with its analysis.

2 Preliminaries

Notation and Setup. We deal with complex valued functions on the space of square matrices
over the complex numbers, Ck×k for some integer k. We assume Ck×k is endowed with the standard
Gaussian measure N (0, 1)k×k

C
. We use the notation PX [E] to denote the probability of an event E,

when X ∼ N (0, 1)k×k
C

. We denote by EX [Y] to denote the expectation of the random variable Y,

when X ∼ N (0, 1)k×k
C

.
Functions from C

d to {0, 1} are called indicator functions (since they indicate inclusion in the
set of points where the function’s value is 1). We denote the indicator function for a predicate q(X)
by I[q(X)] and define it to be 1 when q(X) is true and 0 otherwise. For example, I[|x| > 2] is 1 for
all x whose magnitude is at least 2, and 0 otherwise.

Error and ℓ2 norm of Oracles. The (standard) ℓ2 norm of a square-integrable function f :
C
d → C is denoted by ‖f‖2 and is equal to EX [|f |2], where X ∼ N (0, 1)d

C
. An oracle for the

permanent is simply a function Ok : Ck×k → C that can be queried in a single time unit. We will
work with a sequence of oracles {Ok}{k6n}, one for every dimension k less than n.

Moments of Permanents. The first and the second moments of the permanent under the Gaus-
sian distribution on k×k matrices are easy to compute: EX [Perk(X)] = 0, EX [|Perk(X)|2] = k! .We
also know the fourth moment of the permanent function for Gaussian matrices, EX [|Perk(X)|4] =
(k + 1)(k!)2 (Lemma 56, [AA11]). This fact and Markov’s inequality immediately imply:

5

Lemma 2.1 (Tail Bound for Permanent). For every positive integer k, the permanent satisfies
PX [|Perk(X)|> T

√
k!] 6 (k+1)/T 4.

3 Testing Approximate Permanent Oracles

Our testing procedure, PTest, has three parameters: a positive integer n, the dimension of the
matrices being tested; δ ∈ (0, 1], the amount of error allowed; and c ∈ (0, 1], a completeness
parameter3. In addition, it has query access to the sequence of oracles, {Ok}{k6n} being tested.
In the following, for a matrix X, we denote the entries in the first row of X by x11, . . . , x1k, and
by Xi the minor obtained by removing the first row and the ith column from X. (There will be no
confusion since we will only be working with expansion along the first row.)

The guarantees of the tester are twofold: it accepts with probability at least 1− c, if, for every
k, and every X ∈ C

k×k, we have |Ok(X)− Perk(X)|2 6 δ2k!; on the other hand, the tester almost
always rejects if for some k 6 n, Ok(X) is not poly(n)δ ·

√
k! close to Perk(X) with probability

1− 1
poly(n) over X (see below for precise theorems). The query complexity of PTest is bounded by

poly(n, 1/δ, 1/c). Assuming that each oracle query takes constant time, the time complexity of PTest
is also bounded by poly(n, 1/δ, 1/c) (see below for precise bounds).

The test consists of two parts: The first is a linearity test, that tests that the oracles {Ok}{k6n}
satisfy Ok(X) ≈ ∑

i x1iOk−1(Xi) (observe that the permanent satisfies this exactly). The second
part is a tail test, that tests that the function does not take large values too often (the permanent
satisfies this property too, as shown by Lemma 2.1).

LinearityTest(n, k, δ): Sample a k × k matrix X ∼ N (0, 1)k×k
C

. If k = 1, output Reject

unless |Ok(X)−X|2 6 n2 · δ2. Else, test if:

∣
∣
∣Ok(X)−

k∑

i=1

x1iOk−1(Xi)
∣
∣
∣

2
6 n2δ2 · k! .

Output Reject if it does not hold.

TailTest(k, T): Sample a k × k matrix X. Test that |fk(X)|26 T 2k! . Output Reject if
it does not hold.

The procedure PTest is formally defined in Figure 1. In the rest of the paper, we prove the following
theorem about PTest.

Theorem 3.1 (Main Theorem). For all n ∈ N, δ ∈ (0, 1], and c ∈ (0, 1], satisfying n = Ω
(√

log 1
cδ

)

,

given oracle access to {Ok}{k6n}, where Ok : Ck×k → C, the procedure PTest satisfies the following:

1. (Completeness) If, for every k 6 n, and every X ∈ C
k×k, |Ok(X)− Perk(X)|2 6 δ2k!, then

PTest accepts with probability at least 1− c.

2. (Soundness) For every 1 6 k 6 n, either

3We require the mild condition that n = Ω
(
√

log 1
δc

)

, which is satisfied for large enough n when c, δ = 1
poly(n)

.

6

Parameters: A positive integer n ∈ N, error parameter δ ∈ (0, 1], and completeness parameter
c ∈ (0, 1].
Requires: Oracle access to {Ok}{k6n}, where Ok : Ck×k → C.

1. Set the following variables: T = 4n/δ
√
c, d = 192n2/δ4c.

2. For each 1 6 k 6 n,

(a) Run LinearityTest(n, k, δ) d times.

(b) Run TailTest(k, T) d times.

3. If none of the above tests output Reject, output Accept.

Figure 1: The tester PTest

There exists an indicator function 1k : C
k×k → {0, 1} satisfying EX [1k(X)] >

1− δ4c
64n , such that, EX [1k(X) · |Ok(X)− Perk(X)|2] 6 (2nkδ)2k! .

or else,

PTest outputs Reject with probability at least 1− e−n.

3. (Complexity) The total number of queries made by PTest is O(n4δ−4c−1). Moreover, assum-
ing that each oracle query takes constant time, the time required by PTest is also O(n4δ−4c−1).

The three parts of the theorem are proved separately in Theorem 3.4, Theorem 3.6 and Theo-
rem 3.12 in Sections 3.1, 3.2 and 3.3 respectively.

Remark 3.2. Observe that, assuming both 1/c and 1/δ are polynomial in n, the query complexity
is poly(n), and hence, even if the oracles {Ok}k6n satisfy |Ok(X) − Perk(X)|26 δ2k! only with
probability 1− 1

poly(n) , PTest would still accept with probability 1− c− 1
poly(n) .

Remark 3.3. Observe that the (informal) main theorem (Theorem 1.2) stated in the introduc-
tion follows from Theorem 3.1 from a simple Markov argument. Given δ = Ω(1/poly(n)), set
c = 1

poly(n) and note that the completeness follows directly from Theorem 3.1 and the previ-
ous remark. Further, from the Soundness claim of Theorem 3.1, we have an indicator func-
tion 1k : C

k×k → {0, 1} satisfying EX [1k(X)] > 1 − δ4c
64n > 1 − 1

poly(n) , such that, EX [1k(X) ·
|Ok(X) − Perk(X)|2] 6 (2nkδ)2k!6 poly(n) · δ2k! . Applying Markov’s inequality, we have that

P
[

1k(X) · |Ok(X)− Perk(X)|2 > poly(n)δ2k!
]

6 1/poly(n). Now, note that 1k is an indicator func-

tion, and P[1k(X) = 0] is at most 1/poly(n). This, along with the previous expression gives that
the tester outputs Reject if the sequence of oracles is not even (poly(n) · δ, 1/poly(n))-good.

3.1 Completeness

We first prove the completeness of PTest: that a (δ, 0)-good sequence of oracles is accepted with
probability at least 1− c.

7

Theorem 3.4 (Completeness). If, for every k 6 n, and every X ∈ C
k×k, |Ok(X)− Perk(X)|2 6

δ2k!, then the procedure PTest accepts with probability at least 1− c.

Proof. Suppose we are given a sequence of oracles {Ok}k6n such that for all k 6 n, we have that
|Ok(X)− Perk(X)|26 δ2 · k! . Let X denote a randomly sampled k × k matrix.

We first bound the probability that the oracles {Ok}{k6n} fail a linearity test. For k = 1, it is
easy to see that LinearityTest(n, 1, δ) never outputs Reject upon querying O1. For larger k, we have
the following lemma that shows that Ok(X) ≈ ∑

i x1iOk−1(Xi), and hence LinearityTest outputs
Reject only with small probability.

Lemma 3.5 (Completeness for LinearityTest). For every 2 6 k 6 n, the oracles {Ok}{k6n} satisfy

P
X
[|Ok(X)−

∑

i

x1iOk−1(Xi)|2> n2δ2k!] 6 2e−
(n−1)2

2 .

We first complete a proof of the theorem assuming this lemma. This lemma implies that every call

to LinearityTest(n, k, δ) outputs Reject with probability at most 2e−
(n−1)2

2 .
Next, we bound the probability that the oracles {Ok}{k6n} fail a TailTest. Using the tail bound

for the permanent given by Lemma 2.1, we get, PX [|Perk(X)|> (T − δ)
√
k!] 6 (k+1)/(T−δ)4. Since

|Ok(X)−Perk(X)|6 δ ·
√
k!, we use it in the above bound to get PX [|Ok(X)|> T

√
k!] 6 (k+1)/(T−δ)4.

Thus, every call to TailTest fails with probability at most (n+1)
(T−δ)4

.

Now applying a union bound, we get that for n that is Ω
(√

log 1
δc

)

, PTest outputs Reject with

probability at most

(

2e−
(n−1)2

2 +
(n+ 1)

(T − δ)4

)

dn 6 384
n3

δ4c
· e−(n−1)2/2 +

192(n+ 1)n3c

(4n− δ2
√
c)4

6 c.

�

We now give a proof of Lemma 3.5.

Proof. (of Lemma 3.5). We have,

∣
∣
∣
∣
∣
Ok(X)−

∑

i

x1iOk−1(Xi)

∣
∣
∣
∣
∣
6 |Ok(X)− Perk(X)|+

∣
∣
∣
∣
∣

∑

i

x1iPerk−1(Xi)−
∑

i

x1iOk−1(Xi)

∣
∣
∣
∣
∣

6 δ
√
k! +

∣
∣
∣
∣
∣

∑

i

x1i(Perk−1(Xi)−Ok−1(Xi))

∣
∣
∣
∣
∣
. (4)

Now, since x11, . . . , x1k are independent Gaussians with unit variance,
∑

i x1i(Perk−1(Xi)−Ok−1(Xi))
is a Gaussian with variance

∑

i|Perk−1(Xi)−Ok−1(Xi)|26 k · δ2 · (k−1)!= δ2 ·k! . Thus, the second
term in Equation (4) is bounded by (n−1)δ ·

√
k!, except with probability at most 2e−

(n−1)2

2 . Thus,

|Ok(X)−∑

i x1iOk−1(Xi)|6 nδ ·
√
k!, except with probability at most 2e−

(n−1)2

2 . �

8

3.2 Soundness

The interesting part of the analysis is the soundness for PTest, which we prove in this section.
Given {Ok}{k6n}, we need to define the following indicator functions to aid our analysis:

1LINk (X) =

{

I[(Ok(X)−X)2 6 n2δ2], if k = 1

I[(Ok(X)−∑

i x1iOk−1(Xi))
2 6 n2δ2k!], if 2 6 k 6 n

1TAIL
k (X) = I[Ok(X)2 6 T 2 · k!],

1PERM
k (X) = I[Perk(X)2 6 T 2 · k!],

1k(X) = 1LINk (X) ∧ 1TAIL
k (X) ∧ 1PERM

k (X). (5)

We now prove the following theorem.

Theorem 3.6 (Soundness). Let the indicator function 1k be as defined by Equation (5). For every
k 6 n, either both of the following two conditions hold:

1. The indicator 1k satisfies EX [1k(X)] > 1− δ4c
64n .

2. The oracle Ok and the indicator 1k satisfy EX [1k(X) · |Ok(X)− Perk(X)|2] 6 (2nkδ)2k! ,

or else, PTest outputs Reject with probability at least 1− e−n.

Proof. We first prove the following lemma that shows that for all k 6 n, the expectation of 1k is
large.

Lemma 3.7 (Large Expectation of 1k). Either, for every k, the indicator function 1k satisfies

EX [1k(X)] > 1− δ4c
64n , or else, PTest outputs Reject with probability at least 1− e−n.

The first part of the theorem follows immediately from this lemma. The proof of this lemma is
given later in this section.

For the second part of the theorem, we prove the following inductive claim about the oracles
{Ok}.
Lemma 3.8. (Main Induction Lemma) Suppose that for some 2 6 k 6 n, we have,

E
X ∈C(k−1)×(k−1)

[1k−1(X) · |Ok−1(X)− Perk−1(X)|2)] 6 ε2k−1(k − 1)! ,

then, either we have,

E
X ∈Ck×k

[1k(X) · |Ok(X)− Perk(X)|2)] 6 (εk−1 + 2nδ)2k! ,

or else, PTest outputs Reject with probability at least 1− e−n.

The proof of this lemma is also presented later in this section. Assuming this lemma, we can
complete the proof of soundness for PTest.

For the second part of the theorem, we first show that the required bound holds for k = 1. We
know that for any X ∈ C, whenever 11(X) = 1, we have |O1(X)−X|26 n2δ2. Thus,

E
X
[11(X) · |O1(X)− Per1(X)|2] 6 E

X
[1LIN1 (X) · |O1(X)−X|2] 6 n2δ2 < (2nδ)2 · 1! .

9

This gives us our base case. Assume that there is a 2 6 j 6 n such that,

E
X∈C(j−1)×(j−1)

[1j−1(X) · |Oj−1(X)− Perj−1(X)|2] 6 (2n(j − 1)δ)2 · (j − 1)! .

Now, we use Lemma 3.8 to deduce that either,

E
X∈Cj×j

[1j(X) · |Oj(X)− Perj(X)|2] 6 (2njδ)2 · j! ,

or else, PTest outputs Reject with probability at least 1−e−n. Thus, by induction, either for every
k 6 n,

E
X
[1k(X) · |Ok(X)− Perk(X)|2] 6 (2nkδ)2 · k! ,

or else, PTest outputs Reject with probability at least 1 − e−n. This completes the proof of the
theorem. �

Large expectation of 1k. We now prove Lemma 3.7 that states that the expectation of 1k is
large.

Proof. (of Lemma 3.7). We begin by making several claims about the structure the oracles
{Ok}{k6n} must have with high probability, assuming that PTest accepts. First, we claim that
O1 must be close to the identity function.

Claim 3.9 (Soundness of LinearityTest for O1). Either the oracle O1 satisfies that

P
X

[

|O1(X)−X|2 > n2δ2
]

6
n

d
, (6)

or else, PTest outputs Reject with probability at least 1− e−n.

A proof of this claim is included later in the section for completeness. We also need the following
two claims stating that for every 2 6 k 6 n, Ok(X) ≈ ∑

i x1iOk−1(Xi) very often, and that Ok(X)
does not take large values too often.

Claim 3.10 (Soundness of LinearityTest). Either the oracles {Ok} satisfy the following for every
2 6 k 6 n,

P
X

[

|Ok(X)−∑

i x1iOk−1(X)|2 > n2δ2k!
]

6
n

d
,

or else, PTest outputs Reject with probability at least 1− e−n.

Claim 3.11 (Soundness of TailTest). Either the oracles {Ok} satisfy the following for every k 6 n,

P
X

[
|Ok(X)|2> T 2 · k!

]
6

n

d
,

or else, PTest outputs Reject with probability at least 1− e−n.

10

The proofs of these claims are very similar to that of Claim 3.9 and we skip them. We can restate
the above claims in terms of 1LINk and 1TAIL

k defined in Equation (5) as follows: Either, for every
k 6 n,

E
X
[1LINk (X)] > 1− n

d
, E

X
[1TAIL

k (X)] > 1− n

d
, (7)

or else, PTest will output Reject with probability at least 1− e−n.
From Lemma 2.1, we know that the permanent does not take large values too often. To be

precise,

P
X
[|Perk(X)|2> T 2 · k!] 6 (k + 1)

T 4
.

Again, this implies that EX [1PERM
k] > 1− (k+1)

T 4 . Combining these three claims, we can now prove
our lemma.

We know that 1k = 1LINk ∧1TAIL
k ∧1PERM

k . We know that if either of the claims in Equation (7)
does not hold, PTest outputs Reject with probability at least 1− e−n. Thus, we assume that both
the claims in Equation (7) hold and apply the union bound to get,

E
X
[1k(X)] > 1−E

X
[1− 1LINk (X)]−E

X
[1− 1TAIL

k (X)]−E
X
[1− 1PERM

k (X)]

> 1− n

d
− n

d
− k + 1

T 4
> 1− δ4c

96n
− (n+ 1)δ4c2

256n4
> 1− δ4c

64n
,

for large enough n. �

Main Induction Lemma. We now give a proof of the main induction lemma.

Proof. (of Lemma 3.8). Recall that Xi is the minor obtained by deleting the first row and the ith

column from X. We first split the probability space for X ∈ C
k×k according to whether all of its

minors Xi satisfy 1k−1(Xi) = 1 or not.

‖1k(X)(Ok(X)− Perk(X))‖2 =

(C)
︷ ︸︸ ︷

‖1k(X)
∏

i

1k−1(Xi)(Ok(X)− Perk(X))‖2

+ ‖1k(X)(1−
∏

i

1k−1(Xi))(Ok(X)− Perk(X))‖2

︸ ︷︷ ︸

(D)

(8)

Let 1̃k(X) = 1k(X)
∏

i 1k−1(Xi). Term (C), above, is bounded by adding and subtracting the
expression

∑

i x1iOk−1(Xi) and then expanding the permanent along the first row.

‖1̃k(X)(Ok(X)− Perk(X))‖ 6 ‖1̃k(X)[Ok(X)−
∑

i

x1iOk−1(Xi)]‖
︸ ︷︷ ︸

(E)

+ ‖1̃k(X)[
∑

i

x1iOk−1(Xi)−
∑

i

x1iPerk−1(Xi)]‖
︸ ︷︷ ︸

(F)

(9)

11

We know that for all X such that 1k(X) = 1, |Ok(X) −∑

i x1iOk−1(Xi)|2 is bounded by n2δ2k! .
Thus, term (E) in eq. (9) is at most nδ

√
k!.

(E) 6 ‖1k(X)(Ok(X)−
∑

i

x1iOk−1(Xi))‖ 6 nδ
√
k! (10)

Term (F) is bounded by using the induction assumption:

(F)2 =
∥
∥
∥1k(X)

∏

i

1k−1(Xi)
[∑

i

x1iOk−1(Xi)−
∑

i

x1iPerk−1(Xi)
]∥
∥
∥

2

6 E
X1,...Xk

E
x11,...,x1k




∏

i

1k−1(Xi) ·
∣
∣
∣
∣
∣

∑

i

x1iOk−1(Xi)−
∑

i

x1iPerk−1(Xi)

∣
∣
∣
∣
∣

2




6 E
X1,...Xk

[
∏

i

1k−1(Xi) ·
∑

i

|Ok−1(Xi)− Perk−1(Xi)|2
]

6
∑

i

E
Xi

[
1k−1(Xi) · |Ok−1(Xi)− Perk−1(Xi)|2

]

6 kε2k−1(k − 1)!= ε2k−1k!

(11)

Combining eqs. (9), (10), and (11), we get,

(C) = E
X

[

1k(X)
∏

i

1k−1(Xi) · |Ok(X)− Perk(X)|2
]

6 (εk−1 + nδ)2 · k! . (12)

Next, we bound term (D) as follows. First use lemma 3.7 to deduce PX [1k−1(Xi) = 0] 6 δ4c
64n (If it

does not hold, we know that PTest outputs Reject with probability at least 1 − e−n). Whenever
1k(X) = 1, we have |Ok(X)|6 T

√
k! and |Perk(X)|6 T

√
k!. This implies that 1k(X) · |Ok(X) −

Perk(X)|26 4T 2k! everywhere. Thus, we have,

(D) = ‖1k(X)(1−
∏

i

1k−1(Xi))(Ok(X)− Perk(X))‖2 6 4T 2k!E
X

[

1−
∏

i

1k−1(Xi)

]

6 4T 2k!E
X

[
∑

i

(1− 1k−1(Xi))

]

6 4T 2k! ·k · δ
4c

64n
6 n2δ2 · k! .

(13)

Combining eqs. (8), (12), and (13) completes the proof:

E
[
1k(X) · |Ok(X)− Perk(X)|2

]
6

(

(εk−1 + nδ)2 + n2δ2
)

· k!6 (εk−1 + 2nδ)2 · k! . �

Proof of Claim 3.9 For completeness, we include a proof of Claim 3.9.

Proof. Assume that the oracle O1 does not satisfy Equation (6). We know that |O1(X)−X|2 >
n2δ2 iff LinearityTest(n, 1, δ) outputs Reject when X is sampled by the procedure. Thus, the
measure of points X ∈ C that would fail the test LinearityTest(n, 1, δ) is at least n/d. This implies
that the probability that none of the d calls to LinearityTest(n, 1, δ) made by PTest output Reject
is at most (1− n/d)d 6 e−n. �

12

3.3 Complexity

We finally note that the complexity of PTest is polynomially bounded in the input parameters.

Theorem 3.12 (Query and Time Complexity). The total number of queries made by PTest to all
the oracles is O(n2d) = O(n4δ−4c−1). Moreover, assuming that each oracle query takes constant
time, the time required by PTest is also O(n2d) = O(n4δ−4c−1).

Proof. By the definition of PTest, it makes dn calls to LinearityTest and dn calls to TailTest. Each
call to LinearityTest with parameters n, k, δ, makes at most k + 1 queries to the oracles (for k = 1,
it makes only one query), and requires O(k) time. Each call to TailTest makes 1 query and requires
O(1) time. Thus, the total number of queries made is O(dn2) = O(n4δ−4c−1), and the total time
required is also O(dn2) = O(n4δ−4c−1). �

Thus, if 1/δ and 1/c are poly(n), the query complexity of PTest is also poly(n).

4 Acknowledgments

The authors would like to thank Madhur Tulsiani and Rishi Saket for extensive discussions during
early stages of this work. We would also like to thank Scott Aaronson, Alex Arkhipov, Swastik
Kopparty and Srikanth Srinivasan for helpful discussions.

References

[AA11] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In
Lance Fortnow and Salil P. Vadhan, editors, STOC, pages 333–342. ACM, 2011. 1, 2, 5

[AK03] Sanjeev Arora and Subhash Khot. Fitting algebraic curves to noisy data. J. Comput.
Syst. Sci., 67(2):325–340, September 2003. 3

[Bro86] Andrei Z. Broder. How hard is it to marry at random? (on the approximation of the
permanent). In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, STOC ’86, pages 50–58, New York, NY, USA, 1986. ACM. 2

[CPS99] Jin-Yi Cai, Aduri Pavan, and D. Sivakumar. On the hardness of permanent. In Proceed-
ings of the 16th annual conference on Theoretical aspects of computer science, STACS’99,
pages 90–99, Berlin, Heidelberg, 1999. Springer-Verlag. 2

[GLR+91] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson.
Self-testing/correcting for polynomials and for approximate functions. In Proceedings
of the twenty-third annual ACM symposium on Theory of computing, STOC ’91, pages
33–42, New York, NY, USA, 1991. ACM. 2

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Inf.
Process. Lett., 43(4):169–174, September 1992. 2, 3

[JS89] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, December 1989. 2

13

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation
algorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–
697, July 2004. 2

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, October 1992. 3

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In FOCS, pages 124–134. IEEE Computer Society, 1994. 2

[Val79] Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979. 1

A Remaining proofs

Claim A.1 (Soundness of LinearityTest). Either the oracles {Ok} satisfy the following for every
2 6 k 6 n,

P
X

[

|Ok(X)−∑

i x1iOk−1(X)|2 > n2δ2k!
]

6
n

d
, (14)

or else, PTest outputs Reject with probability at least 1− e−n.

Proof. Assume that there exists a k, such that 2 6 k 6 n and the oracle Ok does not satisfy Equa-
tion (14). We recall that LinearityTest(n, k, δ) outputs Reject iff the sampled X ∈ C

k×k satisfies
|Ok(X)−∑

i x1iOk−1(X)|2 > n2δ2k! . Thus, a randomly sampled X will fail LinearityTest(n, k, δ)
with probability at least n/d. This implies that the probability that none of the d calls made by
PTest to LinearityTest(n, k, δ) output Reject is at most (1− n/d)n 6 e−n. �

Claim A.2 (Soundness of TailTest). Either the oracles {Ok} satisfy the following for every k 6 n,

P
X

[
|Ok(X)|2> T 2 · k!

]
6

n

d
, (15)

or else, PTest outputs Reject with probability at least 1− e−n.

Proof. Suppose for some k 6 n, the oracle Ok does not satisfy Equation 15. Thus, for this choice
of k, the test TailTest(k, T) fails with probability at least n/d. This implies that the probability
that at least one of the d calls by PTest to TailTest(k, T) outputs Reject with probability at least
1− (1− n/d)d > 1− e−n. �

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

