
Bounded-width QBF is PSPACE-ompleteAlbert AtseriasUniversitat Politènia de CatalunyaBarelona, Spain Sergi OlivaUniversitat Politènia de CatalunyaBarelona, SpainJuly 25, 2012AbstratTree-width is a well-studied parameter of strutures that measures their similarity to a tree.Many important NP-omplete problems, suh as Boolean satis�ability (SAT), are tratableon bounded tree-width instanes. In this paper we fous on the anonial PSPACE-ompleteproblem QBF, the fully-quanti�ed version of SAT. It was shown by Pan and Vardi that thisproblem is PSPACE-omplete even for formulas whose tree-width grows extremely slowly. Vardialso posed the question of whether the problem is tratable when restrited to instanes ofbounded tree-width. We answer this question by showing that QBF on instanes with onstanttree-width is PSPACE-omplete.1 IntrodutionTree-width is a well-known parameter that measures how lose a struture is to being a tree.Many NP-omplete problems have polynomial-time algorithms on inputs of bounded tree-width. Inpartiular, the Boolean satis�ability problem an be solved in polynomial time when the inidenegraph of the input nf-formula has bounded tree-width (f. [2℄, [3℄).A natural question suggested by this result is whether QBF, the problem of determining if afully-quanti�ed nf-formula is true or false, an also be solved in polynomial time when restritedto bounded tree-width instanes. In [1℄, Chen onludes that the problem stays tratable if thenumber of alternations, as well as the tree-width, is bounded. However, Pan and Vardi [6℄ showthat this result an be taken no further: 1) unless P = NP, the dependene of the running time onthe number of alternations must be non-elementary, and 2) the QBF problem restrited to instanesof path-width log∗ in the size of the input is PSPACE-omplete. Here, path-width is a parameterthat measures the similarity to a path and is in general smaller than tree-width. This leaves openwhether QBF is tratable for instanes of onstant width.In this paper, we resolve this question by showing that, even for inputs of onstant path-width,QBF is PSPACE-omplete. Our onstrution builds on the tehniques from [6℄ with two essentialdi�erenes. The �rst di�erene is that instead of reduing from the so-alled tiling-game andproduing a quanti�ed Boolean formula of log∗-smaller path-width, our redution starts at QBFitself and produes a quanti�ed Boolean formula whose path-width is only logarithmially smaller.Although this looks like bakward progress, it leaves us in a position where iterating the redutionmakes sense. However, in order to do so, we need to analyze whih properties of the output ofthe redution an be exploited by the next iteration. Here omes the seond main di�erene: we1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 96 (2012)

observe that the output of the redution has not only smaller path-width, but also smaller window-size, whih means that any two ourenes of the same variable appear lose to eah other in someordering of the lauses. We all suh formulas n-leveled, where n is a bound related to the window-size. Our main lemma exploits this strutural restrition in a tehnial way to show that the QBFproblem for n-leveled formulas redues to the QBF problem for O(log n)-leveled formulas. Iteratingthis redution until we reah O(1)-leveled formulas yields the result.A few more words on the di�erenes between our methods and those in [6℄ are in order. Thetehnial tool from [6℄ that is used to ahieve n-variable formulas of O(log∗ n) path-width buildson the tools from [5℄ and [4℄ that were used for showing non-elementary lower-bounds for someproblems related to seond-order logi. These tools are based on an enoding of natural numbersthat allows the omparison of two n-bit numbers by means of an extremely smaller formula; oneof size O(log∗ n). It is interesting that, by expliitely avoiding this tehnique, our iteration-basedmethods take us further: beyond O(log∗ n) path-width down to onstant path-width. For the samereason our proof an stay purely at the level of propositional logi without the need to resortto seond-order logi. Along the same lines, our method also shows that the QBF problem for
n-variable formulas of onstant path-width and O(log∗ n) quanti�er alternations is NP-hard (and
ΣiP-hard for any i ≥ 1), while the methods from [6℄ ould only show this for O(log∗ n) path-widthand O(log∗ n) alternations. It is worth noting that, in view of the results in [1℄, these hardnessresults are tight up to the hidden onstants in the asymptoti notation.The paper is organized as follows. In setion 2, we introdue the basi de�nitions. In setion 3,we formalize the onept of leveled-qbf and state and prove the main lemma. Finally, in setion 4,we present the main theorem of the paper, whih shows how to iterate the lemma to obtain thedesired result.2 PreliminariesWe write [n] := {1, . . . , n} and |n| := ⌈log(n+1)⌉. All our logarithms are base 2. Note that |n| is thelength of the binary enoding of n. We use log(i) n, where log(0) n := n and log(i) n := log(log(i−1) n)for i > 0. Also, we use log∗ n as the least integer i suh that log(i) n ≤ 1.The negation of a propositional variable x is denoted by x. We also use the notation x(1) and
x(0) to denote x and x, respetively. Note that the notation is hosen so that x(a) is made true bythe assignment x = a. The underlying variable of x(a) is x, and its sign is a. A literal is a variableor the negation of a variable. A lause is a sequene of literals. A nf-formula is a sequene oflauses. The size of a lause is its length as a sequene, and the size of a nf-formula is the sum ofthe sizes of its lauses. For example,

φ = ((x1, x2), (x2, x3, x4), (x4)) (1)is a nf-formula of size 6 made of three lauses of sizes 2, 3, and 1, respetively. If φ is a nf-formulaof size s, we write ℓ1(φ), . . . , ℓs(φ) for the s literals of φ in the left-to-right order in whih theyappear in φ. For example, in (1) we have ℓ4(φ) = x3. When φ is lear from the ontext we write ℓiinstead of ℓi(φ).Let φ be a nf-formula. A path-deomposition of φ is a sequene A1, . . . , Am of subsets ofvariables that satis�es the following properties:1. for every lause C of φ there is some i ∈ [m] suh that all the variables of C are in Ai,2

2. for every i, j, k ∈ [m] suh that i ≤ j ≤ k we have Ai ∩Ak ⊆ Aj .The width of the path-deomposition is the maximum |Ai| minus one. The path-width of φ is thesmallest width of all its path-deompositions. The path-width is bounded by the tree-width of theinidene graph of the nf-formula, de�ned in the usual way (f. [3℄).A qbf is a quanti�ed Boolean formula of the form
φ = Q1x1 · · ·Qqxq(φ

′), (2)where x1, . . . , xq are propositional variables, the matrix φ′ is a nf-formula, and Qi is either ∀ or
∃ for every i ∈ {1, . . . , q}. The size of a qbf as in (2) is de�ned as the size of its matrix φ′. Thepath-width of a qbf is the path-width of its matrix.3 Leveled FormulasIn this setion we state and prove the main lemma. This lemma is a redution from n-leveled qbfsto O(log n)-leveled qbfs, whih is progress in our iterative argument. Before stating the lemma, weformalize the onept of leveled-qbf.Let n be a positive integer. An n-leveled nf-formula is a nf-formula φ in whih its sequene oflauses is partitioned into bloks B1, . . . , Bℓ, where eah is a subsequene of onseutive lauses of
φ, and its set of variables is partitioned into the same number of groups G1, . . . , Gℓ, eah ontainingat most n variables, and suh that for every j ∈ {1, . . . , ℓ−1} we have that every C in Bj has all itsvariables in Gj ∪Gj+1, and every C in Bℓ has all its variables in Gℓ. An n-leveled qbf is a quanti�edBoolean formula whose matrix is an n-leveled nf-formula.Observe that every qbf with n variables is an n-leveled qbf: put all lauses in a single blok andall variables in a single group. However, when the sizes of the groups are limited, we get a niestruture:Lemma 1. Let n be a positive integer. Every n-leveled qbf has path-width at most 2n− 1.Proof. Let φ be an n-leveled qbf with groups G1, . . . , Gℓ. It is straightforward to hek from thede�nition of leveled formula that the sequene A1, . . . , Aℓ de�ned by Aj = Gj ∪ Gj+1 for j ∈
{1, . . . , ℓ− 1} and Aℓ = Gℓ forms a path-deomposition of the nf-formula in the matrix of φ. Sineeah Gj has ardinality at most n, the laim follows.Now, we an formalize the statement of the main lemma.Lemma 2. There exist c, d ≥ 1 and a polynomial-time algorithm that, for every n, s ≥ 1, given an
n-leveled qbf φ of size s, omputes a c · |n|-leveled qbf ψ of size d · s · |n| suh that φ↔ ψ.We devote the rest of the setion to the proof of this lemma. In order to improve the readabilityof Boolean formulas, we use + for disjuntion and · for onjuntion.3.1 De�nition of θLet φ be a n-leveled qbf as in (2) whose matrix φ′ is an n-leveled nf-formula of size s with groups
G1, . . . , Gℓ and bloks B1, . . . , Bℓ. As a �rst step towards building ψ we de�ne an intermediateformula θ. The formula θ ontains variables τ1, . . . , τs, one for eah literal in φ′, and is de�ned as

θ := Q1τ 1 · · ·Qqτ q(nons∀ + (ons∃ · sat))3

where1. eah τ j , for j ∈ [q], is the tuple of τ -variables orresponding to all the ourrenes of thevariable xj in φ′,2. onsQ, for Q ∈ {∀,∃}, is a qbf to be de�ned later that is satis�ed by an assignment to
τ1, . . . , τs if and only if all the variables from the same τ j with Qj = Q are given the sametruth value,3. nonsQ for Q ∈ {∀,∃} is a qbf that is equivalent to the negation of onsQ,4. sat is a qbf to be de�ned later that is satis�ed by an assignment to τ1, . . . , τs if and only ifevery lause of φ′ ontains at least one literal ℓk = x(a) suh that τk is given value a.This information about the onstituents of θ is enough to prove the following laim.Claim 1. φ↔ θProof. We need to prove both impliations. In both ases we use a game in whih two players, theexistential player and the universal player, take rounds following the order of quanti�ation of theformula to hoose values for the variables quanti�ed their way. The aim of the existential player isto show that the matrix of the formula an be made true while the aim of the universal player is toshow him wrong.In the following, for j ∈ [q], we say that an assignment to the variables of τ j is onsistent ifthey are given the same truth value, say a ∈ {0, 1}. In ase the assignment is onsistent, we saythat a is the orresponding assignment for the variable xj . Conversely, if a is an assignment to thevariable xj, the orresponding onsistent assignment for the tuple τ j is the assignment that setseah variable in τ j to a. If an assignment to τ j is not onsistent we all it inonsistent.(→): Assume φ is true and let α be a winning strategy for the existential player in φ. We buildanother strategy β that guarantees him a win in θ. The onstrution of β will be based on theobservation that, in the ourse of the game on θ, if the assignment given by the universal player tosome τ j with Qj = ∀ is inonsistent, then nons∀ is true irrespetive of all other variables, andhene the matrix of θ is true. With this observation in hand, the strategy β is de�ned as follows: atround j with Qj = ∃, if all τ 1, . . . , τ j−1 have been given onsistent assignments up to this point and

a1, . . . , aj−1 ∈ {0, 1} are the orresponding assignments to the variables x1, . . . , xj−1, let aj be theassignment given to xj by the strategy α in this position of the game on φ, and let the existentialplayer assign value aj to every variable in τ j. If on the other hand some τ k with k < j has beengiven an inonsistent assignment, let the existential player assign an arbitrary value (say 0) to everyvariable in τ j . Using the observation above and the assumption that α is a winning strategy, it isnot hard to see that β is a winning strategy.(←): Assume θ is true and let β be a winning strategy for the existential player in θ. We builda strategy α for the existential player in φ. In this ase the onstrution of α will be based on theobservation that, in the ourse of the game on θ, as long as the universal player assigns onsistentvalues to every τ j with Qj = ∀, the assignment given by β to eah new τ j with Qj = ∃ mustbe onsistent. To see this note that, if not, the universal player would have the option of stayingonsistent all the way until the end of the game in whih ase both nons∀ and ons∃ wouldbeome false, thus making the matrix of θ false. With this observation in hand, the strategy αis de�ned as follows: at round j with Qj = ∃, let a1, . . . , aj−1 ∈ {0, 1} be the assignment given4

to x1, . . . , xj−1 up to this point, let a1, . . . ,aj−1 be the orresponding onsistent assignments for
τ 1, . . . , τ j−1, and let aj be the assignment given by β to τ j in this position of the game on θ. Bythe observation above, sine eah ak with k < j and Qk = ∀ is onsistent by de�nition and eah
ak with k < j and Qj = ∃ has been assigned aording to the strategy β, the assignment aj mustalso be onsistent. Thus the existential player an set xj to its orresponding value aj and ontinuewith the game.We need to show that α is a winning strategy for the existential player on φ. First, if theexistential player plays aording to α, then the �nal assignment a1, . . . , aq that is reahed in thegame on φ is suh that the orresponding assignment a1, . . . ,aq in the game on ψ satis�es the matrixof θ. Sine eah aj is onsistent this means that sat must be made true by a1, . . . ,aq, thus thematrix of φ is made true by a1, . . . , aq. This shows that the existential player wins.Now, we show how to onstrut the qbf-formulas sat, ons∃ and nons∀. These formulashave the τ -variables as free variables and a new set of quanti�ed variables for eah literal in φ′.Reall that the τ -variables assign a truth value to eah variable-ourrene in φ′. The formula satwill verify that these assignments satisfy all lauses of φ′, the formula ons∃ will verify that eahexistentially quanti�ed variable is assigned onsistently, and the formula nons∀ will verify that atleast one universally quanti�ed variable is assigned inonsistently.3.2 De�nition of satFor every i ∈ [s], we have variables µi and νi. By sanning its literals left-to-right, the formulaheks that every lause of φ′ ontains at least one literal ℓk = x(a) suh that τk is given value a.To do so, µi and νi indiate the status of this proess when exatly i literals have been sanned.The intended meaning of the variables is the following:
• µi = �after sanning ℓi, the lauses already ompletely sanned are satis�ed, and the urrentlause is not satis�ed yet�.
• νi = �after seanning ℓi, the lauses already ompletely sanned are satis�ed, and the urrentlause is satis�ed as well�.At position i = 0, i.e. before sanning the �rst literal, µi and νi are true. We want to make surethat at position i = s, i.e. after sanning the last literal, also µs is true. Later, we will axiomatizethe transition between positions i and i+1. That will de�ne µi+1 and νi+1 depending on µi, νi and

ℓi aording to its intended meaning. We will axiomatize this into the formula sat(i). Then, satis de�ned as sat := ∃µ∃ν

(

µ0 · ν0 ·

s−1
∏

i=0

sat(i) · µs

)where µ = (µ0, . . . , µs) and ν = (ν0, . . . , νs).Next, we formalize sat(i). For every i ∈ [s], let ai ∈ {0, 1} denote the sign of ℓi, the i-th literalof φ′, and let ki ∈ {0, 1} be the prediate that indiates whether ℓi is the last in literal its lause.Then, sat(i) is the onjuntion of the following formulas:
µi+1 ↔ ki µi ai τi + ki µi ai τi + ki µi ai τi + ki µi ai τi + ki νi,

νi+1 ↔ ki µi ai τi + ki µi ai τi + ki νi.5

Note that eah of these formulas an be written in nf by distributing disjuntions over onjun-tions. Observe for later use that, in the resulting nf-formulas, eah lause ontains variables onlywith indies i or i + 1. We all suh kind of lauses i-links. Also, the size of sat written in nf is
c · s for some onstant c ≥ 1.3.3 De�nition of ons∃The onstrution of ons∃ is a bit more ompliated. It uses variables {π1, . . . , πs} as pointers tothe literals of φ′, whih will be ativated or not depending on its truth value. If a pointer π pointsto a literal whose underlying variable is x, we say that π points to x. If a pointer π points to aliteral that has been sanned, we say that π has been sanned. The formula heks the following:whenever exatly two pointers are ativated and they point to ourrenes of the same existentiallyquanti�ed variable, then the truth values assigned to the pointed literals are onsistent. To refer toa variable, we do not enode its identi�er diretly. Instead, we enode the parity of its group andits index inside this group. This is enough information to distinguish between di�erent variables inthe same or neighbouring bloks. The point is that this ompat enoding uses only |n|+1 bits perourrene.The formula uses the following variables:
• ξi = �after sanning ℓi, all the ativated pointers already sanned point to an existentiallyquanti�ed variable�.
• σi,k = �after sanning ℓi, exatly k ativated pointers have been sanned�.
• χi,k = �after sanning ℓi, either no ativated pointers have been sanned yet, or exatly onehas been sanned and there have been k hanges of blok between the pointed literal andposition i, or exatly two have been sanned and there have been exatly k hanges of blokbetween the pointed literals�.
• ωi = �after sanning ℓi, either no ativated pointers have been sanned yet, or exatly one hasbeen sanned and the parity of the group of the pointed variable is equal to the parity of theblok of the lause of the pointed literal, or exatly two have been sanned and the groups ofthe pointed variables are the same�.
• κi = �after sanning ℓi, either no ativated pointers have been sanned yet, or exatly onehas been sanned and the τ -variable at the pointed position is true, or exatly two have beensanned and the truth values of the τ -variables at the pointed positions are the same�.
• λi,b = �after sanning ℓi, either no ativated pointers have been sanned yet, or exatly onehas been sanned and the b-th bit of the index of the pointed variable in its group is 1, orexatly two have been sanned and the b-th bit of the indies of the pointed variables in theirrespetive groups are the same�.This de�nes the variables at step i+ 1 depending on the value of the variables at step i and ℓi.This will be axiomatized in the formula ons∃(i). The formula ons∃ also requires a onsistenyondition for all possible ombinations of ativated pointers. For a given ombination of thesepointers, the onsisteny ondition holds if: either there is a problem with the pointers (there arenot exatly two pointers ativated or one is not pointing to an existentially quanti�ed variable), or6

the pointed variables are not omparable (are not of the same group or do not have the same indexin the group) or, they are omparable and both reeive the same truth value. This onsistenyondition will be enoded in the formula onsacc
∃ . Also, the value of the variables at position i = 0will be enoded in the formula onsini

∃ . Now,ons∃ := ∀π∃ξ∃σ∃χ∃ω∃κ∃λ

(onsini
∃ ·

s−1
∏

i=0

ons∃(i) · onsacc
∃

)where π = (πi | 0 ≤ i ≤ s), ξ = (ξi | 0 ≤ i ≤ s), σ = (σi,k | 0 ≤ i ≤ s, 0 ≤ k ≤ 2), χ = (χi,k | 0 ≤ i ≤
s, 0 ≤ k ≤ 1), ω = (ωi | 0 ≤ i ≤ s), κ = (κi | 0 ≤ i ≤ s) and λ = (λi,b | 0 ≤ i ≤ s, 1 ≤ b ≤ |n|).Next we axiomatize the introdued variables, but before we do that we we need to introduesome notation.Let gi ∈ [ℓ] be the group-number of the variable underlying literal ℓi, let ni ∈ [|Ggi

|] be theindex of this variable within Ggi
, and reall ai ∈ {0, 1} denotes the sign of ℓi. For every i ∈ [s],let hi ∈ {0, 1} be the prediate that indiates whether the i-th literal ℓi is the last in its blokor not (reall that the bloks are subsequenes of onseutive lauses that partition the sequeneof lauses), and reall that ki ∈ {0, 1} is the prediate that indiates whether the i-th literal ℓiis the last in its lause or not. Next we enode the quanti�ation of φ in a way that the type ofquanti�ation of eah variable an be reovered from eah of its ourrenes: for every i ∈ [s], let

qi ∈ {0, 1} be the prediate that indiates whether the variable that underlies the i-th literal ℓi isuniversally or existentially quanti�ed in φ.Finally, observe that the de�nition of leveled formula implies that if bi ∈ [ℓ] is the number of theblok that ontains the lause to whih the i-th literal belongs, then the group-number gi is either
bi or bi + 1 whenever 1 ≤ bi ≤ ℓ− 1, and is equal to ℓ if bi = ℓ. Aordingly, let ei ∈ {0, 1} be suhthat gi = bi − ei + 1 for every i ∈ [s]. In other words, ei indiates whether the parities of gi and biagree or not.The following laim shows that, although the number ℓ of groups is in general unbounded, aonstant number of bits of information are enough to tell if the underlying variables of two literalsbelong to the same group:Claim 2. Let i, j be suh that 1 ≤ i < j ≤ s. Then, the underlying variables of ℓi and ℓj belong tothe same group if and only if one of the following onditions holds:1. ei = ej and bi = bj, or2. ei = 0, ej = 1, and bi = bj − 1.Proof. For the only if side, we have gi = gj . Then, bi− ei = bj − ej and also bi is either bj or bj − 1.If bi = bj, then ei = ej . If bi = bj − 1, then neessarily ei = 0 and ej = 1.For the if side, in the �rst ase, gi = bi − ei + 1 = bj − ej + 1 = gj . In the seond ase,
gi = bi − ei + 1 = bj − 1 + 1 = bj − ej + 1 = gj . Therefore, gi = gj .

7

Using this laim, we axiomatize ons∃(i) as the onjuntion of the following formulas:
ξi+1 ↔ πi ξi + πi ξi qi

σi+1,0 ↔ σi,0 πi

σi+1,1 ↔ σi,0 πi + σi,1 πi

σi+1,2 ↔ σi,1 πi + σi,2 πi

χi+1,0 ↔ σi,0 πi + σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,0 + σi,2 χi,0

χi+1,1 ↔ σi,0 πi + σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,1 hi + σi,1 πi χi,1 + σi,2 χi,1

ωi+1 ↔ σi,0 πi + σi,0 πi ei + σi,1 πi ωi + σi,1 πi (χi,0 ωi ei + χi,0 ωi ei + χi,1 ωi ei) + σi,2 ωi

κi+1 ↔ σi,0 πi + σi,0 πi τi + σi,1 πi κi + σi,1 πi κi τi + σi,1 πi κi τi + σi,2 κiand, for all b ∈ [|n|],
λi+1,b ↔ σi,0 πi + σi,0 πi ni,b + σi,1 πi λi,b + σi,1 πi λi,b ni,b + σi,1 πi λi,b ni,b + σi,2 λi,bwhere ni,b is the b-th bit of the binary enoding of ni.Also, we de�ne onsini

∃ as the onjuntion of the following unit lauses:
ξ0, σ0,0, σ0,1, σ0,2, χ0,0, χ0,1, ω0, κ0, λ0,1, . . . , λ0,|n|.Furthermore, we de�ne onsacc

∃ as the following lause:
ξs + σs,2 + ωs +

|n|
∑

b=1

λs,b + κs.Again, note that eah of these formulas an be written in nf just by distributing disjuntionsover onjuntions, and that the resulting lauses are i-links: the (�rst) index of the variables theyontain is either i or i+ 1 if i ∈ {0, . . . , s− 1}, and s if i = s. Also, the size of ons∃ written in nfis c · s · |n| for some onstant c ≥ 1.3.4 De�nition of nons∀The formula nons∀ is very similar to ons∃, sine it veri�es for universally quanti�ed variablesexatly the opposite of what ons∃ veri�es for existentially quanti�ed variables. For this reason,we proeed to its axiomatization diretly.The formula nons∀ is de�ned asnons∀ := ∃π∃ξ∃σ∃χ∃ω∃κ∃λ

(nonsini
∀ ·

s−1
∏

i=0

nons∀(i) · nonsacc
∀

)where π, ξ, σ, χ, ω, κ, λ are de�ned as before, nonsini
∀ := onsini

∃ , the formula nons∀(i)is axiomatized identially to ons∃(i) exept by replaing every ourrene of qi by qi for every
i ∈ {0, . . . , s}, and the formula nonsacc

∀ is the negation of onsacc
∃ , i.e. the following set of unitlauses:

ξs, σs,2, ωs, λs,1, . . . , λs,|n|, κs.In nf, the formula nons∀ is again a set of i-links, and its size is c · s · |n| for some c ≥ 1.8

3.5 Converting θ to leveled-qbfReall that θ was de�ned as
Q1τ 1 · · ·Qqτ q(nons∀ + (ons∃ · sat)).By writing this formula in prenex form, we obtain the equivalent formula

Qz (nons′∀ + (ons′∃ · sat′))where Qz is the appropriate pre�x of quanti�ed variables and the primed formulas are the matriesof the orresponding non-primed qbfs. We would like to write it as a leveled-qbf.Let a and b be two new variables and let ϑ be the onjuntion of the following formulas:
a+ nons′∀
b+ nons′∀
ā+ ons′∃
b̄+ sat′It is easy to see that

∃a∃b(ϑ)↔ nons′∀ + (ons′∃ · sat′).We write ϑ in nf. For the �rst disjuntion a + nons′∀, it is enough to add a to every lauseof nons′∀, and similarly for the others. Note that, exept for the variables a and b, the result is aonjuntion of i-links.In order to make them proper i-links, we introdue variables {a0, . . . , as} and {b0, . . . , bs}, andlauses ai ↔ ai+1 and bi ↔ bi+1 for every i ∈ {0, . . . , s − 1} to mantain onsisteny betweenthe introdued variables. Now, we replae eah ourrene of a and b in an i-link by ai and birespetively. Let ψ′ be the resulting formula.Finally, de�ne
ψ := Qz∃a∃b(ψ′)where a = (a0, . . . , as) and b = (b0, . . . , bs). Note that the onstrution guarantees ψ ↔ θ, and byClaim 1, ψ ↔ φ.We partition the variables of ψ in groups H0, . . . ,Hs where group Hi is the set of variables with(�rst) index i. We also partition the lauses of ψ in bloks C0, . . . , Cs where blok Ci is the set of

i-links of ψ. Note that, by the de�nition of i-link, all variables in Ci are ontained in Hi ∪ Hi+1.Therefore, ψ is a leveled-qbf with groups H0, . . . ,Hs and bloks C0, . . . , Cs.Now, for every i ∈ {0, . . . , s}, the size of Hi is the number of variables with index i in ψ, namely
c · |n| for some onstant c ≥ 1. Also, the size of ψ is d · s · |n| for some onstant d ≥ 1. Therefore, ψis a c · |n|-leveled qbf of size d · s · |n| suh that φ↔ ψ.Finally, it is lear that all the steps to produe ψ from φ an be performed in time polynomialin s, thus �nishing the proof.4 Main TheoremIn this setion we prove the main result of the paper.9

Theorem 1. There exists an integer w ≥ 1 suh that QBF on inputs of path-width at most w isPSPACE-omplete.Proof. We show that there exists a onstant n0 ≥ 1 and a polynomial-time redution from theanonial PSPACE-omplete problem QBF to the restrition of QBF itself to n0-leveled qbfs. Thenthe result will follow by setting w = 2n0 − 1 and applying Lemma 1.The hoie of n0 will be spei�ed later; for now let us just think of it as large enough. The ideaof the redution is to start with an arbitrary qbf formula φ0 with N0 variables and size S0, viewit as an N0-leveled qbf, and apply Lemma 2 repeatedly until we get a n0-leveled qbf for the large�xed onstant n0. Sine the �nal formula will be equivalent to φ0, we just need to make sure thatthis proess terminates in a small number of iterations and that the size of the resulting formula ispolynomial in S0. We formalize this below.Let φ0 be an arbitrary qbf formula with N0 variables and size S0. In partiular φ0 is an N0-leveled qbf of size S0. If N0 ≤ n0 then φ0 is already n0-leveled and there is nothing to do. Assumethen N0 > n0. We apply Lemma 2 to get an N1-leveled qbf of size S1 where N1 = c · |N0| and
S1 = d · S0 · |N0|. If n0 is large enough we get N1 < N0, whih is progress. Repeating this we get asequene of formulas φ0, φ1, . . . , φt, where φi is an Ni-leveled qbf of size Si with1. Ni = c · |Ni−1|, and2. Si = di · S0 ·

∏i−1
j=0 |Nj |,for i ≥ 1. We stop the proess at the �rst i = t suh that Nt ≤ n0. We laim that, if n0 is largeenough, t ≤ 2 log∗N0 and St ≤ S0 · N0 · logN0. This will be enough, sine then the algorithmthat omputes φt from φ0 is the required redution as it runs in time polynomial in the size of theformula, and φ0 ↔ φt.Claim 3. If n0 is large enough, then t ≤ 2 log∗N0.Proof. First, if n0 is large enough we have1. Ni = c · |Ni−1| < Ni−1, and2. Ni+1 = c · |Ni| = c · |c · |Ni−1|| ≤ logNi−1for every i ≥ 1 suh that Ni−1 > n0. In partiular, this means that the proess terminates and texists. Unfolding the seond inequality gives

Nt−1 ≤ log(⌊(t−1)/2⌋)N0.However, by the hoie of t we have Nt−1 > n0 ≥ 1, whih means that ⌊(t− 1)/2⌋ < log∗N0 andtherefore t ≤ 2 log∗N0.Given this bound on t, we bound St. We have
St = dt · S0 ·

t−1
∏

j=0

|Nj| ≤ d
t · S0 · |N0|

t,where in the inequality we used the fat that Ni ≤ Ni−1 for every i ≥ 1 suh that Ni−1 > n0, if n0is large enough. Now:
|N0|

t ≤ 2(2 log∗ N0)(log |N0|) ≤ 2log N0 = N0.10

In the �rst inequality we used the bound on t, and in the seond we used the assumption that
N0 ≥ n0 and that n0 is large enough. Altogether, this gives

St ≤ d
2 log∗ N0 · S0 ·N0 ≤ S0 ·N0 · logN0.Again we used the assumptions that N0 ≥ n0 and that n0 is large enough.For the hoie of n0, it su�es to hoose it large enough so that whenever N ≥ n0 the followingonditions are satis�ed:1. c · |N | < N ,2. c · |c · |N || ≤ logN ,3. (2 log∗N)(log |N |) ≤ logN ,4. d2 log∗ N ≤ logN .All these onditions an be met simultaneously, whih �nishes the proof.Referenes[1℄ H. Chen. Quanti�ed onstraint satisfation and bounded treewidth. Proeedings of the 16thEuropean Conferene on Arti�ial Intelligene (ECAI), pp. 161-165. IOS Press, 2004.[2℄ R. Dehter and J. Pearl. Tree lustering for onstraint networks. Arti�ial Intelligene, vol. 38,pp. 353-366. Elsevier, 1989.[3℄ E. Freuder. Complexity of k-tree strutured onstraint satisfation problems. Proeedingsof the 8th National Conferene on Arti�ial Intelligene (AAAI), vol. 1, pp. 4-9. AAAIPress, 1990.[4℄ M. Frik and M. Grohe. The omplexity of �rst-order and monadi seond-order logi revisited.Proeedings of the 17th IEEE Symposium on Logi in Computer Siene (LICS), pp. 215-224.IEEE Computer Soiety, 2002.[5℄ A. Meyer. Weak monadi seond order theory of suesor is not elementary reursive. LogiColloquium. Leture Notes in Mathematis, vol. 453, pp. 132-154. Springer-Verlag, 1975.[6℄ G. Pan and M.Y. Vardi. Fixed-parameter hierarhies inside PSPACE. Proeedings of the21th IEEE Symposium on Logi in Computer Siene (LICS), pp. 27-36. IEEE ComputerSoiety, 2006.

11

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

