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tTree-width is a well-studied parameter of stru
tures that measures their similarity to a tree.Many important NP-
omplete problems, su
h as Boolean satis�ability (SAT), are tra
tableon bounded tree-width instan
es. In this paper we fo
us on the 
anoni
al PSPACE-
ompleteproblem QBF, the fully-quanti�ed version of SAT. It was shown by Pan and Vardi that thisproblem is PSPACE-
omplete even for formulas whose tree-width grows extremely slowly. Vardialso posed the question of whether the problem is tra
table when restri
ted to instan
es ofbounded tree-width. We answer this question by showing that QBF on instan
es with 
onstanttree-width is PSPACE-
omplete.1 Introdu
tionTree-width is a well-known parameter that measures how 
lose a stru
ture is to being a tree.Many NP-
omplete problems have polynomial-time algorithms on inputs of bounded tree-width. Inparti
ular, the Boolean satis�ability problem 
an be solved in polynomial time when the in
iden
egraph of the input 
nf-formula has bounded tree-width (
f. [2℄, [3℄).A natural question suggested by this result is whether QBF, the problem of determining if afully-quanti�ed 
nf-formula is true or false, 
an also be solved in polynomial time when restri
tedto bounded tree-width instan
es. In [1℄, Chen 
on
ludes that the problem stays tra
table if thenumber of alternations, as well as the tree-width, is bounded. However, Pan and Vardi [6℄ showthat this result 
an be taken no further: 1) unless P = NP, the dependen
e of the running time onthe number of alternations must be non-elementary, and 2) the QBF problem restri
ted to instan
esof path-width log∗ in the size of the input is PSPACE-
omplete. Here, path-width is a parameterthat measures the similarity to a path and is in general smaller than tree-width. This leaves openwhether QBF is tra
table for instan
es of 
onstant width.In this paper, we resolve this question by showing that, even for inputs of 
onstant path-width,QBF is PSPACE-
omplete. Our 
onstru
tion builds on the te
hniques from [6℄ with two essentialdi�eren
es. The �rst di�eren
e is that instead of redu
ing from the so-
alled tiling-game andprodu
ing a quanti�ed Boolean formula of log∗-smaller path-width, our redu
tion starts at QBFitself and produ
es a quanti�ed Boolean formula whose path-width is only logarithmi
ally smaller.Although this looks like ba
kward progress, it leaves us in a position where iterating the redu
tionmakes sense. However, in order to do so, we need to analyze whi
h properties of the output ofthe redu
tion 
an be exploited by the next iteration. Here 
omes the se
ond main di�eren
e: we1
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observe that the output of the redu
tion has not only smaller path-width, but also smaller window-size, whi
h means that any two o

uren
es of the same variable appear 
lose to ea
h other in someordering of the 
lauses. We 
all su
h formulas n-leveled, where n is a bound related to the window-size. Our main lemma exploits this stru
tural restri
tion in a te
hni
al way to show that the QBFproblem for n-leveled formulas redu
es to the QBF problem for O(log n)-leveled formulas. Iteratingthis redu
tion until we rea
h O(1)-leveled formulas yields the result.A few more words on the di�eren
es between our methods and those in [6℄ are in order. Thete
hni
al tool from [6℄ that is used to a
hieve n-variable formulas of O(log∗ n) path-width buildson the tools from [5℄ and [4℄ that were used for showing non-elementary lower-bounds for someproblems related to se
ond-order logi
. These tools are based on an en
oding of natural numbersthat allows the 
omparison of two n-bit numbers by means of an extremely smaller formula; oneof size O(log∗ n). It is interesting that, by expli
itely avoiding this te
hnique, our iteration-basedmethods take us further: beyond O(log∗ n) path-width down to 
onstant path-width. For the samereason our proof 
an stay purely at the level of propositional logi
 without the need to resortto se
ond-order logi
. Along the same lines, our method also shows that the QBF problem for
n-variable formulas of 
onstant path-width and O(log∗ n) quanti�er alternations is NP-hard (and
ΣiP-hard for any i ≥ 1), while the methods from [6℄ 
ould only show this for O(log∗ n) path-widthand O(log∗ n) alternations. It is worth noting that, in view of the results in [1℄, these hardnessresults are tight up to the hidden 
onstants in the asymptoti
 notation.The paper is organized as follows. In se
tion 2, we introdu
e the basi
 de�nitions. In se
tion 3,we formalize the 
on
ept of leveled-qbf and state and prove the main lemma. Finally, in se
tion 4,we present the main theorem of the paper, whi
h shows how to iterate the lemma to obtain thedesired result.2 PreliminariesWe write [n] := {1, . . . , n} and |n| := ⌈log(n+1)⌉. All our logarithms are base 2. Note that |n| is thelength of the binary en
oding of n. We use log(i) n, where log(0) n := n and log(i) n := log(log(i−1) n)for i > 0. Also, we use log∗ n as the least integer i su
h that log(i) n ≤ 1.The negation of a propositional variable x is denoted by x. We also use the notation x(1) and
x(0) to denote x and x, respe
tively. Note that the notation is 
hosen so that x(a) is made true bythe assignment x = a. The underlying variable of x(a) is x, and its sign is a. A literal is a variableor the negation of a variable. A 
lause is a sequen
e of literals. A 
nf-formula is a sequen
e of
lauses. The size of a 
lause is its length as a sequen
e, and the size of a 
nf-formula is the sum ofthe sizes of its 
lauses. For example,

φ = ((x1, x2), (x2, x3, x4), (x4)) (1)is a 
nf-formula of size 6 made of three 
lauses of sizes 2, 3, and 1, respe
tively. If φ is a 
nf-formulaof size s, we write ℓ1(φ), . . . , ℓs(φ) for the s literals of φ in the left-to-right order in whi
h theyappear in φ. For example, in (1) we have ℓ4(φ) = x3. When φ is 
lear from the 
ontext we write ℓiinstead of ℓi(φ).Let φ be a 
nf-formula. A path-de
omposition of φ is a sequen
e A1, . . . , Am of subsets ofvariables that satis�es the following properties:1. for every 
lause C of φ there is some i ∈ [m] su
h that all the variables of C are in Ai,2



2. for every i, j, k ∈ [m] su
h that i ≤ j ≤ k we have Ai ∩Ak ⊆ Aj .The width of the path-de
omposition is the maximum |Ai| minus one. The path-width of φ is thesmallest width of all its path-de
ompositions. The path-width is bounded by the tree-width of thein
iden
e graph of the 
nf-formula, de�ned in the usual way (
f. [3℄).A qbf is a quanti�ed Boolean formula of the form
φ = Q1x1 · · ·Qqxq(φ

′), (2)where x1, . . . , xq are propositional variables, the matrix φ′ is a 
nf-formula, and Qi is either ∀ or
∃ for every i ∈ {1, . . . , q}. The size of a qbf as in (2) is de�ned as the size of its matrix φ′. Thepath-width of a qbf is the path-width of its matrix.3 Leveled FormulasIn this se
tion we state and prove the main lemma. This lemma is a redu
tion from n-leveled qbfsto O(log n)-leveled qbfs, whi
h is progress in our iterative argument. Before stating the lemma, weformalize the 
on
ept of leveled-qbf.Let n be a positive integer. An n-leveled 
nf-formula is a 
nf-formula φ in whi
h its sequen
e of
lauses is partitioned into blo
ks B1, . . . , Bℓ, where ea
h is a subsequen
e of 
onse
utive 
lauses of
φ, and its set of variables is partitioned into the same number of groups G1, . . . , Gℓ, ea
h 
ontainingat most n variables, and su
h that for every j ∈ {1, . . . , ℓ−1} we have that every C in Bj has all itsvariables in Gj ∪Gj+1, and every C in Bℓ has all its variables in Gℓ. An n-leveled qbf is a quanti�edBoolean formula whose matrix is an n-leveled 
nf-formula.Observe that every qbf with n variables is an n-leveled qbf: put all 
lauses in a single blo
k andall variables in a single group. However, when the sizes of the groups are limited, we get a ni
estru
ture:Lemma 1. Let n be a positive integer. Every n-leveled qbf has path-width at most 2n− 1.Proof. Let φ be an n-leveled qbf with groups G1, . . . , Gℓ. It is straightforward to 
he
k from thede�nition of leveled formula that the sequen
e A1, . . . , Aℓ de�ned by Aj = Gj ∪ Gj+1 for j ∈
{1, . . . , ℓ− 1} and Aℓ = Gℓ forms a path-de
omposition of the 
nf-formula in the matrix of φ. Sin
eea
h Gj has 
ardinality at most n, the 
laim follows.Now, we 
an formalize the statement of the main lemma.Lemma 2. There exist c, d ≥ 1 and a polynomial-time algorithm that, for every n, s ≥ 1, given an
n-leveled qbf φ of size s, 
omputes a c · |n|-leveled qbf ψ of size d · s · |n| su
h that φ↔ ψ.We devote the rest of the se
tion to the proof of this lemma. In order to improve the readabilityof Boolean formulas, we use + for disjun
tion and · for 
onjun
tion.3.1 De�nition of θLet φ be a n-leveled qbf as in (2) whose matrix φ′ is an n-leveled 
nf-formula of size s with groups
G1, . . . , Gℓ and blo
ks B1, . . . , Bℓ. As a �rst step towards building ψ we de�ne an intermediateformula θ. The formula θ 
ontains variables τ1, . . . , τs, one for ea
h literal in φ′, and is de�ned as

θ := Q1τ 1 · · ·Qqτ q(n
ons∀ + (
ons∃ · sat))3



where1. ea
h τ j , for j ∈ [q], is the tuple of τ -variables 
orresponding to all the o

urren
es of thevariable xj in φ′,2. 
onsQ, for Q ∈ {∀,∃}, is a qbf to be de�ned later that is satis�ed by an assignment to
τ1, . . . , τs if and only if all the variables from the same τ j with Qj = Q are given the sametruth value,3. n
onsQ for Q ∈ {∀,∃} is a qbf that is equivalent to the negation of 
onsQ,4. sat is a qbf to be de�ned later that is satis�ed by an assignment to τ1, . . . , τs if and only ifevery 
lause of φ′ 
ontains at least one literal ℓk = x(a) su
h that τk is given value a.This information about the 
onstituents of θ is enough to prove the following 
laim.Claim 1. φ↔ θProof. We need to prove both impli
ations. In both 
ases we use a game in whi
h two players, theexistential player and the universal player, take rounds following the order of quanti�
ation of theformula to 
hoose values for the variables quanti�ed their way. The aim of the existential player isto show that the matrix of the formula 
an be made true while the aim of the universal player is toshow him wrong.In the following, for j ∈ [q], we say that an assignment to the variables of τ j is 
onsistent ifthey are given the same truth value, say a ∈ {0, 1}. In 
ase the assignment is 
onsistent, we saythat a is the 
orresponding assignment for the variable xj . Conversely, if a is an assignment to thevariable xj, the 
orresponding 
onsistent assignment for the tuple τ j is the assignment that setsea
h variable in τ j to a. If an assignment to τ j is not 
onsistent we 
all it in
onsistent.(→): Assume φ is true and let α be a winning strategy for the existential player in φ. We buildanother strategy β that guarantees him a win in θ. The 
onstru
tion of β will be based on theobservation that, in the 
ourse of the game on θ, if the assignment given by the universal player tosome τ j with Qj = ∀ is in
onsistent, then n
ons∀ is true irrespe
tive of all other variables, andhen
e the matrix of θ is true. With this observation in hand, the strategy β is de�ned as follows: atround j with Qj = ∃, if all τ 1, . . . , τ j−1 have been given 
onsistent assignments up to this point and

a1, . . . , aj−1 ∈ {0, 1} are the 
orresponding assignments to the variables x1, . . . , xj−1, let aj be theassignment given to xj by the strategy α in this position of the game on φ, and let the existentialplayer assign value aj to every variable in τ j. If on the other hand some τ k with k < j has beengiven an in
onsistent assignment, let the existential player assign an arbitrary value (say 0) to everyvariable in τ j . Using the observation above and the assumption that α is a winning strategy, it isnot hard to see that β is a winning strategy.(←): Assume θ is true and let β be a winning strategy for the existential player in θ. We builda strategy α for the existential player in φ. In this 
ase the 
onstru
tion of α will be based on theobservation that, in the 
ourse of the game on θ, as long as the universal player assigns 
onsistentvalues to every τ j with Qj = ∀, the assignment given by β to ea
h new τ j with Qj = ∃ mustbe 
onsistent. To see this note that, if not, the universal player would have the option of staying
onsistent all the way until the end of the game in whi
h 
ase both n
ons∀ and 
ons∃ wouldbe
ome false, thus making the matrix of θ false. With this observation in hand, the strategy αis de�ned as follows: at round j with Qj = ∃, let a1, . . . , aj−1 ∈ {0, 1} be the assignment given4



to x1, . . . , xj−1 up to this point, let a1, . . . ,aj−1 be the 
orresponding 
onsistent assignments for
τ 1, . . . , τ j−1, and let aj be the assignment given by β to τ j in this position of the game on θ. Bythe observation above, sin
e ea
h ak with k < j and Qk = ∀ is 
onsistent by de�nition and ea
h
ak with k < j and Qj = ∃ has been assigned a

ording to the strategy β, the assignment aj mustalso be 
onsistent. Thus the existential player 
an set xj to its 
orresponding value aj and 
ontinuewith the game.We need to show that α is a winning strategy for the existential player on φ. First, if theexistential player plays a

ording to α, then the �nal assignment a1, . . . , aq that is rea
hed in thegame on φ is su
h that the 
orresponding assignment a1, . . . ,aq in the game on ψ satis�es the matrixof θ. Sin
e ea
h aj is 
onsistent this means that sat must be made true by a1, . . . ,aq, thus thematrix of φ is made true by a1, . . . , aq. This shows that the existential player wins.Now, we show how to 
onstru
t the qbf-formulas sat, 
ons∃ and n
ons∀. These formulashave the τ -variables as free variables and a new set of quanti�ed variables for ea
h literal in φ′.Re
all that the τ -variables assign a truth value to ea
h variable-o
urren
e in φ′. The formula satwill verify that these assignments satisfy all 
lauses of φ′, the formula 
ons∃ will verify that ea
hexistentially quanti�ed variable is assigned 
onsistently, and the formula n
ons∀ will verify that atleast one universally quanti�ed variable is assigned in
onsistently.3.2 De�nition of satFor every i ∈ [s], we have variables µi and νi. By s
anning its literals left-to-right, the formula
he
ks that every 
lause of φ′ 
ontains at least one literal ℓk = x(a) su
h that τk is given value a.To do so, µi and νi indi
ate the status of this pro
ess when exa
tly i literals have been s
anned.The intended meaning of the variables is the following:
• µi = �after s
anning ℓi, the 
lauses already 
ompletely s
anned are satis�ed, and the 
urrent
lause is not satis�ed yet�.
• νi = �after se
anning ℓi, the 
lauses already 
ompletely s
anned are satis�ed, and the 
urrent
lause is satis�ed as well�.At position i = 0, i.e. before s
anning the �rst literal, µi and νi are true. We want to make surethat at position i = s, i.e. after s
anning the last literal, also µs is true. Later, we will axiomatizethe transition between positions i and i+1. That will de�ne µi+1 and νi+1 depending on µi, νi and

ℓi a

ording to its intended meaning. We will axiomatize this into the formula sat(i). Then, satis de�ned as sat := ∃µ∃ν

(

µ0 · ν0 ·

s−1
∏

i=0

sat(i) · µs

)where µ = (µ0, . . . , µs) and ν = (ν0, . . . , νs).Next, we formalize sat(i). For every i ∈ [s], let ai ∈ {0, 1} denote the sign of ℓi, the i-th literalof φ′, and let ki ∈ {0, 1} be the predi
ate that indi
ates whether ℓi is the last in literal its 
lause.Then, sat(i) is the 
onjun
tion of the following formulas:
µi+1 ↔ ki µi ai τi + ki µi ai τi + ki µi ai τi + ki µi ai τi + ki νi,

νi+1 ↔ ki µi ai τi + ki µi ai τi + ki νi.5



Note that ea
h of these formulas 
an be written in 
nf by distributing disjun
tions over 
onjun
-tions. Observe for later use that, in the resulting 
nf-formulas, ea
h 
lause 
ontains variables onlywith indi
es i or i + 1. We 
all su
h kind of 
lauses i-links. Also, the size of sat written in 
nf is
c · s for some 
onstant c ≥ 1.3.3 De�nition of 
ons∃The 
onstru
tion of 
ons∃ is a bit more 
ompli
ated. It uses variables {π1, . . . , πs} as pointers tothe literals of φ′, whi
h will be a
tivated or not depending on its truth value. If a pointer π pointsto a literal whose underlying variable is x, we say that π points to x. If a pointer π points to aliteral that has been s
anned, we say that π has been s
anned. The formula 
he
ks the following:whenever exa
tly two pointers are a
tivated and they point to o

urren
es of the same existentiallyquanti�ed variable, then the truth values assigned to the pointed literals are 
onsistent. To refer toa variable, we do not en
ode its identi�er dire
tly. Instead, we en
ode the parity of its group andits index inside this group. This is enough information to distinguish between di�erent variables inthe same or neighbouring blo
ks. The point is that this 
ompa
t en
oding uses only |n|+1 bits pero

urren
e.The formula uses the following variables:
• ξi = �after s
anning ℓi, all the a
tivated pointers already s
anned point to an existentiallyquanti�ed variable�.
• σi,k = �after s
anning ℓi, exa
tly k a
tivated pointers have been s
anned�.
• χi,k = �after s
anning ℓi, either no a
tivated pointers have been s
anned yet, or exa
tly onehas been s
anned and there have been k 
hanges of blo
k between the pointed literal andposition i, or exa
tly two have been s
anned and there have been exa
tly k 
hanges of blo
kbetween the pointed literals�.
• ωi = �after s
anning ℓi, either no a
tivated pointers have been s
anned yet, or exa
tly one hasbeen s
anned and the parity of the group of the pointed variable is equal to the parity of theblo
k of the 
lause of the pointed literal, or exa
tly two have been s
anned and the groups ofthe pointed variables are the same�.
• κi = �after s
anning ℓi, either no a
tivated pointers have been s
anned yet, or exa
tly onehas been s
anned and the τ -variable at the pointed position is true, or exa
tly two have beens
anned and the truth values of the τ -variables at the pointed positions are the same�.
• λi,b = �after s
anning ℓi, either no a
tivated pointers have been s
anned yet, or exa
tly onehas been s
anned and the b-th bit of the index of the pointed variable in its group is 1, orexa
tly two have been s
anned and the b-th bit of the indi
es of the pointed variables in theirrespe
tive groups are the same�.This de�nes the variables at step i+ 1 depending on the value of the variables at step i and ℓi.This will be axiomatized in the formula 
ons∃(i). The formula 
ons∃ also requires a 
onsisten
y
ondition for all possible 
ombinations of a
tivated pointers. For a given 
ombination of thesepointers, the 
onsisten
y 
ondition holds if: either there is a problem with the pointers (there arenot exa
tly two pointers a
tivated or one is not pointing to an existentially quanti�ed variable), or6



the pointed variables are not 
omparable (are not of the same group or do not have the same indexin the group) or, they are 
omparable and both re
eive the same truth value. This 
onsisten
y
ondition will be en
oded in the formula 
onsacc
∃ . Also, the value of the variables at position i = 0will be en
oded in the formula 
onsini

∃ . Now,
ons∃ := ∀π∃ξ∃σ∃χ∃ω∃κ∃λ

(
onsini
∃ ·

s−1
∏

i=0


ons∃(i) · 
onsacc
∃

)where π = (πi | 0 ≤ i ≤ s), ξ = (ξi | 0 ≤ i ≤ s), σ = (σi,k | 0 ≤ i ≤ s, 0 ≤ k ≤ 2), χ = (χi,k | 0 ≤ i ≤
s, 0 ≤ k ≤ 1), ω = (ωi | 0 ≤ i ≤ s), κ = (κi | 0 ≤ i ≤ s) and λ = (λi,b | 0 ≤ i ≤ s, 1 ≤ b ≤ |n|).Next we axiomatize the introdu
ed variables, but before we do that we we need to introdu
esome notation.Let gi ∈ [ℓ] be the group-number of the variable underlying literal ℓi, let ni ∈ [|Ggi

|] be theindex of this variable within Ggi
, and re
all ai ∈ {0, 1} denotes the sign of ℓi. For every i ∈ [s],let hi ∈ {0, 1} be the predi
ate that indi
ates whether the i-th literal ℓi is the last in its blo
kor not (re
all that the blo
ks are subsequen
es of 
onse
utive 
lauses that partition the sequen
eof 
lauses), and re
all that ki ∈ {0, 1} is the predi
ate that indi
ates whether the i-th literal ℓiis the last in its 
lause or not. Next we en
ode the quanti�
ation of φ in a way that the type ofquanti�
ation of ea
h variable 
an be re
overed from ea
h of its o

urren
es: for every i ∈ [s], let

qi ∈ {0, 1} be the predi
ate that indi
ates whether the variable that underlies the i-th literal ℓi isuniversally or existentially quanti�ed in φ.Finally, observe that the de�nition of leveled formula implies that if bi ∈ [ℓ] is the number of theblo
k that 
ontains the 
lause to whi
h the i-th literal belongs, then the group-number gi is either
bi or bi + 1 whenever 1 ≤ bi ≤ ℓ− 1, and is equal to ℓ if bi = ℓ. A

ordingly, let ei ∈ {0, 1} be su
hthat gi = bi − ei + 1 for every i ∈ [s]. In other words, ei indi
ates whether the parities of gi and biagree or not.The following 
laim shows that, although the number ℓ of groups is in general unbounded, a
onstant number of bits of information are enough to tell if the underlying variables of two literalsbelong to the same group:Claim 2. Let i, j be su
h that 1 ≤ i < j ≤ s. Then, the underlying variables of ℓi and ℓj belong tothe same group if and only if one of the following 
onditions holds:1. ei = ej and bi = bj, or2. ei = 0, ej = 1, and bi = bj − 1.Proof. For the only if side, we have gi = gj . Then, bi− ei = bj − ej and also bi is either bj or bj − 1.If bi = bj, then ei = ej . If bi = bj − 1, then ne
essarily ei = 0 and ej = 1.For the if side, in the �rst 
ase, gi = bi − ei + 1 = bj − ej + 1 = gj . In the se
ond 
ase,
gi = bi − ei + 1 = bj − 1 + 1 = bj − ej + 1 = gj . Therefore, gi = gj .

7



Using this 
laim, we axiomatize 
ons∃(i) as the 
onjun
tion of the following formulas:
ξi+1 ↔ πi ξi + πi ξi qi

σi+1,0 ↔ σi,0 πi

σi+1,1 ↔ σi,0 πi + σi,1 πi

σi+1,2 ↔ σi,1 πi + σi,2 πi

χi+1,0 ↔ σi,0 πi + σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,0 + σi,2 χi,0

χi+1,1 ↔ σi,0 πi + σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,1 hi + σi,1 πi χi,1 + σi,2 χi,1

ωi+1 ↔ σi,0 πi + σi,0 πi ei + σi,1 πi ωi + σi,1 πi (χi,0 ωi ei + χi,0 ωi ei + χi,1 ωi ei) + σi,2 ωi

κi+1 ↔ σi,0 πi + σi,0 πi τi + σi,1 πi κi + σi,1 πi κi τi + σi,1 πi κi τi + σi,2 κiand, for all b ∈ [|n|],
λi+1,b ↔ σi,0 πi + σi,0 πi ni,b + σi,1 πi λi,b + σi,1 πi λi,b ni,b + σi,1 πi λi,b ni,b + σi,2 λi,bwhere ni,b is the b-th bit of the binary en
oding of ni.Also, we de�ne 
onsini

∃ as the 
onjun
tion of the following unit 
lauses:
ξ0, σ0,0, σ0,1, σ0,2, χ0,0, χ0,1, ω0, κ0, λ0,1, . . . , λ0,|n|.Furthermore, we de�ne 
onsacc

∃ as the following 
lause:
ξs + σs,2 + ωs +

|n|
∑

b=1

λs,b + κs.Again, note that ea
h of these formulas 
an be written in 
nf just by distributing disjun
tionsover 
onjun
tions, and that the resulting 
lauses are i-links: the (�rst) index of the variables they
ontain is either i or i+ 1 if i ∈ {0, . . . , s− 1}, and s if i = s. Also, the size of 
ons∃ written in 
nfis c · s · |n| for some 
onstant c ≥ 1.3.4 De�nition of n
ons∀The formula n
ons∀ is very similar to 
ons∃, sin
e it veri�es for universally quanti�ed variablesexa
tly the opposite of what 
ons∃ veri�es for existentially quanti�ed variables. For this reason,we pro
eed to its axiomatization dire
tly.The formula n
ons∀ is de�ned asn
ons∀ := ∃π∃ξ∃σ∃χ∃ω∃κ∃λ

(n
onsini
∀ ·

s−1
∏

i=0

n
ons∀(i) · n
onsacc
∀

)where π, ξ, σ, χ, ω, κ, λ are de�ned as before, n
onsini
∀ := 
onsini

∃ , the formula n
ons∀(i)is axiomatized identi
ally to 
ons∃(i) ex
ept by repla
ing every o

urren
e of qi by qi for every
i ∈ {0, . . . , s}, and the formula n
onsacc

∀ is the negation of 
onsacc
∃ , i.e. the following set of unit
lauses:

ξs, σs,2, ωs, λs,1, . . . , λs,|n|, κs.In 
nf, the formula n
ons∀ is again a set of i-links, and its size is c · s · |n| for some c ≥ 1.8



3.5 Converting θ to leveled-qbfRe
all that θ was de�ned as
Q1τ 1 · · ·Qqτ q(n
ons∀ + (
ons∃ · sat)).By writing this formula in prenex form, we obtain the equivalent formula

Qz (n
ons′∀ + (
ons′∃ · sat′))where Qz is the appropriate pre�x of quanti�ed variables and the primed formulas are the matri
esof the 
orresponding non-primed qbfs. We would like to write it as a leveled-qbf.Let a and b be two new variables and let ϑ be the 
onjun
tion of the following formulas:
a+ n
ons′∀
b+ n
ons′∀
ā+ 
ons′∃
b̄+ sat′It is easy to see that

∃a∃b(ϑ)↔ n
ons′∀ + (
ons′∃ · sat′).We write ϑ in 
nf. For the �rst disjun
tion a + n
ons′∀, it is enough to add a to every 
lauseof n
ons′∀, and similarly for the others. Note that, ex
ept for the variables a and b, the result is a
onjun
tion of i-links.In order to make them proper i-links, we introdu
e variables {a0, . . . , as} and {b0, . . . , bs}, and
lauses ai ↔ ai+1 and bi ↔ bi+1 for every i ∈ {0, . . . , s − 1} to mantain 
onsisten
y betweenthe introdu
ed variables. Now, we repla
e ea
h o

urren
e of a and b in an i-link by ai and birespe
tively. Let ψ′ be the resulting formula.Finally, de�ne
ψ := Qz∃a∃b(ψ′)where a = (a0, . . . , as) and b = (b0, . . . , bs). Note that the 
onstru
tion guarantees ψ ↔ θ, and byClaim 1, ψ ↔ φ.We partition the variables of ψ in groups H0, . . . ,Hs where group Hi is the set of variables with(�rst) index i. We also partition the 
lauses of ψ in blo
ks C0, . . . , Cs where blo
k Ci is the set of

i-links of ψ. Note that, by the de�nition of i-link, all variables in Ci are 
ontained in Hi ∪ Hi+1.Therefore, ψ is a leveled-qbf with groups H0, . . . ,Hs and blo
ks C0, . . . , Cs.Now, for every i ∈ {0, . . . , s}, the size of Hi is the number of variables with index i in ψ, namely
c · |n| for some 
onstant c ≥ 1. Also, the size of ψ is d · s · |n| for some 
onstant d ≥ 1. Therefore, ψis a c · |n|-leveled qbf of size d · s · |n| su
h that φ↔ ψ.Finally, it is 
lear that all the steps to produ
e ψ from φ 
an be performed in time polynomialin s, thus �nishing the proof.4 Main TheoremIn this se
tion we prove the main result of the paper.9



Theorem 1. There exists an integer w ≥ 1 su
h that QBF on inputs of path-width at most w isPSPACE-
omplete.Proof. We show that there exists a 
onstant n0 ≥ 1 and a polynomial-time redu
tion from the
anoni
al PSPACE-
omplete problem QBF to the restri
tion of QBF itself to n0-leveled qbfs. Thenthe result will follow by setting w = 2n0 − 1 and applying Lemma 1.The 
hoi
e of n0 will be spe
i�ed later; for now let us just think of it as large enough. The ideaof the redu
tion is to start with an arbitrary qbf formula φ0 with N0 variables and size S0, viewit as an N0-leveled qbf, and apply Lemma 2 repeatedly until we get a n0-leveled qbf for the large�xed 
onstant n0. Sin
e the �nal formula will be equivalent to φ0, we just need to make sure thatthis pro
ess terminates in a small number of iterations and that the size of the resulting formula ispolynomial in S0. We formalize this below.Let φ0 be an arbitrary qbf formula with N0 variables and size S0. In parti
ular φ0 is an N0-leveled qbf of size S0. If N0 ≤ n0 then φ0 is already n0-leveled and there is nothing to do. Assumethen N0 > n0. We apply Lemma 2 to get an N1-leveled qbf of size S1 where N1 = c · |N0| and
S1 = d · S0 · |N0|. If n0 is large enough we get N1 < N0, whi
h is progress. Repeating this we get asequen
e of formulas φ0, φ1, . . . , φt, where φi is an Ni-leveled qbf of size Si with1. Ni = c · |Ni−1|, and2. Si = di · S0 ·

∏i−1
j=0 |Nj |,for i ≥ 1. We stop the pro
ess at the �rst i = t su
h that Nt ≤ n0. We 
laim that, if n0 is largeenough, t ≤ 2 log∗N0 and St ≤ S0 · N0 · logN0. This will be enough, sin
e then the algorithmthat 
omputes φt from φ0 is the required redu
tion as it runs in time polynomial in the size of theformula, and φ0 ↔ φt.Claim 3. If n0 is large enough, then t ≤ 2 log∗N0.Proof. First, if n0 is large enough we have1. Ni = c · |Ni−1| < Ni−1, and2. Ni+1 = c · |Ni| = c · |c · |Ni−1|| ≤ logNi−1for every i ≥ 1 su
h that Ni−1 > n0. In parti
ular, this means that the pro
ess terminates and texists. Unfolding the se
ond inequality gives

Nt−1 ≤ log(⌊(t−1)/2⌋)N0.However, by the 
hoi
e of t we have Nt−1 > n0 ≥ 1, whi
h means that ⌊(t− 1)/2⌋ < log∗N0 andtherefore t ≤ 2 log∗N0.Given this bound on t, we bound St. We have
St = dt · S0 ·

t−1
∏

j=0

|Nj| ≤ d
t · S0 · |N0|

t,where in the inequality we used the fa
t that Ni ≤ Ni−1 for every i ≥ 1 su
h that Ni−1 > n0, if n0is large enough. Now:
|N0|

t ≤ 2(2 log∗ N0)(log |N0|) ≤ 2log N0 = N0.10



In the �rst inequality we used the bound on t, and in the se
ond we used the assumption that
N0 ≥ n0 and that n0 is large enough. Altogether, this gives

St ≤ d
2 log∗ N0 · S0 ·N0 ≤ S0 ·N0 · logN0.Again we used the assumptions that N0 ≥ n0 and that n0 is large enough.For the 
hoi
e of n0, it su�
es to 
hoose it large enough so that whenever N ≥ n0 the following
onditions are satis�ed:1. c · |N | < N ,2. c · |c · |N || ≤ logN ,3. (2 log∗N)(log |N |) ≤ logN ,4. d2 log∗ N ≤ logN .All these 
onditions 
an be met simultaneously, whi
h �nishes the proof.Referen
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