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Abstract

Tree-width is a well-studied parameter of structures that measures their similarity to a tree.
Many important NP-complete problems, such as Boolean satisfiability (SAT), are tractable
on bounded tree-width instances. In this paper we focus on the canonical PSPACE-complete
problem QBF, the fully-quantified version of SAT. It was shown by Pan and Vardi [LICS 2006]
that this problem is PSPACE-complete even for formulas whose tree-width grows extremely
slowly. Vardi also posed the question of whether the problem is tractable when restricted to
instances of bounded tree-width. We answer this question by showing that QBF on instances
with constant tree-width is PSPACE-complete.

1 Introduction

Tree-width is a well-known parameter that measures how close a structure is to being a tree.
Many NP-complete problems have polynomial-time algorithms on inputs of bounded tree-width. In
particular, the Boolean satisfiability problem can be solved in polynomial time when the constraint
graph of the input cnf-formula has bounded tree-width (cf. [3], [4]).

A natural question suggested by this result is whether QBF, the problem of determining if a
fully-quantified cnf-formula is true or false, can also be solved in polynomial time when restricted to
formulas whose cnf has bounded tree-width. In [1], Chen concludes that the problem stays tractable
if the number of alternations, as well as the tree-width, is bounded. On the negative side, Gottlob,
Greco and Scarcello [6] proved that the problem stays PSPACE-complete when the number of
alternations is unbounded even if the constraint graph of the cnf-formula has logarithmic tree-width
(and indeed, its incidence graph is even a tree). By different methods, and improving upon [6], Pan
and Vardi [8] show that, unless P = NP, the dependence of the running time of Chen’s algorithm
on the number of alternations must be non-elementary, and that the QBF problem restricted to
instances of tree-width log∗ in the size of the input is PSPACE-complete. All these negative results
hold also for path-width, which is a parameter that measures the similarity to a path and is in
general smaller than tree-width. However, they leave open whether QBF is tractable for instances
whose constraint graph has constant path-width, or even constant tree-width.

In this paper, we resolve this question by showing that, even for inputs of constant path-width,
QBF is PSPACE-complete. Our construction builds on the techniques from [8] with two essential
differences. The first difference is that instead of reducing from the so-called tiling-game and
producing a quantified Boolean formula of log∗-smaller path-width, our reduction starts at QBF
itself and produces a quantified Boolean formula whose path-width is only logarithmically smaller.
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Although this looks like backward progress, it leaves us in a position where iterating the reduction
makes sense. However, in order to do so, we need to analyze which properties of the output of
the reduction can be exploited by the next iteration. Here comes the second main difference: we
observe that the output of the reduction has not only smaller path-width, but also smaller window-
size, which means that any two occurences of the same variable appear close to each other in some
ordering of the clauses. We call such formulas n-leveled, where n is a bound related to the window-
size. Our main lemma exploits this structural restriction in a technical way to show that the QBF
problem for n-leveled formulas reduces to the QBF problem for O(log n)-leveled formulas. Iterating
this reduction until we reach O(1)-leveled formulas yields the result.

Comparison to previous work. A few more words on the differences between our methods and
those in [8] and [6] are in order. The technical tool from [8] that is used to achieve n-variable
formulas of O(log∗ n) path-width builds on the tools from [7] and [5] that were used for showing
non-elementary lower-bounds for some problems related to second-order logic. These tools are based
on an encoding of natural numbers that allows the comparison of two n-bit numbers by means of
an extremely smaller formula; one of size O(log∗ n). It is interesting that, by explicitely avoiding
this technique, our iteration-based methods take us further: beyond O(log∗ n) path-width down to
constant path-width. For the same reason our proof can stay purely at the level of propositional
logic without the need to resort to second-order logic. Along the same lines, our method also shows
that the QBF problem for n-variable formulas of constant path-width and O(log∗ n) quantifier
alternations is NP-hard (and ΣiP-hard for any i ≥ 1), while the methods from [8] could only show
this for O(log∗ n) path-width and O(log∗ n) alternations. It is worth noting that, in view of the
results in [1], these hardness results are tight up to the hidden constants in the asymptotic notation.

Structural restrictions on the generalization of QBF to unbounded domains, sometimes called
QCSP, have also been studied. Gottlob et al. [6] proved that QCSP restricted to trees is already
PSPACE-complete. Their hardness result for QBF of logarithmic tree-width follows from this
by booleanization. They also identify some new tractable fragments, and some other hardness
conditions. Finally, Chen and Dalmau [2] introduced a general framework for studying structural
restrictions on QCSP, and characterized the restrictions that make the problem tractable under
complexity-theoretic assumptions.

Paper organization. The paper is organized as follows. In section 2, we introduce the basic
definitions. In section 3, we formalize the concept of leveled-qbf and state and prove the main
lemma. Finally, in section 4, we present the main theorem of the paper, which shows how to iterate
the lemma to obtain the desired result.

2 Preliminaries

We write [n] := {1, . . . , n} and |n| := dlog(n + 1)e. All logarithms are base 2. Note that |n| is the
length of the binary encoding of n. We define log(0) n := n and log(i) n := log(log(i−1) n) for i > 0.
Also, we use log∗ n as the least integer i such that log(i) n ≤ 1.

The negation of a propositional variable x is denoted by x. We also use the notation x(1) and
x(0) to denote x and x, respectively. Note that the notation is chosen so that x(a) is made true by
the assignment x = a. The underlying variable of x(a) is x, and its sign is a. A literal is a variable
or the negation of a variable. A clause is a sequence of literals. A cnf-formula is a sequence of
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clauses. The size of a clause is its length as a sequence, and the size of a cnf-formula is the sum of
the sizes of its clauses. For example,

φ = ((x1, x2), (x2, x3, x4), (x4)) (1)

is a cnf-formula of size 6 made of three clauses of sizes 2, 3, and 1, respectively. If φ is a cnf-formula
of size s, we write `1(φ), . . . , `s(φ) for the s literals of φ in the left-to-right order in which they
appear in φ. For example, in (1) we have `4(φ) = x3. When φ is clear from the context we write `i
instead of `i(φ).

Let φ be a cnf-formula. A path-decomposition of φ is a sequence A1, . . . , Am of subsets of
variables that satisfies the following properties:

1. for every clause C of φ there is some i ∈ [m] such that all the variables of C are in Ai,

2. for every i, j, k ∈ [m] such that i ≤ j ≤ k we have Ai ∩Ak ⊆ Aj .

The width of the path-decomposition is the maximum |Ai| minus one. The path-width of φ is the
smallest width of all its path-decompositions. The path-width is bounded by the tree-width of the
constraint graph of the cnf-formula, defined in the usual way (cf. [4]).

A qbf is a quantified Boolean formula of the form

φ = Q1x1 · · ·Qqxq(φ′), (2)

where x1, . . . , xq are propositional variables, the matrix φ′ is a cnf-formula, and Qi is either ∀ or
∃ for every i ∈ {1, . . . , q}. The size of a qbf as in (2) is defined as the size of its matrix φ′. The
path-width of a qbf is the path-width of its matrix.

3 Leveled Formulas

In this section we state and prove the main lemma. This lemma is a reduction from n-leveled qbfs
to O(log n)-leveled qbfs, which is progress in our iterative argument. Before stating the lemma, we
formalize the concept of leveled-qbf.

Let n be a positive integer. An n-leveled cnf-formula is a cnf-formula φ in which its sequence
of clauses is partitioned into blocks B1, . . . , B`, where each block is a consecutive subsequence of
clauses of φ, and its set of variables is partitioned into the same number of groups G1, . . . , G`, each
containing at most n variables, and such that for every j ∈ {1, . . . , `− 1} we have that every clause
C in Bj has all its variables in Gj ∪Gj+1, and every clause C in B` has all its variables in G`. An
n-leveled qbf is a quantified Boolean formula whose matrix is an n-leveled cnf-formula.

Observe that every qbf with n variables is an n-leveled qbf: put all clauses in a single block and
all variables in a single group. However, when the sizes of the groups are limited, we get a nice
structure:

Lemma 1. Let n be a positive integer. Every n-leveled qbf has path-width at most 2n− 1.

Proof. Let φ be an n-leveled qbf with groups G1, . . . , G`. It is straightforward to check from the
definition of leveled formula that the sequence A1, . . . , A` defined by Aj = Gj ∪ Gj+1 for j ∈
{1, . . . , `− 1} and A` = G` forms a path-decomposition of the cnf-formula in the matrix of φ. Since
each Gj has cardinality at most n, the claim follows.
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Now, we can formalize the statement of the main lemma.

Lemma 2. There exist c, d ≥ 1 and a polynomial-time algorithm that, for every n, s ≥ 1, given an
n-leveled qbf φ of size s, computes a c · |n|-leveled qbf ψ of size d · s · |n| such that φ↔ ψ.

We devote the rest of the section to the proof of this lemma. In order to improve the readability
of Boolean formulas, we use + for disjunction and · for conjunction.

3.1 Definition of θ

Let φ be a n-leveled qbf as in (2) whose matrix φ′ is an n-leveled cnf-formula of size s with groups
G1, . . . , G` and blocks B1, . . . , B`. As a first step towards building ψ we define an intermediate
formula θ. The formula θ contains variables τ1, . . . , τs, one for each literal in φ′, and is defined as

θ := Q1τ 1 · · ·Qqτ q(ncons∀ + (cons∃ · sat))

where

1. each τ j , for j ∈ [q], is the tuple of τ -variables corresponding to all the occurrences of the
variable xj in φ′,

2. consQ, for Q ∈ {∀, ∃}, is a qbf to be defined later that is satisfied by an assignment to
τ1, . . . , τs if and only if all the variables from the same τ j with Qj = Q are given the same
truth value,

3. nconsQ for Q ∈ {∀, ∃} is a qbf that is equivalent to the negation of consQ,

4. sat is a qbf to be defined later that is satisfied by an assignment to τ1, . . . , τs if and only if
every clause of φ′ contains at least one literal `k = x(a) such that τk is given value a.

This information about the constituents of θ is enough to prove the following claim.

Claim 1. φ↔ θ

Proof. We need to prove both implications. In both cases we use a game in which two players, the
existential player and the universal player, take rounds following the order of quantification of the
formula to choose values for the variables quantified their way. The aim of the existential player is
to show that the matrix of the formula can be made true while the aim of the universal player is to
show him wrong.

In the following, for j ∈ [q], we say that an assignment to the variables of τ j is consistent if
they are given the same truth value, say a ∈ {0, 1}. In case the assignment is consistent, we say
that a is the corresponding assignment for the variable xj . Conversely, if a is an assignment to the
variable xj , the corresponding consistent assignment for the tuple τ j is the assignment that sets
each variable in τ j to a. If an assignment to τ j is not consistent we call it inconsistent.

(→): Assume φ is true and let α be a winning strategy for the existential player in φ. We build
another strategy β that guarantees him a win in θ. The construction of β will be based on the
observation that, in the course of the game on θ, if the assignment given by the universal player to
some τ j with Qj = ∀ is inconsistent, then ncons∀ is true irrespective of all other variables, and
hence the matrix of θ is true. With this observation in hand, the strategy β is defined as follows: at
round j with Qj = ∃, if all τ 1, . . . , τ j−1 have been given consistent assignments up to this point and
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a1, . . . , aj−1 ∈ {0, 1} are the corresponding assignments to the variables x1, . . . , xj−1, let aj be the
assignment given to xj by the strategy α in this position of the game on φ, and let the existential
player assign value aj to every variable in τ j . If on the other hand some τ k with k < j has been
given an inconsistent assignment, let the existential player assign an arbitrary value (say 0) to every
variable in τ j . Using the observation above and the assumption that α is a winning strategy, it is
not hard to see that β is a winning strategy.

(←): Assume θ is true and let β be a winning strategy for the existential player in θ. We build
a strategy α for the existential player in φ. In this case the construction of α will be based on the
observation that, in the course of the game on θ, as long as the universal player assigns consistent
values to every τ j with Qj = ∀, the assignment given by β to each new τ j with Qj = ∃ must
be consistent. To see this note that, if not, the universal player would have the option of staying
consistent all the way until the end of the game in which case both ncons∀ and cons∃ would
become false, thus making the matrix of θ false. With this observation in hand, the strategy α
is defined as follows: at round j with Qj = ∃, let a1, . . . , aj−1 ∈ {0, 1} be the assignment given
to x1, . . . , xj−1 up to this point, let a1, . . . ,aj−1 be the corresponding consistent assignments for
τ 1, . . . , τ j−1, and let aj be the assignment given by β to τ j in this position of the game on θ. By
the observation above, since each ak with k < j and Qk = ∀ is consistent by definition and each
ak with k < j and Qj = ∃ has been assigned according to the strategy β, the assignment aj must
also be consistent. Thus the existential player can set xj to its corresponding value aj and continue
with the game.

We need to show that α is a winning strategy for the existential player on φ. First, if the
existential player plays according to α, then the final assignment a1, . . . , aq that is reached in the
game on φ is such that the corresponding assignment a1, . . . ,aq in the game on ψ satisfies the matrix
of θ. Since each aj is consistent this means that sat must be made true by a1, . . . ,aq, thus the
matrix of φ is made true by a1, . . . , aq. This shows that the existential player wins.

Now, we show how to construct the qbf-formulas sat, cons∃ and ncons∀. These formulas
have the τ -variables as free variables and a new set of quantified variables for each literal in φ′.
Recall that the τ -variables assign a truth value to each variable-ocurrence in φ′. The formula sat
will verify that these assignments satisfy all clauses of φ′, the formula cons∃ will verify that each
existentially quantified variable is assigned consistently, and the formula ncons∀ will verify that at
least one universally quantified variable is assigned inconsistently.

3.2 Definition of sat

For every i ∈ [s+ 1], we have variables µi and νi. By scanning its literals left-to-right, the formula
checks that every clause of φ′ contains at least one literal `k = x(a) such that τk is given value a.
To do so, µi and νi indicate the status of this process when exactly i− 1 literals have been scanned.
The intended meaning of the variables is the following:

• µi = “just before scanning `i, the clauses already completely scanned are satisfied, and the
current clause is not satisfied yet”.

• νi = “just before scanning `i, the clauses already completely scanned are satisfied, and the
current clause is satisfied as well”.

Note that `s+1 is not a literal. Therefore, “just before scanning `s+1” means “just after scanning
the last literal” in this case. Also, variables µ1 and ν1 are initialized to true and false, respectively.
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We want to make sure that at position i = s + 1, i.e. after scanning the last literal, µs+1 is true.
Later, we will axiomatize the transition between positions i and i + 1. That will define µi+1 and
νi+1 depending on µi, νi and `i according to its intended meaning. We will axiomatize this into the
formula sat(i). Then, sat is defined as

sat := ∃µ∃ν

(
µ1 · ν1 ·

s∏
i=1

sat(i) · µs+1

)

where µ = (µ1, . . . , µs+1) and ν = (ν1, . . . , νs+1).
Next, we formalize sat(i). For every i ∈ [s], let ai ∈ {0, 1} denote the sign of `i, the i-th literal

of φ′, and let ki ∈ {0, 1} be the predicate that indicates whether `i is the last in literal its clause.
Then, sat(i) is the conjunction of the following formulas:

µi+1 ↔ ki µi ai τi + ki µi ai τi + ki µi ai τi + ki µi ai τi + ki νi,

νi+1 ↔ ki µi ai τi + ki µi ai τi + ki νi.

In words, the axiomatization states that µi+1 holds in one of three cases: 1) if `i is the last
literal in its clause and the clause has been satisfied by a previous literal (kiνi), or 2) if `i is the last
literal in its clause, this clause is not yet satisfied by a previous literal, but the truth assignment
satisfies the current one (kiµiaiτi +kiµiaiτi), or 3) if `i is not the last literal in its clause, this clause
is not yet satisfied by a previous literal, and the truth assignment does not satisfy the current one
either (kiµiaiτi + kiµiaiτi). The axiomatization of νi+1 is similar.

Note that these two formulas can be written in cnf by writing ↔ in terms of conjunctions
and disjunctions and by distributing disjunctions over conjunctions. We call i-link a clause that
contains variables only with indices i and i+1. Observe for later use that all clauses in the resulting
cnf-formulas for sat(i) are i-links. Also, the size of sat written in cnf is c · s for some constant
c ≥ 1.

3.3 Definition of cons∃

The construction of cons∃ is a bit more complicated. It uses universally quantified variables
{π1, . . . , πs} as pointers to the literals of φ′, in one-to-one correspondance with {τ1, . . . , τs}. We say
that pointer πi points to literal `i. If x is the underlying variable of `i, we say that πi points to
x. Pointers that are set to true are called activated. We say that a pointer has been scanned if its
pointed literal has been scanned. The formula checks the following: whenever exactly two pointers
are activated and they point to occurrences of the same existentially quantified variable, then the
truth values assigned to the pointed literals are consistent. To refer to a variable, we do not encode
its identifier directly. Instead, we encode the parity of its group and its index inside this group.
This is enough information to distinguish between different variables in the same or neighbouring
blocks. This fact is key to our argument and will be proved later in Claim 2. The point is that
this compact encoding uses only |n|+ 1 bits per occurrence, where n is the number of variables per
group, which may be much smaller than the total number of variables.

The formula uses the following variables for i ∈ [s+ 1]:

• ξi = “just before scanning `i, all the activated pointers already scanned point to an existentially
quantified variable”.
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• σi,k = “just before scanning `i, exactly k activated pointers have been scanned”.

• χi,k = “just before scanning `i, exactly one activated pointer has been scanned and there have
been k changes of block between the pointed literal and position i, or exactly two have been
scanned and there have been exactly k changes of block between the pointed literals”.

• ωi = “just before scanning `i, exactly one activated pointer has been scanned and the parity
of the group of the pointed variable is equal to the parity of the block of the clause of the
pointed literal, or exactly two have been scanned and the groups of the pointed variables are
the same”.

• κi = “just before scanning `i, exactly one activated pointer has been scanned and the τ -
variable at the pointed position is true, or exactly two have been scanned and the truth values
of the τ -variables at the pointed positions are the same”.

• λi,b = “just before scanning `i, exactly one activated pointer has been scanned and the b-th
bit of the index of the pointed variable in its group is 1, or exactly two have been scanned and
the b-th bit of the indices of the pointed variables in their respective groups are the same”.

The variables at step i + 1 will be axiomatized in terms of the variables at step i and `i in
the formula cons∃(i). The formula cons∃ also requires a consistency condition for all possible
combinations of activated pointers. For a given combination of these pointers, the consistency
condition holds if: either there is a problem with the pointers (there are not exactly two pointers
activated or one is not pointing to an existentially quantified variable), or the pointed variables are
not comparable (are not of the same group or do not have the same index in the group) or, they
are comparable and both receive the same truth value. This consistency condition will be encoded
in the formula consacc

∃ . Also, the value of the variables at position i = 1 will be encoded in the
formula consini

∃ . Now,

cons∃ := ∀π∃ξ∃σ∃χ∃ω∃κ∃λ

(
consini

∃ ·
s∏

i=1

cons∃(i) · consacc
∃

)

where π = (πi | 1 ≤ i ≤ s), ξ = (ξi | 1 ≤ i ≤ s + 1), σ = (σi,k | 1 ≤ i ≤ s + 1, 0 ≤ k ≤ 2),
χ = (χi,k | 1 ≤ i ≤ s + 1, 0 ≤ k ≤ 1), ω = (ωi | 1 ≤ i ≤ s + 1), κ = (κi | 1 ≤ i ≤ s + 1) and
λ = (λi,b | 1 ≤ i ≤ s+ 1, 1 ≤ b ≤ |n|).

Next we axiomatize the introduced variables, but before that we need to introduce some notation.
Let gi ∈ [`] be the group-number of the variable underlying literal `i, let ni ∈ [|Ggi |] be the

index of this variable within Ggi , and recall ai ∈ {0, 1} denotes the sign of `i. For every i ∈ [s],
let hi ∈ {0, 1} be the predicate that indicates whether the i-th literal `i is the last in its block
or not (recall that the blocks are subsequences of consecutive clauses that partition the sequence
of clauses), and recall that ki ∈ {0, 1} is the predicate that indicates whether the i-th literal `i
is the last in its clause or not. Next we encode the quantification of φ in a way that the type of
quantification of each variable can be recovered from each of its occurrences: for every i ∈ [s], let
qi ∈ {0, 1} be the predicate that indicates whether the variable that underlies the i-th literal `i is
universally or existentially quantified in φ.

Finally, observe that the definition of leveled formula implies that if bi ∈ [`] is the number of the
block that contains the clause to which the i-th literal belongs, then the group-number gi is either
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bi or bi + 1 whenever 1 ≤ bi ≤ `− 1, and is equal to ` if bi = `. Accordingly, let ei ∈ {0, 1} be such
that gi = bi − ei + 1 for every i ∈ [s]. In other words, ei indicates whether the parities of gi and bi
agree or not.

The following claim shows that, although the number ` of groups is in general unbounded, a
constant number of bits of information are enough to tell if the underlying variables of two literals
belong to the same group:

Claim 2. Let i, j be such that 1 ≤ i < j ≤ s. Then, the underlying variables of `i and `j belong to
the same group if and only if one of the following conditions holds:

1. ei = ej and bi = bj, or

2. ei = 0, ej = 1, and bi = bj − 1.

Proof. For the only if side, we have gi = gj . Then, bi− ei = bj − ej and also bi is either bj or bj − 1.
If bi = bj , then ei = ej . If bi = bj − 1, then necessarily ei = 0 and ej = 1.

For the if side, in the first case, gi = bi − ei + 1 = bj − ej + 1 = gj . In the second case,
gi = bi − ei + 1 = bj − 1 + 1 = bj − ej + 1 = gj . Therefore, gi = gj .

Using this claim, we axiomatize cons∃(i) as the conjunction of the following formulas:

ξi+1 ↔ πi ξi + πi ξi qi

σi+1,0 ↔ σi,0 πi

σi+1,1 ↔ σi,0 πi + σi,1 πi

σi+1,2 ↔ σi,1 πi + σi,2 πi

χi+1,0 ↔ σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,0 + σi,2 χi,0

χi+1,1 ↔ σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,1 hi + σi,1 πi χi,1 + σi,2 χi,1

ωi+1 ↔ σi,0 πi ei + σi,1 πi ωi + σi,1 πi (χi,0 ωi ei + χi,0 ωi ei + χi,1 ωi ei) + σi,2 ωi

κi+1 ↔ σi,0 πi τi + σi,1 πi κi + σi,1 πi κi τi + σi,1 πi κi τi + σi,2 κi

and, for all b ∈ [|n|],

λi+1,b ↔ σi,0 πi ni,b + σi,1 πi λi,b + σi,1 πi λi,b ni,b + σi,1 πi λi,b ni,b + σi,2 λi,b

where ni,b is the b-th bit of the binary encoding of ni.
Also, we define consini

∃ as the conjunction of the following unit clauses:

ξ1, σ1,0, σ1,1, σ1,2, χ1,0, χ1,1, ω1, κ1, λ1,1, . . . , λ1,|n|.

Furthermore, we define consacc
∃ as the following clause:

ξs+1 + σs+1,2 + ωs+1 +
|n|∑
b=1

λs+1,b + κs+1.

Again, note that each of these formulas can be written in cnf just by writing ↔ in terms
of conjunctions and disjunctions and by distributing disjunctions over conjunctions, and that the
clauses in the resulting cnf-formulas for cons∃(i) are i-links: the (first) index of the variables they
contain is either i or i+ 1. Also, the size of cons∃ written in cnf is c · s · |n| for some constant c ≥ 1.

8



3.4 Definition of ncons∀

The formula ncons∀ is very similar to cons∃, since it verifies for universally quantified variables
exactly the opposite of what cons∃ verifies for existentially quantified variables. For this reason,
we proceed to its axiomatization directly.

The formula ncons∀ is defined as

ncons∀ := ∃π∃ξ∃σ∃χ∃ω∃κ∃λ

(
nconsini

∀ ·
s∏

i=1

ncons∀(i) · nconsacc
∀

)

where π, ξ, σ, χ, ω, κ, λ are defined as before, nconsini
∀ := consini

∃ , the formula ncons∀(i) is
axiomatized identically to cons∃(i) except by replacing every occurrence of qi by qi for every i ∈ [s],
and the formula nconsacc

∀ is the negation of consacc
∃ , i.e. the following set of unit clauses:

ξs+1, σs+1,2, ωs+1, λs+1,1, . . . , λs+1,|n|, κs+1.

In cnf, the formula ncons∀(i) is again a set of i-links, and its size is c · s · |n| for some c ≥ 1.

3.5 Converting θ to leveled-qbf

Recall that θ was defined as Q1τ 1 · · ·Qqτ q(ncons∀ + (cons∃ · sat)). By writing this formula in
prenex form, we obtain the equivalent formula

Qz (ncons′∀ + (cons′∃ · sat′))

where Qz is the appropriate prefix of quantified variables and the primed formulas are the matrices
of the corresponding non-primed qbfs. We would like to write it as a leveled-qbf.

Let a and b be two new variables and let ϑ be the conjunction of the following formulas:

a+ ncons′∀
b+ ncons′∀
ā+ cons′∃
b̄+ sat′

It is easy to see that
∃a∃b(ϑ)↔ ncons′∀ + (cons′∃ · sat′).

We write ϑ in cnf. For the first disjunction a + ncons′∀, it is enough to add a to every clause
of ncons′∀, and similarly for the others. Note that, except for the variables a and b, the result is a
conjunction of i-links.

In order to make them proper i-links, we introduce new variables {a1, . . . , as+1} and {b1, . . . , bs+1},
and clauses ai ↔ ai+1 and bi ↔ bi+1 for every i ∈ [s] to mantain consistency between the introduced
variables. Now, we replace each occurrence of a and b in an improper i-link by ai and bi respectively.
Let ψ′ be the resulting formula.

Finally, define
ψ := Qz∃a∃b(ψ′)

where a = (a1, . . . , as+1) and b = (b1, . . . , bs+1). Note that the construction guarantees ψ ↔ θ, and
by Claim 1, ψ ↔ φ.
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We partition the variables of ψ in groups H1, . . . ,Hs+1 where group Hi is the set of variables
with (first) index i. We also partition the clauses of ψ in blocks C1, . . . , Cs+1 where block Ci is
the set of i-links of ψ. Note that, by the definition of i-link, all variables in Ci are contained in
Hi ∪Hi+1. Therefore, ψ is a leveled-qbf with groups H1, . . . ,Hs+1 and blocks C1, . . . , Cs+1.

Now, for every i ∈ [s + 1], the size of Hi is the number of variables with index i in ψ, namely
c · |n| for some constant c ≥ 1. Also, the size of ψ is d · s · |n| for some constant d ≥ 1. Therefore, ψ
is a c · |n|-leveled qbf of size d · s · |n| such that φ↔ ψ.

Finally, it is clear that all the steps to produce ψ from φ can be performed in time polynomial
in s, thus finishing the proof.

4 Main Theorem

In this section we prove the main result of the paper.

Theorem 1. There exists an integer w ≥ 1 such that QBF on inputs of path-width at most w is
PSPACE-complete.

Proof. We show that there exists a constant n0 ≥ 1 and a polynomial-time reduction from the
canonical PSPACE-complete problem QBF to the restriction of QBF itself to n0-leveled qbfs. Then
the result will follow by setting the path-width to w = 2n0 − 1 and applying Lemma 1.

Let c and d be the constants from the end of section 3. We choose the constant n0 large enough
so that whenever N ≥ n0 the following conditions are satisfied:

1. c · |N | < N ,

2. c · |c · |N || ≤ logN ,

3. (2 log∗N)(log |N |) ≤ logN ,

4. d2 log∗ N ≤ logN .

All these conditions can be met simultaneously. The idea of the reduction is to start with an
arbitrary qbf formula φ0 with N0 variables and size S0, view it as an N0-leveled qbf, and apply
Lemma 2 repeatedly until we get a n0-leveled qbf for the large fixed constant n0. Since the final
formula will be equivalent to φ0, we just need to make sure that this process terminates in a small
number of iterations and that the size of the resulting formula is polynomial in S0. We formalize
this below.

Let φ0 be an arbitrary qbf formula with N0 variables and size S0. In particular φ0 is an N0-
leveled qbf of size S0. If N0 ≤ n0 then φ0 is already n0-leveled and there is nothing to do. Assume
then N0 > n0. We apply Lemma 2 to get an N1-leveled qbf of size S1 where N1 = c · |N0| and
S1 = d · S0 · |N0|. By condition 1 on n0 we get N1 < N0, which is progress. Repeating this we get
a sequence of formulas φ0, φ1, . . . , φt, where φi is an Ni-leveled qbf of size Si with

1. Ni = c · |Ni−1|, and
2. Si = di · S0 ·

∏i−1
j=0 |Nj |,

for i ≥ 1. We stop the process at the first i = t such that Nt ≤ n0. We claim that t ≤ 2 log∗N0 and
that St ≤ S0 ·N0 · logN0. This will be enough, since then the algorithm that computes φt from φ0

is the required reduction as it runs in time polynomial in the size of the formula, and φ0 ↔ φt.
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Claim 3. It holds that t ≤ 2 log∗N0.

Proof. First, by conditions 1 and 2 on n0 we have

1. Ni = c · |Ni−1| < Ni−1, and

2. Ni+1 = c · |Ni| = c · |c · |Ni−1|| ≤ logNi−1

for every i ≥ 1 such that Ni−1 > n0. In particular, this means that the process terminates and t
exists. Unfolding the second inequality gives

Nt−1 ≤ log(b(t−1)/2c)N0.

However, by the choice of t we have Nt−1 > n0 ≥ 1, which means that b(t− 1)/2c < log∗N0 and
therefore t ≤ 2 log∗N0.

Given this bound on t, we bound St. We have

St = dt · S0 ·
t−1∏
j=0

|Nj | ≤ dt · S0 · |N0|t,

where in the inequality we used the fact that Ni ≤ Ni−1 for every i ≥ 1 such that Ni−1 > n0, by
condition 1 on n0. Now:

|N0|t ≤ 2(2 log∗ N0)(log |N0|) ≤ 2log N0 = N0.

In the first inequality we used the bound on t, and in the second we used the assumption that
N0 ≥ n0 and condition 3 on n0. Altogether, this gives

St ≤ d2 log∗ N0 · S0 ·N0 ≤ S0 ·N0 · logN0,

which concludes the proof. Again, we used the assumption that N0 ≥ n0 and condition 4 on n0.
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