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Abstract

We consider the problem of extracting entropy by sparse transformations, namely functions
with a small number of overall input-output dependencies. In contrast to previous works,
we seek extractors for essentially all the entropy without any assumption on the underlying
distribution beyond a min-entropy requirement. We give two simple constructions of sparse
extractor families, which are collections of sparse functions such that for any distribution X on
inputs of sufficiently high min-entropy, the output of most functions from the collection on a
random input chosen from X is statistically close to uniform.

For strong extractor families (i.e., functions in the family do not take additional randomness)
we give upper and lower bounds on the sparsity that are tight up to a constant factor for a wide
range of min-entropies. We then prove that for some min-entropies weak extractor families can
achieve better sparsity.

We show how this construction can be used towards more efficient parallel transformation of
(non-uniform) one-way functions into pseudorandom generators. More generally, sparse extrac-
tor families can be used instead of pairwise independence in various randomized or nonuniform
settings where preserving locality (i.e., parallelism) is of interest.
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1 Introduction

Randomness extractors [NZ93, Sha04], have numerous applications in complexity theory and cryp-
tography. For example, in computational complexity they are used to isolate satisfying assignments
of boolean formulas [VV86] and in constructing pseudorandom generators for space-bounded com-
putation [Nis92, RR99]. One notable use in cryptography is in the construction of pseudorandom
generators from one-way functions [HILL99, HRV10, VZ11].

In many applications of extractors, including the above ones, it is important that the extractors
recover essentially all the entropy of the input distribution. A popular choice in such scenarios is to
instantiate the extractor by a pairwise-independent hash function family [BBR88, ILL89]. Pairwise-
independent functions are appealing because they have a variety of implementations, ranging from
very simple ones [CW79] to very efficient ones [IKOS08].

Mansour, Nisan, and Tiwari [MNT93] observed that pairwise-independent hash functions must
be “dense” in the sense that a typical output in a typical function in the family must depend on
a linear number of inputs. So despite their numerous nice properties, in terms of the number of
input-output dependencies, pairwise-independent functions are quite complex. Motivated by an
application to local cryptography, Bogdanov and Rosen [BR11] recently gave a way to bypass this
barrier in the context of hardness amplification of “local” functions.

In this work we study sparse extractors for all the entropy, these are extractors with a small
number of overall input-output dependencies. We consider the more general notion of sparse
extractor families. An extractor family for distributions of min-entropy k over {0, 1}n with error ε
is a distribution H on functions {0, 1}n × {0, 1}s → {0, 1}m where m ≤ s + k such that for every
distribution X over {0, 1}n of min-entropy k, the statistical distance between (H,H(X,Us)) and
(H,Um) is at most ε (where Us and Um are uniformly random). The extractor family is strong if
s = 0, i.e. H does not take any additional randomness beyond X.

Without the sparsity restriction extractors and extractor families are essentially the same object,
as the randomness used to choose an extractor from the family can be included in the seed. Once
we take sparsity into consideration, however, extractor families allow for more flexibility. This
advantage is especially pronounced in the case of strong extractors: Any single strong extractor
in which some output bit depends only on ` input bits cannot extract from a source that fixes all
those ` bits. In contrast, we show strong extractor families can achieve much better sparsity.

In this work we prove three results regarding sparse extractor families. First we give a simple
construction of sparse extractor families for all the entropy. Then we show that the sparsity of
our construction is optimal up to constant factors for a wide range of the min-entropy parameter.
Finally, we show that an equally simple construction of weak extractor families achieves better
sparsity. Thus when sparsity is required, weak extractors can provably outperform strong ones.

We also show our weak extractor family gives a somewhat improved nonuniform construction
of local pseudorandom generators from local one-way functions, based on recent work of Vadhan
and Zheng [VZ11]. In general our results can be useful in randomized or nonuniform settings where
hashing is used and obtaining or preserving small input-output dependencies (i.e., parallelism) is
of interest.

1.1 Our results

Let h : {0, 1}n → {0, 1}m be a function. We say output j of h depends on input i if there exists
assignments x, x′ ∈ {0, 1}n that differ only in the ith coordinate such that h(x)j 6= h(x′)j . We say
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h is s-sparse if the number of input-output pairs (i, j) such that output j depends on input i is at
most s, and h is `-local if every output j depends on at most ` inputs i.

Theorem 1. Let K be a sufficiently large constant and n, k,m, δ be parameters such that 1 ≤ m ≤
k ≤ n, and 0 < δ < 1. Let H(x) = Mx, where M is an m×n matrix over GF (2) where each entry
equals 1 independently with probability

p = min
{ 1

m
· log

m

δ
ln
Kn

m
,
1

2

}
.

Then H is a strong extractor family for min-entropy k with error at most 1/2
√
δ +K · 2−k+m.

By a large deviation bound, all but an δ-fraction of H are O(nmp)-sparse. The best error we can
hope for [RT97] is Ω(

√
2−k+m), which is achieved by a pairwise independent hash function family.

Perhaps the simplest construction of such a family is to choose each entry of M independently at
random with probability p = 1/2. When p < 1/2, Theorem 1 shows the sparsity can be reduced
dramatically at the cost of increasing the error by a little. For example if we set δ = 2−k+m, we
obtain a O(n logm log (n/m)) sparse strong extractor family whose error is within a constant factor
of optimal.

Our main negative result shows that this sparsity is necessary for a large range of values of k
and when δ is constant.

Theorem 2. Suppose n0.99 ≤ m ≤ n/6. There exists a distribution D over distributions X
on {0, 1}n of min-entropy 1.5m each so that for every function h : {0, 1}n → {0, 1}m of sparsity
0.001n logm log(2n/m), the expected statistical distance between h(X) and the uniform distribution

over {0, 1}m is at least 1− e−mΩ(1)
.

Applying Yao’s minimax principle or just take the covex combination of distributions X as the
bad distribution, we conclude that the sparsity in Theorem 1 is optimal up to constant factor for
this range of parameters. The next results concerns weak extractor families.

Theorem 3. Let K be a sufficiently large constant and n, k, c,m be parameters such that 1 ≤ k ≤ n,
1 ≤ s < m and c > 1. Let H : {0, 1}n × {0, 1}s → {0, 1}m be given by H(x, r) = Mx + Br, where
M is an m× n random matrix in which each entry equals 1 independently with probability

p = min
{K
m
· ln n

ln c
,
1

2

}
,

and B is an m × s (m > s) matrix of full rank where every set of at most m/2K rows is linearly
independent. Then H is an extractor family for min-entropy k with error 1/2

√
c · 2−k−s+m.

The construction of a matrix B with the desired properties and O(m) sparsity is a well studied
problem in the theory of low density parity check codes [Gal62, SS96]. Capalbo et al. [CRVW02]
give an explicit construction with s = αm for some constant α < 1 and every m, which is optimal
up to the choice of the constant α. Instantiating Theorem 3 with this matrix, and setting c = 2,
we obtain a family of O(n log n) sparse extractors with error O(

√
2−k−s+m), which is optimal up to

constant factor. (If m = k + s−O(1), the output contains almost all the entropy from the source
plus all the entropy invested by the seed and the error is an arbitrarily small constant.) By using
a larger value of c, we can reduce the sparsity at the cost of increasing the error.

2



We observe that using the randomized encoding of Applebaum et al. [AIK04a], these extractors
can be made to have constant locality at the cost of increasing the seed length r to O(n log n) bits.

For certain parameters the weak extractor family from Theorem 3 bypasses the limitation
on strong extractor families from Theorem 2. For example, for constant statistical distance and
m = n0.99 Theorem 2 implies that for a strong extractor to produce even a constant fraction of
the entropy a sparsity of Ω(n(log n)2) is necessary, while Theorem 3 says that an O(n log n)-sparse
weak extractor family can extract all but O(1) bits of entropy.

1.2 An application

Pseudorandom generators from one-way functions The construction of pseudorandom gen-
erators from one-way functions of H̊astad et al. [HILL99] does not in general preserve locality.
Haitner, Reingold, and Vadhan [HRV10] gave a construction that is more efficient and can be
implemented in NC1. Recently Vadhan and Zheng [VZ11] gave an even simpler variant of this
construction. In combination with the “compiler” of Applebaum, Ishai, and Kushilevitz [AIK04b],
one obtains a generic locality-preserving transformation of one-way functions into pseudorandom
generators.

Applying the transformation of Applebaum et al. may have an adverse effect on seed length, as
it may grow quadratically. However, the construction of Vadhan and Zheng is extremely simple; it
is obtained by applying extractor to a sequence of “blocks”, each of which inherits the locality of
the one-way function f . Instantiating the extractor by the construction from Theorem 3, we obtain
a transformation of nonuniform one-way functions into nonuniform pseudorandom generators that
preserves output locality logarithmic in the size of the adversary with the same seed length as the one
obtained by Vadhan and Zheng. Using an additional idea of Applebaum et al., the transformation
can be made to preserve constant output locality at the expense of increasing the seed length. We
describe this application in Section 5 (see Proposition 9).

1.3 Related work

Sparse extractors for restricted sources Motivated by certain applications, Zhou and Bruck
[ZB11] show that low density random matrices can efficiently extract random bits from some re-
stricted noisy sources, such as bit fixing sources and Markov sources. Our Theorem 1 shows that
essentially the same construction extracts from arbitrary sources of given min-entropy.

Extractors in NC0 Applebaum, Ishai and Kushilevitz [AIK06] give a weak extractor in NC0

(thus sparsity O(n)) works for min-entropy k = (1 − O(1))n, but suffers Ω(n) entropy loss. Our
extractor family from Theorem 3 matches these parameters. The construction from [AIK06] does
not appear to extend to distributions of smaller min-entropy or allow for smaller entropy loss, while
ours does. However, they provide a single extractor that works for all distributions, while we only
give an extractor family.

Locally computable extractors A locally computable extractor [Lu04, Vad03] is an extractor in
which after the seed is fixed, the output as a whole depends on a small number of input bits. Such
extractors are used to implement private-key encryption in the bounded storage model [Mau92].
We observe that the notions of locally computable extractors and sparse extractor families are
fundamentally different. This is best illustrated in the regime in which we extract all the entropy,
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which is of main interest in this work. A lower bound of Vadhan [Vad03] shows that when the
output length m is linear in the min-entropy k, then even after the seed is fixed the output of
the extractor as a whole must depend on at least a linear fraction of the input. Thus o(n)-locally
computable extractors are not possible when m = Ω(k). Although this is inevitable, our results
show that it is possible to make a small number of input-output dependencies.

We observe that the locally computable extractors of Lu [Lu04] and De and Trevisan [DT09] are
also sparse, but they extract only a fixed root of the min-entropy k. This is sufficient for bounded
storage cryptography, but not for the application we describe in Section 5.

1.4 Our proofs

Bogdanov and Rosen [BR11] proved a quantitatively weaker version of Theorem 1 that achieves
sparsity O(n(log n)3) instead of the optimal O(n log(m) log(n/m)). (They did not attempt to
determine the dependence on m and they can achieve sparsity O(n log(m) log(n/m)2)) In their
proof, H is viewed as a collection of boolean functions (h1, . . . , hm), hi : {0, 1}n → {0, 1}. They
show that for most choices of h1, conditioning on h1(x) reduces the min-entropy k of x by at most
1 + 1/poly(k) bits (unless k is very small), and so this bit extraction can be applied iteratively for
m steps.

One drawback of this argument is that as i gets larger and the min-entropy of x conditioned
on h1(x), . . . , hi−1(x) becomes smaller, the density of the functions hi must keep increasing (as
required by our lower bound). To achieve our optimal (up to constant) sparsity, we must analyze
the effect of all the functions h1, . . . , hm simultaneously.

To do this, we upper bound the probability that two samples x, x′ collide under h, that is the
probability that h(x+ x′) = 0. For a fixed pair (x, x′), each entry hi(x+ x′) of h(x+ x′) is biased
towards zero. We can think of hi(x + x′) as a random variable that takes value zero with some
probability p(x, x′), and is unbiased otherwise. Intuitively, our analysis shows that the unbiased
components of this distribution dominate in collisions. Several technical complications arise in the
formal argument. One useful tool that allows us to analyze the case when most of the components
of h(x+ x′) are unbiased is Hölder’s inequality.

To give an idea of our proof of Theorem 2, let’s make the simplifying assumption that h is
`-local, where ` = γ(n/m) logm log(n/m). We give a heuristic argument why we expect the output
of h to be far from uniform when h is linear. Let X be the p-biased distribution over {0, 1}n (each
bit takes value 1 independently with probability p) and p is chosen so that H(p) = m/n, where
H(p) is the binary entropy of p. Then the distribution X has Shannon entropy m. However, every
output bit of h(X) is (1−2p)`-biased, and we chose the parameters so that (1−2p)` = m−Ω(γ). By
choosing γ small enough, we can ensure that every output bit of h has, say, m−1/2 bits of entropy
deficiency, so by the sub-additivity of Shannon entropy h(X) has m1/2 fewer bits of entropy than
a uniformly random variable over {0, 1}m. So h(X) does not “look” random in terms of Shannon
entropy.

To turn this heuristic argument into a proof we need to handle several issues, the most interesting
of which is replacing entropy deficiency by statistical distance from the uniform distribution. One
advantage of measuring entropy deficiency is that entropy is subadditive, which allows us to ignore
the dependencies between the various outputs of h(X) in the above argument. In contrast, to
obtain a good lower bound on statistical distance we must take into account these dependencies.
Here we apply tail bound for read t family [GLSS12]. To extend the analysis from linear functions
to general ones we apply an elegant idea of Viola [Vio05] of shifting X by a random offset.
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We establish Theorem 3 by a relatively straightforward probabilistic calculation.

1.5 Open problems

In terms of seed length our sparse extractors are quite poor. For example the size of the family H in
Theorem 1 is exponential in n. By a standard probabilistic argument it can be shown that a random
sample of H of size O(n/ε2) is as effective as the whole family while incurring an additional penalty
of only ε in statistical distance. Consequently there is no existential obstacle to sparse extractor
families with short seed. It remains to see if such families can be found efficiently.

For weak sparse extractors, our work leaves open two possible improvements. First, we do not
know if the sparsity of our weak extractors is the best possible. Second, we do not know what is
the minimal size of a sparse weak extractor family. It could be that even a family of size 1, i.e.
a single sparse weak extractor, is sufficient. Such an extractor could be used to obtain a uniform
construction of local pseudorandom generators from local one-way functions. Could there be a
single sparse weak extractor of sparsity linear in n that extracts k − k0.99 bits of min-entropy for
every source over {0, 1}n of min-entropy k?

2 Proof of Theorem 1

To prove Theorem 1 it is sufficient to show that for every set S of size 2k, the statistical distance
between (H,H(X)) and (H,U) is at most 1/2

√
δ +O(2−k+m), where X is chosen at random from

S and U is uniformly random. In fact we will show for every x0 ∈ S,

PrH,X [H(X) = H(x0)] ≤ 1 + δ +O(2−k+m)

2m

from where

PrH,X,X′ [H(X) = H(X ′)] ≤ maxx0∈S PrH,X [H(X) = H(x0)] ≤ 1 + δ +O(2−k+m)

2m

where X and X ′ are independent samples from S. This is sufficient to establish Theorem 1 using
the relation between collision probability and statistical distance from Claim 10 in Appendix A.

Proof. When p = 1/2 the analysis is standard, so we will assume that p = 1
m ·log(m/δ) ln(15n/m) <

1/2. Since entries of M are chosen independently from each other, for any y ∈ {0, 1}n, we have

PrH [H(y) = 0] = Pra[〈a, y〉 = 0]m =
(1 + (1− 2p)|y|

2

)m
=

1

2m

m∑
i=0

(
m

i

)
(1− 2p)i|y|

Here a ∼ {0, 1}m is chosen from the p-biased distribution. Let S0 be the set {x0 +x : x ∈ S}. Then

PrH,X [H(X) = H(x0)] = PrH,y∼S0 [H(y) = 0]

= Ey∼S0

[ 1

2m

m∑
i=0

(
m

i

)
(1− 2p)i|y|

]
=

1

2m

m∑
i=0

(
m

i

)
Ey∼S0 [(1− 2p)i|y|]

Let ai = Ey∼S0 [(1 − 2p)i|y|]. We now upper bound the sum
∑m

i=0

(
m
i

)
ai by 1 + δ + O(2−k+m).

We will consider two cases: When i is small – specifically, i ≤ k/(2 log (m/δ)), we show that ai
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decreases at a rate faster than (m/δ)−i, so the sum is dominated by the term i = 0. When i is
large, we want to bound both ai and

(
m
i

)
by its largest possible value. To achieve this, we have

to further split the large i’s into “mildly large” and “very large” ones and apply the argument
to each summation separately. The resulting contribution is O(2−k+m). Notice that, in the case
m ≤ k/(2 log (m/δ)), we need not consider the contribution of large i’s thus we can improve p to
be 1

k · log(m/δ) ln(15n/k) by using the same analysis for small i’s.

The small i’s. We show that if i ≤ k/(2 log (m/δ)), then ai ≤ (m/δ)−1.8i and therefore

k/(2 log (m/δ))∑
i=0

(
m

i

)
ai ≤ (1 + (m/δ)−1.8)m ≤ eδ1.8/m0.8 ≤ 1 + δ.

To bound ai we apply Hölder’s inequality, which says that for every B ≥ 1:

ai = Ey∼S0 [(1− 2p)i|y|] =
1

|S|
∑

y∈{0,1}n
1y∈S0 · (1− 2p)i|y| ≤ 1

|S|
|S|1−1/B

∑
y∈{0,1}n

(
(1− 2p)Bi|y|

)1/B
The last expression can be simplified to give

ai ≤
((1 + (1− 2p)Bi)n

|S|

)1/B

≤
((1 + e−2piB)n

|S|

)1/B
.

We choose B = k/(2i log (m/δ)), which is at least one because i ≤ k/(2 log(m/δ)). By our choice
of p, it follows that 2piB ≥ ln(15n/m) and so

ai ≤
((1 +m/15n)n

|S|

)1/B
≤
(em/15

2k

)1/B
≤
(ek/15

2k

)1/B
≤ (2−0.9)k/B = (m/δ)−1.8i.

The large i’s. We have that

ai = Ey∼S0 [(1− 2p)i|y|] ≤ 1

|S|
∑

y∈{0,1}n
(1− 2p)i|y| =

(1 + (1− 2p)i)n

|S|
≤ (1 + e−2pi)n

|S|
. (1)

When i ≥ m/4, the last expression is at most (1 + e−pm/2)n/|S|. By our choice of p, pm/2 ≥
1/2 logm ln(15n/m). Optimizing for logm, it can be calculated that this expression is at least lnn
when n is sufficiently large. It then follows that

ai ≤
(1 + 1/n)n

|S|
≤ e2−k and so

m∑
i=m/4

(
m

i

)
ai ≤ 2m · e2−k = e2−k+m.

Finally, we handle the i’s in the range k/(2 log (m/δ)) < i < m/4. Using (1) and the lower bound
on i, we have that

ai ≤
(1 +m/15n)n

|S|
≤ em/15

|S|
≤ 20.1m−k

and so ∑
k/(2 log (m/δ))<i<m/4

(
m

i

)
ai ≤ 20.1m−k

m/4∑
i=0

(
m

i

)
≤ 20.1m−k · 2H(1/4)m+O(1) ≤ 2−k+m+O(1),

where H is the binary entropy function, and H(1/4) ≤ 0.9.
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3 Proof of Theorem 2

Let distribution X be a truncated variant of the p-biased distribution X where p is chosen so that
H(p) = 2m/n and p ≤ 1/2. The distribution D on distributions is defined as follows. Choose y
uniformly from {0, 1}n and output y + X. To prove Theorem 2, we will show for most choices of
y, there exists a statistical test Ty that distinguishes h(y + X) from the uniform distribution U
and then argue the expected statistical distance over choice of y between h(y +X) and U is large.
We will define Ty shortly for y ∈ {0, 1}n and first argue that for most choice of y, Ty distinguishes
h(y + X) from U . Then we will show how to define X of min-entropy 1.5m in a way that X and
X are statistically close. Finally, we conclude that the expected statistical distance over choice of
y between h(y +X) and U is at least 1− e−mΩ(1)

.
The following bounds on p are obtained by plugging in H(p) = 2m/n in Lemma 11 in Ap-

pendix B:
m

3n log2(n/m)
≤ p ≤ 2m

n log2(n/2m)
. (2)

Now suppose h has sparsity (m/2p)β logm, where β is a sufficiently small constant, say β = 0.08.
Notice this β also satisfies n ≤ m1+2β (since by assumption m ≥ n0.99). Partition the inputs of
h′ into two sets H and L, where H contains those inputs that participate in at least m2−6β/pn
outputs of h′, and L contains the rest. By Markov’s inequality (using the assumption n ≤ m1+2β),
H has size at most m8ββ log k. For x ∈ {0, 1}n, let x0 and x1 denote its projections onto H and L,
respectively. For every y ∈ {0, 1}n, we define the statistical test

Ty = {z ∈ {0, 1}m : ∆(h(x0, y1), z) ≤ 1/2−m−β/4 for some x0, }

where ∆(a, b) is relative Hamming distance between the strings a and b, i.e. the fraction of positions
in which they differ.

Claim 4. For sufficiently large k, PrX [h(X + y) ∈ Ty] ≥ 1− e−m3β/2 for at a least 1− 1− e−m3β/2

values of y ∈ {0, 1}n.

In the proof we will need the following fact about Boolean functions f : {0, 1}d → {0, 1}

PrX,Y [f(X + Y ) 6= f(Y )] ≤ 1
2 −

1
2(1− 2p)d (3)

where Y is uniformly distributed in {0, 1}n, and X is chosen independently from the p-biased
distribution on {0, 1}n. This fact follows easily by Fourier analysis [O’D02] and was also used by
Viola [Vio05] in a context related to ours.

We will also make use of the following inequality of Gavinsky et al. [GLSS12]. A collection of
indicator random variables Z1, . . . , Zm is called a read t family of functions if there exist independent
random variables X1, . . . , Xn such that each Xi

Then we will apply tail bound for read t family of functions [GLSS12] to show for most choice
of (x, y) outcome concentrate on expectation. Indicator random variables Z1, . . . , Zm is a read t
family if they can written as a function of independent random variables X1, . . . , Xn where each
Xi affects at most t of the Zi’s. Then for every ε > 0,

Pr[Z ≥ E[Z] + εm] ≤ e−2ε2m/t. (4)

where Z = Z1 + · · ·+ Zm.
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Proof. We will show that for every choice of x0, y0, with probability 1− e−Ω(m1−β) over the choice
of x1, y1, h(x+ y) = h(x0 + y0, x1 + y1) is in Ty. Fix x0, y0 and consider the function hx0+y0(x1) =
h(x0 + y0, x1). Let Z = Z1 + · · ·+ Zm, where

Zi =

{
1, if hx0+y0

i (x1 + y1) 6= hx0+y0
i (y1),

0, otherwise.

Suppose hx0+y0
i depends on di inputs for 1 ≤ i ≤ m, by (3) we have

E[Zi] ≤ 1/2(1− (1− 2p)di).

By linearity of expectation and
∑m

i=1 di ≤ (m/2p)β logm, we get

E[Z] ≤ m/2(1− (1− 2p)β logm/2p) ≤ m(1/2−m−β/2).

Now we apply tail bound (4) to Z1, . . . , Zm with t = m2−6β/pn and ε = m−β/4 to obtain

Pr[Z ≥ m(1/2−m−β/4)] ≤ e−2ε2m/(m2−6β/pn) ≤ e−m3β

where we used the estimate (2) to lower bound pn. In other words,

Prx1,y1 [∆(hx0+y0(y1), hx0+y0(x1 + y1)) ≤ 1/2−m−β/4] ≥ 1− e−m3β
.

It follows that

Prx,y[h(x+ y) ∈ Ty] ≥ Ex0,y0

[
Prx1,y1 [∆(hx0+y0(y1), hx0+y0(x1 + y1)) ≤ 1/2−m−β/4]

]
≥ 1− e−m3β

.

Applying Markov’s inequality, we conclude that for at least 1− e−m3β/2 choices of y,

EX [h(X + y) ∈ Ty] ≥ 1− e−m3β/2.

Claim 5. For any fixed y ∈ {0, 1}n, with probability 1 − 2−Ω(m1−2β) over the choice of a uniform
U ∼ {0, 1}m, U is not in Ty.

Proof. Since H has size at most m8ββ log k, the range of h′(x0, y1) has at most 2m
8ββ logm elements.

For every such element h(x0, y1), the probability that U is within distance m/2−m1−β/4 to h(x0, y1)

can be computed by Chernoff bounds to be at most 2−Ω(m1−2β). Taking a union bound over all
such h(x0, y1), we obtain

Pr[U ∈ Ty] ≤ 2m
8ββ logm2−Ω(m1−2β) = 2−Ω(m1−2β)

as long as β < 1/10 and m is sufficiently large.

From these two claims, it follows that for a 1− e−m3β/2 choices of y,

PrX [h(X + y) ∈ Ty]− PrU [U ∈ Ty] ≥ 1− 1− e−m3β/2 − 2−Ω(m1−2β). (5)

To finish the proof, we show how to replace X with another variable X of min-entropy at least
1.5m that is statistically close to it. We define X as follows: First, choose X from the p-biased
distribution. If the Hamming weight of X is at least 0.9pn, set X = X. Otherwise, let X be
uniformly random in {0, 1}n. We prove the following claim in Appendix C:
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Claim 6. X has min-entropy at least 1.5m.

Clearly the same conclusion holds for the distribution X + y. The statistical distance between
X and X is upper bounded by the probability that X has Hamming weight less than 0.9pn. By
Chernoff bounds, the probability of this is at most exp(−Ω(pn)), which using the lower bound
(2) is at least exp(−Ω(m/ log(n/m))) = exp(−mΩ(1)) (since m ≥ n−0.99). Applying the triangle
inequality, for all y satisfying (5) we have

PrX [h(X + y) ∈ Ty]− PrU [U ∈ Ty] ≥ 1− e−mΩ(1)
.

We conclude that the expected statistical distance between h(X + y) and Um for a random choice

of y is at least (1− e−mΩ(1)
)(1− e−mΩ(1)

) = 1− e−mΩ(1)
.

4 Proof of Theorem 3

As in the proof of Theorem 1, it is sufficient to show for every set S of size 2k and every x0 in S
and r0 in {0, 1}s,

PrM,X,R[MX +BR = Mx0 +Br0] ≤ 1 + (1/δ) · 2−k−s+m

2m

where the probability is taken over the random matrix M , X chosen uniformly from S and R chosen
uniformly from {0, 1}s.

Assume that p ≤ 1/2. Let S0 be the set {x+ x0 : x ∈ S}. Then

PrM,X,R[MX +BR = Mx0 +Br0] = PrM,X,R[M(X + x0) = B(R+ r0)] = PrM,Y,R[MY = BR]

where Y is a random element from S0. Let Mi, Bi denote the ith row of M and B. Then

Pr[MY = BR] = EM,Y,R[

m∏
i=1

1 + (−1)MiY+BiR

2
]

=
1

2m

∑
T⊆[m]

EM,Y,R

[
(−1)

∑
i∈T MiY+BiR

]
=

1

2m

∑
T⊆[m]

EM,Y [(−1)
∑
i∈T MiY ] ER[(−1)

∑
i∈T BiR].

Since any t = m/2K rows of B are linearly independent, for every nonempty T of size at most t,∑
i∈T Bi 6= 0 and so E[(−1)

∑
i∈T BiR] = 0. On the other hand for every T of size at least t we have

EM,Y [(−1)
∑
i∈T MiY ] =

1

2k

∑
y∈S0

EM [(−1)
∑
i∈T Miy] =

1

2k

∑
y∈S0

(1− 2p)|y|·|T |

≤ 1

2k

∑
y∈{0,1}n

(1− 2p)t|y| ≤ 1

2k
(1 + (1− 2p)t)n ≤ ene

−2pt

2k
.
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Since B has full rank, the condition
∑

i∈T Bi = 0 is satisfied for at most 2m−s sets T . Hence,∑
T⊆[m]

EM,Y [(−1)
∑
i∈T MiY ] ER[(−1)

∑
i∈T BiR] = 1 +

∑
T :|T |>t

EM,Y [(−1)
∑
i∈T Miy] ER[(−1)

∑
i∈T Bis]

≤ 1 +
∑

T :|T |>t

ene
−2pt

2k
|ER[(−1)

∑
i∈T BiR]|

≤ 1 + 2m−s · e
ne−2pt

2k

= 1 +
ene
−2pt

2s+k−m
.

Plugging in t = m
2K and p = K

m · ln
n

ln c we get the desired bound.

5 Local pseudorandom generators from local one-way functions

A sequence of correlated random variables X1, . . . , Xm taking values in {0, 1}n has (s, ε) conditional
pseudo-min-entropy r if for every 1 ≤ i ≤ m, there exists a random variable Yi jointly distributed
with X1, . . . , Xi−1 such that the min-entropy of Y conditioned on any choice of X1, . . . , Xi−1 is at
least r and for every circuit D of size s,∣∣Pr[D(Xi) | X1, . . . , Xi−1]− Pr[D(Yi) | X1, . . . , Xi−1]

∣∣ ≤ ε.
Vadhan and Zheng [VZ11] give the following construction of conditional pseudo-min-entropy

sequences from a one-way function f : {0, 1}n → {0, 1}n. Let zi, 1 ≤ i ≤ t be the random strings

zi = oibf(xi1) ◦ xi1 ◦ · · · ◦ f(xik) ◦ xikcn−oi

where 1 ≤ oi ≤ n is an offset, xi1, . . . , xik are random strings, and fbyc` denotes truncating the
first f and last ` bits of y respectively. Let Xj = z1jz2j . . . ztj , where zij denotes the jth bit of zi.
Vadhan and Zheng prove the following theorem (we state it in the nonuniform setting).

Theorem 7 (Vadhan and Zheng). Suppose f : {0, 1}n → {0, 1}n is computable by a circuit of
size poly(n) and is hard to invert on a 1/s fraction of inputs by circuits of size s. There exists
offsets o1, . . . , ot such that for every ε, X1, . . . , Xm has (sΩ(1)/poly(nε), ε) conditional pseudo-min-
entropy at least t(1/2 + Ω((log s)/n)) where k = O(n/ log s), t = O((n/ log s)2 log2 n log (1/ε)) and
m = 2(k − 1)n.

The following claim was proved in the uniform setting by Haitner, Reingold, and Vadhan. We
need a nonuniform version of it, whose proof is analogous. We include it at the end of this section
for completeness.

Claim 8. Suppose X1, . . . , Xm (where Xi takes values in {0, 1}t) has (T, ε1) conditional pseudo-
min-entropy α. Let H be an extractor family for min-entropy α with error ε2 so that every function
in H is computable in size T0. Then with probability at least 1/2 over the choice of H the distribution
(H(X1, R1), . . . ,H(Xm, Rm)) is (T−mT0,mε1+2m2ε2)-pseudorandom where R1, . . . , Rm ∼ {0, 1}r.

10



Instantiating Claim 8 with the function family from Theorem 3 where we set the output length
of function to be t(1/2 + Ω((log s)/n)) + r and let d be the entropy loss. We obtain the following
consequence for the function

G(x11, . . . , xtk, r1, . . . , rm) = (H(X1, r1), . . . ,H(Xm, rm)).

Proposition 9. Suppose f : {0, 1}n → {0, 1}n is an `-local function computable by a circuit
of size poly(n) and is hard to invert on a 1/s fraction of inputs by circuits of size s. With
probability at least 1/2 over the choice of H, G : {0, 1}nkt+mr → {0, 1}nkt(1+Ω((log s)/n))+mr is an
O(` · (nkt ln (t/ ln c)+mr))-sparse, (sΩ(1)/poly(nε),poly(n)(ε+

√
c2−d/2)) pseudorandom generator

where k = O(n/ log s), t = O((n/ log s)2 log2 n log (1/ε)) and m = 2(k − 1)n.

We can improve the locality of G at the expense of increasing its input and output length by
the factor of O(ln(t/ ln c)) via the following transformation of Applebaum, Ishai, and Kushilevitz.
For every output of G, which is obtained by applying a sparse linear transformation to some Xj

and therefore has the form
Xjk1 + · · ·+Xjkt

introduce auxiliary new inputs rj3, rj4, . . . , rj(t−1) for G and replace its corresponding output by
the tuple

(Xjk1 +Xjk2 + rj3, rj3 +Xjk3 + rj4, . . . , rjt−1 +Xj(t−1) +Xjt).

Call this new function G′. Applebaum et al. show that if G is (sΩ(1), s−Ω(1))-pseudorandom, so is
G′. Since every bit of Xj comes either from some input xi or from some output f(xi), it follows
that if f has locality `, then G′ has locality 3`.

Proof of Claim 8. Let Yi be the conditional min-entropy model for Xi. We consider the hybrid
distributions

X(i) = (H(X1, R1), . . . ,H(Xi−1, Ri−1), H(Xi, Ri), Ui+1, . . . , Um) and

Y (i) = (H(X1, R1), . . . ,H(Xi−1, Ri−1), H(Yi, Ri), Ui+1, . . . , Um)

where U1, . . . , Um are uniformly random and independent. By the definition of conditional pseudo-
min-entropy, for every i the distributions X(i) and Y (i) are (T−mT0, ε1)-indistinguishable. Because
H is an extractor family, the distributions (H,H(Yi, Ri) | X1, . . . , Xi−1) and (H,Ui) are within
statistical distance ε2 for any choice of X1, . . . , Xi−1. It follows that (H,Y (i)) and (H,X(i−1))
are within statistical distance at most ε2, so by Markov’s inequality Y (i) and X(i−1) are within
statistical distance 2mε2 with probability at least 1 − 1/2m over the choice of H. By a union
bound, with probability at least 1/2 over the choice of H, Y (i) and X(i−1) are 2mε2-statistically
close for all i. For such a choice of H, by the triangle inequality X(m) is (T −mT0,mε1 + 2m2ε2)
indistinguishable from X(0). Since X(m) = (H(X1R1), . . . ,H(Xm, Rm)) and X(0) is the uniform
distribution, we obtain the desired conclusion.
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A Statistical distance versus collision probability

Here we give a standard bound of the statistical distance of the distributions (H,H(X)) and (H,U)
in terms of the collision probability of H. The proof is very well known when the distribution over
H is uniform. In our application, however, it is not, so we include the proof for completeness.

Claim 10. Let H be a distribution on functions from {0, 1}n to {0, 1}m, X be a distribution over
{0, 1}n and U be the uniform distribution over {0, 1}m. The statistical distance between (H,H(X))
and (H,U) is at most

1

2

√
2k PrH,X,X′ [H(X) = H(X ′)]− 1.

where X and X ′ are independent samples from the same distribution.

Proof. We upper bound the `1 distance, which is twice the statistical distance:

`1((H,h(X)), (H,U)) =
∑

h,b

∣∣PrH,X [H = h ∧H(X) = b]− PrH [H = h]2−m]
∣∣

=
∑

h,b

√
PrH [H = h] ·

√
PrH [H = h]

∣∣∣PrX [h(X) = b]− 2−m]
∣∣∣

≤
√∑

h,b
PrH [H = h] ·

√∑
h,b

Prh[H = h]
(
PrH,X [H(X) = b]− 2−m]

)2
=
√

2m ·
√

PrH,X,X′ [H(X) = H(X ′)]− 2−m

=
√

2m PrH,X,X′ [H(X) = H(X ′)]− 1.

B Bounds on the inverse of entropy

Lemma 11. For every p ∈ (0, 1/2],

H(p)

6 log2 2/H(p)
≤ p ≤ H(p)

log2 1/H(p)
.

The upper bound on p follows from the inequality H(p) ≥ p log2 1/p. Applying twice we obtain

1

p
≥ 1

H(p)
log2

1

p
≥ 1

H(p)
log2

( 1

H(p)
log2

1

p

)
≥ 1

H(p)
log2

1

H(p)

because 1/p ≥ 2. For the lower bound, we apply H(p) ≤ 2p log2 1/p twice to obtain

1

p
≤ 2

H(p)
log2

1

p
≤ 2

H(p)
log2

( 2

H(p)
log2

1

p

)
.

Now 2/H(p) ≥ (1/p) log2(1/p) ≥
√

log2(1/p), which is true for every p ∈ (0, 1]. Therefore

1

p
≤ 2

H(p)
log2

( 8

H(p)3

)
=

6

H(p)
log2

( 2

H(p)

)
.
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C Proof of Claim 6

The maximum probability in X is attained by those strings in {0, 1}n that have Hamming weight
exactly 0.9pn. Let a be such a string. Then

Pr[X = a] ≤ Pr[X = a] + Pr[U = a]

= p0.9pn(1− p)1.1(1−p)n + 2−n

≤ 2−nH(p) · p−0.1pn + 2−n

= 2−nH(p) · 20.1p log2(1/p)n + 2−n

≤ 2−nH(p) · 20.1nH(p) + 2−n

= 2−0.9nH(p) + 2−n

= 2−1.8m + 2−n ≤ 2−1.5m.
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