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Abstract

Agrawal-Vinay [AV08] and Koiran [Koi12] have recently shown that an
exp(ω(

√
n log2 n)) lower bound for depth four homogeneous circuits computing the

permanent with bottom layer of × gates having fanin bounded by
√
n translates to

super-polynomial lower bound for a general arithmetic circuits computing the perma-
nent. Motivated by this, we examine the complexity of computing the permanent and
determinant via such homogeneous depth four circuits with bounded bottom fanin.

We show here that any homogeneous depth four arithmetic circuit with bottom
fanin bounded by

√
n computing the permanent (or the determinant) must be of size

exp(Ω(
√
n)).

1 Introduction

Background. The most natural and intuitive way to compute a polynomial is via an
arithmetic circuit. In this model the inputs are variables x1, x2, . . . , xn and the computation
is performed using the operations +,×. We typically allow arbitrary constants from a field
F on the incoming edges to a + gate so that the output of a + gate is an arbitrary F-linear
combination of its inputs. The complexity measures associated with circuits are size and
depth, which capture the number of operations and the maximal distance between an input
and the output.
Recall that the permanent is an n2-variate homogeneous1polynomial of degree n defined as:

Permn =
∑
σ∈Sn

n∏
i=1

xiσ(i)

1A multivariate polynomial is said to be homogeneous if all its monomials have the same total degree.
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The permanent, by virtue of being complete for the class VNP (an algebraic analogue of
the class NP, defined in [Val79]), occupies a central position in the study of the complex-
ity of counting problems. The best known circuit for the permanent is actually a depth
three homogeneous circuit of size O(n2 · 2n) and is called the Ryser’s formula. Its illustrious
sibling, the determinant, is widely believed to be comparatively easy, being complete for a
subclass of VP (an algebraic analogue of P, also defined in [Val79]). It is conjectured (cf.
[AV08]) that any arithmetic circuit computing the n× n permanent must be of exp(n) size.
Meanwhile, the arithmetic complexity of computing the determinant equals Õ(nω), where ω
is the exponent of matrix multiplication. Resolving the arithmetic complexity of computing
the permanent and the determinant (i.e. determining the exponent of matrix multiplication)
are two of the most fascinating open problems of our times.

Prior Work. Lower bounds have been obtained earlier for depth three arithmetic circuits
(with some restrictions) and constant depth multilinear circuits. Specifically, Nisan and
Wigderson [NW97] showed that any homogeneous depth three circuit computing the per-
manent (also the determinant) must be of exponential size. Following that, Grigoriev and
Karpinski [GK98] showed that any depth three arithmetic circuit over a finite field comput-
ing the permanent (also the determinant) requires exponential size but proving lower bounds
for depth three circuits over fields of characteristic zero (or even over the algebraic closure of
a finite field) remains an outstanding open problem. In this direction Shpilka and Wigderson
[SW01] proved quadratic lower bounds for depth three circuits over arbitrary fields (without
the homogeneity restriction). Meanwhile, Raz [Raz09] showed that any multilinear formula
computing the permanent (also the determinant) must be of superpolynomial size. Follow-
ing this, Raz and Yehudayoff [RY08] proved exponential lower bounds for constant depth
multilinear circuits.

The model. In this work, we focus our attention on depth four homogeneous2 arithmetic
circuits with bottom fanin bounded by a parameter t which we denote by ΣΠΣΠ[hom](t). A
ΣΠΣΠ[hom](t) circuit computes a polynomial of the form

C =
s∑
i=1

(Qi1 ·Qi2 · . . . ·Qid) (1)

where each Qij is homogeneous polynomial of degree bounded by t, and every summand has
the same degree. Our motivation for investigating representations of the form (1) stems
from a recent result of Agrawal and Vinay [AV08], and a subsequent strengthening by
Koiran [Koi12].

2An arithmetic circuit is said to be homogeneous if the polynomial computed at every internal node of
the circuit is a homogeneous polynomial. It is a folklore result (cf. the survey by Shpilka and Yehudayoff
[SY10]) that as far as computation by polynomial-sized arithmetic circuits of unbounded depth is concerned
one can assume without loss of generality that the circuit is homogeneous. Specifically, if a homogeneous
polynomial f of degree d can be computed by an (unbounded depth) arithmetic circuit of size s, then it can
also be computed by a homogeneous circuit of size O(d2 · s).
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Theorem 1. [AV08, Koi12] If there is a polynomial sized arithmetic circuit computing
Permn, then there is a 2O(

√
n log2 n)-sized ΣΠΣΠ[hom](

√
n)-circuit computing Permn.

The contrapositive of the above statement is that it suffices to show a 2ω(
√
n log2 n) lower bound

for ΣΠΣΠ[hom](
√
n) circuits computing the Permn to prove a super-polynomial circuit lower

bound. Thus, a good enough lower bound for ΣΠΣΠ[hom](
√
n) circuits would imply super-

polynomial lower bounds for Permn. In this paper, we give a lower bound for the permanent
(or determinant) that comes very close to the above threshold.

Theorem 2. Any ΣΠΣΠ[hom](t) that computes Permn (or Detn) must have size exp
(
Ω
(
n
t

))
.

Remark: The results of Agrawal-Vinay [AV08] and Koiran [Koi12] depth-reduce any poly-
nomial sized circuit computing a degree n polynomial to a ΣΠΣΠ[hom](t) formula with top
fanin exp

(
n
t

log2 n
)
. The above theorem infact is a bound on the top fanin of ΣΠΣΠ[hom](t)

circuits computing the permanent or determinant. In Section 6, we prove a prove a general-
ization of Theorem 2 by extending the lowerbound for all circuits that are sums of arbitrary
powers of O

(
n
t

)
-many degree t polynomials. Further, our proofs are completely elementary

and self-contained but it is possible that using some more sophisticated theorems from alge-
braic geometry, the bounds that we obtain can be improved. Also, though the above theorem
gives a lower bound for both the determinant and permanent, there is a subtle difference
between the two and we discuss this in Section 7.

2 Basic Idea and Outline

Our key idea is to exploit the shifted derivatives of a polynomial - a notion that we now
define. Let F be a field and F[x] be the set of polynomials over F in the set of variables
x = (x1, x2, . . . , xn). For an n-tuple i = (i1, i2, . . . , in) ∈ Zn≥0, xi denotes the monomial

(xi11 ·xi22 · . . . ·xinn ) which has degree |i| def= (i1 + i2 + . . .+ in). ∂if denotes the partial derivative
of f with respect to the monomial xi,

∂if
def
=

∂i1

∂xi11

(
∂i2

∂xi22

(
· · ·
(
∂inf

∂xinn

)
· · ·
))

.

For a finite subset of polynomials S ⊆ F[x], the F-span of S, denoted F-span (S), is the set
of all possible F-linear combinations of polynomials in S. i.e.

F-span (S)
def
=


|S|∑
i=1

αi · fi : αi ∈ F, fi ∈ S

 .

With these notational preliminaries in hand, we are now ready to define our key concept.

Definition 1 (Shifted Derivatives). Let f(x) ∈ F[x] be a multivariate polynomial. The
span of the `-shifted k-th order derivatives of f , denoted 〈∂=kf〉≤`, is defined as

〈∂=kf〉≤`
def
= F-span

{
xi · (∂jf) : i, j ∈ Zn≥0 with |i| ≤ ` and |j| = k

}
3



〈∂=kf〉≤` forms an F-vector space and we denote by dim(〈∂=kf〉≤`) the dimension of this
space.

Recent work in arithmetic complexity has shown how 〈∂=kf〉≤` can give insights into the
structure and complexity of f in ways that are sometimes surprising and unexpected. Kayal
[Kay12a] showed that 〈∂=1f〉≤1 yields a lie algebra that can help efficiently determine if
f is equivalent (via an affine change of variables) to the permanent (or determinant). For
` = ∞, note that 〈∂=kf〉≤` is precisely the ideal generated by the k-th order derivatives of
f . Gupta, Kayal and Qiao [GKQ12] recently exploited the structure of 〈∂=1f〉≤∞ to devise
an efficient reconstruction algorithm for random arithmetic formulas. Note that the dimen-
sion of partial derivatives employed by Nisan and Wigderson [NW97] in their lower bound
proofs corresponds to looking at dim(〈∂=kf〉≤0). Closer to the present application, Kayal
[Kay12b] showed how dim(〈∂=kf〉≤`) (for suitably chosen ` and k) can be used to prove
an exponential lower bound for representing a polynomial as a sum of powers of bounded
degree polynomials. We show here that for suitably chosen values of ` and k, dim(〈∂=kf〉≤`)
is comparatively small when f is computed by a ΣΠΣΠ[hom](t) circuit (Corollary 9). Mean-
while dim(〈∂=kPermn〉≤`) is relatively large (Corollary 16). This gives the lower bound.

Outline of the rest of the paper. We execute this idea in the rest of the paper as follows.
In Section 4 we give an upper bound on 〈∂=kC〉≤` for C being a polynomial computed by a
ΣΠΣΠ[hom](t) circuit, i.e. when C is of the form given in equation (1). In Section 5, we give
a lower bound estimate for dim(〈∂=kPermn〉≤`). We then combine these bounds to obtain a
proof of our main theorem in Section 6. Finally, in Section 7, we conclude by discussing the
possibility of improving the estimates for dim(〈∂=kPermn〉≤`) obtained here.

3 Preliminaries

Notation. We will use [n] to denote the set {1, · · · , n} for any n ≥ 1. xn denotes the
set of variables {x1, x2, · · · , xn}. However, when the context is clear, we would use just x
instead of xn. Similarly for y, z, etc. We use ∂=kf to denote the set of all k-th order partial
derivatives of f . If S ⊆ F[x], then,

x≤` · S def
=

{
xi · f : f ∈ S and |i| ≤ `

}

Useful asymptotic estimates and inequalities. We now collect together some useful
estimates for binomial coefficients that follow from Stirling’s formula.

Definition 2. The binary entropy function H2 is defined as

H2(x) = −x · log2(x)− (1− x) · log2(1− x)

The natural-log version of the entropy function, denoted by He is defined analogously as

He(x) = −x · ln(x)− (1− x) ln(1− x)
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Lemma 3. For any 0 < x < 1, we have x ln 1
x
≤ He(x) ≤ x ln 1

x
+ x.

Proposition 4 (Stirling’s Formula, cf. [Rom]). ln(n!) = n lnn− n+O(lnn)

Stirling’s formula can be used to obtain the following estimates (proofs of which are in
Appendix A).

Lemma 5. Let a(n), f(n), g(n) : Z>0 → Z>0 be integer valued function such that (f + g) =
o(a). Then,

ln
(a+ f)!

(a− g)!
= (f + g) ln a ± O

(
(f + g)2

a

)
Lemma 6. For any constants α ≥ β > 0,

ln

(
αn

βn

)
= aHe

(
β

α

)
n+O(lnn)

4 Upper bounding the dimension of shifted partials of

ΣΠΣΠ[hom](t) circuits

In this section we give an upper bound on dim(〈∂=kC〉≤`) when C is computed by a
depth four circuit, i.e. C is of the form given in equation (1). We begin by noting that
dim(〈∂=kf〉≤`) is sub-additive.

Proposition 7. For all k, ` ≥ 0, we have dim(〈∂=k(f + g)〉≤`) ≤ dim(〈∂=kf〉≤`) +
dim(〈∂=kg〉≤`).

Proof. By linearity of partial derivatives, we have xi · ∂j(f + g) = xi · ∂jf + xi · ∂jg. Hence,

x≤` · ∂=k(f + g) ⊆ F-span
((

x≤` · ∂=kf
)
∪
(
x≤` · ∂=kg

))
The proposition follows.

Let C be a depth-4 circuit computing a polynomial of the form3

C =
s∑
i=1

Qei1
i1 ·Q

ei2
i2 . . . Q

eid
id where deg(Qij) ≤ t.

By Proposition 7, it suffices to understand the growth of dim(〈∂=kC〉≤`) of a single term
(Qe1

1 . . . Qed
d ).

Proposition 8. If f = Qe1
1 . . . Qed

d where each Qi ∈ F[xN ] is a polynomial of degree bounded
by t. Then, for any ` ≥ 0,

dim(〈∂=kf〉≤`) ≤
(
d+ k − 1

k

)(
N + (t− 1)k + `

N

)
3This is slightly more general than the form described in Equation (1).
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Proof. Let j ∈ Zd≥0 be any d-tuple satisfying |j| = k. We observe by repeated use of the
product rule that

∂j (Qe1
1 . . . Qed

d ) =
∑

j1+···+jd=j

(
∂j1Qe1

1

)
. . .
(
∂jdQed

d

)
Hence, each term in the above sum can be written as

(
Qe1−j1

1 . . . Qed−jd
d

)
· Q̃ where

∑
ji = k

and Q̃ has degree at most (tk−k). Thus, every element of x≤`∂=k(Qe1
1 · · ·Q

ed
d ) can be written

as a linear combination of
(
Qe1−j1

1 . . . Qed−jd
d

)
xr where

∑
ji = k and xr is a monomial of

degree at most `+ (t− 1)k. The total number of monomials of degree at most `+ (t− 1)k
over N variables is

(
N+(t−1)k+`

N

)
, and the total number of choices for j1 + · · · + jd = k is(

d+k−1
k

)
. Hence we obtain,

dim(〈∂=k(Qe1
1 · · ·Q

ed
d )〉≤`) ≤

(
d+ k − 1

k

)(
N + (t− 1)k + `

N

)

The following corollary follows directly from the above observation via sub-additivity.

Corollary 9. If C =
∑s

i=1

∏d
j=1Q

eij
ij where each Qij ∈ F[xN ] is a polynomial of degree

bounded by t, then for any k ≤ d

dim(〈∂=k(C)〉≤`) ≤ s ·
(
d+ k − 1

k

)(
N + (t− 1)k + `

N

)
In the next section we give a reasonable lower bound for dim(〈∂=k(Permn)〉≤`) for suitable
choice of parameters k and `.

5 Lower a bounding the dimension of shifted partials

of the Permanent

Reducing dimension computation to counting leading monomials. In this section,
we shall present a lower bound for dim(〈∂=k(Permn)〉≤`). Let � be any admissible monomial
ordering4. Recall that the leading monomial of a polynomial f ∈ F[x], denoted LM(f), is
the largest monomial xi under the ordering �.

Proposition 10. Let S ⊆ F[x] be any finite set of polynomials. Then

dim(F-span (S)) = #{LM(f) : f ∈ F-span (S)}.

The proof is a simple application of Gaussian elimination. As a corollary we obtain

4For more on monomial orderings and their applications in algebraic geometry, we refer the interested
reader to Chapter 2 of the text by Cox, Little and O’Shea [CLO07]
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Corollary 11. For any polynomial f(x) ∈ F[x] we have

dim(〈∂=kf〉≤`) ≥ #{xi · LM(∂jf) : i, j ∈ Z|x|≥0, |i| ≤ ` and |j| = k}

The lower bound given by this corollary is usually a severe underestimate but fortunately
even this will suffice for our purpose for the case when f = Permn.
Reduction to counting monomials with increasing subsequences. Let’s fix � to
be the lexicographic monomial ordering induced by the following ordering on the variables:
x11 � · · · � x1n � x21 � · · · � xnn. Now note that any partial derivative of Permn is just
the corresponding permanental minor (or just ‘P-minor’). Hence by the above corollary we
have

dim(〈∂=k(Permn)〉≤`) ≥ #

{
xi · LM(M) :

xi is a monomial of degree at most ` and
M is an (n− k)× (n− k) P-minor

}
Now note that the leading monomial under � of any (n − k) × (n − k) P-minor M is just
the product of the variables along the principal diagonal of M . Now if the variables along
the principal minor of M are (xi1j1 , · · · , xin−kjn−k

) then the indices satisfy

i1 < i2 < . . . < in−k and j1 < j2 < . . . < jn−k

This naturally leads to the following definition.

Definition 3. We shall refer to a sequence of variables (xi1j1 , · · · , xitjt) as an increasing
sequence if the indices satisfy

i1 < i2 < . . . < it and j1 < j2 < . . . < jt.

We will say that a monomial A = xj contains an increasing sequence of length t if there
exists an increasing sequence (xi1j1 , · · · , xitjt) wherein every variable xirjr (r ∈ [t]) divides
A.

In this terminology we would then say that the leading monomial of any (n− k)× (n− k)
P-minor is exactly the product of the variables in an increasing sequence of length (n− k).
Consequently for any P-minorM of size (n−k) we have that xi·LM(M) contains an increasing
sequence of length (n − k). Conversely, every monomial of degree at most (n − k + `) that
contain an increasing sequence of length (n− k) can be written as the leading monomial of
xi ·M for some monomial xi of degree at most ` and a (n− k)× (n− k) P-minor M . Hence
we have:

Corollary 12. dim(〈∂=k(Permn)〉≤`) is lower bounded by the number of distinct monomials
of degree at most (n− k + `) over n2 variables that contain an increasing sequence of length
(n− k).

In order to count the number of monomials of degree bounded by n− k + ` that contain an
increasing sequence, we shall restrict ourselves to a very small set of variables to contribute
the increasing sequence, and “fill-up” the remaining degree using the other variables. The
“small set” that we consider here is just two diagonals – the principal diagonal and the one
above it.
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5.1 Restricting to two diagonals

We shall focus on the variables D2,n = {xii : 1 ≤ i ≤ n} ∪
{
xi(i+1) : 1 ≤ i ≤ n− 1

}
.

Lemma 13. Fix parameters n, r,m ≥ 0, and let S(n, r,m) be the number of size-m subsets
of D2,n that contain an increasing sequence of length r. Then for any d,m > 0, the number
of monomials of degree bounded by d containing an increasing sequence of length r is lower
bounded by S(n, r,m) ·

(
n2−2n+d+1
n2−2n+m+1

)
.

Proof. For any monomial, define the support in D2,n as the set of variables in D2,n that

divide it. Note that for any S ⊆ D2,n, there are exactly
(
n2−2n+1+|S|+d−|S|

n2−2n+1+|S|

)
monomials of

degree d whose support in D2,n is S. Certainly two monomials having different supports in
D2,n are not equal. Summing up over all sets size-m sets containing an increasing sequence
of length r gives the required lowerbound.

We now are faced with the job of lowerbounding the number of size-s subsets of D2,n that
contain an increasing sequence of length r. To do that, we shall first pick an increasing
sequence of length r, and add more terms to form a size-m subset. In the process, the
subset could have several increasing sequences of length r. To avoid double counting, we
shall ensure that the leading increasing sequence (under the lexicographic ordering described
in Section 5) remains invariant.

Lemma 14. The number of length r increasing sequences in contained in D2,n is exactly(
2n−r
r

)
.

Proof. Consider the (2n− 1) variables in D2,n in the sequence x11, x12, x21, . . . , xnn. Picking
an increasing sequence of length r is the same as picking r of the (2n − 1) variables such
that no two adjacent variables (in the above order) are chosen. This can be thought as
distributing the (2n − r − 1) variables that won’t be picked such that there is at least one
between any two variables that are picked, and this is exactly equal to(

(2n− r − 1− (r − 1)) + (r + 1)− 1

(r + 1)− 1

)
=

(
2n− r
r

)

Lemma 15. For every n, r,m ≥ 0, we have that S(n, r,m) ≥
(
2n−r
r

)(
r−1
m−r

)
.

Proof. For any variable xij, define its companions to be the variables to its right in the same
row, or below it in the same column, i.e. {xij′ : j′ > j} ∪ {xi′j : i′ > i}.
Fix an increasing sequence Q = {xi1j1 , . . . , xirjr} ⊆ D2,n. Let Q′ be the set of all companions
of variables in Q which are in D2,n. The key observation is that adding elements of Q′ to
Q does not alter the leading increasing sequence. For any increasing sequence that uses
elements of Q′, replacing every xi′j′ ∈ Q′ by the corresponding xij ∈ Q for which it is a
companion for yields a “higher” increasing sequence. Hence adding any subset T ⊆ Q′ to Q
does not alter the leading increasing sequence.
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Note that every element of D2,n besides xnn has exactly one companion in D2,n. Hence, if Q
is a length r increasing sequence, the set of companions its Q′ has cardinality at least (r−1).
Since we are interested in size m subsets, there are at least

(
r−1
m−r

)
ways of augmenting Q

with a size-(m− r) subset of Q′. By Lemma 14 there are
(
2n−r
r

)
choices of Q to start with,

the bound follows.

By setting d = ` + n − k and r = n − k in Lemma 15 and using Lemma 13 with these
parameters, we get the following lowerbound for dim(〈∂=kPermn〉≤`) via Corollary 12.

Corollary 16. For every n,m, k, ` ≥ 0,

dim(〈∂=kPermn〉≤`) ≥
(
n+ k

2k

)
·
(
n− k − 1

m− n+ k

)
·
(
n2 − n+ `− k + 1

n2 − 2n+m+ 1

)

6 Putting it all together

We are now ready to prove the main theorem, which is a stronger form of Theorem 2.

Theorem 17. Let t : Z≥0 → Z≥0 be any increasing function such that t(n) = o(n). Suppose
C is a circuit of the form C =

∑s
i=1Q

ei1
i1 · · ·Q

eid
id where each Qij is a polynomial of degree

bounded by t, and d = cn/t for some constant c. If C computes the polynomial Permn, then
s ≥ exp

(
Ω
(
n
t

))
.

Proof. From Corollary 9, dim(〈∂=kC〉≤`) can be upper bounded as

dim(〈∂=k(C)〉≤`) ≤ s ·
(
d+ k − 1

k

)(
n2 + `+ (t− 1)k

n2

)
(2)

Also, Corollary 16 gives a lower bound for dim(〈∂=kPermn〉≤`) (for any choice of m):

dim(〈∂=kPerm〉≤`) ≥
(
n+ k

2k

)(
n− k − 1

m− n+ k

)(
n2 − n+ `− k + 1

n2 − 2n+m+ 1

)
(3)

Both these equations imply that

s ≥
(
n+k
2k

)(
n−k−1
m−n+k

)(
n2−n+`−k+1
n2−2n+m+1

)(
d+k−1
k

)(
n2+`+(t−1)k

n2

)
We shall set parameters as ` = n2t, m = 2n − (n/t) and k = ε(n/t) (for an ε > 0 that
shall be chosen shortly). The proofs of the following estimates for binomial coefficients are
straightforward applications of Lemma 5 and Lemma 6, and are presented in the Appendix A.

Claim 18. For the above choice of parameters:

(a) ln

(
n+ k

2k

)
= 2ε

(n
t

)(
ln

(
t

2ε

)
+ 1

)
±O

( n
t2

)
9



(b) ln

(
n− k − 1

m− n+ k

)
= (1− 2ε)

(n
t

)(
ln

(
t

1− 2ε

)
+ 1

)
±O

( n
t2

)
(c) ln

(
cn/t+ k − 1

k

)
= (c+ ε)He

(
ε

c+ ε

)
·
(n
t

)
±O (lnn)

(d) ln

(
n2−n+`−k+1
n2−2n+m+1

)(
n2+`+(t−1)k

n2

) = −
(n
t

)
ln t− (1 + ε)

(n
t

)
±O

( n
t2

)
Using this, we get

ln s ≥
(

2ε ln

(
1

2ε

)
+ (1− 2ε) ln

(
1

1− 2ε

)
− ε− (c+ ε)He

(
ε

c+ ε

))(n
t

)
± O

( n
t2

)
=

(
He(2ε)− ε− (c+ ε)He

(
ε

c+ ε

))(n
t

)
± O

( n
t2

)
which after an application of Lemma 3 yields

ln s ≥
(

2ε ln
1

2ε
− ε− ε ln

(
c+ ε

ε

)
− ε
)

=

(
ε ln

1

ε
− ε ln(4e2(c+ 1))

)(n
t

)
±+O

( n
t2

)
Choosing ε small enough gives ln s = O

(
n
t

)
, i.e. s ≥ exp

(
Ω
(
n
t

))
as claimed

Remark. Though the above theorem is stated for any increasing function t(n), the result
also holds when t is a constant. The choice of parameters in that case would be ` = n2,
m = 3(n− k)/2 and k = εn. Using similar estimates on the binomial coefficients, it can be
shown that log s = Ω(n) by choosing a small enough ε > 0.

In order to apply the above theorem to prove Theorem 2, we need a bound on d (the number
of Qij’s in each summand). Since several of the Qij’s could have degree smaller than t, it is
possible that d is much larger than n

t
. However, since Theorem 17 gives a bound on the top

fanin, we can multiply the Qij’s of low degree to ensure that each of them (except perhaps
one) has degree at least t/2. By this, d ≤ 2n/t + 1 and we can then apply Theorem 17 to
complete the proof of Theorem 2.

7 Discussion

The proof of Theorem 2 remains valid if we replace every occurrence of Permn by Detn but
there turns out to be a very interesting distinction between these two polynomials with
respect to the dimension of their shifted partial derivatives. In the particular case of the
determinant, Corollary 12 can be strengthened to say that the number of monomials of
degree at most n − k + ` with an increasing sequence of length (n − k) is not just a lower
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bound but is exactly equal to dim(〈∂=k(Detn)〉≤`). This follows from the following powerful
result on gröbner bases of determinantal ideals which has been proved independently by
Sturmfels[Stu90], Narasimhan [Nar86] and Caniglia, Guccione and Guccione [CGG90].

Theorem 19 ([Stu90], [Nar86], [CGG90]). Let � be the lexicographic ordering on monomials
defined in Section 5. Then the set of all order r × r minors of Detn is the reduced gröbner
basis for the ideal generated by them under the monomial ordering � .

It is known that the set of 2×2 permanental minors do not form a gröbner basis for the ideal
they generate. Thus it is presumable that dim(〈∂=k(Permn)〉≤`) is much larger compared to
the determinant. We conclude with the following conjecture.

Conjecture 20. There exists choices for `, k ≥ 0 such that dim(〈∂=k(Permn)〉≤`) is super-
polynomially larger (in n) than dim(〈∂=k(Detn)〉≤`).

Acknowledgments. We would like to thank Ravi Kannan and Satya Lokam for useful
discussions and providing some relevant references.
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A Proofs of binomial estimates

Lemma 21. Let a(n), f(n), g(n) : Z>0 → Z>0 be integer valued function such that (f+g) =
o(a). Then,

ln
(a+ f)!

(a− g)!
= (f + g) ln a ± O

(
(f + g)2

a

)
Proof.

(a+ f)!

(a− g)!
= (a+ f)(a+ f − 1) . . . (a− g)

=⇒ af+g
(

1− g

a

)f+g
≤ (a+ f)!

(a− g)!
≤ af+g

(
1 +

f

a

)f+g
=⇒ (f + g) ln

(
1− g

a

)
≤ ln

(a+ f)!

(a− g)!
− (f + g) ln a ≤ (f + g) ln

(
1 +

f

a

)
Using the fact that x

1+x
≤ ln(1 + x) ≤ x for x > −1, it is easy to see that both the LHS and

RHS are bounded by O
(

(f+g)2

a

)
.
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Lemma 22. For any constants α ≥ β > 0,

ln

(
αn

βn

)
= aHe

(
β

α

)
n+O(lnn)

Proof. By Stirling’s approximation (Proposition 4),

ln
(αn)!

(βn)!((α− β)n)!
= (αn) ln(αn)− αn− (βn) ln(βn) + βn

− (α− β)n ln((α− β)n) + (α− β)n+O(lnn)

= n(α lnα− β ln β − (α− β) ln(α− β)) +O(lnn)

= αn ·He

(
β

α

)
+O(lnn)

Claim 23. Suppose ` = n2t, m = 2n− n
t

and k = ε
(
n
t

)
where t is an increasing function of

n such that t = o(n), and ε > 0 is a constant. Then,

(a) ln

(
n+ k

2k

)
= 2ε

(n
t

)(
ln

(
t

2ε

)
+ 1

)
±O

( n
t2

)
(b) ln

(
n− k − 1

m− n+ k

)
= (1− 2ε)

(n
t

)(
ln

(
t

1− 2ε

)
+ 1

)
±O

( n
t2

)
(c) ln

(
cn/t+ k − 1

k

)
= (c+ ε)He

(
ε

c+ ε

)
·
(n
t

)
±O (lnn)

(d) ln

(
n2−n+`−k+1
n2−2n+m+1

)(
n2+`+(

√
n−1)k

n2

) = −
(n
t

)
ln t− (1 + ε)

(n
t

)
±O

( n
t2

)
Proof.

(a)
(
n+k
2k

)
= (n+k)!

(n−k)! ·
1

(2k)!
. Since k = o(n), using Lemma 21 and Lemma 22 gives

ln

(
n+ k

2k

)
= 2k lnn− (2k) ln(2k) + 2k ± O

(
k2

n

)
= 2ε

(n
t

)(
ln

(
t

2ε

)
+ 1

)
± O

( n
t2

)
(b)

(
n−k−1
m−n+k

)
= (n−k−1)!

(n−(n/t)+k)! ·
1

((n/t)−2k−1)! . Since (n/t) + 2k = o(n), Lemma 21 and Lemma 22
asserts that

ln

(
n− k − 1

m− n+ k

)
=

(n
t
− 2k

)(
lnn− ln

(n
t
− 2k

)
+ 1
)
± O

((
n
t
− 2k

)2
n

)

= (1− 2ε)
(n
t

)(
ln

(
t

1− 2ε

)
+ 1

)
± O

( n
t2

)
13



(c) Follows directly from Lemma 22.

(d) (
n2+`−n−k+1
n2−2n+m+1

)(
n2+`+(t−1)k

n2

) =
(n2 + `− n− k + 1)!

(n2 + `+ (t− 1)k)!
· (n2)!

(n2 − (n/t) + 1)!
· (`+ (t− 1)k)!

(`+ (n/t)− n− k)!

Using the fact that tk+ n = o(n2 + `), Lemma 21 can be applied on each of these ratios
to give (

n2+`−n−k+1
n2−2n+m+1

)(
n2+`+(t−1)k

n2

) =
1

(n2 + `)tk+n−1
· (n2)(n/t)−1 · `tk+n−(n/t) · exp

( n
t2

)
=

1(
1 + n2

`

)tk+n+1
·
(
n2

`

)(n/t)−1

· exp
( n
t2

)
=⇒ ln

(
n2+`−n−k+1
n2−2n+m+1

)(
n2+`+(t−1)k

n2

) = −(tk + n) ln

(
1 +

1

t

)
−
(n
t

)
ln t ± O

( n
t2

)
= −(1 + ε)

(n
t

)
−
(n
t

)
ln t ± O

( n
t2

)
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