
An improved lower bound for the randomized

decision tree complexity of recursive majority

Nikos Leonardos

October 3, 2012

Abstract

We prove that the randomized decision tree complexity of the re-
cursive majority-of-three is Ω

(

2.55d
)

, where d is the depth of the re-
cursion. The proof is by a bottom up induction, which is same in
spirit as the one in the proof of Saks and Wigderson in their FOCS
1986 paper on the complexity of evaluating game trees.

Previous work includes an Ω
(

(7/3)d
)

lower bound, presented in
STOC 2003 by Jayram, Kumar, and Sivakumar. Their proof used a
top down induction and tools from information theory. In ICALP
2011, Magniez, Nayak, Santha, and Xiao, improved the lower bound
to Ω

(

(5/2)d
)

and the upper bound to O
(

2.64946d
)

.

1 Introduction

In this paper we will be working with the decision tree model. We prove a
lower bound on the randomized decision tree complexity of the recursive
majority-of-three function.

Formally,

maj1(x1, x2, x3) =

{

1, if at least two of x1, x2, x3 are 1;
0, otherwise.

majd+1(x1, . . . , x3d+1) = maj1(majd(x1, . . . , x3d),

majd(x3d+1, . . . , x2·3d),

majd(x2·3d+1, . . . , x3d)).

We write maj for maj1. The function can also be represented by a uniform
ternary tree. In particular, let Ud be a tree of depth d, such that every in-
ternal node has three children and all leaves are on the same level. The
function computed by interpreting Ud as a circuit with internal nodes la-
beled by maj-gates is majd.

This function seems to have been given by Ravi Boppana (see Exam-
ple 1.2 in [7]) as an example of a function that has deterministic complexity
3d, while its randomized complexity is asymptotically smaller. Other func-
tions with this property are known. A notable example is the function

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 99 (2012)

nandd, first analyzed by Snir [10]. This is the function represented by a
uniform binary tree of depth d, with the internal nodes labeled by nand-
gates. A simple randomized framework that can be used to compute both
majd and nandd is the following. Start at the root; as long as the output
is not known, choose a child at random and evaluate it recursively. This
type of algorithms are called in [7] directional. For majd the directional algo-
rithm computes the output in (8/3)d queries. It was noted in [7] that better
algorithms exist for majd. Interestingly, Saks and Wigderson show that
the directional algorithm is optimal for the nandd function, and show that
its zero-error randomized decision tree complexity is Θ

(

(1+
√
33

4)d
)

. Their
proof uses a bottom up induction and generalized costs. Their method of
generalized costs allows them to charge for a query according to the value
of the variable. Furthermore, they conjecture that the maximum gap be-
tween deterministic and randomized complexity is achieved for this func-
tion.

Inspired by their technique we prove an Ω
(

2.55d
)

lower bound onmajd
that also holds for algorithms with bounded-error. (The bound of [7] for
nandd was extended to bounded-error algorithms by Santha in [8].) In
contrast to the exact asymptotic bounds we have for nandd, there had
been no progress on the randomized decision tree complexity of majd for
several years. However, recent papers have narrowed the gap between
the upper and lower bounds for recursive majority. An Ω

(

(7/3)d
)

lower
bound was showed in [4]. Jayram, Kumar, and Sivakumar, proved their
bound using tools from information theory and a top down induction. Fur-
thermore, they presented a non-directional algorithm that improves the
O
(

(8/3)d
)

upper bound. Magniez, Nayak, Santha, and Xiao [6], signifi-

cantly improved the lower bound to Ω
(

(5/2)d
)

and the upper bound to

O
(

2.64946d
)

. (Both of these lower bounds hold for the case that the ran-
domized decision tree is allowed to err.)

Our proof of the lower bound is simpler than the aforementioned ones;
it doesn’t require a background in information theory and it only uses
induction. Note that, Landau, Nachmias, Peres, and Vanniasegaram [5],
showed how to remove the information theoretic notions from the proof in
[4], keeping its underlying structure the same. Our proof can be evenmore
simplified, if one requires the known Ω

(

2.5d
)

lower bound. A simpler
proof of this bound seems to have been already known to Jonah Serman
[9] in 2007.

We note that both functions majd and nandd, belong to the class of
read-once functions. These are functions that can be computed by read-
once boolean formulae, that is, formulae with the property that each in-
put variable appears exactly once. Heiman, Newman, and Wigderson
[2] showed that read-once formulae with threshold gates have zero-error
randomized complexity Ω(n/2d) (here n is the number of variables and
d the depth of a canonical tree-representation of the read-once function).
Heiman and Wigderson [3] managed to show that for every read-once

2

function f we have R(f) ∈ Ω
(

D(f)0.51
)

, where R(f) and D(f) are the
randomized and deterministic complexity of f respectively. Note that the
conjecture of Saks and Wigderson states that for every function f we have
R(f) ∈ Ω

(

D(f)0.753...
)

.

2 Definitions, notation, and preliminaries

In the following sectionwe introduce basic concepts related to decision tree
complexity. The reader can find a more complete exposition in the survey
of Buhrman and de Wolf [1].

2.1 Definitions pertaining to decision trees

A deterministic Boolean decision tree Q over a set of variables Z = {zi | i ∈
[n]}, where [n] = {1, 2, . . . , n}, is a rooted and ordered binary tree. Each
internal node is labeled by a variable zi ∈ Z and each leaf with a value
from {0, 1}. An assignment to Z (or an input to Q) is a member of {0, 1}n .
The output Q(σ) of Q on an input σ is defined recursively as follows. Start
at the root and let its label be zi. If σi = 0, we continue with the left child
of the root; if σi = 1, we continue with the right child of the root. We
continue recursively until we reach a leaf. We define Q(σ) to be the label
of that leaf. When we reach an internal node, we say that Q queries or reads
the corresponding variable. We say that Q computes a Boolean function
f : {0, 1}n → {0, 1}, if for all σ ∈ {0, 1}n , Q(σ) = f (σ). The cost of Q on
input σ, cost(Q; σ), is the number of variables queried when the input is
σ. The cost of Q, cost(Q), is its depth, the maximum distance of a leaf from
the root. The deterministic complexity, D(f), of a Boolean function f is the
minimum cost of any Boolean decision tree that computes f .

A randomized Boolean decision tree QR is a distribution p over determin-
istic decision trees. On input σ, a deterministic decision tree is chosen ac-
cording to p and evaluated. The cost of QR on input σ is cost(QR; σ) =

∑Q p(Q) cost(Q; σ). The cost of QR is maxσ cost(QR; σ). A randomized de-
cision tree QR computes a Boolean function f , if p(Q) > 0 only when Q
computes f . A randomized decision tree QR computes a Boolean function f
with error δ, if, for all inputs σ, QR(σ) = f (σ) with probability at least 1− δ.
The randomized complexity, R(f), of a Boolean function f is the minimum
cost of any randomized Boolean decision tree that computes f . The δ-error
randomized complexity, Rδ(f), of a Boolean function f , is the minimum cost
of any randomized Boolean decision tree that computes f with error δ.

We are going to take a distributional view on randomized algorithms.
Let µ be a distribution over {0, 1}n andQR a randomized decision tree. The
expected cost of QR under µ is

costµ(QR) = ∑
σ

µ(σ) cost(QR; σ).

3

The δ-error expected complexity under µ, R
µ
δ (f), of a Boolean function f , is

the minimum expected cost under µ of any randomized Boolean decision
tree that computes f with error δ. Clearly, Rδ(f) ≥ R

µ
δ (f), for any µ, and

thus we can prove lower bounds on randomized complexity by providing
lower bounds for the expected cost under any distribution.

2.2 Introducing cost-functions

Furthermore, we are going to utilize the method of generalized costs of
Saks and Wigderson [7]. To that end, we define a cost-function relative to
a variable set Z, to be a function φ : {0, 1}n × Z → R. We extend the
previous cost-related definitions as follows. The cost of a decision tree Q
under cost-function φ on input σ is

cost(Q; φ; σ) = ∑
z∈S

φ(σ; z),

where S = {z | z is queried by Q on input σ}. The cost of a randomized
decision tree QR on input σ under cost-function φ is

cost(QR; φ; σ) = ∑
Q

p(Q) cost(Q; φ; σ),

where p is the corresponding distribution over deterministic decision trees.
Finally, the expected cost of a randomized decision tree QR under cost-
function φ and distribution µ is

costµ(QR; φ) = ∑
σ

µ(σ) cost(QR; φ; σ).

Observation 1. Let φ and ψ be two cost-functions relative to Z. For any decision
tree Q over Z, any assignment σ to Z, and any a, b ∈ R, we have

a cost(Q; φ; σ) + b cost(Q;ψ; σ) = cost(Q; aφ + bψ; σ).

Thus, for any distribution µ,

a costµ(Q; φ) + b costµ(Q;ψ) = costµ(Q; aφ + bψ).

For φ,ψ : {0, 1}n ×Z → R, wewrite φ < ψ, if for all (σ, z) ∈ {0, 1}n ×Z,
φ(σ, z) ≥ ψ(σ, z).

Observation 2. Let φ and ψ be two cost-functions relative to Z. For any decision
tree Q over Z and any assignment σ to Z, if φ < ψ, then

cost(Q; φ; σ) ≥ cost(Q;ψ; σ).

Thus, for any distribution µ,

costµ(Q; φ) ≥ costµ(Q;ψ).

4

2.3 Definitions pertaining to trees

For a rooted tree T, the depth of a leaf is the number of edges on the path to
the root. The depth of the tree is the maximum depth of a leaf. We denote
by LT the set of its leaves and by VT the set of its internal nodes. Define the
set of leaf-parents of T, PT, as the set of all nodes in VT all of whose children
are leaves. For S ⊆ PT let LT(S) be the set of the leaves of the nodes in S.
We call a tree uniform if all the leaves are on the same level. A tree such
that every node has exactly three children is called ternary. For a positive
integer d, let Ud denote the uniform ternary tree of depth d.

In the following, let T denote a ternary tree with n leaves. We define a
distribution µT over {0, 1}n . The distribution is placing positive weight on
inputs that we consider intuitively difficult. Let

M0 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and M1 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}.

In the following definition we view T as a circuit with every internal node
labeled by a maj-gate. We denote the corresponding function by FT.

Definition 1 (Difficult inputs, distribution µT). Call an input to a ternary tree
difficult, if it is such that the inputs to every gate belong to M0 ∪M1. Let µT, the
difficult distribution for T, be the uniform distribution over all difficult inputs
and write µd ≡ µUd

.

Suppose the inputs to a gate, under an assignment σ, belong to M0

(M1). We call an input to this gate a minority under σ if it has the value 1 (0)
and a majority otherwise.

3 Proof outline

Our goal is to prove a lower bound on the expected cost of any randomized
decision treeQR that computesmajd with bounded error δ. We nowdiscuss
the outline of our proof. We start with the tree T ≡ Ud that representsmajd,
the natural cost-function ψ that charges 1 for any query, and the difficult
distribution µ ≡ µT. We define a process that shrinks tree T to a smaller
tree T′ and a corresponding randomized decision tree Q′

R that computes
FT ′ with bounded error δ. The crucial part is to show that for a “more
expensive” cost-function ψ′,

costµ(QR;ψ) ≥ costµ′(Q′
R;ψ

′),

where µ′ ≡ µT ′ . The quality of our lower bound will depend on howmuch
more expensive ψ′ is than ψ.

The main ingredient in this framework is the shrinking process. A nat-
ural choice would be to shrink T by removing three leaves u, v, w so that
their parent s would become a leaf in T′. Then, if we had a good algo-
rithm Q for FT we could design an algorithm Q′ for FT ′ as follows. On

5

input σs, Q′ would simulate Q on one of the inputs σ01s, σ10s, σ0s1, σ1s0,
σs01, σs10, with equal probability. We will show in the next section that
such a shrinking process can give an alternate—and simpler—proof of the
Ω
(

2.5d
)

lower bound of Magniez, Nayak, Santha, and Xiao [6].
To improve their bound we are going to shrink nine leaves to three

at a time instead of three to one. This is made precise by the following
definition.

Definition 2 (shrink(T; s)). For a ternary tree T, let s be the parent of u, v,w ∈
PT. Define shrink(T; s) as the tree with the children of u, v,w removed (so that
u, v,w ∈ LT ′, where T′ ≡ shrink(T; s)).

After shrinking our initial tree T to a tree T′, we need to define a ran-
domized decision tree Q′

R that will compute FT ′ with error at most δ. We
do so, by giving for each deterministic tree Q that QR may choose, a ran-
domized tree Q′. This is the object of the following definition.

Definition 3. Let Q be any deterministic decision tree for FT. We define a ran-
domized decision tree Q′ for FT ′ . The algorithm Q′ on input σuvw chooses σu, σv,
σw independently and uniformly at random from

{

(x, 0, 1), (x, 1, 0), (0, x, 1), (1, x, 0), (0, 1, x), (1, 0, x)
}

,

where x is u, v, w respectively. Then, Q′ simulates Q on input σ̂ = σσuσvσw.
This induces a randomized algorithm Q′

R for FT ′ such that a deterministic tree
Q∗ is chosen by Q′

R with probability p′(Q∗) = ∑Q p(Q) · Pr[Q′ chooses Q∗].

Observation 3. If QR is a δ-error randomized decision tree for FT, then Q′
R is a

δ-error randomized decision tree for FT ′.

Proof. The error of Q′
R on an input σ is bounded by the expected (over the

choices of σu, σv, σw) error of QR on σ̂.

It will be useful to express costµ′(Q′;ψ′), for some cost-function ψ′, in
terms of Q. We have the following proposition.

Proposition 4. For a ternary tree T and s the parent of u, v,w ∈ PT, let T
′

denote shrink(T; s). Let ψ′ be a cost-function on T′, such that ψ′(σ; z) = λ for
all σ ∈ {0, 1}|LT | and z ∈ {u, v,w}. Then

costµ′(Q′;ψ′) = costµ(Q;ψ∗),

where

ψ∗(σ; z) =







ψ′(σ; z), if z ∈ LT \ LT(u, v,w);
0.5 · λ, if z ∈ LT(u, v,w) and is a majority under σ;
0, if z ∈ LT(u, v,w) and is a minority under σ.

(1)

6

Proof. Observe that by the definition of Q′, Pr[σ̂ = σ] = µ(σ). Further-
more, each σ is encountered 23 times over the random choices of Q′. For
(i, j, k) ∈ [3]3 define cost-functions for T as follows.

ψ(i,j,k)(σ; z) =







0, if z ∈ LT(u, v,w) \ {ui, vj,wk};
λ, if z ∈ {ui, vj,wk};
ψ′(σ; z), otherwise.

We have

costµ′(Q′;ψ′) = ∑
σ

µ(σ)
1

23 ∑
(i,j,k)

cost(Q;ψ(i,j,k); σ),

where i (j, k) ranges over the majorities of u (v,w). The proposition follows
because, given a σ and (i, j, k) as stated, ∑(i,j,k)

1
23

ψ(i,j,k) = ψ∗.

4 Some useful toy problems and lemmas

We are going to ask a question regarding decision trees over {0, 1}6. Let µ

be the uniform distribution over

{

(u, v)
∣

∣

(

u ∈ M0 ∧ v ∈ M1

)

∨
(

u ∈ M1 ∧ v ∈ M0

)}

.

We are interested in cost-functions φ of the following form.

φ(σ; z) =

{

1, if z is a minority;
η, otherwise.

We seek the minimum (negative) real value of η for which costµ(Q; φ) ≥ 0
for any decision tree Q.

Before we proceedwith this toy problem, we list all decision trees1 over
{0, 1}3 (besides a few uninteresting ones that query a third variable even
though the first two are equal).

4.1 Taxonomy of the decision trees for maj1

In the following table, we consider all possible deterministic decision trees1

Q for three variables, x, y, z, assuming they are always queried in the order
x, y, z. We write “and* z” to denote a conditional read. That is, z is queried
only if the value of maj(x, y, z) cannot be determined from the values of x
and y. (Decision trees that read z even if x = y are of no interest, neither
for majd, nor for the toy problem.)

In the last columnwe calculate ∑σ∈M0
cost(Q; φ; σ). Because of the sym-

metries involved we can look up the costs for σ ∈ M1 as well. For example,
the cost of the decision tree in row (2a) when σ ∈ M1, is the same as the
cost of the decision tree in row (2b) when σ ∈ M0.

1We abuse the term “decision tree” in Section 4.1, since we are actually listing algorithms
that query bits but do not output anything.

7

Decision tree Cost

(1) if x = 0, stop; if x = 1, stop. 1+ 2η

(2a) if x = 0, stop; if x = 1, read y. 1+ 3η

(2b) if x = 0, read y; if x = 1, stop. 2+ 3η

(3a) if x = 0, stop; if x = 1, read y and* z. 1+ 4η

(3b) if x = 0, read y and* z; if x = 1, stop. 2+ 4η

(4) if x = 0, read y; if x = 1, read y. 2+ 4η

(5a) if x = 0, read y; if x = 1, read y and* z. 2+ 5η

(5b) if x = 0, read y and* z; if x = 1, read y. 2+ 5η

(6) if x = 0, read y and* z; if x = 1, read y and* z. 2+ 6η

What we are going to use from this table is that for η ∈ [− 1/2, 0] (we are
not interested in other values anyway), the decision tree of row (3a) has
the minimum cost when (x, y, z) ∈ M0, and the tree of row (3b) when
(x, y, z) ∈ M1. Their cost is 1+ 4η.

4.2 A simple proof of the Ω(2.5d) lower bound

We illustrate the usefulness of this table by sketching a proof of the Ω
(

2.5d
)

lower bound of Magniez, Nayak, Santha, and Xiao [6].
We first show that R

µ1

δ (maj1) ≥ 2.5 · Rµ0

δ (maj0). For any algorithm
Q1 for maj1, consider the algorithm Q0 for maj0 that on input u simu-
lates one of Q1(01u), Q1(10u), Q1(0u1), Q1(1u0), Q1(u01), Q1(u10), with
equal probability. If Q1 is a δ-error algorithm for maj1, then Q0 is a δ-
error algorithm for maj0. Let ψ1 be the cost-function for maj1 defined by
ψ(σ; z) = 1 for all σ and z. Let ψ0 be the cost-function for maj0 defined
by ψ(0; u) = ψ(1; u) = 2.5. Then, as in the proof of Proposition 4, we can
show that

costµ1
(Q1;ψ1)− costµ0(Q0;ψ0) = costµ1

(Q1; φ),

where we define φ with η = −0.25. One can now verify by examining the
table, that for this value of η, there is no (deterministic) decision tree Q that
can achieve costµ1

(Q; φ) < 0. Thus, costµ1
(Q1;ψ1) ≥ costµ0(Q0;ψ0) and

the result follows.
Applying this reasoning repeatedly, by shrinking one node in Ud at a

time, one can show that R
µd

δ (majd) ≥ 2.5d · Rµ0

δ (maj0). Finally, it is not hard
to show that you have to read a bit with probability at least 1− 2δ to be
able to guess it with error at most δ, thus R

µ0

δ (maj0) ≥ (1− 2δ). Putting
these together, R

µd

δ (majd) ≥ (1− 2δ) · 2.5d.

Remark. Note how in the above argument the value of u makes a differ-
ence. In particular, if u = 0, then the best decision tree is the one on row

8

(3a), whereas if u = 1, it is the one on row (3b). This can be circumvented
if we only want a bound for maj1 (see next proposition), but it is not easy
to do the same for the inductive step.

Proposition 5. R
µ1

δ (maj1) ≥ 8
3 · R

µ0

δ (maj0).

Proof. As above, let ψ1 be the cost-function for maj1 defined by ψ(σ; z) = 1
for all σ and z. Let ψ0 be the cost-function for maj0 defined by ψ(0; u) =
ψ(1; u) = 8/3. Then, as in the proof of Proposition 4, we can show that

costµ1
(Q1;ψ1)− costµ0(Q0;ψ0) = costµ1

(Q1; φ),

where we define φ with η = −1/3. Observe now that for any deterministic
algorithm Q, ∑σ∈M0∪M1

cost(Q; φ; σ) ≥ 0. The zero is achieved by the tree
on row (6) of the table. Thus, costµ1

(Q1;ψ1) ≥ costµ0(Q0;ψ0) and the result
follows.

4.3 Solution of the toy problem and a corollary

We now return to the toy problem (see the beginning of Section 4 for its
statement) and show that we can have η = −0.3. Although it is not stated
in the following lemma, it is easily observable from the proof that this value
is best possible.

Lemma 6. For any decision tree Q and η = −0.3, costµ(Q; φ) ≥ 0.

Proof. For the proof we are going to do some case analysis, taking advan-
tage of the symmetries involved. Denote the input by (x, y, z, u, v,w), and
call (x, y, z) the left side and (u, v,w) the right side. Assume, without loss
of generality (due to the symmetry of µ and the fact that we are calculating
expected cost), that the variables on the left side are queried in the order
x, y, z and on the right side in the order u, v,w. Assume further, that x is
the first variable queried by Q, and let Q0 (Q1) be the decision tree if x = 0
(x = 1). Observe that, again due to symmetry, we do not need to analyze
Q1 (the analysis would be the same with the roles of 0 and 1 exchanged).
Thus, we assume x = 0 and proceed with the analysis of Q0.

In all of the following cases we calculate the cost scaled; in particular,
we calculate C ≡ ∑σ:x=0 cost(Q; φ; σ).

Case 1. Suppose that Q0 is empty. Then C = 3+ 6η > 0.
Case 2. Suppose that Q0 queries y. Then, either x = y or x 6= y. In

the first case, Q0 should never query z, since such a query is guaranteed
to increase the cost by 1. In the second case, Q0 should definitely query z,
since such a query is guaranteed to decrease the cost by −η. Therefore, we
may assume that Q0 first “finishes” with the left side and then proceeds
to the right side, knowing whether (u, v,w) ∈ M0 or (u, v,w) ∈ M1. In
the first case, Q0 should continue with the right side as in row (3a) of the
table; in the second case, it should continue as in row (3b). The cost is
C = (3 · 2η + 1+ 4η) + 2 · (3 · (1+ 2η) + 1+ 4η), which is 0 for η = −0.3.

9

Case 3. Suppose that Q0 queries u.
(i) Suppose x = u. If Q0 does not query anything else, then this case

contributes to the cost 4 · (1+ η). Otherwise lets assume (without loss of
generality) that it reads y. Then, as in Case 2, we may assume that Q0

“finishes” the left side before doing anything else. There are four inputs
such that x = u = 0. For two of the inputs the left side belongs to M0 and
for the other two to M1. In the first case, Q0 should read v and w (they are
both majorities). In the second case, Q0 should not read any of v,w (it costs
an additional 1+ 2η > 0 if it reads them). In total the cost of this case is
then (1+ 4η) + (2+ 4η) + 2 · (1+ 3η) = 5+ 14η.

(ii) Suppose x 6= u. If Q0 does not query anything else, then this case
contributes to the cost 2+ 8η. Otherwise lets assume (without loss of gen-
erality) that it reads y. With similar considerations as in case 3(i), we find
that the total cost of this case is then (2 + 4η) + 2 · 3η + 2 · (1 + 3η) =
4+ 16η.

Summing up for case 3, we find that the bestQ0 can do is C = 9+ 30η =
0. The case analysis is complete.

We prove a corollary of this lemma that would be more appropriate for
our purposes.

Corollary 7. Let T ≡ U2 with root s and T′ ≡ shrink(T; s). Let ψ and ψ′ be
cost-functions such that ψ(σ; z) = λ ≥ 0 for all σ ∈ {0, 1}9 and all variables
z ∈ LT, and ψ′(σ; z) = 2.55 · λ for all σ ∈ {0, 1}3 and all variables z ∈ LT ′. Let
µ and µ′ be the difficult distributions for {0, 1}9 and {0, 1}3 respectively. Then,
for any deterministic decision tree Q,

costµ(Q;ψ) ≥ costµ′(Q′;ψ′).

Proof. Recall the definition of ψ∗ from page 6. We have

costµ(Q;ψ)− costµ′(Q′;ψ′)

= costµ(Q;ψ)− costµ(Q;ψ∗) by Proposition 1

= costµ(Q;ψ − ψ∗) by Observation 1

= ∑σ:maj2(σ)=0
µ(σ) cost(Q;ψ − ψ∗; σ)

+∑σ:maj2(σ)=1
µ(σ) cost(Q;ψ − ψ∗; σ).

We are going to show that the first sum is nonnegative. The other sum can
be treated similarly. To that end, we define an intermediate cost-function
ξ. In the following definition, σ is an assignment, z a variable, and u is the
value of the parent of z under σ.

ξ(σ; z) =







λ, if z is a minority under σ;
−0.275 · λ, if z is a majority under σ and u = 0;
−0.3 · λ, if z is a majority under σ and u = 1.

10

Observe that ψ − ψ∗ < ξ (they agree on the minorities and ψ − ψ∗ is λ −
0.5 · 2.55 · λ = −0.275 · λ on all majorities) and thus it suffices to show that

∑σ:maj2(σ)=0
µ(σ) cost(Q; ξ; σ) ≥ 0. (2)

We are now going to decompose ξ into several cost-functions. Let u, v,
and w be the children of s. Define a cost-function ξu by

ξu(σ; z) =







0, if z ∈ LT(u);
−0.3 · λ, if z is a majority under σ and z ∈ LT(v,w);
λ, if z is a minority under σ and z ∈ LT(v,w).

Similarly define ξv and ξw. For α ∈ M0 define

Cu(α) ≡ ∑
β∈M0

∑
γ∈M1

µ(αβγ) cost(Q; ξu; αβγ) + µ(αγβ) cost(Q; ξu; αγβ).

Similarly define Cv and Cw (assigning α to v and w respectively). Define a
cost-function ξ′u by

ξ′u(σ; z) =







0, if z ∈ LT(v,w);
−0.25 · λ, if z is a majority under σ and z ∈ LT(u);
λ, if z is a minority under σ and z ∈ LT(u).

Similarly define ξ′v and ξ′w. For (α, β) ∈ M0 × M1 define

C′
u(α, β) ≡ ∑

γ∈M0

µ(γαβ) cost(Q; ξ′u;γαβ) + µ(γβα) cost(Q; ξ′u;γβα).

Similarly define C′
v and C′

w.
We now argue that

∑σ:maj2(σ)=0
µ(σ) cost(Q; ξ; σ) =

1

2

[

∑
α∈M0

(

Cu(α) + Cv(α) + Cw(α)
)

+ ∑
α∈M0

∑
β∈M1

(

C′
u(α, β) + C′

v(α, β) + C′
w(α, β)

)

]

. (3)

To prove this, we fix a σ = xyz on the left-hand side and see if each bit—
assuming it is queried by Q—is charged the same in both sides of the
equation. Without loss of generality, lets assume σ is such that maj(x) =
maj(y) = 0 and maj(z) = 1. A minority (under σ) is charged λ on the left
side. A minority below u is charged λ once in Cv(y) and once in C′

u(y, z)
on the right, for a total of 0.5 · (λ + λ). Similarly for a minority below v. A
minority belowwwill be charged λ in Cu(x) and Cv(y), which corresponds
to the amount charged on the left side. A majority below uwill be charged
−0.3 ·λ in Cv(y) and−0.25 ·λ in C′

u(y, z), for a total of 0.5 · (−0.3− 0.25) ·λ;
this is howmuch is charged in the left side as well. Similarly for a majority

11

below v. Finally, a majority below w is charged−0.3 · λ in Cu(x) and Cv(y),
equal to the amount charged on the left side.

We now finish the proof by showing that the right-hand side of Equa-
tion (3) is nonnegative. We argue that, for any α ∈ M0, Cu(α) ≥ 0. Each
fixed α ∈ M0 induces a decision tree Qα over {0, 1}6 such that Qα(βγ) =
Q(αβγ). Observe that ξu agrees on LT(v,w) with λφ. Thus, Cu(γ) =
λ costµ(Qγ; φ) and Lemma 6 shows that Cu(α) ≥ 0. Similarly, for any
α ∈ M0, Cv(γ), Cw(γ) ≥ 0. Along similar lines we can show that, for
any (α, β) ∈ M0 × M1, C

′
u(α, β), C′

v(α, β), C′
w(α, β) ≥ 0. (Lemma 6 is not

needed in this case; inspection of the table in Section 4.1 suffices. See also
the first paragraph of Section 4.2).

5 Proof of the lower bound

In this section we carry out the inductive proof sketched in Section 3.

Lemma 8 (Shrinking Lemma). For a ternary tree T and s the parent of u, v,w ∈
PT, let T

′ denote shrink(T; s). Let ψ and ψ′ be cost-functions on T and T′ such
that ψ(σ; z) = λ for all σ ∈ {0, 1}|LT | and z ∈ LT(u, v,w) and

ψ′(σ; t) =
{

2.55 · λ, if t ∈ {u, v,w};
ψ(σ; t), otherwise.

Then, for any randomized decision tree QR,

costµ(QR;ψ) ≥ costµ′(Q′
R;ψ

′),

where µ ≡ µT and µ′ ≡ µT ′ .

Proof. Let n denote the number of leaves in T. Fix a partial assignment
π ∈ {0, 1}n−9 for the leaves in LT \ LT(u, v,w) and let ρ ∈ {0, 1}9. We
write πρ for the assignment that equals ρ on the variables LT(u, v,w) and
π everywhere else. For any deterministic tree Q we have

∆(Q) ≡ costµ(Q;ψ)− costµ′(Q′;ψ′)

= costµ(Q;ψ)− costµ(Q;ψ∗) by Proposition 4

= costµ(Q;ψ − ψ∗) by Observation 1

= ∑
π

∑
ρ

µ(πρ) cost(Q;ψ − ψ∗;πρ).

Now, ψ and ψ∗ are equal over LT \ LT(u, v,w). Furthermore, having
fixed π, we can define a deterministic tree Qπ over {0, 1}9 so that on input
ρ ∈ {0, 1}9 we have Qπ(ρ) = Q(πρ). Thus

∆(Q) = ∑
π

∑
ρ

µ(πρ) cost(Qπ ;λφ; ρ).

This is because, recalling the definition of ψ∗ (on page 6), we see that ψ−ψ∗

agrees with λφ on LT(u, v,w). Thus, we may apply Corollary 7, which

12

implies that, for each fixed π, each summand is greater or equal to zero. It
follows that, for any Q, ∆(Q) ≥ 0. Finally,

costµ(QR;ψ)− costµ′(Q′
R;ψ

′) = ∑
Q

p(Q)∆(Q) ≥ 0.

Applying the Shrinking Lemma repeatedly and recalling Observation 3
it is straightforward to show that

R
µd

δ (majd) ≥ 2.55d−1 · Rµ1

δ (maj1).

By Proposition 5, R
µ1

δ (maj1) ≥ 8
3 · R

µ0

δ (maj0). A δ-error decision tree for

maj0 should guess a random bit with error at most δ; thus, R
µ0

δ (maj0) ≥
1− 2δ.

We have obtained the following theorem.

Theorem 9. R
µd

δ (majd) ≥ 8
3 · (1− 2δ) · 2.55d−1.

6 Concluding remarks

We improved the lower bound on the recursive majority-of-three function
using the method of generalized costs of Saks and Wigderson [7]. It seems
though that we didn’t exploit the full power of this method. A more es-
sential use of generalized costs could, for example, charge differently for
reading a majority than for reading a minority. We couldn’t implement
such an idea.

Our bound is not optimal. We believe that to obtain optimal bounds
using a bottom up inductive proof it is not enough to employ a better cost-
function. One should find a way to incorporate in the proof the knowledge
the algorithm has for all parts of the tree (see the remark on page 8).

Acknowledgements

I thank Mike Saks for useful discussions and corrections in an earlier draft
of this paper and Jeff Steif for pointing out a serious error in an earlier
version.

References

[1] Harry Buhrman and Ronald deWolf. Complexity measures and deci-
sion tree complexity: a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[2] Rafi Heiman, Ilan Newman, and Avi Wigderson. On read-once
threshold formulae and their randomized decision tree complexity.
Theor. Comput. Sci., 107(1):63–76, 1993.

13

[3] Rafi Heiman and Avi Wigderson. Randomized vs. deterministic de-
cision tree complexity for read-once boolean functions. Computational
Complexity, 1:311–329, 1991.

[4] T. S. Jayram, Ravi Kumar, and D. Sivakumar. Two applications of
information complexity. In STOC, pages 673–682. ACM, 2003.

[5] Itamar Landau, Asaf Nachmias, Yuval Peres, and Sithparran Vanni-
asegaram. The lower bound for evaluating a recursive ternary major-
ity function and an entropy-free proof. Undergraduate Research Reports,
Department of Statistics, University of California, Berkeley, 2006.

[6] Frédéric Magniez, Ashwin Nayak, Miklos Santha, and David Xiao.
Improved bounds for the randomized decision tree complexity of re-
cursive majority. In Luca Aceto, Monika Henzinger, and Jiri Sgall,
editors, ICALP (1), volume 6755 of Lecture Notes in Computer Science,
pages 317–329. Springer, 2011.

[7] Michael E. Saks and Avi Wigderson. Probabilistic boolean decision
trees and the complexity of evaluating game trees. In FOCS, pages
29–38. IEEE Computer Society, 1986.

[8] Miklos Santha. On the monte carlo boolean decision tree complexity
of read-once formulae. Random Struct. Algorithms, 6(1):75–88, 1995.

[9] Jonah Sherman. Unpublished, 2007. Communicated to the author by
Ryan O’Donnell in 12 Sep. 2012.

[10] Marc Snir. Lower bounds on probabilistic linear decision trees. Theor.
Comput. Sci., 38:69–82, 1985.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

